Трансмиссия схема: Общая схема и основные механизмы трансмиссии

Содержание

Общая схема и основные механизмы трансмиссии

Категория:

   Автомобили Камаз Урал

Публикация:

   Общая схема и основные механизмы трансмиссии

Читать далее:



Общая схема и основные механизмы трансмиссии

Трансмиссией называют совокупность механизмов, через которые крутящий момент от двигателя передается к ведущим колесам. В трансмиссии осуществляется преобразование (увеличение) крутящего момента и распределение его между ведущими колесами таким образом, чтобы обеспечить возможность движения машины в различных дорожных условиях.

На автомобилях КамАЗ-5320, КамАЗ-4310 и Урал-4320 применена механическая ступенчатая трансмиссия. Общие схемы трансмиссий этих автомобилей приведены на рис. 4.1.

В автомобиле КамАЗ-5320 (рис. 4.1,а) крутящий момент от двигателя, установленного в передней части автомобиля, передается через сцепление на передний делитель передач и коробку передач.

На некоторых модификациях автомобилей КамАЗ делитель передач не устанавливается. От коробки передач крутящий момент через карданную передачу, дифференциал поступает на средний и задний ведущие мосты, внутри которых размещаются главные передачи, дифференциалы и валы привода к ведущим колесам.

Рекламные предложения на основе ваших интересов:

Сцепление позволяет временно разобщать двигатель и коробку передач, чтобы переключить передачи в коробке передач и затем плавно соединить их. Коробка передач служит в основном для изменения в широких пределах крутящего момента, подводимого к ведущим мостам. Передний делитель передач позволяет удвоить число передач в трансмиссии автомобиля КамАЗ-5320. Коробка передач, передний делитель передач и сцепление объединены в общий силовой агрегат, который укрепляется на раме автомобиля.

Дифференциал распределяет крутящий момент между ведущими мостами. При таком размещении дифференциал называется межосевым.

Внутри каждого ведущего моста крутящий момент постоянно увеличивается главной передачей. Дифференциал, размещенный с главной передачей, распределяет крутящий момент между правыми и левыми колесами ведущего моста, позволяя им вращаться с разной частотой. При такой установке дифференциал называется межколесным.

На автомобилях КамАЗ-4310 и Урал-4320 (рис. 4.1, б) крутящий момент от двигателя передается через сцепление к коробке передач и от нее через карданную передачу на раздаточную коробку. От раздаточной коробки через межосевой дифференциал, который находится внутри картера этой коробки, крутящий момент распределяется между передним ведущим мостом и ведущими мостами. Раздаточная коробка является одновременно дополнительной коробкой передач, удваивающей число возможных передач и увеличивающей пределы изменения передаточных чисел в трансмиссии. Внутри каждого ведущего моста крутящий момент передается через главную передачу, межколесный дифференциал и валы привода к ведущим колесам. Для повышения проходимости автомобиль Урал-4320 снабжен лебедкой, расположенной в кормовой части машины.

Привод к лебедке осуществляется от коробки отбора мощности, которая установлена на раздаточной коробке.

Рис. 4.1. Общие схемы трансмиссий автомобилей:
а — КамАЗ-5320; б — КамАЗ-4310, Урал-4320; 1 — двигатель; 2 — сцепление: 3 — передний делитель передач; 4 — коробка передач; о — карданная передача; 6 —< днффереициал; 7 — средний ведущий мост; 8 — задний ведущий мост; 9 — лебедка; 10 — коробка отбора мощности; 11 — раздаточная коробка; 12 — передний ведущий мост

На автомобиле КамАЗ-4310 лебедка установлена в задней части рамы автомобиля. Привод к лебедке осуществляется тремя карданными валами от коробки отбора мощности, установленной в раздаточной коробке. Карданные валы привода размещены на левой стороне рамы.

Рекламные предложения:


Читать далее: Устройство и работа сцепления автомобилей КамАЗ-5320 и КамАЗ-4310

Категория: — Автомобили Камаз Урал

Главная → Справочник → Статьи → Форум


Трансмиссия автомобиля, принципиальные схемы — В Мире Моторов

Трансмиссия автомобиля, принципиальные схемы

Коробка переменных передач, взаимодействуя с другими механизмами и агрегатами, осуществляющими передачу крутящего момента от двигателя автомобиля к его ведущим колесам, составляют один из наиболее важных узлов под названием трансмиссия автомобиля.

Во время движения автомобиля крутящий момент коленчатого вала может достигать 7000 об/мин при том, что ведущие колеса в тот момент вращаются более, чем в четыре раза медленнее и этот показатель постоянно меняется, в зависимости от дорожных условий. Кроме этого, эксплуатация авто подразумевает изменение как скорости движения, так и необходимость выполнять различные маневры, движение задним ходом, останавливаться. Все это было бы выполнять затруднительно без трансмиссии.

На сегодняшний день автомобили оснащаются различными трансмиссиями трех основных компоновок:переднеприводной, заднеприводной и полноприводной.

Схема трансмиссии переднеприводного автомобиля

Схема трансмиссии переднеприводного автомобиля

При производстве автомобилей с передним приводом устанавливаются следующие узлы и агрегаты, передающие крутящий момент от коленвала к колесам:

• Сцепление;
• Коробка переменных передач;
• Главная передача;
• Дифференциал;
• Шарнир равных угловых скоростей, вал привода колес.

Сцепление предназначено для кратковременного отсоединения трансмиссии от двигателя и плавного ее подключения во время начала движения автомобиля или переключения передач.

Коробка переменных передач используется для изменения передаваемого карданному валу крутящего момента о двигателя и тем самым, получения тяговых усилий на ведущих колесах. Также с помощью КПП осуществляется изменение направления ведущих колес и отключение трансмиссии от мотора на длительное время.

Помимо того, что главная передача передает усилие от карданного вала полуосям под прямым углом, с ее помощью происходит уменьшение по отношению к карданному валу числа оборотов ведущих колес. Таким образом, сила тяги на ведущих колесах увеличивается, за счет уменьшения крутящего момента механизмов трансмиссии после главной передачи.

Дифференциал обеспечивает разную скорость вращения правого и левого ведущих колес, с учетом дорожных условий (повороты, неровности и т. д.). К ведущим колесам крутящий момент передается через полуоси от дифференциала посредством полуосевых шестерен. Такие дифференциалы называют межколесными. Другой вид дифференциалов – межосевые, когда они остановлены между разными осями автомобиля.

Схема трансмиссии заднеприводного автомобиля

Схема трансмиссии заднеприводного автомобиля

Составными данной трансмиссии (ее еще называют классической) являются:

• Сцепление;
• Коробка переменных передач;
• Карданная передача;
• Главная передача;
• Дифференциал;
• Полуоси.

Как видно, в состав узлов заднеприводной трансмиссии входит карданная передача, которая является промежуточным узлом между выходным валом коробки передач и задним мостом, и служит для передачи крутящего момента, вне зависимости от угла между осями вала коробки передач и главной передачи.

Переднеприводные машины в карданной передаче не нуждаются, т. к. у них все узлы и агрегаты трансмиссии объединены в один общий узел агрегатов под капотом автомобиля. Благодаря тому, что в корпусе коробки передач находится дифференциал с главной передачей, из самого картера КПП выходят валы привода передних ведущих колес.

Схема трансмиссии полноприводного автомобиля

Схема трансмиссии полноприводного автомобиля

Схемы трансмиссий машин с полным приводом пестрят большим разнообразием и условно разделяются на три группы:

  • Постоянный полный привод. Обязательный атрибут автомобилей с такой схемой трансмиссии – межосевой дифференциал.Автомобильная трансмиссия с передачей мощности на все четыре колеса является эффективной как при создании автомобилей с повышенной проходимостью, так и при улучшении разгона машины. Достижение обоих эффектов возможно, благодаря распределению силы тяги – уменьшение тяги на каждом колесе исключает вероятность пробуксовки.
  •  Полный привод, подключаемый вручную, который предусматривает наличие раздаточной коробки, но межосевой дифференциал в большинстве моделей отсутствует. Вся ответственность по распределению крутящего момента между задней и передней осями автомобиля в этой схеме возложена на “раздатку”.
  • Автоматически подключаемый полный привод присущ автомобилям с передними ведущими колесами, а функции дифференциала выполняет вискомуфта либо фрикционная муфта с электронным управлением. Что касаетсявискомуфты (вязкостной муфты), передача крутящего момента с ее помощью осуществляется, за счет трения кремнийорганической жидкости между дисками, заключенными в корпусе. Данную муфту могут также, использовать для автоматической блокировки дифференциала, установив ее между осями или встроив непосредственно в корпус дифференциала. При использовании же фрикционных муфт передача крутящего момента осуществляется за счет сжатия пакета дисков и возникающего, вследствие этого, трения.
Анимационный видео ролик принципа построения трансмиссии автомобиля.

ТРАНСМИССИОННЫЙ МЕХАНИЗМДЕНЕЖНО-КРЕДИТНОЙ ПОЛИТИКИ БАНКА РОССИИ

Приложение 1

 

 

Изменяя ключевую ставку, Банк России влияет на процентные ставки в экономике, стоимость финансовых активов и валютный курс. Изменение цен на финансовом рынке через цепочку экономических взаимосвязей влияет на спрос на товары и услуги и в результате на инфляцию. Важным фактором динамики цен в экономике являются также инфляционные ожидания бизнеса, участников финансового рынка, домашних хозяйств. В условиях доверия к центральному банку они закрепляются вблизи целевого уровня инфляции и изменяются с учетом прогнозов и разъяснений центрального банка о будущей инфляции и денежно-кредитной политике.

В современной экономической теории и практике механизм, через который денежно-кредитная политика воздействует на экономику и инфляцию, называют трансмиссионным механизмом и выделяют в его составе различные каналы (см. Схему трансмиссионного механизма денежно-кредитной политики). В российской экономике ключевым каналом является процентный, значимыми являются также канал инфляционных ожиданий, кредитный и валютный каналы. Другие каналы трансмиссионного механизма, выделяемые в экономической литературе (балансовый канал, канал благосостояния, канал принятия риска, канал денежных потоков), также играют определенную роль в функционировании трансмиссионного механизма, но менее значимы. Кроме того, на инфляцию и функционирование трансмиссионного механизма денежно-кредитной политики воздействует ряд немонетарных факторов, то есть факторов, на которые центральный банк не оказывает непосредственного влияния (подробнее см. врезку «Влияние немонетарных факторов на инфляцию» в разделе 3). К их числу относятся структурные и институциональные особенности экономики, технологические и природные процессы, влияющие на спрос и предложение на отдельных сегментах товарного рынка.

Принимая решение по денежно-кредитной политике, Банк России оценивает, как влияние этого решения будет распространяться по каждому из основных каналов трансмиссионного механизма, опираясь на имеющиеся оценки силы и скорости трансмиссии на каждом этапе, а также учитывая действие немонетарных факторов.

В данном приложении представлена характеристика основных каналов трансмиссионного механизма денежно-кредитной политики Банка России. При ознакомлении с материалами приложения необходимо учитывать ряд фактов.

Во-первых, влияние изменений ключевой ставки на финансовые активы, валютный курс и совокупный спрос в значительной степени является симметричным. Поэтому далее в тексте речь о повышении или понижении ставки идет исключительно из соображений наглядности. Так, если сказано, что снижение ключевой ставки на 1 п.п. ведет к росту кредитования на 1,5%, это значит, что увеличение ключевой ставки на 1 п.п. ведет к сокращению кредитования на 1,5%.

 

СХЕМА ТРАНСМИССИОННОГО МЕХАНИЗМА ДЕНЕЖНО-КРЕДИТНОЙ ПОЛИТИКИ <*>

 

 

———————————

<*> Могилат А.Н. Обзор основных каналов трансмиссионного механизма денежно-кредитной политики и инструментов их анализа в Банке России//Деньги и кредит, N 9, 2017.

 

Во-вторых, в данном приложении приводится количественная оценка только непосредственного эффекта влияния изменений ключевой ставки на финансовый сектор и экономику, структурные эффекты денежно-кредитной политики не учитываются. К примеру, повышение ключевой ставки снижает совокупный спрос в экономике, экономическую активность и инфляцию.

Однако закрепление инфляции на низком уровне, обеспеченное повышением ключевой ставки, позволяет «заякорить» инфляционные ожидания. В результате уменьшаются инфляционные риски, закладываемые в ставки по кредитам и депозитам, и эти ставки со временем снижаются. Инвесторы не опасаются размещать средства на длительный срок, финансирование становится доступным для проектов с более длинными сроками окупаемости, и за счет реализации этих проектов растет экономическая активность.

Напротив, снизив ключевую ставку ниже экономически оправданного уровня, наряду с недолгим ускорением экономической активности можно ожидать устойчивого роста инфляции и инфляционных ожиданий, снижающего привлекательность сбережений и инвестиций и в долгосрочной перспективе ограничивающего инвестиционный спрос. Однако количественный анализ структурных эффектов выходит за пределы тематики данного приложения, далее оценивается только непосредственный эффект изменения ключевой ставки (временное снижение спроса при повышении ключевой ставки и его временный рост при снижении ставки).

Эффекты отдельных структурных изменений (прежде всего связанных с изменением инфляционных ожиданий) характеризуются в приложении на качественном уровне.

Открыть полный текст документа

Автоматическая коробка передач — Geartronic* | Коробка передач | Запуск двигателя и вождение | V40 2019

D: Положения при автоматическом переключении передач. +/–: Положения при ручном переключении передач. S: Режим Sport*.

В комбинированном приборе следующие обозначения указывают положение селектора передач: P, R, N, D, S*, 1, 2, 3 и т.д.

Положения передач

Автоматическая индикация передач – в комбинированном приборе справа (в каждый данный момент горит только один маркер – для текущего положения селектора передач).

Символ «S» для режима «Спорт» в активном состоянии ОРАНЖЕВЫЙ.

Стояночное положение – Р

Выбирайте P при пуске двигателя или на стоянке.

Для перемещения селектора передач из положения P в другое положение необходимо выжать педаль тормоза и установить ключ в положение II.

В положении P коробка передач механически заблокирована. Кроме того на стоянке следует приложить стояночный тормоз, см. Стояночный тормоз.

Примечание

Чтобы автомобиль можно было заблокировать и поставить на сигнализацию, селектор передач должен находиться в положении P.

Важно!

При выборе положения P автомобиль должен стоять на месте.

Предупреждение

Обязательно используйте стояночный тормоз при парковке на наклонной поверхности — переключения на нейтраль недостаточно, чтобы удержать автомобиль на месте в любых ситуациях.

R – Положение передачи заднего хода

Автомобиль должен стоять неподвижно, когда выбирается положение R.

N – Нейтральное положение

Ни одна из передач не включена, и можно пускать двигатель. Затяните стояночный тормоз, если автомобиль стоит неподвижно и селектор передач находится в положении N.

Для переключения селектора передач из положения N в другое положение необходимо, чтобы педаль тормоза была выжата, а ключ находился в положении II.

D – Положение движения

D – это нормальное положение для вождения. Повышение и понижение передачи происходит автоматически в зависимости от ускорения и скорости. Автомобиль должен стоять неподвижно при выборе положения D из положения R.

Geartronic – Положения передач в ручном режиме (+/-)

Автоматическая коробка передач Geartronic позволяет также водителю переключать передачи вручную. Когда педаль газа отпускается, происходит торможение двигателем.

При ручном переключении передач рычаг перемещается в сторону из положения D в крайнее положение «+/-«. Символ «+/-» комбинированном приборе меняет свой цвет с БЕЛОГО на ОРАНЖЕВЫЙ, и в окне показываются цифры 1, 2, 3 и т.д., которые соответствуют передаче, включенной в данный момент.

  • Переместите рычаг вперед к + (плюс), чтобы переключиться на одну передачу вверх, и отпустите – рычаг возвращается в нейтральное положение между «+» и «–».

или

  • Потяните рычаг назад к «–» (минус), чтобы переключиться на одну передачу вниз, и отпустите.

Положение ручного переключения передач «+/-» может выбираться в любое время во время движения.

Во избежание неравномерной работы и остановки двигателя Geartronic автоматически понижает передачу, если водитель позволяет скорости упасть ниже значения, допустимого для выбранной передачи.

Для возврата в автоматический режим движения:

  • Переместите рычаг в крайнее положение D.
Примечание

Если в коробке передач предусмотрена программа Sport, ручное управление коробкой передач включается, только когда рычаг перемещается вперед или назад в положение «+/-«. При этом в комбинированном приборе символ S сменяется символом 1, 2, 3 и т.д., указывающим, какая скорость включена.

Лепестки*

В дополнение к ручному переключению передач с помощью селектора передач на рулевом колесе установлены т.н. «лепестки».

Для переключения передач с помощью этих лепестков их необходимо сначала активировать. Для этого переместите один из лепестков в сторону рулевого колеса – в комбинированном приборе обозначение «D» изменится на цифру, соответствующую действующей передаче.

Затем, чтобы переключиться на следующую передачу:

  • Потяните одни из лепестков назад – к рулевому колесу – и отпустите.

Оба «лепестка» на рулевом колесе.

««: Выбор следующей более низкой передачи.

«+«: Выбор следующей более высокой передачи.

При каждом перемещении лепестка происходит переключение на одну передачу при условии, что обороты двигателя не превышают допустимых значений.

После каждого переключения передачи в комбинированном приборе изменяется цифра, отражающая включенную скорость.

Примечание

Автоматическое отключение

Если лепестки на рулевом колесе не используются, они отключаются через мгновение – при этом в комбинированном приборе изменяется обозначение: цифра, обозначающая включенную передачу, вновь изменяется на букву «D«.

Исключением является торможение двигателем – во время торможения двигателем лепестки продолжают действовать.

Отключение вручную

Лепестки на рулевом колесе можно также отключить вручную:

  • Потяните оба лепестка в сторону рулевого колеса и удерживайте до тех пор, пока в комбинированном приборе цифра, указывающая активированную передачу, не изменится на «D«.

Лепестки можно также использовать, когда селектор передач находится в режиме Sport*, – в этом случае лепестки активированы постоянно и не отключаются.

Geartronic – Спортивный режим (S)

Спортивная программа придает автомобилю спортивный характер и допускает переключение передач на повышенных оборотах. При этом автомобиль реагирует быстрее на подачу газа. При активном вождении приоритет отдается вождению на низкой передаче с более поздним включением высокой передачи.

Чтобы активировать режим Sport:

  • Переместите селектор передач из положения D в сторону в крайнее положение «+S–» – в комбинированном приборе символ D изменится на S.

Положение спортивного режима может выбираться в любое время во время движения.

Geartronic – Зимний режим

Трогаться с места на скользком дорожном покрытии легче, если 3-я передача включается вручную.

  1. Выжмите педаль тормоза и переместите селектор передач из положения D в крайнее положение «+/–» – в комбинированном приборе символ D изменится на цифру 1.
  2. Перейдите к 3-ей передаче, переместив рычаг вперед в сторону «+» (плюс) 2 раза – в комбинированном приборе обозначение 1 изменится на 3.
  3. Отпустите тормоз и осторожно добавьте газ.

«Зимний режим» коробки передач позволяет автомобилю начать движение на более низких оборотах двигателя и с меньшим моментом на ведущих колесах.

Kickdown

При полностью выжатой педали акселератора (дальше обычного положения «полного газа») автоматически происходит немедленное понижение передачи, т.н. kickdown.

При отпускании педали акселератора из положения kickdown, происходит автоматическое повышение передачи.

Kickdown используется, когда требуется резкое ускорение, например, при обгоне.

Функция защиты

Для предотвращения резкого повышения оборотов двигателя в программе управления коробкой передач предусмотрена защита от понижения передач, которая препятствует функции kickdown.

Geartronic не допускает понижение передач/kickdown, которые приводят к такому резкому повышению частоты вращения, что двигатель может быть поврежден. Если водитель все же пытается провести такое понижение передач на высоких оборотах двигателя, то никаких изменений не происходит – сохраняется исходная передача.

В режиме kickdown автомобиль может переключиться сразу на одну или несколько ступеней вниз, что зависит от частоты вращения двигателя. В целях предупреждения повреждения двигателя автомобиль переключается на высокие передачи, когда достигается максимальная частота вращения двигателя.

Буксировка

Если требуется буксировка автомобиля – важную информацию см. в разделе Буксировка.

Что такое трансмиссия — объяснение простым языком

Назначение трансмиссии

Источником крутящего момента является, как правило, маховик двигателя внутреннего сгорания (ДВС). Именно с него снимается вся необходимая для движения машины полезная мощность. Но для передачи её к ведущим колёсам потребуется создать схему, которая позволит изменять соотношение крутящего момента и скорости вращения. Произведение этих двух величин как раз и представляет собой мощность. Увеличивая одну из них при постоянной отдаче двигателем мощности, трансмиссия уменьшает вторую, что необходимо для обеспечения работы автомобиля в различных дорожных условиях и на разных скоростях. Причём этим соотношением должен оперативно управлять водитель или электронные системы машины. Практически это выражается в виде изменения передаточного числа трансмиссии. Таким образом, трансмиссия автомобиля это посредник между мотором и ведущими колёсами.

Помимо этого, силовая передача должна позволять выбирать момент, подаваемый на каждое колесо. В идеале – от нуля до максимума, хотя не все схемы на это способны. В простых случаях достаточно нагрузить крутящим моментом два ведущих колеса.

Какие бывают трансмиссии?

На сегодняшний день существует большое количество различных видов трансмиссий, которые отличаются друг от друга эксплуатационными свойствами, надежностью и принципом функционирования. По основному принципу работы можно выделить следующие виды механизмов переключения скоростей в автомобиле:

  1. Ручная коробка передач – наиболее простой вариант исполнения, который характеризуется простотой конструкции, надежностью и длительным сроком службы. Однако именно то, что данный тип коробки передач требует участия человека в процессе переключения скоростей, привело к образованию основных правил управления автомобиля: правильное взаимодействие со сцеплением, правильное включение скоростей во время движения. Пример: на машинах ВАЗ 2109, да и вообще, на всех ВАЗах до 2000 года выпуска, как правило, стоит ручная коробка передач (механика).
  2. Автоматическая коробка передач – усовершенствованная система, которая не требует участия человека в переключении передач во время движения автомобиля. Это привело к тому, что на автомобилях с автоматической коробкой передач отсутствует педаль сцепления. Однако автоматическая трансмиссия очень дорога в обслуживании, требует постоянной диагностики, имеет меньшую степень надежности в сравнении с ручной КПП.
  3. Смешанный тип коробки передач – позволяет переключать коробку передач самостоятельно без необходимости нажатия сцепления. Чаще всего, подобная трансмиссия автомобиля устанавливается на гоночные версии транспортного средства, или идет как дополнительная опция.

Рекомендуемая статья: Все, что вы хотели знать о тормозной жидкости: виды, составы, выбор, проверка уровня, замена и другие нюансы
Как правило, вид установленной коробки передач зависит от стоимости автомобиля, его года выпуска и класса.

Физические принципы работы

По способу передачи момента возможны различные варианты исполнения.

  • Механическая трансмиссия. Представляет собой набор валов и шестерёнчатых передач. Гидроавтоматические коробки также относятся к данной группе, поскольку гидравлика и электроника там используются только для управления процессом переключения передач.
  • Гидравлическая трансмиссия. Практически не применяется на автомобилях, хотя есть примеры её использования в мототехнике. Базовым принципом является использование гидронасоса высокого давления с одной стороны и гидромоторов в качестве исполнительных механизмов. Между ними расположена напорная магистраль с гибкими шлангами.
  • Электрическая трансмиссия. Выглядит самой простой и эффективной, видимо за ней будущее. К двигателю подсоединён генератор, вырабатывающий ток большой мощности, которым легко управлять и передавать его к исполнительным устройствам. В их роли применяются электромоторы. Мотор можно устанавливать на каждое ведущее колесо, реализуя любой алгоритм управления. В случае чистого электроавтомобиля в качестве источника энергии используется не генератор, а аккумуляторная тяговая батарея. Применяется реверсирование при реализации режима рекуперации энергии для подзаряда батареи при торможениях.
  • Гибридные схемы. Например, совместное использование механической передачи на одну ось и электрической – на другую. По такому принципу уже построены некоторые серийные автомобили.

Основные понятия


Переднеприводная машина.
Что такое трансмиссия? Это совокупность механизмов, имеющих следующие функции:

  • смена направленности, а также величины момента вращения;
  • перераспределение момента вращения от мотора к колесам;
  • распределение момента вращения на ведущие колеса.

Принцип работы агрегата основывается на преобразовании энергии. По этому критерию различают такие типы трансмиссий:

  1. Механическую. Происходит преобразование и передача механической энергии. Это классические планетарные КПП.
  2. Электрическую. Механическая энергия превращается электрическую, затем после передачи энергии на колеса происходит ее превращение в обратной последовательности от электрической энергии к механической.
  3. Гидрообъемную. Механическая энергия превращается в энергию потока жидкости, затем после ее поступления на основные автоколеса осуществляется преобразование энергии в обратной последовательности.
  4. Комбинированную. Различают электромеханические либо гидромеханические типы устройств. Такие конструкции объединяют несколько способов преобразования энергии.

Конструктивно автомобили разделяются по типу привода:

  1. Передний привод. Основными есть передние колеса машины.
  2. Задний привод. Основными становятся задние колеса авто.
  3. Полноприводные. Такой транспорт имеет привод на все полуоси (передние, а также задние).

Для автотранспорта с различными видами моторов используются разные трансмиссии, имеющие определенные конструктивные особенности. Составляющими частями трансмиссии заднеприводной машины есть такие основные узлы: КПП, сцепление, главная и карданная передачи, полуоси, дифференциал.

Все основные узлы трансмиссии для переднеприводных машин, располагаются под капотом транспортного средства. Для полноприводных автомобилей характерны следующие типы трансмиссий:

  1. Полноприводная конструкция, включаемая с помощью водителя. Обязательным условием функционирования таковой системы есть присутствие раздаточной коробки, посредством нее происходит распределение момента вращения между передней и задней осью.
  2. Конструкция, оборудованная автоматикой для включения. Часто основными колесами служит передняя пара. Вместо дифференциала размещается муфта с электрическим управлением.
  3. Постоянная полноприводная система. Основной особенностью такой системы есть наличие межосевого дифференциала. Увеличивается проходимость машины, а также ее разгоночные показатели. Достигаются такие результаты благодаря перераспределению силы тяги.

Рекомендуем посмотреть видео о назначении и принципе работы трансмиссии:

Виды привода

По количеству задействованных ведущих колёс возможны разные системы передачи момента. Трансмиссия автомобиля состоит из механизмов, реализующих эти схемы.

  • Задний привод. Двигатель располагается впереди автомобиля или по центру кузова в пределах колёсной базы, или сзади над осью, или в заднем свесе. Коробка передач для организации лучшей развесовки может быть в блоке с двигателем или с главной передачей на задние колёса.
  • Передний привод. Используется в массовых автомобилях, хотя иногда его применяют и в более дорогих классах, а также в лёгких грузовиках. Разница может быть лишь в поперечном расположении силового агрегата или продольном. Первая схема более компактна и проще реализуется.
  • Подключаемый полный привод. Возможно много вариантов, но чаще всего используются два. На утилитарных внедорожниках водитель вручную подключает передний мост на тяжёлых участках при постоянном заднем. У кроссоверов используется электронная или вязкостная муфта, подключающая задний мост, постоянно в этом случае используется передний.
  • Постоянный полный привод. В машине всегда задействованы для создания тяги все колёса. Различные механические и электронные устройства могут изменять соотношение момента по осям или даже по колёсам.

Трансмиссия автомобиля: заднеприводная схема трансмиссии

Заднеприводная схема трансмиссии находит применение в основном в автомобилях премиум-класса. Это вызвано соображениями компоновки и распределения массы по осям. Дело в том, что массу мощного двигателя, установленного в передней части автомобиля, надо чем-то уравновесить. Для этого главную передачу, а иногда и коробку передач располагают сзади.

Состав и функции отдельных узлов

Перечислим всё то, что входит в трансмиссию автомобиля.

Сцепление

Служит для разъединения двигателя с коробкой передач в автомобилях с механической или роботизированной КПП. Это необходимо при трогании с места и переключении передач. Может управляться водителем или сервоприводом со стороны электронного блока, заведующего режимами коробки с автоматическим переключением.

Сцепление бывает с одним диском или набором фрикционов, сухим или работающим в масле. Чаще всего применяется сухое однодисковое сцепление, состоящее из ведущего диска с нажимной пружиной диафрагменного типа, закреплённого на маховике коленвала, ведомого диска, скользящего по шлицам первичного вала коробки, и выжимного подшипника. Привод выключения сцепления гидравлический или тросовый. Часто рабочий гидроцилиндр сцепления объединён с выжимным подшипником.

При нажатии на педаль или активации сервопривода выжимной подшипник смещается по валу коробки и сжимает пружину ведущего диска. Ведомый перестаёт давить на поверхность маховика, и связь двигателя с коробкой прерывается.

Коробка передач

Самый сложный узел трансмиссии. Именно в нём осуществляется изменение общего передаточного числа для адаптации режима работы двигателя к конкретной дорожной ситуации. Коробки могут иметь различную конструкцию.

  • Механические КПП. Смена передач происходит путём задействования тех или иных пар шестерён между ведущим и ведомым валами. Свободно вращающиеся на валах шестерни блокируются зубчатыми муфтами, снабжёнными синхронизаторами для более плавного переключения.
  • Роботизированные МКПП. Конструктивно аналогичны, но переключение производится электроприводами, которые управляются электронным модулем. Педаль сцепления отсутствует, с точки зрения водителя это коробка-автомат. Могут снабжаться двумя сцеплениями и двумя наборами шестерён, чётного и нечётного ряда. В этом случае переключение многократно ускоряется, поскольку во время разгона на каждой передаче следующая уже включена, остаётся только разомкнуть одно сцепление и сомкнуть другое. Такой тип принято называть преселективной коробкой, или DSG.
  • Гидромеханические автоматические коробки. Выбор передач происходит замыканием мокрых фрикционов в планетарных наборах шестерён. Отличаются плавностью работы, многоступенчатостью и сложными адаптивными алгоритмами электронного управления. При этом расход топлива выше, чем у механики. Вместо сцепления применён гидротрансформатор, состоящий из двух турбин, работающих в масле.
  • Вариаторы. Представляют собой два шкива переменного диаметра, между которыми работает приводной ремень, иногда состоящий из металлических звеньев цепного типа. Это коробка бесступенчатого переключения, хотя часто в ней искусственно имитируется переключение виртуальных передач.

Раздаточные коробки

Обычно называются просто раздатками. Служат для распределения крутящего момента от КПП по ведущим мостам. Могут содержать демультипликатор, то есть дополнительную ступень повышения передаточного числа. Такая функция полезна внедорожникам, поскольку умножает крутящий момент на труднопроходимых участках, снижая при этом скорость на каждой передаче основной КПП.

На кроссоверах иногда раздаткой называют угловой редуктор, снимающий мощность с выхода коробки и направляющий её через карданный вал к муфте подключения заднего моста. В таких механизмах демультипликатор или блокировку межосевого дифференциала не используют, кроссоверы не обладают внедорожными способностями.

Ведущие мосты

Служат для разворота направления вращения карданных валов к колёсам с одновременным дополнительным понижением передаточного числа. Применяются в основном пары гипоидного зацепления для снижения шумности работы. Здесь же устанавливаются межколёсные дифференциалы, иногда блокируемого типа. Блокировка важна для внедорожников, а также для спортивных автомобилей, где она позволяет применять векторное руление на больших скоростях и предельных режимах работы шин.

Карданные валы

Бывают двух типов – с применением классических крестовин или ШРУС, шарниров равных угловых скоростей. В последнем случае передача момента под большими углами происходит с меньшим уровнем вибраций. Карданными валами различного типа приводятся ведущие мосты, а также они передают вращение от редукторов к ступицам колёс.

Основным вектором развития автомобильных трансмиссий выглядит всё большее внедрение электрических и электронных устройств. Валы и шестерни заменяются электропроводкой и электромоторами, блокировки дифференциалов имитируются подтормаживанием отдельных колёс, применение механических КПП постепенно сокращается. Вершиной эволюции на данный момент представляется экологически чистый электромобиль, где трансмиссия в обычном понимании слова отсутствует полностью.

Принцип работы АКПП

Автоматическая трансмиссия по сути своей выстроена вокруг главного узла – планетарной передачи. Свойство планетарной передачи изменять передаточное число в зависимости от подтормаживания одного или нескольких её элементов позволяет, в отличие от традиционной МКПП, для всех ступеней «автомата» использовать один и тот же набор шестерней. Типичный планетарный редуктор состоит из следующих элементов:

  • Солнечная шестерня – шестерня, установленная ровно в центре редуктора
  • Эпицикл, или коронная шестерня – шестерня, зубцами направленная внутрь редуктора, располагается на периферии редуктора, часто с жестким закреплением на внутренней окружности корпуса редуктора.
  • Сателлиты – шестерни (как правило – три), расположенные между эпициклом и солнечной шестерней. Закреплены сателлиты на водиле, на осях которого свободно вращаются.

К одному из этих элементов редуктора подводится крутящий момент, а ещё один элемент – подтормаживается. В зависимости от выбранной комбинации меняется и передаточное число редуктора. Если затормозить любые два элемента редуктора, то передача станет прямой (то есть передаточное число станет равно единице). За остановку вращения каждого из указанных элементов отвечает набор тормозных лент с гидроприводами.

Трансмиссия полноприводного автомобиля

На сегодняшний день наибольшим спросом пользуются такие системы полного привода, как постоянный полный привод и полный привод, подключаемый автоматически. Каждая из этих систем имеет такие общие преимущества, как эффективное использование мощности двигателя и улучшение управляемости и проходимости автомобиля.

Трансмиссии полноприводных автомобилей, в совокупности образующие систему полного привода, могут иметь разные конструкции. Существуют следующие системы полного привода:

— постоянный полный привод; — полный привод, который подключается вручную;

— полный привод, который подключается в автоматическом режиме.

Трансмиссия Volkswagen Jetta седан

Прежде чем говорить о трансмиссии Volksvagen Jetta, необходимо понять, с какой силовой установкой она агрегирует. Поэтому мы коротко ознакомим вас с двигателями автомобиля, а потом остановимся на трансмиссии и выясним отличия предложенных коробок передач.

Какие новые технологии применены компанией Volkswagen в трансмиссии конкретной модели Jetta?

Силовые агрегаты

Широкая и разнообразная линейка силовых агрегатов, установленная под капотом Volksvagen Jetta, начинается с атмосферного двигателя 2,0 литра.

Производители предлагают на выбор силовые агрегаты на 1,8; 1,4; 1,2 литра все моторы турбированные. Исключение составляет дизельный двухлитровый агрегат мощностью 150 л/сил.

Для российских поклонников Jetta, предлагается двигатель 1,6 литра в 105 отборных немецких лошадок и силовой агрегат на 1,4 литра в 122 л/силы либо на 150 лошадей.

Агрегируют двигатели:

  • c традиционной механикой (МКПП).
  • c автоматическим вариантом трансмиссии.
  • c DSG-роботом.

Теперь остановимся более подробно на каждой установленной коробке, выясним преимущества и назовем недостатки.

Механическая коробка передач

Не изменилась с 1991 года. МКПП для тех, кто предпочитает экстремальное вождение, хочет управлять автомобилем и быть постоянно в динамике. Количество ступеней 5 или 6. К недостаткам можно отнести большой расход топлива при скоростном варианте передвижения.

Автоматический вариант трансмиссии

Для той категории водителей, которые выбрали комфорт и плавное передвижение подходит АКПП. Двигатель чётко работает в 6 и 7 режимах. К отрицательным моментам можно отнести меньшую динамику разгона по сравнению с МКПП.

DSG робот

Но технологии не стоят на месте. В борьбу за пальму первенства включился семи ступенчатый робот-автомат, который устанавливается на новые немецкие модели, в том числе на Volksvagen Jetta.

Роботизированную автоматическую коробку переключения передач типа DSG-7 на Jetta поставили недавно. За короткий срок именно этот вариант трансмиссии успел завоевать поклонников и обрести скептиков во всём мире.

Стоимость «робота» по сравнению с привычной для нас АКПП, дешевле. DSG-7 — это коробка, где за переключение скоростей несёт ответственность ЭБУ (электронный блок управления).

На автомобилях Jetta с DSG-7 происходит переключение режимов силового агрегата без снижения оборотов автомобиля. Это говорит об экономичном использовании топлива и комфорте управления машиной.

Плавность движения и экономия расхода топлива стали возможны благодаря немецким инженерам, установившим в узле DSG двойное сцепление, каждое из которых, несёт ответственность за свои чётные или нечётные ступени. За счёт этого достигается максимальный эффект при переносе крутящего момента силового агрегата, где весь процесс переключений происходит в непрерывном режиме.

Каждый из нас выбирает модель автомобиля с двигателем и коробкой передач, наиболее подходящими его манере езды. Для одних традиционные трансмиссии подходят больше. Другие комфортно чувствуют себя с АКПП. Главное — остановить свой выбор на надежной, проверенной временем и российскими дорогами машине, такой как Volkswagen Jetta.

Автоцентр Сити — Каширка Volkswagen

Москва, Внешняя сторона МКАД, 23 км

ежедневно: 08:00-21:00

модернизированная коробка передач на LADA Granta и LADA Kalina

15 октября 2012 года АВТОВАЗ начал производство автомобилей с модернизированной механической коробкой передач — ей оснащаются LADA Granta (кроме версии »стандарт») и LADA Kalina первого поколения (в дальнейшем новая МКП будет устанавливаться и на LADA Kalina второго поколения). Обновленная трансмиссия более надежна, а главное — благодаря оригинальному механизму выбора передач существенно повысилось качество их переключений. Кроме того, МКП получила тросовый привод вместо жестких тяг, что повышает виброкомфорт автомобиля.

Обновление механической коробки передач АВТОВАЗ начал еще в сентябре — компания перешла на многоконусный синхронизатор первой и второй передач. Этот узел МКП стал надежнее и долговечнее, переключение с первой на вторую передачу и обратно теперь производится мягче, что важно в городских условиях движения при активном вождении.

В новой МКП (заводской индекс »2181») применено верхнее расположение механизма выбора передач. Благодаря этому качество переключений не зависит от температуры масла в картере. Также снижен объем заливки масла в коробку передач — с 3,3 до 2,2 литра, вместо минерального масла теперь используется полусинтетическое. Сам механизм выбора передач был разработан заново — по заказу АВТОВАЗа его инжиниринг выполнила группа компаний Schaeffler. В оригинальной модульной конструкции предусмотрена селекторная пластина, которая обеспечивает четкую схему переключения передач, и блокировка, препятствующая ошибочному включению заднего хода. После модернизации продольный ход рычага уменьшился на 32 мм, а усилие включения передачи снижено в три раза. Продольный и поперечный люфты рычага в нейтрали уменьшены в два раза. Ширина всей схемы перемещения рычага сократилась на 40 мм, т.к. положение передачи заднего хода перенесено из точки »левее первой» в положение »напротив пятой», благодаря чему исключается контакт рычага с подушкой водительского сиденья.

Поставщик тросового привода — японская фирма Atsumitec, среди клиентов которой — ведущие автопроизводители. Аналогичные специальные троса (они могут не только тянуть, но и толкать) применяются на большинстве иномарок схожего класса.

Высокое качество работы новой МКП подтвердили эксперты фирмы »Рикардо», приглашенные специально для тестирования нового узла; положительную оценку узлу дали и инженеры Альянса Renault-Nissan.

Группа «АВТОВАЗ» является частью бизнес-подразделения Dacia-LADA в структуре Groupe Renault. Компания производит автомобили по полному производственному циклу и комплектующие для 2-х брендов: LADA и Renault. Производственные мощности АВТОВАЗа расположены в Тольятти – АО «АВТОВАЗ”, а также в Ижевске – ООО «LADA Ижевск».

Продукция марки LADA представлена в сегментах В, B+, SUV и LCV и состоит из 5 семейств моделей: Vesta, XRAY, Largus, Granta и Niva. Бренд лидирует на российском автомобильном рынке с долей более 20% и представлен в более чем 20 странах. LADA имеет самую большую официальную дилерскую сеть в России – 300 дилерских центров.

Принципиальная схема четырехступенчатой ​​автоматической коробки передач БТР

Пробки на дорогах — важная причина недовольства водителя, которая, в свою очередь, является основной причиной человеческих ошибок и аварий. Статистические отчеты показывают, что причиной более 90% несчастных случаев является человеческий фактор. Следовательно, жизненно важно улучшить контроль транспортных средств, чтобы обеспечить адекватные меры безопасности, чтобы уменьшить количество аварий или уменьшить их влияние. Представлено приложение математических методов управления к продольной динамике транспортного средства, оснащенного системой адаптивного круиз-контроля (АСС).Это исследование проводится для детального понимания сложной модели транспортного средства с ACC при критических переходных маневрах (TM), чтобы установить безопасное расстояние между транспортными средствами с нулевой дальностью (относительной скоростью) позади предыдущего транспортного средства. TM выполняются под влиянием внутренних сложностей, связанных с динамикой транспортного средства, и в рамках ограниченных рабочих границ. Ограниченные границы относятся к управляющему входу, состояниям и ограничениям предотвращения столкновений. Транспортное средство ACC основано на нелинейной продольной модели, которая включает инерциальную динамику транспортного средства и динамику трансмиссии.Общее моделирование системы включает: сложные модели транспортных средств, построение карт двигателя, моделирование транспортных средств первого порядка, моделирование контроллеров (контроллеры верхнего и нижнего уровня для транспортных средств ACC). Контроллер верхнего уровня вычисляет желаемые команды ускорения для контроллера нижнего рычага, который затем предоставляет команды дроссельной заслонки / тормоза для сложной модели транспортного средства. Важным аспектом этого исследования является сравнение четырех стратегий управления: пропорционально-интегрально-производная; скользящий режим; постоянный временной интервал; и прогнозирующее управление модели для анализа контроллера верхнего уровня с использованием модели транспортного средства ACC первого порядка.Модель первого порядка представляет запаздывания в исполнительных механизмах транспортного средства и обработке сигналов датчиков и не учитывает динамические эффекты подмоделей транспортного средства. Кроме того, были проведены анализы параметров на сложном автомобиле ACC для контроллера и параметров транспортного средства. Сравнительный анализ четырех стратегий управления показывает, что управление с прогнозированием модели (MPC) является наиболее подходящей стратегией управления для управления верхнего уровня, поскольку оно решает задачу оптимального управления в оперативном режиме, а не в автономном режиме, для текущих состояний системы. система, использующая модель прогнозирования, в то же время имея возможность учитывать операционные ограничения.Анализ показывает, что сложное транспортное средство ACC может успешно выполнять TM, точно отслеживая желаемое ускорение и соблюдая ограничения, тогда как ограничения применяются только в формулировке контроллера MPC. Установлено, что для замкнутого отслеживания ускорения следует использовать большую длину горизонта прогнозирования. Исследовано влияние динамики двигателя и трансмиссии на работу контроллера MPC и ACC автомобиля при переключении передач. Анализ чувствительности для контроллера MPC и параметров транспортного средства показывает, что слишком большая длина горизонта управления может серьезно нарушить поведение транспортного средства, и это нарушение может быть устранено только при использовании более высокого значения взвешивания входных затрат управления.Кроме того, анализ показывает, что для рассматриваемого транспортного средства с ACC подходит масса в диапазоне 1400-2000 кг. Рекомендуется использовать переменное время пробега для управления интервалом между двумя транспортными средствами. Обнаружено, что реакция транспортного средства очень чувствительна к взвешиванию управляющих входных затрат; меньшее значение (меньше единицы) может привести к очень нестабильной реакции автомобиля. Рекомендуется, чтобы контроллер нижнего уровня принимал во внимание информацию об уклоне дороги, поскольку сложное транспортное средство с ACC не может достичь целей управления при движении по склону.На основании результатов сделан вывод, что модель транспортного средства с ACC первого порядка может использоваться для проектирования контроллера, но этого недостаточно для захвата сложной динамической характеристики транспортного средства. Следовательно, для подробного анализа транспортного средства с ACC следует использовать сложную модель транспортного средства. В этом исследовании модель транспортного средства ACC первого порядка используется для комплексной проверки транспортного средства, тогда как сложная модель транспортного средства ACC может использоваться для экспериментальной проверки в будущей работе.

Механическая коробка передач: виды, работа, детали, схема

Механическая коробка передач, также известная как коробка передач, является стандартной коробкой передач.Его также называют рычагом переключения передач или просто рычагом переключения передач, как и коробкой передач. Система трансмиссии используется в автомобилях.

Механическая коробка передач — самая старая трансмиссия, используемая на сегодняшний день в автомобилях. Он использует управляемую водителем муфту для включения и выключения с помощью ножной педали. Это также можно сделать с помощью ручного рычага вместе с переключателем передач, которым управляют вручную. Это регулирует передачу крутящего момента от двигателя к трансмиссии.

Прочтите все, что вам нужно знать о дифференциале

Система коробки передач традиционно проектируется с 5- или 6-ступенчатой ​​механической коробкой передач.Он входит в стандартную комплектацию современного базового современного автомобиля. Типы с 5 скоростями распространены на коммерческих транспортных средствах и автомобилях более низкого уровня.

Автомобили высшего класса, такие как автомобили класса люкс и спорткары, в базовой модели оснащены 6-ступенчатой ​​коробкой передач. Доступны также другие варианты передачи.

Ниже представлена ​​схема МКПП:

Типы МКПП

ниже приведены типы МКПП:

Скользящая передача:

Эти типы механической трансмиссии известны как несинхронизированная трансмиссия.Он был изобретен в конце 19, -го, -го века, поэтому они встречаются на старых моделях автомобилей. Стоя на месте при нейтральной передаче. В коробке передач главная ведущая шестерня и шестерня кластера продолжают движение.

Педаль сцепления должна быть нажата, чтобы ее можно было свободно перемещать на ручку переключения передач. Ручка переключения передач изменяет положение рычага переключения передач и вилок и перемещает шестерню на главный вал. При зацеплении шестерен сцепление отпускается.

Передача с постоянным зацеплением:

Эти типы передачи известны как синхронизированная передача.Ведущая шестерня, шестерня группы и шестерни главного вала находятся в постоянном движении. это происходит потому, что шестерни свободно вращаются вокруг главного вала.

Передача с скользящей шестерней используется для фиксации шестерен на месте. Собачья муфта также помогает заблокировать эти шестерни, когда это необходимо. Зубья кулачковой муфты и шестерни главного вала сцепляются друг с другом и удерживают шестерню в неподвижном состоянии. Это происходит при перемещении рычага переключения передач.

Синхронизаторы используются в этой трансмиссии для предотвращения столкновения или скрежета при переключении передач.

Прочтите Все, что вам нужно знать об автомобильном сцеплении

Преселектор ручной КПП:

Эта система механической трансмиссии также была разработана до изобретения автоматической трансмиссии. Он известен как преселектор Вильсона, представленный в 1930 году.

В трансмиссии используется планетарная зубчатая передача для предварительного выбора передаточного числа. Используется небольшой рычаг на рулевой колонке. Водители переключают передачи, нажимая ножную педаль, которая уведомляет одну из предварительно выбранных передач.

Предыдущая передача выключается сразу после включения новой.

Детали системы МКПП и их функции

Ниже представлены детали механической коробки передач и их функции:

  • Диск сцепления; позволяет передавать крутящий момент от двигателя к системе механической трансмиссии. Этот диск работает при нажатии педали сцепления.
  • Педаль сцепления: — это деталь механической коробки передач с гидравлическим приводом.он управляет диском сцепления при нажатии ногой.
  • Синхронизаторы: Синхронизаторы обеспечивают зацепление между хомутом и шестерней. Это заставляет скорость синхронизироваться. Скорость может быть другой, но это не позволяет этому случиться.
  • Маховик: Маховик — одна из основных частей механической трансмиссии, которая передает крутящий момент от двигателя на диск сцепления.
  • Шестерни: Шестерни в трансмиссии бывают разных размеров, большие и малые.Большие шестерни создают дополнительный крутящий момент, чтобы снизить скорость автомобиля. Передачи меньшего размера создают меньший крутящий момент, заставляя автомобиль двигаться быстрее.
  • Вилка переключения: — это шестерня, которая позволяет втулкам перемещаться на выходном валу.
  • Рычаг переключения передач: Эта деталь механической коробки передач используется для включения передачи вручную. Он связан с коробкой передач.
  • Хомут: Хомуты используются для фиксации выбранной передачи на месте и обеспечения передачи крутящего момента на выходной вал.

Как работает МКПП

Работа этой системы трансмиссии включает набор шестерен вместе с парой валов, которые являются входным и выходным валами. Шестерня на первом валу входит в зацепление с шестернями на другом валу. Передаточное отношение между выбранной передачей на входном валу и шестерней, включенной на выходном валу, определяет общее передаточное число для этой передачи.

В механической трансмиссии передачи включаются перемещением рычага переключения передач.Взаимодействие осуществляется посредством рычажных механизмов, управляющих перемещением шестерен вдоль первичного вала. Автомобили с четырьмя передачами или скоростью имеют два рычага, а автомобили с пятью или шестью скоростями имеют три рычага. Эта связь изменяется при перемещении рычага переключения передач влево и вправо.

Сцепление играет важную роль в работе механической коробки передач, поскольку отсоединяет двигатель от первичного вала трансмиссии при нажатии. Он освобождает шестерни на первичном валу, заставляя его легко двигаться, поскольку двигатель передает крутящий момент через первичный вал.Это вызвало помолвку. Говорят, что сцепление отключено, когда рычаг сцепления не нажат. Как только сцепление отключает питание от двигателя к коробке передач, водитель легко выбирает передачу и отпускает сцепление. Отпускание сцепления позволило повторно передать мощность двигателя на входной вал, что заставило автомобиль двигаться с выбранным передаточным числом.

На видео ниже показано, как работает система механической коробки передач:

На этом статья «Система механической трансмиссии».Я надеюсь, что вам понравилось чтение, если да, то прокомментируйте, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей.

Как работает автоматическая коробка передач | Искусство мужественности

Добро пожаловать в Gearhead 101 — серию статей об основах работы автомобилей для новичков в автомобилестроении.

Если вы следили за Gearhead 101, вы знаете, как работает двигатель автомобиля, как двигатель передает генерируемую мощность через трансмиссию и как механическая трансмиссия функционирует как своего рода распределительный щит между двигателем и трансмиссией. .

Но большинство людей в наши дни (по крайней мере, если вы живете в Соединенных Штатах) водят машины с автоматической коробкой передач . Вы когда-нибудь задумывались, как ваша машина может переключаться на соответствующую передачу, не делая ничего, кроме нажатия на педаль газа или тормоза?

Ну, держись за свои задницы. Мы собираемся познакомить вас с одним из самых удивительных примеров механической (и гидравлической) инженерии в истории человечества: автоматической коробкой передач.

(Серьезно, я не преувеличиваю: как только вы поймете, как работают автоматические трансмиссии, вы будете поражены тем, что люди смогли придумать эту штуку без компьютеров.)

Время обзора: назначение трансмиссии

Прежде чем мы углубимся в тонкости работы автоматической трансмиссии, давайте сделаем краткий обзор того, зачем автомобилю вообще нужна трансмиссия любого типа.

Как уже говорилось в нашем учебнике о том, как работает автомобильный двигатель, двигатель вашего транспортного средства создает вращательную силу. Чтобы сдвинуть машину с места, нам нужно передать эту крутящую силу на колеса. Это то, что делает трансмиссия автомобиля, частью которой является трансмиссия.

Но вот проблема: двигатель может вращаться только с определенной скоростью, чтобы работать эффективно. Если он вращается слишком низко, вы не сможете заставить машину двигаться с места; если он вращается слишком быстро, двигатель может самоуничтожиться.

Нам нужен способ умножить мощность, производимую двигателем, когда это необходимо (запуск с места, подъем в гору и т. Д.), Но также уменьшить количество мощности, передаваемой от двигателя, когда это не так. необходимо (спуск, очень быстрая езда, нажатие на тормоза).

Введите передачу.

Трансмиссия гарантирует, что ваш двигатель вращается с оптимальной скоростью (ни слишком медленно, ни слишком быстро), одновременно обеспечивая ваши колеса необходимой мощностью, необходимой для движения и остановки автомобиля, независимо от ситуации, в которой вы оказались. Он находится между двигателем и остальной трансмиссией и действует как распределительный щит автомобиля.

Ранее мы подробно описывали, как механические трансмиссии достигают этого за счет передаточных чисел.Соединяя друг с другом шестерни разного размера, вы можете увеличить мощность, передаваемую на остальную часть автомобиля, без значительного изменения скорости вращения двигателя. Если вы еще не поняли идею передаточных чисел, я рекомендую вам посмотреть видео, которое мы включили в прошлый раз, прежде чем двигаться дальше; ничто другое не будет иметь смысла, если вы не поймете эту концепцию.

В механической коробке передач вы управляете включением передач, нажимая на муфту и переключая передачи на место.

В автоматической коробке передач блестящие инженеры определяют, какая передача включена, без каких-либо дополнительных действий, кроме как нажать на педаль газа или тормоза. Это автомобильная магия.

Детали автоматической трансмиссии

Итак, к настоящему моменту вы должны иметь общее представление о назначении трансмиссии: она гарантирует, что ваш двигатель вращается с оптимальной скоростью (ни слишком медленно, ни слишком быстро), одновременно обеспечивая работу ваших колес. с нужным количеством мощности для движения и остановки автомобиля в любой ситуации.

Давайте посмотрим на детали, которые позволяют этому случиться в случае автоматической коробки передач:

Корпус трансмиссии

В кожухе трансмиссии находятся все части трансмиссии. Он похож на колокол, поэтому вы часто слышите, что его называют «кожухом колокола». Корпус трансмиссии обычно изготавливается из алюминия. Помимо защиты всех движущихся шестерен трансмиссии, кожух раструба на современных автомобилях имеет различные датчики, которые отслеживают входную скорость вращения от двигателя и выходную скорость вращения до остальной части автомобиля.

Гидротрансформатор

Вы когда-нибудь задумывались, почему вы можете включить двигатель своего автомобиля, но не дать ему двигаться вперед? Это потому, что поток мощности от двигателя к трансмиссии отключен. Это отключение позволяет двигателю продолжать работать, даже если остальная часть трансмиссии автомобиля не получает никакой мощности. На механической коробке передач вы отключаете питание двигателя от трансмиссии, нажимая на сцепление.

Но как отключить питание двигателя от остальной трансмиссии в автоматической коробке передач без сцепления?

Конечно, с гидротрансформатором.

Здесь начинается черная магия автоматических трансмиссий (мы еще даже не дошли до планетарных передач).

Гидротрансформатор находится между двигателем и трансмиссией. Это нечто похожее на пончик, которое находится внутри большого отверстия кожуха трансмиссии. Он выполняет две основные функции с точки зрения передачи крутящего момента:

  1. Передает мощность от двигателя на входной вал трансмиссии
  2. Умножает выходной крутящий момент двигателя

Он выполняет эти две функции благодаря гидравлической мощности, обеспечиваемой трансмиссионной жидкостью внутри трансмиссии. .

Чтобы понять, как это работает, нам нужно знать, как работают различные части гидротрансформатора.

Детали гидротрансформатора

В большинстве современных автомобилей гидротрансформатор состоит из четырех основных частей: 1) насос, 2) статор, 3) турбина и 4) гидротрансформатор. схватить.

1. Насос (он же крыльчатка). Насос похож на вентилятор. У него есть пучок лезвий, расходящихся из его центра. Насос монтируется непосредственно на корпус гидротрансформатора, который, в свою очередь, прикручивается болтами непосредственно к маховику двигателя.Следовательно, насос вращается с той же скоростью, что и коленчатый вал двигателя. (Вам нужно будет помнить об этом, когда мы рассмотрим, как работает гидротрансформатор.) Насос «качает» трансмиссионную жидкость от центра к центру. . .

2. Турбина. Турбина находится внутри корпуса преобразователя. Как и помпа, похожа на вентилятор. Турбина подключается непосредственно к входному валу трансмиссии. Он не подключен к насосу, поэтому может двигаться со скоростью, отличной от скорости насоса.Это важный момент. Это то, что позволяет двигателю вращаться с другой скоростью, чем остальная часть трансмиссии.

Турбина может вращаться благодаря трансмиссионной жидкости, которая подается из насоса. Лопасти турбины сконструированы таким образом, что жидкость, которую она получает, перемещается к центру турбины и обратно к насосу.

3. Статор (он же Реактор). Статор находится между насосом и турбиной. Похоже на лопасть вентилятора или пропеллер самолета (вы видите здесь узор?).Статор выполняет две функции: 1) более эффективно отправляет трансмиссионную жидкость от турбины обратно к насосу и 2) умножает крутящий момент, исходящий от двигателя, чтобы заставить автомобиль двигаться, но затем передает меньший крутящий момент, когда автомобиль едет на хорошей скорости. клип.

Это достигается благодаря умной инженерии. Во-первых, лопасти реактора сконструированы таким образом, что, когда трансмиссионная жидкость, выходящая из турбины, ударяется о лопатки статора, жидкость отклоняется в том же направлении, что и вращение насоса.

Во-вторых, статор соединен с неподвижным валом трансмиссии через одностороннюю муфту. Это означает, что статор может двигаться только в одном направлении. Это гарантирует, что жидкость из турбины будет направлена ​​в одном направлении. Статор начнет вращаться только тогда, когда скорость жидкости от турбины достигнет определенного уровня.

Эти два конструктивных элемента статора облегчают работу насоса и создают большее давление жидкости. Это, в свою очередь, создает усиленный крутящий момент на турбине, и поскольку турбина соединена с трансмиссией, больший крутящий момент может быть передан трансмиссии и остальной части автомобиля.Уф.

4. Муфта гидротрансформатора. Из-за того, как работает гидродинамика, мощность теряется при переходе трансмиссионной жидкости от насоса к турбине. Это приводит к тому, что турбина вращается немного медленнее, чем насос. Это не проблема, когда автомобиль трогается с места (на самом деле именно разница скоростей позволяет турбине передавать больший крутящий момент на трансмиссию), но когда она движется, эта разница приводит к некоторой неэффективности энергии.

Чтобы свести на нет эту потерю энергии, большинство современных преобразователей крутящего момента имеют муфту преобразователя крутящего момента, которая соединена с турбиной.Когда автомобиль достигает определенной скорости (обычно 45-50 миль в час), муфта гидротрансформатора включается и заставляет турбину вращаться с той же скоростью, что и насос. Компьютер контролирует включение муфты гидротрансформатора.

Итак, это детали гидротрансформатора.

Давайте соберем все вместе и посмотрим, как будет выглядеть работа гидротрансформатора при переходе от полной остановки к крейсерской скорости:

Вы включаете автомобиль, и он работает на холостом ходу.Насос вращается с той же скоростью, что и двигатель, и подает трансмиссионную жидкость к турбине, но поскольку двигатель не вращается очень быстро при полной остановке, турбина не вращается так быстро, поэтому она не может подавать крутящий момент к трансмиссии.

Вы нажимаете на газ. Это заставляет двигатель вращаться быстрее, что приводит к более быстрому вращению насоса гидротрансформатора. Поскольку насос вращается быстрее, трансмиссионная жидкость движется от насоса достаточно быстро, чтобы быстрее начать вращение турбины.Лопатки турбины направляют жидкость в статор. Статор еще не вращается, потому что скорость трансмиссионной жидкости недостаточно высока.

Но из-за конструкции лопаток статора, когда жидкость проходит через них, она отводит жидкость обратно к насосу в том же направлении, что и насос. Это позволяет насосу перемещать жидкость обратно в турбину с более высокой скоростью и создает большее давление жидкости. Когда жидкость возвращается в турбину, она делает это с большим крутящим моментом, в результате чего турбина передает больший крутящий момент на трансмиссию.Автомобиль трогается с места.

Этот цикл повторяется снова и снова по мере того, как ваша машина набирает скорость. Когда вы достигаете крейсерской скорости, трансмиссионная жидкость достигает давления, которое заставляет лопасти реактора окончательно вращаться. При вращении реактора крутящий момент уменьшается. На этом этапе вам не нужен большой крутящий момент для движения автомобиля, потому что автомобиль движется с хорошей скоростью. Муфта гидротрансформатора входит в зацепление и заставляет турбину вращаться с той же скоростью, что и насос и двигатель.

Хорошо, преобразователь крутящего момента — это то, что позволяет или предотвращает передачу мощности от двигателя на трансмиссию и то, что увеличивает крутящий момент на трансмиссию, чтобы заставить автомобиль двигаться с полной остановки.Пора взглянуть на части трансмиссии, которые позволяют автомобилю переключаться автоматически.

Планетарные передачи

Когда ваш автомобиль достигает более высоких скоростей, ему требуется меньше крутящего момента, чтобы поддерживать движение. Трансмиссии могут увеличивать или уменьшать крутящий момент, передаваемый на колеса автомобиля, благодаря передаточным числам. Чем ниже передаточное число, тем больше крутящий момент. Чем выше передаточное число, тем меньше крутящий момент.

На механической коробке передач необходимо переместить рычаг переключения передач, чтобы изменить передаточное число.

В автоматической коробке передач передаточные числа увеличиваются и уменьшаются автоматически. И это возможно благодаря оригинальной конструкции планетарной передачи.

Планетарная шестерня состоит из трех компонентов:

  1. Солнечная шестерня. Находится в центре планетарной передачи.
  2. Планетарные шестерни / шестерни и их водило. Три или четыре шестерни меньшего размера, которые окружают солнечную шестерню и находятся в постоянном зацеплении с солнечной шестерней. Планетарные шестерни (или шестерни) установлены и поддерживаются водилом.Каждая из планетарных шестерен вращается на своих отдельных валах, которые соединены с водилом. Планетарные шестерни не только вращаются, но и вращаются вокруг солнечной шестерни.
  3. Зубчатый венец. Кольцевая шестерня — это внешняя шестерня с внутренними зубьями. Кольцевая шестерня окружает остальную часть зубчатой ​​передачи, а ее зубья находятся в постоянном зацеплении с планетарными шестернями.

Один планетарный ряд может обеспечивать задний ход и пять уровней переднего хода. Все зависит от того, какой из трех компонентов зубчатой ​​передачи движется или удерживается неподвижно.

Давайте посмотрим на это в действии, когда различные компоненты действуют либо как входная шестерня (шестерня, вырабатывающая мощность), либо как выходная шестерня (шестерня, которая получает мощность), либо удерживаются в неподвижном состоянии.

Солнечная шестерня: входная шестерня / Планетарная передача: ведомая шестерня / коронная шестерня: неподвижна

В этом сценарии солнечная шестерня является входной шестерней. Кольцевая шестерня не двигается. Когда солнечная шестерня движется, а кольцевая шестерня удерживается на месте, планетарные шестерни будут вращаться на собственных валах водила и ходить вокруг внутренней части коронной шестерни, но в направлении, противоположном солнечной шестерне.Это заставляет водило вращаться в том же направлении, что и солнечная шестерня. Таким образом, водило становится выходной шестерней.

Эта конфигурация создает низкое передаточное число, что означает, что входная шестерня (в данном случае солнечная шестерня) вращается быстрее, чем выходная шестерня (водило планетарной передачи). Но крутящий момент, создаваемый водилом планетарной передачи, намного больше, чем обеспечивает солнечная шестерня.

Такая конфигурация будет использоваться, когда автомобиль только начинает движение.

Солнечная шестерня: неподвижна / Планетарная передача: выходная шестерня / Кольцевая шестерня: входная шестерня

В этом сценарии солнечная шестерня остается неподвижной, но кольцевая шестерня становится входной шестерней (т. Е. он передает мощность системе передач).Поскольку солнечная шестерня удерживается, вращающиеся планетарные шестерни будут ходить вокруг солнечной шестерни и нести водило планетарной передачи с собой.

Водило планетарной передачи движется в том же направлении, что и коронная шестерня, и является выходной шестерней.

Эта конфигурация создает немного более высокое передаточное число, чем первая конфигурация. Но входная шестерня (коронная шестерня) по-прежнему вращается быстрее, чем ведомая шестерня (водило планетарной передачи). Это приводит к тому, что планетарный редуктор передает больший крутящий момент или мощность остальной трансмиссии.Эта конфигурация, скорее всего, будет использоваться, когда ваш автомобиль ускоряется с полной остановки или когда вы едете в гору.

Солнечная шестерня: входная шестерня / Планетарная передача: ведомая шестерня / коронная шестерня: входная шестерня

В этом сценарии солнечная шестерня и кольцевая шестерня действуют как входные шестерни. То есть оба вращаются с одинаковой скоростью и в одном направлении. Это приводит к тому, что планетарные шестерни не вращаются на отдельных валах. Почему? Если коронная шестерня и солнечная шестерня являются входными элементами, внутренние зубья коронной шестерни будут пытаться вращать планетарные шестерни в одном направлении, в то время как внешние зубья солнечной шестерни будут пытаться вращать их в противоположном направлении.Таким образом, они встали на место. Весь блок (солнечная шестерня, водило планетарной передачи, коронная шестерня) движется вместе с одинаковой скоростью, и они передают одинаковое количество энергии. Когда вход и выход передают одинаковый крутящий момент, это называется прямым приводом.

Эта схема будет полезна, когда вы путешествуете со скоростью 45–50 миль в час.

Солнечная шестерня: неподвижна / Планетарная передача: входная шестерня / Кольцевая шестерня: ведомая шестерня

В этом сценарии солнечная шестерня остается неподвижной, а водило планетарной передачи становится входной шестерней, которая передает мощность на система передач.Кольцевая шестерня теперь является выходной шестерней.

При вращении водила планетарной передачи планетарные шестерни вынуждены обходить удерживаемую солнечную шестерню, что приводит в движение коронную шестерню быстрее. Один полный оборот водила планетарной передачи заставляет коронную шестерню совершать более одного полного оборота в одном и том же направлении. Это высокое передаточное число, обеспечивающее большую выходную скорость, но меньший крутящий момент. Такое расположение также известно как «овердрайв».

В такой конфигурации вы будете двигаться по автостраде со скоростью более 60 миль в час.

Автоматическая коробка передач обычно имеет более одного планетарного ряда. Они работают вместе, чтобы создать несколько передаточных чисел.

Поскольку в планетарной системе шестерни находятся в постоянном зацеплении, переключение передач осуществляется без включения или выключения шестерен, как в механической коробке передач.

Но как автоматическая коробка передач определяет, какие части планетарной зубчатой ​​передачи должны действовать как входная шестерня, выходная шестерня или оставаться неподвижными, чтобы мы могли получить эти различные передаточные числа?

С помощью тормозных лент и муфт внутри трансмиссии.

Тормозные ленты и сцепления

Тормозные ленты изготовлены из металла, покрытого органическим фрикционным материалом. Тормозные ленты можно затянуть, чтобы удерживать кольцо или солнечную шестерню в неподвижном состоянии, или ослабить, чтобы они могли вращаться. Затягивание или ослабление тормозной ленты контролируется гидравлической системой.

Несколько муфт также подключаются к различным частям планетарной зубчатой ​​передачи. Муфты трансмиссии в автоматических трансмиссиях состоят из нескольких металлических и фрикционных дисков (поэтому их иногда называют «многодисковыми муфтами в сборе»).Когда диски прижимаются друг к другу, сцепление включается. Сцепление может привести к тому, что деталь планетарной передачи станет ведущей шестерней или станет неподвижной. Это просто зависит от того, как он связан с планетарной передачей. Независимо от того, включается ли сцепление или нет, это связано с комбинацией механической, гидравлической и электрической конструкции. И все это происходит автоматически.

Теперь тонкости того, как различные муфты работают вместе, чтобы удерживать и приводить в действие различные компоненты, довольно сложны.Слишком сложно описать это в тексте. Лучше всего это понять визуально. Я настоятельно рекомендую посмотреть это видео, которое проведет вас через это:

Как работает автоматическая коробка передач

Как видите, внутри автоматической коробки передач много движущихся частей. В нем используется сочетание механики, жидкости и электротехники, чтобы обеспечить плавный переход от полной остановки до крейсерской скорости по шоссе.

Итак, давайте рассмотрим общую картину потока мощности в автоматической коробке передач.

Двигатель передает мощность на насос гидротрансформатора .

Насос передает мощность на турбину преобразователя крутящего момента через трансмиссионную жидкость.

Турбина отправляет трансмиссионную жидкость обратно в насос через статор .

Статор умножает мощность трансмиссионной жидкости, позволяя насосу передавать больше мощности обратно на турбину. Внутри гидротрансформатора создается вихревое вращение.

Турбина соединена с центральным валом, который соединяется с трансмиссией.Когда турбина вращается, вал вращается, передавая мощность на первую планетарную шестерню коробки передач .

В зависимости от того, какая многодисковая муфта или тормозная лента задействована в трансмиссии, мощность от гидротрансформатора будет вызывать либо солнечную шестерню , водило планетарной передачи , либо кольцевую шестерню планетарная зубчатая передача для движения или остановки.

В зависимости от того, какие части планетарной системы движутся или нет, определяется передаточное число .Независимо от того, какой у вас планетарный редуктор (солнечная шестерня в качестве входной, водило планетарной передачи в качестве выходного, кольцевая шестерня в неподвижном состоянии — см. Выше), будет определяться количество мощности, передаваемой трансмиссией на остальную часть трансмиссии.

Так в общих чертах работает автоматическая коробка передач. Есть датчики и клапаны, которые регулируют и изменяют вещи, но это основная суть.

Это то, что легче понять визуально. Очень рекомендую посмотреть следующее видео.Предыстория, которую мы прошли, значительно облегчит понимание:

Что я вам сказал? Автоматическая трансмиссия чертовски хороша.

Теперь, когда вы чувствуете, как машина переключает передачи, когда вы едете по автостраде, вы имеете хорошее представление о том, что происходит под капотом.

Теги: Автомобили

Произошла ошибка при установке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Отражения линии передачи

: Диаграмма отражения

В этой статье объясняется создание диаграммы отражения для цепи линии передачи (см. [1] для отражений в линии передачи).

Рассмотрим схему, показанную на рисунке 1.

Рисунок 1: Схема, используемая для создания диаграммы отказов


Когда переключатель замыкается, прямая волна напряжения движется к нагрузке и достигает ее при t = T (T = время движения в одном направлении). Поскольку линия и нагрузка не совпадают, создается отражение, которое возвращается к источнику, достигая его при t = 2T (при нулевом времени нарастания) . Поскольку линия и источник несовместимы, создается другое отражение, которое движется вперед к нагрузке, достигающей его при t = 3T .

Теоретически этот процесс продолжается бесконечно; практически, это продолжается до тех пор, пока не будут достигнуты установившиеся напряжения в источнике и на нагрузке. Диаграмма отказов — это график напряжения (или тока) в источнике или нагрузке (или в любом другом месте) после каждого отражения.

Экспериментальная установка для измерения отражения показана на рисунке 2.

Рисунок 2: Экспериментальная установка


Начальное напряжение в точке z = 0 равно

Это показано на рисунке 3.

Рисунок 3: Начальная волна напряжения при z = 0


Коэффициент отражения от нагрузки

Начальная волна напряжения 6V проходит к нагрузке и достигает ее при t = T , создавая отражение

V — = Γ L V + = (0,4845) (6) = 2,907 V

Суммарное напряжение на нагрузке (при t = T ) составляет

В L = V + + V — = 6 + 2.907 = 8,907 В

Это показано на рисунке 4.

Рисунок 4: Напряжение на нагрузке при t = T


Напряжение, отраженное от нагрузки ( В — = 2,907 В ), возвращается к источнику. Коэффициент отражения на источнике

Напряжение повторного отражения на источнике равно

.

В — + = Γ S V — = (-0,2) (2,907) = -0,5814 В

Полное напряжение на источнике при t = 2T равно

В S = В + + В — + В — + = 6 + 2.907 — 0,5814 = 8,3256 В

Это показано на рисунке 5.

Рисунок 5: Напряжение на источнике при t = 2T


Напряжение, отраженное от источника ( В, — + = -0,5814, В, ), движется к нагрузке, где оно создаст другое отражение, которое будет перемещаться к источнику. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто установившееся состояние.

Диаграмма отказов, показывающая напряжения в источнике и нагрузке после каждого отражения, показана на рисунке 6.

Рисунок 6: Диаграмма дребезга: напряжения в источнике и нагрузке


На рисунке 7 показаны напряжения на источнике ( z = 0 ), а на рисунке 8 показано напряжение на нагрузке ( z = L ) в период 0 ≤ t <8 T .

Рисунок 7: Напряжение на источнике во время 0 ≤ t <8T

Рисунок 8: Напряжение на нагрузке в течение 0 ≤ t <8T


Очевидно, что напряжения источника и нагрузки в конечном итоге достигают установившегося состояния.Напомним, что линию передачи можно смоделировать как последовательность линейных катушек индуктивности и шунтирующих конденсаторов (предполагая линию без потерь) [2], как показано на рисунке 9.

Рисунок 9: Модель схемы линии передачи без потерь


В условиях постоянного тока (установившееся состояние при возбуждении от источника постоянного тока) индукторы действуют как короткие замыкания, а конденсаторы действуют как разомкнутые цепи.

Таким образом, в установившемся режиме схема на Рисунке 1 эквивалентна схеме на Рисунке 10, где линия передачи моделируется как идеальный проводник.

Рисунок 10: Эквивалентная схема в установившемся режиме


Установившееся значение напряжения при z = 0 совпадает со значением при z = L и может быть получено с делителя напряжения как

Обратите внимание, что напряжения как источника, так и нагрузки сходятся к этому значению, когда процесс отражения приближается к установившемуся состоянию.


Список литературы

  1. Адамчик, Б., Отражения линии передачи при резистивной нагрузке , Журнал Compliance, январь 2017 г.
  2. Адамчик, Б. Основы электромагнитной совместимости с практическими приложениями , Wiley, 2017.


Д-р Богдан Адамчик
— профессор и директор Центра EMC в Государственном университете Гранд-Вэлли (http://www.gvsu.edu/emccenter), где он выполняет предварительное тестирование на соответствие требованиям EMC для промышленности и разрабатывает образовательные программы EMC. материал. Он является сертифицированным специалистом-проектировщиком EMC, сертифицированным iNARTE, одним из основателей и председателем отделения IEEE EMC в Западном Мичигане.Профессор Адамчик является автором учебника «Основы электромагнитной совместимости с практическими приложениями»
(Wiley, 2017). С ним можно связаться по адресу [email protected]

.

Вот все пути распространения

ИСТОЧНИКОВ:

UpToDate: «Коронавирусная болезнь 2019 г. (COVID-19): эпидемиология, вирусология и профилактика», «Коронавирусная болезнь 2019 г. (COVID-19): мультисистемный воспалительный синдром у детей».

Всемирная организация здравоохранения: «Отчет о ситуации с коронавирусом 2019 г. (COVID-19) — 73», «Отчет Совместной миссии ВОЗ и Китая по коронавирусной болезни 2019 г. (COVID-19).”

Патогены : «SARS-CoV-2 и коронавирусная болезнь 2019: что мы знаем на данный момент».

Hartford HealthCare: «Как избежать COVID-19 в супермаркете».

CDC: «Случаи заболевания в США», «Как он распространяется», «Предотвращение распространения коронавирусного заболевания, 2019 г. в домах и жилых районах», «Рекомендации относительно использования тканевых покрытий для лица, особенно в областях значительного распространения инфекции в общинах. «Коронавирус и путешествия в США», «Если у вас есть животные.”

Пресс-релиз, CDC.

Всемирная организация здравоохранения животных: «Вопросы и ответы о коронавирусной болезни 2019 г. (COVID-19)».

Школа общественного здравоохранения Колумбийского университета им. Почтальона: «Общественное здравоохранение выступает за« сглаживание кривой »».

Гарвардская медицинская школа: «Ресурсный центр по коронавирусу».

Медицина Джонса Хопкинса: «Коронавирус, социальное дистанцирование и самокарантин».

Kaiser Health News: «Сглаживание кривой и социальное дистанцирование: понимание радикальных мер, о которых продолжают говорить эксперты.«

Michigan Health: «Сглаживание кривой для COVID-19: что это значит и как вы можете помочь?»

Пресс-релиз, Национальные институты здравоохранения.

Общественное радио Висконсина: «Социальное дистанцирование в Висконсине: ответы на ваши вопросы».

Медицинский журнал Новой Англии : «Аэрозольная и поверхностная стабильность SARS-CoV-2 по сравнению с SARS-CoV-1».

China CDC Weekly: «Заметки с мест: выделение 2019-nCoV из образца кала лабораторно подтвержденного случая коронавирусной болезни 2019 (COVID-19)».”

MedRxiv : «Новый коронавирус, 2019-nCoV, очень заразен и более заразен, чем первоначально предполагалось».

Глава 5 Page 1 — Справочник по телекоммуникациям для транспортных специалистов

Предыдущие главы рассматривали терминологию, технологию и историю телекоммуникаций, а также необходимость создания жизнеспособного документа требований. Эта тема продолжается рассмотрением основного строительного блока телекоммуникационных систем — цепи связи.Телекоммуникационные технологии, их использование и развертывание — это повторяющийся процесс, в котором новое строится на старом. Это отраслевой (телекоммуникационный) способ обеспечения обратной совместимости и постоянного развертывания доступных новых технологий. Схема представляет собой объединение голоса и данных по меди. Аналоговая голосовая связь превратилась в цифровую голосовую связь. Один голосовой канал, передаваемый по паре медных проводов, превратился в сотни разговоров по одной и той же паре проводов.Использование меди в качестве средства связи превратилось в использование волокна. Изменение технологии было революционным, но внедрение изменения было эволюционным. Никаких внезапных и резких переходов от одной технологии или процесса к другой.

Рисунок 5-1: Диаграмма — Технологический поток

В 1980-х годах этот процесс изменился. Совпадение событий, технологических разработок и действий Министерства юстиции США и судов ускорило изменение корпоративной структуры монополии, предоставленной AT&T.«Телефонная компания» согласилась разделиться на несколько конкурирующих предприятий. Это создало конкурентную и открытую среду для развития коммуникационных услуг и оборудования, которые существуют сегодня. Основные события и события:

  • Решение «Carterphone» 1968 года разрешило конечным пользователям приобретать и устанавливать телефонное оборудование у компаний, отличных от AT&T.
  • Микропроцессор изобретен в 1971 г.
  • Полевые испытания AT&T в 1977 году показали, что оптоволокно можно использовать с коэффициентами потерь при передаче не выше меди.
  • ARPANET — предшественник Интернета — был активирован в 1969 году.
  • AT&T реализовала план по разделению на 7 региональных и независимых телефонных компаний, плюс производственную компанию — в 1983 году.

Эти события, а также подавляющее сдерживание корпоративного и индивидуального спроса, объединились, чтобы сформировать новое направление в телекоммуникационных услугах и технологиях. Однако корпоративные изменения и изобретения не уменьшили желание обеспечить полную обратную совместимость с существующими системами.

Телекоммуникационные технологии являются основным элементом приложений управления дорожными сигналами и автомагистралями, а также передовых систем управления транспортом. Использование телекоммуникационных технологий как части систем управления трафиком происходило в процессе эволюции. Ранние системы светофоров, развернутые 50 лет назад, использовали доступные телекоммуникационные технологии. Развертываемые сегодня системы используют преимущества новых технологий при одновременном использовании существующих или унаследованных систем.

Эта глава посвящена рассмотрению конкретных схем связи для систем управления дорожными сигналами и автомагистралями. Большая часть коммуникационного оборудования, используемого для обоих типов систем, очень похожа. Существуют различия в приложениях, но большая их часть носит иерархический характер и является строительным блоком. Общей темой для всех схем является то, что они предполагают использование медиа или конвертера протоколов. По сути, это поток от простых модемных систем, использующих витую пару, к волоконной оптике и беспроводной связи, от аналоговой передачи к системам цифровой передачи.От протоколов голосовой связи до протоколов Ethernet и беспроводных приложений (WAP). Примеры, приведенные в этой главе, представляют собой применение технологий, обсуждаемых во второй главе.

Прежде чем обсуждать реальные типы цепей связи, необходимо взглянуть на некоторые из основных элементов цепей, а затем понять их использование как часть системы управления дорожным движением или автострадой.

Базовые схемы связи для полевых устройств

Мы начинаем с базовой медной витой пары и продвигаемся к волоконной оптике и технологиям беспроводной связи.

NTCIP на самом деле представляет собой набор протоколов, обеспечивающих поддержку многих различных аспектов требований транспортной системы связи.

Ключевым фактором при развертывании устройств управления дорожным движением и транспортировкой является использование протоколов связи NTCIP (National Transportation Communication Interface Protocol). Использование протоколов NTCIP действительно влияет на общий дизайн сети связи. Два правила, которые всегда необходимо соблюдать при проектировании сети связи:

  • Все элементы связи стоят денег
  • Все протоколы связи требуют пропускной способности

Каждый элемент, подключенный к цепи связи, имеет денежную ценность.Поэтому сложный по своей сути дороже. Всегда старайтесь, чтобы схемы были простыми. Помните, что общая стоимость не только для начального оборудования. Есть дополнительные расходы на установку, оптимизацию, обслуживание и эксплуатацию. Избегайте использования сложных телекоммуникационных технологий просто потому, что они новейшие. «Новейшие и лучшие» не всегда обеспечивают решение коммуникационных проблем, возникающих в связи с новой транспортной системой. Пусть вашим руководством будет правильно разработанный документ с требованиями к системе связи.

Типы базовых схем

В этом разделе дается определение основных типов цепей связи и концепция, с которой инженеры по связи начинают процесс проектирования системы. Во второй главе содержится ссылка на напрямую подключенные и коммутируемые цепи связи. Фактически, как прямые, так и коммутируемые, все коммуникационные цепи попадают в одну из трех категорий:

  • Точка-точка (см. Схему) — коммуникационное соединение между двумя устройствами или устройством и контроллером.
  • Point-to-Multipoint (см. Схему) — коммуникационная цепь, соединяющая несколько устройств с контроллером. Это также можно назвать многоточечной связью — в зависимости от вашей отправной точки.
  • Multipoint-to-Multipoint (см. Схему) — канал связи, позволяющий множеству устройств подключаться ко многим устройствам; в системе этого типа всегда используется коммутатор или маршрутизатор.

На рис. 5-2 представлены три основных типа схем, использующих модемы в качестве оконечных устройств, подключенных к каналам связи частных линий.Существует множество вариантов, особенно при использовании коммутируемых сетей или интеллектуальных коммутаторов и маршрутизаторов. Например, Интернет является примером цепи многоточечного соединения. Многие домашние компьютеры могут подключаться к одному или нескольким веб-сайтам через PSTN. Тот же тип услуги также предоставляется через сети кабельного телевидения с использованием комбинации маршрутизаторов и широкополосных мультиплексоров.

Рисунок 5-2: Схема — 3 типа цепей связи

Процесс проектирования

Разработка проекта системы связи очень проста и не очень сложна, особенно если имеется хороший документ с требованиями.Давайте посмотрим на процесс и этапы создания дизайна. Предположим, что документ требований был создан для проекта сигнального перекрестка. В документе перечислены следующие требования к системе связи:

  • Семь 2070 контроллеров размещены, как указано в таблице
  • Светофоры на перекрестках, автоматически скорректированные с учетом временных параметров хост-компьютером
  • Дорожные сигналы получают команды через полевые контроллеры
  • Хост-компьютер будет опрашивать 2070 контроллеров раз в секунду с запросом на взлом данных и времени.
  • Контроллеры
  • 2070 будут хранить данные с сигнализационных перекрестков до тех пор, пока их не запросит главный компьютер.
  • Контроллеры 2070 должны ответить на запрос хоста в течение 20 миллисекунд
  • Обратите внимание, что здесь не обсуждается тип используемой технологии.

Это позволяет инженеру по связи давать рекомендации по оборудованию в зависимости от требований.

Инженеры по коммуникациям обычно представляют основную схему коммуникационной схемы в виде блок-схемы, а не механической конструкции.Это помогает упростить общий процесс проектирования. Во время первоначальной встречи для обзора концепции проекта инженеры по коммуникациям обычно создают скетч «изнутри» или «салфетку для стола». Это помогает облегчить обсуждение и предоставить разработчику системы и «клиенту» (DOT) общие точки согласия.

Рисунок 5-3: Салфетка эскиза системы связи

Системы связи разрабатываются с нуля. Первый шаг — определить точки коммуникации, обычно идентифицируемые по местоположению.Предпочтительны уличные адреса, однако системы управления дорожным движением развертываются на перекрестках или в точках шоссе. Точные места будут определены во время осмотра объекта. Таблица расположения устройств для системы светофоров может выглядеть следующим образом:

Таблица 5-1: Расположение полевых контроллеров
Хост-компьютер Полевой контроллер
7-я улица и Восточная Напа

Восточная 2-я и Восточная Испания

Восточная Напа и Восточная Испания

Восток 2-й и Паттен

Восток 4-й и Довалл

Восточная четвертая и Восточная Напа

Восток 4-й и Франция

Восточная 4-я и Паттен

Восток 4-й и Восток Макартур

Затем таблица наносится на карту, чтобы помочь определить точное местоположение и обеспечить измерения расстояний.Измерения расстояния между устройствами необходимы для определения «потери связи». Инженер по связи должен знать, нужно ли усилить коммуникационный сигнал, чтобы преодолеть чрезмерную потерю связи. Измерения расстояний также помогут в разработке бюджета строительства.

Рисунок 5-4: Карта расположения

Примечание. Это «вымышленный» пример системы управления сигналами трафика с целью демонстрации того, как рассчитать требования к цепи передачи данных.

Затем создается таблица устройств и пропускной способности. В таблице показано количество данных за одну передачу по сайтам. Для этого типа системы главный компьютер обычно отправляет «тайм-хак» и запрашивает, чтобы полевые модули отправили доступные данные. Таблица становится базой данных для конфигурации системы.

Инженеру по связи необходимо определить максимальный объем данных, передаваемых в одном направлении. Основываясь на информации в таблице, максимальный объем данных передается от полевых модулей к главному компьютеру.Итого 6400 бит. Таким образом, можно успешно использовать канал связи со скоростью 9600 бит / с (9,6 кбит / с).

На основе этой информации создается схематическая диаграмма. Схема помогает инженеру по коммуникациям визуализировать взаимосвязь всех точек коммуникации. Общий план коммуникационной сети включает все устройства и трассы коммуникационных кабелей. Рисунок 5-5 можно рассматривать как титульную страницу для набора схем, показывающих более подробную информацию.

Рисунок 5-5: Схема системы

Один из чертежей, который должен быть включен, — это деталь кабеля с диаграммой, показывающей контакты разъема.Очень часто производители делают свои устройства с различными разъемами для кабелей. Большинство компьютеров используют разъемы DB-9, а модемы обычно имеют разъемы DB-25 или RJ45. Если требуются нестандартные кабели, кабельный разъем и схема расположения выводов сэкономят время и уменьшат путаницу. Если контроллер сигнала использует разъем DB-25, а модем имеет разъем DB-9, вы должны включить таблицу, в которой представлены следующие данные:

25-контактный разъем контроллера 9-контактный разъем модема
Таблица 5-3: Соединительный кабель DB-25
, контакт #, контакт № Сигнал RS232, функция
1 н / д Заземление рамы
2 3 TX
3 2 RX
4 7 РТС
5 8 CTS
6 6 DSR
7 5 Сигнальная земля
8 1 DCD
9 н / д + TX
11 н / д — Техас
18 н / д + RX
20 4 DTR
22 9 RI
23 н / д DSRD
25 н / д — RX

Рисунок 5-6: Разъем DB-25

Эта таблица основана на стандартах EIA / TIA для последовательных кабелей RS232.Дважды проверьте стандарты для окончательной справки и попросите производителей устройств предоставить схемы распиновки. Стандарты меняются, но производитель, возможно, не внес эти изменения.

Это отправная точка в общем дизайне. По мере продолжения процесса инженер по коммуникациям будет продолжать дорабатывать проект до тех пор, пока не будет сделан разумный вывод о решениях, которые наилучшим образом будут поддерживать общие цели основного проекта. Разрабатывается серия схем, и правила проектирования, установленные в главе 4, используются для создания окончательного проекта.

Рисунок 5-7: Разъем DB-9

Цепи устройств управления движением

Ниже приводится описание цепей связи, обычно используемых в дорожных и транспортных системах. В заключение пятой главы мы приведем пример сложной системы связи, которая включает в себя ряд различных устройств дорожной и транспортной системы. В седьмой главе будут представлены примеры реальных систем, которые были развернуты (или находятся в процессе развертывания).

Ранее схемы связи описывались как имеющие три (3) основных элемента — передатчик, приемник и среду передачи. Это описание было дано, чтобы дать общее представление о схемах связи. Цепи связи имеют еще один общий элемент — преобразование протоколов. Самая простая система — две (2) жестяные банки и веревка — имеет этот элемент. Жестяные банки преобразуют звук в вибрацию, которая передается на струну. Обычный телефон преобразует человеческий голос (звук) в электрический сигнал (преобразование протокола).Электрический сигнал передается по медному проводу (носителю). Электрический сигнал принимается другим телефоном и преобразуется в звук. Модем преобразует протокол данных с компьютера в протокол, который может передаваться через носитель. Модем — это сокращение от словосочетания «модулятор / демодулятор». Модем преобразует двоичный протокол данных один / ноль компьютера (или другого устройства данных) в протокол, который может передаваться через конкретный носитель (11). Модемы были разработаны для витой пары, радио и оптоволокна.

Система управления движением

Помните — программное обеспечение и протоколы данных указываются в байтах, а передача данных указывается в битах. 1200 бит данных составляют 150 байт. Один байт равен одному символу. Некоторые системы сигналов светофора используют бит-ориентированное сообщение. Главный компьютер считывает отдельные биты в пределах одного байта для поиска индикации состояния устройства.

Контроллерам трафика требуется достаточно простая система связи.Как правило, они объединяются в последовательную сеть типа «точка-точка» или «точка-многоточка» с использованием аналоговых модемов с низкой пропускной способностью и медных витых пар для передачи голоса. Самая большая проблема, с которой сталкивается инженер по связи при проектировании этих схем, — это требования к опросу. Системы светофоров традиционно проектируются с опрашиванием устройств каждую секунду. То есть каждый контроллер опрашивается раз в секунду для получения информации и получает сигнал синхронизации.

Рассмотрим систему сигналов светофора, в которой используется скорость передачи данных 9600 бит / с.Если каждое устройство передает 1200 бит данных за опрос, то теоретически максимум восемь устройств могут быть подключены к одной цепи многоточечной связи. Учитывая задержку приема-передачи или возможные проблемы с линией, инженер по связи подключал бы только семь устройств к каждой цепи. Теоретически сигнальная система с 50 контроллерами потребует восьми отдельных многоабонентских коммуникационных цепей.

Если система сигналов трафика использует 10-битное сообщение для предоставления всей необходимой информации, канал связи со скоростью 9600 бит / с может поддерживать теоретически максимум 960 полевых устройств.Используется следующая формула: 9600 бит, разделенные на 10 бит (каждое сообщение) = 960. Однако это число дополнительно уменьшается на общее время (время двусторонней связи), необходимое для опроса каждого устройства, затухание сигнала в зависимости от расстояния, типа состав средств связи и отношение сигнал / шум канала связи. Кроме того, существует задержка, вызванная устройством для правильного форматирования и отправки ответа.

Если бы система использовала байтовое сообщение, максимальное количество устройств было бы существенно меньше.Система, использующая сообщение размером 150 байт, будет ограничена максимум 8 устройствами на линии связи 9600 бит / с — 9600 бит, разделенных на 8 (один байт), разделенных на 150 байтов (каждое сообщение) = 8. Убедитесь, что инженер связи и производитель программного обеспечения согласовывает эти детали. Это сэкономит время при оптимизации системы.

Основные типы цепей данных

На следующей схеме показаны основные элементы модема. Фактически, блоки DSU / CSU, карты сетевого интерфейса (NIC), видеокодеки и многие другие устройства передачи имеют эти же элементы.Ключевые различия зависят от типа интерфейса данных и среды передачи.

Рисунок 5-8: Блок-схема модема

Во всех схемах связи используется какой-либо тип преобразователя медиапротоколов, так что ввод / вывод устройства может передаваться через определенный носитель или через сеть связи. Примеры:

  • Управление сигналами движения
  • Шкаф связи для устройств дорожного движения
  • Переменный знак сообщения
  • Камера видеонаблюдения
  • Управление PTZ
  • Станция RWIS
  • Монитор высокого уровня воды

Эти термины также используются в руководствах по обслуживанию и установке.Технические специалисты могут легко определить, какая сторона устройства подключена к оборудованию для обработки данных, а какая — к сети.

Когда инженер использует модем, он рассматривает устройство как посредник между оборудованием передачи данных и сетью связи. Компьютер (или другое устройство передачи данных) называется оборудованием завершения данных (DTE), а модем считается оборудованием передачи данных (DCE). DTE и DCE — это термины, которые помогают инженеру по коммуникациям визуализировать систему связи в технологически нейтральной манере.Устройство DCE имеет две стороны — DTE и сеть. Используя эти термины, инженер может визуализировать ориентацию оборудования в сети.

Камера видеонаблюдения считается устройством DTE, поскольку она предоставляет данные в виде изображения. Камера фактически преобразует изображение в электрический сигнал, который должен передаваться через устройство DCE. Устройство DCE может быть модемом, преобразующим электрический видеосигнал в сигнал T-1 для передачи по медному проводу витой пары.В этом случае модем DCE называется КОДЕК.

Рисунок 5-9: Принципиальная схема CCTV

Разработчик системы связи может предпочесть создать очень общий макет системы. Разработчик может выбрать технологии позже в процессе, но все еще имеет рабочее представление о том, как будет развиваться система.

После завершения приведенная выше схема может выглядеть следующим образом:

Рисунок 5-10: Принципиальная схема CCTV

Базовые схемы связи типа устройства трафика

Каналы связи для контроллеров типа 170/2070 и NEMA довольно просты.При нормальной работе используется двухпроводная полудуплексная схема со скоростью 1200 бит в секунду. Большинство систем подключаются с использованием протокола связи FSK между модемом полевого контроллера и модемом главного контроллера. Базовая прямая связь между одним 170/2070 и главным управляющим компьютером будет выглядеть, как показано на рисунке 5-11. Обратите внимание, что частная витая пара, установленная DOT, описывается как сеть .

Рисунок 5-11: Схема подключения полевого контроллера к главному компьютеру

Рисунок 5-12: Схема — точка-многоточка

Частотная манипуляция (FSK) — это метод передачи цифровых сигналов.Каждое из двух двоичных состояний, «0» (низкий) и «1» (высокий), представлено аналоговым сигналом. «0» представляет конкретную частоту, а «1» — другую частоту. Модем преобразует двоичные данные с компьютера в FSK для передачи по телефонным линиям, кабелям, оптическому волокну или беспроводной среде. Модем также преобразует входящие сигналы FSK в цифровые низкие и высокие состояния, которые компьютер может «понять».

Модемы используют специальный протокол модуляции для преобразования цифрового выхода компьютера (или контроллера сигнала трафика) в аналоговый для передачи по телефонной линии или витой паре.Протокол, используемый модемами для подключения контроллеров сигналов светофора к центральным управляющим компьютерам, — это FSK (частотная манипуляция). Частотная манипуляция обеспечивает низкую скорость (ниже 9,6 Кбит / с) передачи данных. Для более высоких скоростей передачи данных используются другие протоколы модема — PSK (фазовая манипуляция) и QAM (квадратурная амплитудная модуляция). Если вы хотите узнать больше об этих протоколах передачи, обратитесь к любому хорошему учебнику по телекоммуникациям — некоторые из них перечислены в справочном разделе этого справочника.

Эту базовую систему связи можно применить практически к любой конфигурации. Замените 2/4 проводную витую пару частной линии на оптоволокно, и базовая конфигурация сети не изменится. Протокол связи RS232, используемый контроллером 170, должен быть преобразован в сигнал световой волны для передачи по оптоволокну. Решили перейти на более новый контроллер типа 2070, но хотите сохранить существующие каналы связи по витой паре? Просто замените контроллер, потому что модемы и линия передачи остались прежними.Примечание: Предполагается, что нет никаких изменений в протоколах программного обеспечения в общей системе сигналов трафика .

Эту схему (рисунок 5-13) можно использовать в нескольких местах, где требуется несколько каналов связи точка-точка. У каждого контроллера будет прямая связь с центральным компьютером и выделенный порт связи. Инженеры называют это сетью связи точка-множество точек. Использование множества коммуникационных цепей, модемов и коммуникационных портов на центральном компьютере может быть дорогостоящим.Системы светофоров, как правило, используют вариант многоточечной связи. Такое устройство называется схемой многоточечной связи. Один модем на центральном компьютере обслуживает множество полевых модемов. Эта схема особенно рентабельна при аренде каналов частных линий у оператора связи. DOT платит за одну цепь связи, а не за восемь или более, которые она заменяет.

Рисунок 5-13: Схема — многоточечная система

«Задержка» — для этой цели — определяется как время, прошедшее с момента запроса информации центральным компьютером до момента получения информации от полевого модуля.

Центральный компьютер контролирует весь процесс связи. Он опрашивает полевые контроллеры для получения информации, используя многоточечную схему, которая позволяет всем полевым модулям реагировать индивидуально. У них есть виртуальный канал связи с центральным компьютером. Использование многоточечной конфигурации позволяет центральному компьютеру опрашивать все полевые блоки, подключенные к одной цепи, но каждый полевой блок должен отвечать последовательно и не может использовать цепь, пока другой блок передает.Использование многоточечной схемы требует тесной координации между системой связи и центральной компьютерной системой программного обеспечения. Убедитесь, что инженер по связи полностью осведомлен о требованиях к задержке связи программного обеспечения. Если модем полевого модуля находится на достаточно большом расстоянии от центрального компьютера, программное обеспечение может быть проинструктировано ждать ответа еще одну или две миллисекунды.

Таблица схемы DB-25 — DB-9, показанная ранее в этой главе, указывает на вывод, помеченный «CTS».Эти инициалы расшифровываются как «Clear-to-send». Модем полевого модуля будет ожидать индикации готовности к отправке перед передачей информации на центральный компьютер. Если прошло слишком много времени, центральный компьютер выполнит еще одну последовательность опроса. Если задержка слишком велика или центральная станция отправила слишком много запросов на информацию, она может предположить, что один или несколько полевых контроллеров вышли из строя, и выдать отчет об ошибке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *