Двигатель автомобиля это: Принцип работы и устройство двигателя

Содержание

Что такое ДВС в автомобиле, расшифровка кратко

Что такое ДВС в автомобиле, расшифровка кратко

 

По дорогам мира перемещаются миллионы автомобилей, автобусов и грузовиков. Такое развитие транспорта было бы невозможным без ДВС – главной движущей силы всех современных машин. Расшифровка аббревиатуры ДВС несложная – двигатель внутреннего сгорания.

Что такое ДВС в автомобиле, что в нем горит и почему внутри – поясняем кратко. Паровой котел – это двигатель внешнего сгорания: дрова, уголь или мазут горят, подогревая воду, которая превращается в пар, который толкает поршни. Получается длинный и неэффективный цикл. Принципиальное отличие ДВС в том, что топливо сгорает внутри цилиндров, передавая энергию непосредственно поршням и валу, эффективность преобразования существенно выше. Кроме этого ДВС занимают немного места, мало весят, экономичны, работают на разнообразных видах топлива.

 

Краткое содержание статьи

1. Типы ДВС;

2. Как устроен ДВС автомобиля;

3. Как работает ДВС, описание, анимация;

4. Ремонт ДВС, стоимость.

 

 

1. Типы ДВС, бензин и дизель

 

По принципу воспламенения топлива двигатели делятся на несколько типов: искровые и дизельные. В первых топливо воспламеняется от искры, в цилиндрах вторых дизель зажигается от сжатия топливной смести. Бензиновые моторы имеют меньший КПД, по этому дизельные моторы экономичнее. Дизельные моторы дороже в обслуживание и ремонте, так как сложнее в устройстве.

 

2. Как устроен ДВС автомобиля

 

Приведем на примере современного двигателя внутреннего сгорания, опишем как устроен ДВС автомобиля.

ДВС состоит из следующих модулей:

  • Система подачи топлива;
  • Головка блока цилиндров;
  • Блок цилиндров с поршневой группой;
  • Газораспределительный механизм;
  • Коленчатый вал.

 

3. Как работает ДВС, описание и анимация

 

Главный принцип работы ДВС – расширение объема газов в замкнутом пространстве цилиндра от тепла, возникающего в результате сгорания топлива.

Чтобы двигатель работал непрерывно, реализуется цикл, состоящий из:

  1. Поступления топливной смеси в цилиндр, Поджога и сгорания смеси;
  2. Рабочего хода поршня;
  3. Выпуска газов.

Импульс, полученный от сгоревшего топлива, толкает поршень, коленчатый вал поворачивается. Так энергия преобразуется в движение. Выше мы описали как работает ДВС, прикрепляем анимацию. 

 

4. Ремонт ДВС в автомобиле, стоимость

Из чего состоит, и что такое ДВС в автомобиле мы разобрались, теперь немного расскажем о ремонте ДВС. Так как ДВС является сложным инженерным устройство и состоит из множества систем, которые должны слаженно работать, выход из строя или обшивка одной системы двигателя ведет к неровной работе системы в целом или к полной остановке мотора — поломке. Например, вышла из строя форсунка распыления топливной смеси в одном цилиндре, следовательно, в одном цилиндре нет детонации и что происходит с мотором в целом?

Мотор или как его еще называют ДВС, теряет мощность, и, если мотор 4 цилиндровый будет работать с рывками и провалами. С большой вероятностью будет давать сильную вибрацию на кузов, из-за ассиметричного зажигания. На помощь приходит диагностика и ремонт ДВС, автомобиль подключают к компьютеру и считывают ошибки по работе мотора. По набору ошибок, мастера поймут в чем причина поломки и поменяют форсунку.

 

Стоимость ремонта ДВС в автомобиле варьируется от модификации самого мотора и вида неисправности. Бывает, такое, что сама машины дешевая, а ремонт мотора дорогой, из-за неудобного расположения различных узлов. Бывает наоборот. Лучше всего не запускать проблемы по ДВС до ремонта. Нужно вовремя вменять масло, фильтры. Ели появляется как-либо проблема, нужно сразу вытиснять в чем причина и решать вопрос, пока мелкая проблема не переросла в полномасштабный ремонт.

 

 

Автомобильные двигатели. Описание и технические термины.

Коротко о конструкции карбюраторного и инжекторного автомобильного двигателя.Названия и сокращения технических терминов и пояснения к ним
Не пугайтесь, вы не на лекции по теории конструирования всех двигателей на свете!

Первая часть статьи — упрощенное ознакомления с базовыми принципами работы некоторых, а не всех, двигателей.
Вторая часть статьи — описание популярных технических терминов и сокращений.

Особенности статьи:
1. Во-первых, рассмотрим только бензиновые двигатели, и только потому, что их больше всего.
2. Во-вторых, ознакомление короткое и адаптировано под автовладельца, а не высококвалифицированного автолюбителя.

     Итак, начинаем . Без начальной упрощенной теории не обойдемся.
Все цилиндровые тепловые двигатели можно условно разделить на две группы: двигатели внешнего сгорания и двигатели внутреннего сгорания. К двигателям внешнего сгорания относятся, в первую очередь, паровая машина и двигатель Стирлинга, а к двигателям внутреннего сгорания — традиционный бензиновый двигатель, а также двигатель Дизеля. Главное принципиальное отличие бензиновых и дизельных двигателей — это то, что в бензиновом двигателе подготовлена бензиново-воздушная смесь сжимается, а затем поджигается и сгорает, а в дизельном сжимается только воздух, в максимально сжатый воздух впрыскивается порция дизельного топлива (его названия — керосин, солярка ) и полученная воздушно-топливная смесь сама загорается при большом давлении (компрессионное зажигание), но в дизельном моторе есть и дополнительные средства для поджигания смеси (Жаров зажигания).

Чтобы статья не была слишком большой, дизельные двигатели пропускаем. Автовладельцы — дизелисты, для вас будет написана отдельная статья.

Химический процесс идет в двигателе вашей машины? Идеальный процесс вот такой:


Бензин и воздуха при идеальном сгорании дают двуокись углерода, он для нас не полезен и безвреден, потому что мы этот двуокись углерода выдыхаем, а также дают воду. Азот в реакции не вступает, он только входит и выходит, как в известном мультфильме.
Обратите внимание, при сгорании бензина образуется также вода, даже если воду не доливали в бензин на АЗС. Видели пар из выхлопной трубы зимой? Это подтверждает, что при сгорании бензина образуется также вода.
Чем лучше зформуемо топливную смесь, тем меньше вредных выбросов в воздух дает наша машина.

Подача и формирования топлива — главный признак, по которому бензиновые двигатели внутреннего сгорания делятся на инжекторные и карбюраторные.
Привычный двигатель, не «Мазератти» и не «Феррари», может нормально работать при скоростях от 800 оборотов в минуту до 7000 оборотов в минуту, его динамический диапазон, то есть соотношение максимальной скорости до последней, примерно равна

9 . Наиболее эффективно двигатель работает в достаточно узком диапазоне оборотов, примерно от 2000 до 3500 оборотов. При меньших скоростях очень уменьшается мощность двигателя и крутящий момент, при больших скоростях падает энергоэффективность мотора. Вот почему водителям новичкам несколько раз объясняют простые правила:
вверх едешь — надо, чтобы на тахометре было не менее , чем 2500-3000 ,
по ровному едешь — надо, чтобы на тахометре было не более чем 3000-3500 ,
вниз едешь — не нажимайте на педаль «газа», и следишь, чтобы на тахометре обороты было поменьше. Для выполнения этих правил новичков учат вовремя переходить на высшую или низшую передачу.

Содержание статьи

Терминология. Детонация, детонационное сгорание

При слишком большом сжатии бензиново-воздушной смеси возникает сгорания, при котором фронт огня распространяется в цилиндре в десятки раз быстрее, чем при обычном сгорании, эта скорость больше скорости звука,
Обычное сгорания. Фронт огня несет температуру возгорания в той части воздушно-топливной смеси, которая еще не сгорела.
Детонационное сгорание. Когда давление смеси слишком большой, между фронтом огня и несгоревших частью топливной смеси образуется чрезвычайно узкий промежуток воздушно-топливной смеси, который сжатый гораздо сильнее и имеет температуру, выше температуры возгорания, этот промежуток называется ударной волной. Уже НЕ огнем передается температура возгорания в той части смеси в цилиндре, которая еще не сгорела, а сама ударная волна передает эту температуру, в результате огонь распространяется в цилиндре двигателя с зазвуковою скоростью. Ударная волна при детонационно сгорании многократно отражается от стенок цилиндра, и этот быстрый процесс приводит к тому, что мы слышим в двигателе звуки, похожие на звонкие металлические удары.

Если захотелось слишком быстро разогнаться и водитель слишком сильно нажал на педаль «газа», он начинает слышать «дзинь-дзинь-дзинь» в двигателе, значит, детонация уже идет.

Для тех, кто о детонации «уже что-то слышал» от знакомых алкоголиков в гараже:
1. Поршень НЕ стучится о стенки цилиндра при детонации. Он и так движется в тесном контакте с стенками цилиндра.
2. НЕ пальцы вам стучат при детонации. Этот колокол создает чрезвычайно быстрый фронт огня в цилиндре при детонации. Хорошо разбиты пальцы также умеют стучать, но без «звона».
3. Октановое число топлива действительно повышается при добавлении в топливо различных примесей, и детонация уменьшается, но двигатель от тех примесей очень быстро портится.

Терминология. Октановое число

Бензин на заправках характеризуется октановым числом. Чем больше октановое число, тем больше можно сжимать такую топливную смесь без возникновения детонации.
Определение октанового числа проводится экспериментально. Есть специальные тестовые двигатели с изменяемой степенью сжатия в камере сгорания, и на этом двигателе определяют, при котором сжатии уже начинается детонация. Конечно, при таком тестировании нужны еще некоторые параметры, мы это уточнение пропускаем. Затем при определенном максимальном сжатии вместо бензина подают топливную смесь изооктана (который вообще не детонирует) и гептана (который детонирует всегда). Пропорция изооктана и гептана, что дает такие же детонационные характеристики, как у бензина, называется октановым числом этого бензина.

Никто не возит с собой баллоны с изооктаном и гептаном, чтобы проверить бензин на заправке. Тестовая установка (тестовый двигатель) время от времени калибруется с помощью смеси изооктана и гептана.

Терминология. Этилированный бензин

Ранее октановое число бензина повышали добавлением в бензин раствора тетраэтилсвинца, отсюда пошло название «этилирования бензина». Сейчас намного лучше добавки, никто тетраэтилсвинец не прибавляет, но название осталось.
Внимание! Добавление этанола в бензин (био-бензин) не является этилирования, и никак не связано с повышением октанового числа. Бензин, к которому добавлен этанол (как правило, этанол с примесями метанола), дает медленный фронт огня (это лучше для двигателя), меньшую температуру горения (это лучше для двигателя), уменьшение мощности двигателя на 3-5% (это хуже для кошелька , но бензин с этанолом обычно дешевле), значительно лучше и чище сгорания (это лучше для экологии), в целом добавления этанола является полезным действием, и оно не выгодно на максимально скоростных режимах двигателя, который традиционно не адаптирован под такую смесь.

Продолжаем. Очень коротко — о карбюраторные двигатели

Если собрать вместе все книги, написанные о карбюратор, они будут весить больше, чем ваш автомобиль. Итак, в цилиндры двигателя подается бензиново-воздушная смесь, в ней капли бензина по возможности маленькие, а соотношение количества бензина и воздуха по возможности такое, чтобы в цилиндрах не возникало детонационного сгорания бензина.
Формируется топливная смесь достаточно просто: в карбюраторе некоторая часть воздушного потока воздуха проходит через тоненькую трубочку эмульсионного канала, в канале на определенной высоте находится жидкость с приятным названием «бензин».

Воздуха, движущегося в карбюраторе, согласно закону Бернулли, имеет тем меньше давление, чем быстрее движется. Благодаря уменьшенному давления бензин в эмульсионном канале поднимается вверх, а трубка эмульсионного канала имеет много дырочек, и чем выше поднимается уровень бензина, тем через большее количество дырочек он вытекает в эмульсионном накале и смешивается с воздухом, образуя бензиново-воздушной топливную смесь.

Не сомневайтесь, я несколько упростил. На некоторых режимах эта конструкция не очень справляется со своей задачей.
1. В начале значительной нагрузки на двигатель требуется дополнительное впрыска бензина в смесь, в карбюраторе для этого есть насос-ускоритель. Он дополнительно «пшикает» бензином во впускной коллектор при резком нажатии на педаль газа.
2. На холостом ходу лучше формировать топливную смесь отдельным каналом. Он так и называется: «канал холостого хода». В рабочей камере карбюратора немного трудно формировать небольшое количество смеси для холостого хода.


3. При работе холодного двигателя требуется больше разрежение воздуха в эмульсионной камере. Дополнительная воздушная заслонка ( «подсос») выполняет эту функцию.
4. На больших скоростях надо дополнительно формировать топливную смесь во второй камере карбюратора. Если по-простому сделать первую рабочую камеру карбюратора чуть больше, она будет плохо работать на средних и малых оборотах двигателя.
5. Если бы не экология, карбюратор можно было бы как-то терпеть. Чтобы не отравлять воздух картерными газами, их надо снова подавать в карбюратор для дожигания. На неновом двигателе давление картерных газов немного великоват, они наполнены микрокапельки грязного моторного мвсла. Это очень засоряет карбюратор, он бесконечно хочет прочистки.

Особенности карбюратора: топливная смесь формируется не нормально, экономичность может быть лучше, карбюратор относительно быстро загрязняется при некоторой изношенности стенок цилиндров и компрессионных колец на поршнях. Зимой заведения карбюраторного двигателя часто напоминает шаманство и танцы с бубном. Карбюратор только примерно адаптирован под разные режимы работы двигателя.

Терминология. Поршневые кольца

Это действительно кольца, и они находятся на поршне, который движется внутри цилиндра. Маслозьйомни кольца существуют для того, чтобы масло из картера двигателя (нижней части двигателя) по возможности не попадал в рабочую камеру сгорания в цилиндре, но все же смазывали стенки цилиндра.
Компрессионные кольца делают рабочую камеру цилиндра более плотной, по возможности не дают выхлопным газам прорываться в картер двигателя.
Масло в двигателе нужно не только для того, чтобы смазывать двигатель. Оно нужно, чтобы смазывать стенки цилиндров (это очень важно) и заодно смазывать все другие узлы двигателя (это тоже неплохо).

            Инжекторные двигатели. Здесь будет подробнее

Кто первый на практике применил прямой впрыск бензина в двигателе внутреннего сгорания? Конструкторы начали с дизельных двигателей. Система впрыска, которую разработал Рудольф Дизель, была довольно громоздкой и несовершенной, лучшие характеристики были в системы впрыска, разработанной Герберт Акройд Стюарт. А косвенный впрыск бензина впервые применил в 1902 году французский авиационный инженер Леон Лепелетье на авиационном двигателе «Антуанетта 8V». В 1916 году российские инженеры Микулин и Стечкина применили в авиационном двигателе косвенную систему впрыска бензина, этот двигатель так и не пошел в серийное производство.
( Уклоняемся от темы: в российской технической литературе по тупым упрямством напоминают лишь о конструкции Микулина и Стечкина. А дальше, мол, мировые конструкторы лишь немного эту конструкцию подкорректировали. Может, много дурного «патриотизма», а может, много лени, чтобы прочитать другую литературу).
Прямой впрыск бензина был применен на двигателе «Hesselman» шведского инженера Йонаса Хессельмана в 1925 году.

А вот первое массовое применение инжекторной системы формирования бензино-воздушной смеси было сделано в военной авиации. Это сделала фирма «Messerschmitt AG», авиастроительная фирма Германии, действовавшей в 1938-1945 и 1956-1968 годах. Первоначальное название фирмы — «Messerschmitt-Flugzeugbau Gesellschaft», эту фирму основал в 1923 году Вилли Мессершмитт. Прямой впрыск топлива на истребителях «Мессершмитт» давал возможность значительно большего маневрирования самолетом на больших высотах, без риска, что мотор заглохнет, и мощность мотора при этом была выше. В двигателях «Мессершмитт» была еще одна техническая новинка: переменный угол атаки лопастей пропеллера, это увеличивало тяговую силу на больших высотах. Конечно, эти двигатели конструктивно очень отличались от современных. Многие последующих изменений конструкторы сделали позже, без участия «Messerschmitt AG» и лично Вилли Мессершмитта.

От истории переходим к практике. Инжекторная система подачи топлива постепенно и уверенно вытесняет карбюраторную систему. Двигатели, имеющие такую ​​систему, называют инжекторными двигателями. Посмотрите на этот рисунок.

В конце 70-х годов 20-го века и начала 80-х годов инжекторный впрыск топлива в автомобильном двигателе набирает популярность (конечно, это не касается некоторых стран), а с началом 21-го века точечный инжекторный впрыск топлива частично вытесняется прямым инжекторным впрыском .
Что заставило конструкторов делать все эти изменения?
Главная причина перехода на инжекторе двигателя — экология. Конструкторы начали с каталитического нейтрализатора отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой «стехиометрической» топливо-воздушной смеси (весовое соотношение воздух / бензин = 14,7: 1). Любое отклонение состава смеси от указанного приводит к падению эффективности двигателя. Для стабильной поддержки такого соотношения рабочей смеси карбюраторные системы уже не подходили.

Первые инжекторные системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются при эксплуатации автомобиля. Выход был найден. В систему ввели обратная связь: в выпускную систему, перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-датчик, или лямбда-зонд. По сигналам датчика кислорода электронный блок управления (ЭБУ) корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси. Блок ЭБУ может в литературе называться «контролер».

Инжекторные системы подачи топлива имеют перед карбюраторными следующие преимущества:
— точное дозирование топлива, следовательно, более экономный двигатель.
— снижение токсичности выхлопных газов.
— увеличение мощности двигателя примерно на 7-10%.
— улучшение динамических свойств автомобиля. Система впрыска немедленно реагирует на любые изменения нагрузки, изменяя параметры топливно-воздушной смеси.
— легкость запуска двигателя, независимо от погодных условий. И зимой тоже!

         Немного о конструкции. Датчики инжекторного двигателя

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, которая затем перечисляется программой в цилиндрическое цикловое наполнения. При неисправности датчика управления двигателем идет по аварийными таблицами.
Вместо датчика массового расхода воздуха в двигателе может быть датчик давления во впускном коллекторе. Разница небольшая, потому что давление во впускном коллекторе зависит от скорости прохождения воздуха в коллекторе. Это я опять вспомнил о законе Бернулли.
Неисправность этого датчика очень ухудшает движение автомобиля под нагрузкой (например, когда едете вверх). Иногда при неисправности этого датчика машина едет немного лучше с отключенным датчиком.

Датчик положения дроссельной заслонки — для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, обороты двигателя и циклового наполнения цилиндров двигателя топливной смесью.
Некоторые автомеханики называют этот датчик «позиционер», такая терминология популярна для дизельных двигателей.
Этот датчик традиционно находится на той же оси, на которой вращается дроссельного заслонка. Чем сильнее мы нажмем на «газ», тем больше открывается дроссельного заслонка, увеличивая количество воздуха, поступающего в цилиндры двигателя. Если бы мы очень плавно нажимали на педаль газа и чрезвычайно плавно отпускали ее, датчик положения дроссельной заслонки можно было бы выбросить. При резких изменениях рабочих режимов датчик помогает контроллеру более правильно дозировать подачу бензина в двигатель.

 

Датчик зачастую являются реостатным, это переменный резистор с тремя выводами. Современные датчики работают на эффекте Холла, и практически не изнашиваются.
Неисправность датчика очень ухудшает динамические характеристики двигателя, в некоторых редких случаях двигатель не заводится, но заводится с отключенным датчиком. С отключенным исправным датчиком машина едет гарантированно хуже.
Этот датчик является популярной причиной при решении многих проблем с холостым ходом: холостой ход великоват, женщин, нестабильный, зависают и держатся слишком большими холостые обороты, короче говоря, этот датчик должен быть исправным, потому что его неисправность или даже незначительное отклонение в характеристиках датчика от нормы очень портит нервы водителю.

Терминология. Дроссельного заслонка

Просто посмотрите на рисунок, как она работает. Она регулирует поток воздуха (или топливной смеси) во впускной коллектор двигателя. Коллектор распределяет этот поток на 4 цилиндра.
Считаем, что у нашего двигателя 4 цилиндра.


Продолжаем.
Датчик температуры охлаждающей жидкости
служит для определения коррекции подачи топлива и угла опережения зажигания, в зависимости от температуры двигателя, а заодно для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Значительно хуже, когда датчик «почти исправен», и контроллер доверяет сигнала с этого датчика. Очень часто в двигателе аж три датчики, которые измеряют температуру охлаждающей жидкости. Один датчик — для контроллера, второй — для индикации температуры водителю, а третий — для управления электровентилятором.
Не надо эти датчики путать с термостатом, который регулирует циркуляцию охлаждающей жидкости в двигателе, для поддержания стабильной температуры.

Терминология. Угол опережения зажигания

Топливная смесь сжимается в цилиндре именно к такому давлению, как нам надо, это сжатие рассчитан конструкторами, что перед нами не регулируется. Когда смесь максимально сжата, то есть поршень в цилиндре находится в верхней мертвой точке, эту смесь надо поджечь.
НЕТ, НЕ ТАК.
Поджечь надо немножко раньше. Ведь сгорания идет не моментально, и при различных оборотах двигателя мы должны враховуты скорость сгорания смеси, а значит, на более высоких оборотах надо поджигать смесь раньше, чем на низких оборотах. Параметр, якии характеризует эту закономерность, называется « угол опережения зажигания «.

Терминология. Верхняя мертвая точка — момент в работе двигателя, когда поршень в цилиндре максимально сжал топливную смесь, и уже не двигается ни вверх, ни вниз, при этом коленчатый вал продолжает крутиться. Очень важный параметр двигателя, который называется «компрессия» , меряют этот параметр именно в верхней мертвой точке поршня.
Понятно, что низкое положение поршня называется «нижняя мертвая точка».

Терминология. Компрессия двигателя — это давление бензиново-воздушной смеси в цилиндре двигателя в верхней мертвой точке работы поршня в цилиндре, это давление зависит от атмосферного давления, коэффициента сжатия в цилиндрах двигателя, и политропный показателя, который для бензина примерно равна 1.2. Компрессия двигателя не может быть больше, чем рассчитанная конструкторами.
Простой пример. В идеальном бензиновом двигателе с коэффициентом сжатия 10 компрессия будет 14 атмосфер, при стандартном атмосферном давлении.
Компрессия максимальная тогда, когда хорошо работают компрессионные кольца в поршнях, и правильно работает газораспределительный механизм.
Кто-то считает, что в статье неточности? Что при коэффициенте сжатия 10 компрессия будет 10 атмосфер? Нет, компрессия будет 14 атмосфер. Вы прогуляли урок физики, когда в школе учили уравнения состояния реального газа.

Продолжаем. Датчик положения коленчатого вала

Этот датчик служит для общей синхронизации системы управления двигателем, а также определения положения коленчатого вала в нужные моменты времени. При неисправности датчика или неконтакты в разъеме датчика работа двигателя невозможна. Неисправность всех остальных датчиков позволяет своим ходом то доехать до автосервиса.
Датчик положения коленчатого вала дает информацию в контроллер, когда любой поршень двигателя находится в верхней мертвой точке.
Одна из популярных конструкций датчика это индуктивный датчик, то есть катушка с намагниченным металлическим сердечником, на коленчатом валу находится диск, похожий на шестерню, в которой могло бы быть, например, 60 зубов, но два зуба отсутствуют. Зубы диска, проходя мимо намагниченного сердечника датчика, формируют небольшой импульсный сигнал на выводах датчика, этот сигнал поступает к контроллеру.

Датчик кислорода (лямбда-датчик, лямбда-зонд, λ-зонд ) предназначен для определения присутствия кислорода в отработавших газах, то есть в выхлопе. НЕ концентрации кислорода, а только присутствии кислорода в выхлопе.
Весь выхлоп, который после сгорания в цилиндрах поступает в выхлопной коллектор, проходит через внутренний элемент кислородного датчика. Через прорези в металлическом экране датчика часть потока выхлопных газов попадает на чувствительный элемент датчика. Кислородный датчик создает напряжение от 0 Вольт до 1 Вольта с помощью химической реакции между чувствительным элементом датчика и остатками кислорода в выхлопных газах, проходящих через этот элемент. Наружный воздух также попадает на датчик, и эта разница между содержанием кислорода в выхлопных газах и наружном воздухе фактически определяет выходное напряжение датчика. Наружный воздух попадает на датчик под изоляцией проводки.
Сигнальный вывод сделан так, чтобы наружный воздух, а не только выхлоп двигателя, также попадало на чувствительный элемент датчика. Таким образом, отсутствие кислорода в выхлопных газах, а значит, перезбагачена топливная смесь, формирует напряжение около 1 Вольта на сигнальном выводе датчика, а присутствие кислорода в выхлопе дает напряжение, близкое к 0 Вольт, это указывает на обедненную смесь. Таким образом, датчик дает возможность контролировать оптимальность соотношения топлива и воздуха в топливной смеси.

Есть конструкции кислородных датчиков с дополнительным подогревом, другие разогреваются раскаленными выхлопными газами.
Контроллер анализирует сигнал кислородного датчика только при значительных нагрузках двигателя. Во время холостого хода датчик хронически показывает на сигнальном выходе «0» .
Откуда это странное название датчика? Она ушла от греческой буквы «лямбда» ( λ ), используемый для обозначения соотношения количества воздуха и количества топлива в топливно-воздушной смеси. Смесь является идеальной (стехиометрической), если содержит именно столько воздуха, сколько его нужно для полного сгорания топлива. Например, для бензина это соотношение составляет около 14,7 (масса воздуха) / 1 (масса топлива).
Значение  λ = (реальное количество воздуха) / (нужное количество воздуха).
λ = 1 — стехиометрическая (теоретически идеальная) смесь;
λ > 1 — бедная смесь;
λ <1 — богатая смесь (избыток бензина, воздуха недостаточно для полного сгорания топлива).

Кислородный датчик никогда не портится внезапно, он медленно отравляется выхлопом при работе, или чуть быстрее отравляется от плохого бензина. Этот датчик, традиционно, служит не менее 100 тысяч километров. При неисправном или отключенном датчике двигатель работает, как и работал, только немного увеличенный расход бензина. При некоторых неисправностях датчика нарушена динамика движения автомобиля. НИКОГДА и НИГДЕ неисправность лямбда-датчика НЕ ПРИВОДИТ к тому, что двигатель не заводится.
У вас из-за неисправного лямбда-датчик не заводилось? Да нет, это вас на СТО разводили на деньги.

Датчик детонации служит для контроля за детонацией. При обнаружении детонации ЭБУ включает алгоритм уменьшения детонации, оперативно уменьшая угол опережения зажигания. Пока вы ездите на нормальном бензине, датчик детонации не вмешивается в работу двигателя. Также есть упрощенные конструкции двигателя без датчика детонации.

Эти датчики — главные для работы двигателя, есть и другие датчики

Еще один элемент конструкции двигателя, который появился с инжекторных двигателях, это адсорбер.

Терминология. Адсорбер.

Адсорбция — избирательное поглощение вещества из газового или жидкой среды поверхностным слоем твердого тела (адсорбента) или жидкости. Компонент, поглощаемой называют адсорбтивом, а то что помещается в адсорбенте — адсорбатом. Например, активированный уголь адсорбирует газы.
Обратите внимание: не АБСОРБЦИЯ, а АДСОРБЦИЯ. Для активированного угля характерна именно адсорбция.

Продолжаем. Адсорбер является элементом замкнутого круга рециркуляции паров бензина. Нормами Евро-2 с 1995 года и более поздними нормами запрещен прямой контакт вентиляции бензобака с атмосферой, адсорбер является обязательным, пары бензина должны собираться (адсорбироваться) и при продувке досылаться в цилиндры двигателя на дожигания (на заводе ВАЗ лишь недавно узнали об этой новость). На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, который всасывается двигателем, пары увлекаются этим потоком и дожигается в камере сгорания.
Неисправный клапан адсорбера может повышать давление топлива в обратном топливном канале ( «обратка»), при этом возможна ситуация, когда двигатель не заводится, но заводится с открытым бензобаком.

Разновидности инжекторных систем

Сейчас вы прочтете о различных инжекторные системы. Но без азбуки я не обойдусь. Немного азбуки.
Как работает игла популярного автомобильного электромагнитного инжектора?
Простой ответ. Она работает так: пшик-пшик-пшик … и пшикает бензином в двигатель.
Правильный ответ. Игла электромагнитного инжектора НЕ пшикает бензином в цилиндр двигателя или во впускной коллектор. Эта игла только открывает или закрывает канал, по которому бензин под давлением вытекает через отверстия специальной формы, при этом прекрасно распыляется на мелкие капли. Давление бензина поддерживается стабильным, а управление инжектором — это только подача командного сигнала на инжектор: открыть или закрыть.
Теперь легче понять проблемы, которые могут быть с инжектором.
Он может протекать. Перерасход бензина, плохо заводится горячий двигатель.
Он может не открываться, если хорошо забит грязью, или может плохо распылять бензин, если выпускные отверстия инжектора очень загрязнены. Двигатель или принципиально не заводится, или значительный перерасход бензина.

Теперь возвращаемся к рассмотрению разновидностей систем впрыска топлива в двигатель.
В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (моноинжектор, одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор у впускного клапана цилиндра) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как в дизельных двигателях).
Некоторые еще знает странное выражение «полный инжектор». В зависимости от фантазии, так могут называть или многоточечный впрыск или прямой впрыск.
А кое-кто даже может заявить о «механический впрыск». На самом деле он говорит о механическую систему управления впрыском, устаревшую и значительно хуже, чем электронная.

Моноинжектор эффективный и лучший от карбюратора. Значительный недостаток: при использовании моноинжектором, как и при использовании карбюратора, к 30% бензина оседает на стенках коллектора. Понятно, что этот бензин не сохраняется в коллекторе навсегда, он также попадает в цилиндры двигателя, но капли бензина при этом больше, и сгорания идет с меньшей эффективностью.

Более совершенными являются системы многоточечного впрыска, еще называют «распределено впрыска», в них подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов.
Технологическая мелочь: такое впрыска топлива может быть попарно-параллельным (одновременно 1 и 4 цилиндр, или 2 и 3 цилиндр), или фазированным (в каждый цилиндр — в свой момент времени).
Главные преимущества распределенного впрыска:
— возможность автоматической настройки на разных оборотах и лучшее наполнение цилиндров, в результате при той же максимальной мощности двигателя автомобиль разгоняется значительно быстрее;
— бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседания капель бензина во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск бензина в цилиндры двигателя оптимизирует сгорание смеси и повышает КПД (коэффициент полезного действия) бензинового двигателя.
При этом он требует качественного бензина с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.


Непосредственный впрыск пока — для дорогих моторов и дорогих ремонтов. Даже механик с опытом не всегда может распознать проблему с нестабильным давлением в топливном насосе высокого давления (ТНВД), или неправильную работу одной из форсунок, в результате чего автовладелец зря меняет очень дорогие узлы двигателя, а холостой ход в дорогой машине остается трагически плохим.

Еще одно новшество в инжекторных двигателях — система EGR , это английское название «Exhaust Gas Recirculation» , рециркуляция выхлопных газов.
Эта система «разбавляет» топливо-воздушную смесь отработавшими газами, это снижает температуру горения в камере сгорания, тем самым уменьшая активное образование вредных оксидов азота (NOx) . Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно. Поэтому на двигателях с непосредственным впрыском также NO -катализаторы. Чтобы такой катализатор эффективно работал, у него небольшими порциями впрыскивается восстановитель (как правило, мочевина), катализатор раскладывают оксиды азота на азот и воду. Такая автомобильная каталитическая система называется «selective catalytic reduction» (SCR, выборочное каталитическое восстановление).

Система охлаждения и система смазки двигателя

Несмотря на название «водяное охлаждение», для охлаждения уже давно не применяется вода, а незамерзающая жидкость на основе этиленгликоля или диэтиленгликоля или пропиленгликоля. Благодаря английском выражения «против замерзания» (anti freeze) эту жидкость по-простому называют «антифриз». Жидкость прокачивается насосом (насос все равно называют водяным), и циркулирует по кругу, в двигателе — снизу вверх, в радиаторе — сверху вниз.

Система смазки наиболее важна для цилиндров, хотя необходимо для всех подвижных частей двигателя . Масляный насос создает давление масла в маслопровод, через масляные каналы масло попадает на коренные подшипники коленчатого вала, а сейчас некоторые прочитает текст, которому очень удивится.
Через коренные подшипники и специальные каналы внутри коленчатого вала масло попадает на шатунные подшипники того же вала, далее попадает во внутренние масляные каналы шатунов, по шатунах поднимается вверх до поршней, и пальцами шатуна раздается до стенок цилиндров.
Именно так в хороших двигателях масло смазывает стенки цилиндров. А не разбрызгивается как попало внутри двигателя!
Зачем вам знать такие детали? Дело в том, что при капитальном ремонте двигателя автомеханики с вероятностью 99% НЕ прочищают вам все перечисленные маслопроводы коленчатого вала и шатунов, а потому маслопроводы остаются хорошо забитыми грязью. Несмотря на капитальный ремонт, смазка цилиндров будет идти хуже, а кольца цилиндров будут служить меньше, чем на новом двигателе.
Такова реальность.

 

 

Как устроен двигатель автомобиля? Особенности деталей поршневой группы, принцип работы и строение

 
Сегодня мы узнаем, как устроен бензиновый и дизельный двигатель внутреннего сгорания автомобиля, какими особенностями обладает мотор, из каких ключевых деталей поршневой группы состоит, а также, как работает современный силовой агрегат.


В устройстве двигателя автомобиля ключевым элементом является поршень. Он представляет собой стальной пустотелый стакан. Сферическое дно, которое называется головкой, расположенное вверху, а «юбка» — это та направляющая часть, которая имеет насечки для закрепления поршневых колец. К миру моды данная юбка не имеет никакого отношения, поэтому не нужно спрашивать, от какого она дизайнера. В свою очередь, поршневые кольца нужны для того, чтобы обеспечивать герметичность, иначе топливная смесь бы опускалась под поршень. Чем герметичнее надпоршневое пространство, тем лучше контролируется движение топливной или топливно-воздушной смеси.


Вы наверняка уже знаете, что именно газы сгорания, сильно толкая поршень, приводят в движение целую цепь механических реакций. Поэтому продолжим дальше. В юбке поршня имеется палец с закрепленной верхней частью шатуна. Шатун в устройстве двигателя автомобиля передает усилие на коленчатый вал от поршня и перемещает поршень во время подготовительного такта. Шатун вращает коленчатый вал, а тот, в свою очередь, передает крутящий момент на трансмиссию.


Вращение ведущих колес достигается за счет передачи крутящего момента с трансмиссии через систему шестерен. Сам шатун состоит из верхней и нижней головок и соединяющего их стержня. Верхняя совершает возвратно-поступательное движение вместе с поршнем, а нижняя совершает круговое движение с шатунной шейкой коленвала.


Кстати, постоянной проблемой производителей является следующее: как сделать прочный и легкий шатун. Если он будет легким, тогда будет не таким прочным, как нужно. А использование легких и прочных материалов приведет к увеличению стоимости мотора.


Изучая устройство двигателя внутреннего сгорания, нельзя обойти без внимания коленчатый вал. Не углубляясь в технические нюансы, о нем следует знать следующее:


— Коленчатый вал преобразует возвратно-поступательное движение поршня в круговое.


Радиус кривошипа — это один из основных показателей качества мотора. Регулируя этот радиус, можно увеличить скорость вращения и максимальную мощность мотора, или же придать больший крутящий момент на низких оборотах, увеличив при этом экономичность.


— Шатунные, и коренные шейки вращаются в подшипниках скольжения, и лишь немногочисленные модели коленвалов вращаются в подшипниках качения.


— На конце коленчатого вала устанавливается маховик, который имеет зубчатый венец. Он нужен для непосредственного участия в запуске двигателя от стартера.


Почему коленчатый валпоршни в цилиндрах и маховик ключевые компоненты двигателя?
А теперь представьте себе: топливно-воздушная смесь, или воздух, если речь идет о дизельных двигателях, скапливается в цилиндрах двигателя и постоянно уменьшает эффективность работы двигателя. Поэтому устройство двигателя автомобиля предполагает наличие газораспределительного механизма (ГРМ — цепной или ременной). Это как раз тот случай, о котором говорят: «Если бы этого не было, тогда это стоило бы придумать». Данный механизм необходим для своевременного и максимально полного удаления из цилиндров двигателя отработанных газов. К тому же газораспределительный механизм нужен еще и для того, чтобы цилиндры хорошо заполнялись воздухом или смесью.


В принципе, на заполняемость цилиндров оказывают влияние и воздуховоды, и воздушный фильтр, впускной коллектор и так далее. Но ключевую роль играют впускные клапаны. И если вам не дают покоя подвиги вальяжных парней из «Форсажа», то пользуйтесь турбонаддувом или механическим нагнетателем. Так как расчет значения фактического коэффициента наполнения цилиндра для многих может показаться слишком сложным, то лучше будет сказать, что литровая мощность зависит от того, сколько топливно-воздушной смеси попадет за раз в цилиндр. Еще проще говоря, тюнинг газораспределительного механизма и впускного тракта — это очень здорово.


Чтобы ваши знания о том, каково устройство двигателя внутреннего сгорания, были более полными, мы должны обязательно упомянуть о воздушном фильтре. Необходимый в конструкции двигателя, он прост в эксплуатации. Но это не значит, что стоит им пренебрегать. Ведь если горючая смесь должна содержать по массе почти в двадцать раз больше воздуха, то получающаяся в результате движения твердая взвесь будет ухудшать технические характеристики двигателя, действуя на него подобно абразиву. А чтобы этого не случилось, необходимо устройство для очистки воздуха. На данный момент различают шесть групп воздухоочистителей.


Видео: «Как работает современный 4-ех тактный двигатель внутреннего сгорания?«

В заключении добавим, что по причине экологической чистоты и более удобной эксплуатации, все чаще в устройстве двигателя внутреннего сгорания появляются специальные воздухоочистители со сменными сухими элементами. Таким образом, нужно запомнить, что при своевременной замене фильтров (масляного и воздушного), мы облегчаем жизнь не только силовому агрегате, но спасаем экологию от вредных выбросов.

БЛАГОДАРИМ ВАС ЗА ВНИМАНИЕ. ПОДПИСЫВАЙТЕСЬ НА НАШИ НОВОСТИ. ДЕЛИТЕСЬ С ДРУЗЬЯМИ.

Как работает двигатель автомобиля, виды и основные узлы

Двигатель — сердце. Как много сегодня означает это слово. Без двигателя не работает ни одно устройство, двигатель дает жизнь любому агрегату. В данной статье рассмотрим, что такое двигатель, какие виды бывают, как работает двигатель автомобиля.

Основная задача любого двигателя – превратить топливо в движение. Одним из способов достичь такого можно с помощью сжигания топлива внутри мотора. Отсюда и название двигатель внутреннего сгорания.

Но, кроме ДВС следует различать и двигатель внешнего сгорания. Примером служит паровой двигатель теплохода, когда его топливо (дерево, уголь) сгорают за пределами мотора, генерируя пар, являющийся движущей силой. Двигатель внешнего сгорания не так эффективен как внутреннего.

На сегодняшний день широкого распространения получил двигатель внутреннего сгорания, которым укомплектованы все автомобили. Несмотря на то, что КПД ДВС не близко к отметке 100 %, лучшие ученые и инженеры трудятся над доведением до совершенства.

По видам двигателя делятся:

• Бензиновые: могут быть как карбюраторными так и инжекторными, используется система впрыска.

• Дизельные: работают на основе дизельного топлива, которое под давлением распыляется в камере сгорания топливной форсункой.

• Газовые: работают на основе сжиженного или сжатого газа, произведённого от переработки угля, торфа, дерева.
Итак, перейдем к начинке мотора.

• Основным механизмом является блок цилиндров, он же часть корпуса механизма. Блок состоит из различных каналов внутри себя, что служит для циркуляции охлаждающей жидкости, снижая температуру механизма, в народе называется рубашка охлаждения.

• Внутри блока цилиндров расположены поршни, их количество зависит от конкретного двигателя. На поршень одеваются в верхней части компрессионные кольца, а в нижней маслосъемные. Компрессионные кольца служат для создания герметичности при сжатии для воспламенения, а маслосъемные для забора смазывающей жидкости со стенки блока цилиндров и предотвращения попадания масла в камеру сгорания.

• Кривошипно-шатунный механизм: передает вращательный момент от поршня к коленвалу. Состоит из поршней, цилиндров, головок, поршневых пальцев, шатунов, картера, коленвала.

Алгоритм работы двигателя достаточно прост: топливо распыляется форсункой в камере сгорания, где перемешивается с воздухом и под воздействием искры образованная смесь воспламеняется.

Образованные газы толкают поршень вниз и вращательный момент передается коленвалу, который передает вращение трансмиссии. С помощью шестеренного механизма происходит движение колес.

Если сотворить бесперебойный цикл воспламенений горючей смеси за определенное количество времени, то получим примитивный двигатель.

Современные моторы основаны на четырехтактном цикле сгорания для превращения топлива в движение транспорта. Иногда такой такт называют в честь немецкого ученого Отто Николауса, сотворивший в 1867 году такт, состоящий из таких циклов: впуск, сжатие, горение, выведение продуктов сгорания.

Описание и предназначение систем:

• Система питания: дозирует образованную смесь воздуха и топлива и подает ее в камеры сгорания — цилиндры двигателя. В карбюраторном варианте состоит из карбюратора, воздушного фильтра, впускного трубоканала, фланца, топливного насоса с отстойником, бензобака, топливопровода.

• Система газораспределения: балансирует процессы впуска горючей смеси и выпуска отработанных газов. Состоит из шестерен, кулачкового вала, пружины, толкателя, клапана.

• Система зажигания: предназначена для подачи тока на контакт свечи для воспламенения рабочей смеси.

• Система охлаждения: уберегает мотор от перегрева, путем циркуляции и охлаждения жидкости.

• Система смазки: подает смазывающую жидкость к трущимся деталям, с целью минимизации трения и износа.

В данной статье рассмотрены понятие двигателя, его виды, описание и назначение отдельных систем, такт и его циклы.

Многие инженеры работают на тем, чтобы минимизировать рабочий объем мотора и существенно увеличить мощность, сократив потребление топлива. Новинки автопрома в очередной раз подтверждают рациональность конструкторских разработок.

Как работает двигатель?

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Как работает двигатель?

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

  • Свеча зажигания обеспечивает искру, которая зажигает воздушно-топливную смесь, так, чтобы происходило сгорание. Искра должна произойти в нужное время, чтобы двигатель работал должным образом.
  • Клапаны — впускные и выпускные — также должны открываться в строго нужное время, чтобы впустить воздух и топливо и выпустить отработавшие газы. Обратите внимание, что оба клапана закрыты во время сжатия и сгорания так, что воздушно-топливная смесь плотно «замурована» в цилиндре.
  • Поршень представляет собой цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра.
  • Поршневые кольца. Мы их пока ещё не видели на рисунках, но это довольно часто употребляемая вещь, так как от их износа зависит многое в работе двигателя. Поршневые кольца огибают поршень и упираются во внутреннюю поверхность цилиндра, двигаются вверх/вниз вместе с поршнем и обеспечивают уплотнение между наружным краем поршня и внутренней кромкой цилиндра. Кольца служат двум целям: предотвращают утечку топлива в масляный отстойник во время сжатия и горения и удерживают масло в картере от утечки в область горения, где оно может сгореть из-за невероятно высокой температуры. Большинство автомобилей с такими симптомами как повышенный расход топлива и масла, чёрный дым из глушителя, и с пробегом более 100 тысяч километров, попросту имеют изношенные кольца, которые больше не «запечатывают» поршень должным образом.
  • Шатун соединяет поршень с коленчатым валом. Он может поворачиваться на обоих концах так, что его угол может меняться в то время как поршень движется и когда коленчатый вал поворачивается.
  • Коленчатый вал крутится за счёт движения поршня.
  • Картер окружает коленчатый вал. Он содержит некоторое количество машинного масла, которое собирает на дне отстойника.

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Далее мы узнаем, что может помешать работе двигателя.

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится. Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом. Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками. Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

Какие бывают технические характеристики двигателя (полный список)?

Технические характеристики двигателя — это набор, как правило, выходных данных по тем или иным критериям. Самые важные из которых — мощность, количество цилиндров и некоторые другие. Всего таких характеристик можно насчитать тысячи. Просто представьте, что ведь и обычную ветку можно охарактеризовать с точки зрения сотен данных: начиная с обычных габаритов, плотности и веса, до её упругости, крепости и тому подобного. А теперь представьте мотор, который состоит из тысяч деталей и компонентов, каждый из которых можно как-то охарактеризовать.

Поэтому в статье мы рассмотрим все технические характеристики двигателя, которые представляют для обычного водителя какую-либо ценность. А если мы что-то забудем, пожалуйста, укажите нам это в комментариях.

Хотя статья написана для новичков, автор предполагает, что Вы уже знаете, как работает двигатель внутреннего сгорания. Если нет, то мы рекомендуем ознакомиться сначала с соответствующей статьёй.

А мы, пожалуй, начнём и сгруппируем все характеристики мотора по их типам, а рассортируем их по степени важности от самых важных к менее важным.

Конструктивные характеристики двигателя

Тип питания мотора внутреннего сгорания. В основном, он бывает бензиновым или дизельным — именно это существенно отличает конструкцию любого двигателя. Как, правило, бензиновые двигатели обычно потребляют больше топлива на километр пути, чем дизельные, выдают максимальную мощность на более высоких оборотах, но имеют меньший крутящий момент. Бензиновые моторы чаще устанавливают на легковые авто, а дизельные — на грузовые, где требуется тяговитость.

Количество цилиндров косвенно влияет на мощность и стабильность работы двигателя. На большинстве легковых седанов 4-хцилиндровые двигатели. Чаще всего число цилиндров чётное, но бывают и исключения. Кроме 4-хцилиндровых также распространены 6-, 8-, 10- и 12-цилиндровые двигатели. Последние три типа обычно ставятся на спортивные авто.

Способ расположения цилиндров бывает рядный, когда все цилиндры расположены по одной проекции линии, V-образным, когда цилиндры, поочерёдно располагаясь друг напротив друга, образуют букву «V» и оппозитным — когда цилиндры расположены друг напротив друга.

Обычно рядные двигатели — это 4-х- и 6-цилиндровые, V-образными бывают моторы, начиная от 6 цилиндров.

Рабочий объём двигателя напрямую и главным образом влияет на его мощность — чем рабочий объём больше, тем больше и мощность. Рабочий объём — это тот максимальный объём пространства в камере сгорания, который образуется, когда поршень находится в нижней точке. Значения такой характеристики, как объём мотора, сильно разнятся от автомобиля к автомобилю, составляя от 0,8 литра до 6 литров и более.

Количество клапанов на цилиндр может исчисляться от 2 до 5. Чем более спортивный и мощный двигатель, тем больше клапанов. Двухклапанные двигатели устарели.

Диаметр цилиндра и ход поршня прямо определяют рабочий объём цилиндра. Большой диаметр цилиндра и меньший ход поршня дают высокие обороты и меньшую тяговитость мотора, а такие двигатели, таким образом, устанавливаются чаще на спортивные и гоночные автомобили. Больший ход поршня и меньший диаметр цилиндра при том же рабочем объёме дадут запас тяговитости, меньшее число оборотов при максимальной мощности и бóльшую степень сжатия.

Тип охлаждения бывает воздушный и водяной. Двигатель каждого типа очень легко отличить: мотор с воздушным охлаждением рифлёный для лучшего потока воздуха, а с водяным — нет, каналы для циркуляции воды в таком двигателе проходят внутри него.

Наличие турбины. Существуют 3 основных вида двигателя по этой характеристике:

  • атмосферные двигатели, у которых воздух поступает в цилиндры всасыванием;
  • двигатели с турбокомпрессором — здесь воздух в цилиндры нагнетается компрессором, приводимым в движение от электромотора или самого двигателя;
  • двигатели с турбонаддувом — в таких двигателях воздух нагнетается за счёт давления, создаваемого выхлопными газами.

Тип питания двигателя различают на питание карбюратором, впрыском топлива через форсунки или наличием топливного насоса высокого давления. Различия у этих систем колоссальны. Карбюраторные двигатели не так давно устарели, так как нерационально расходовали топливо; питанием многоточечным впрыском снабжены сегодня почти все автомобили на бензине, а ТНВД используют дизельные моторы.

Материал изготовления корпуса двигателя. Корпус чаще всего изготавливают из чугуна, сплавов алюминия или сплавов магния. Первый вариант распространён, в основном в дизельных и старых двигателях, второй — в современных моторах легковых машин, а последний из-за своей дороговизны, соответственно, в дорогих спортивных автомобилях.

Выходные характеристики двигателя

Мощность двигателя — это, пожалуй, самая важная и обсуждаемая характеристика, на которую смотрят при покупке автомобиля чаще всего в первую очередь. Мощность измеряется в лошадиных силах и зависит практически от всех других характеристик моторов. Для легковых неспортивных автомобилей оптимальная мощность, которой хватит для повседневной езды может составлять от 80 до 130 лошадиных сил. Но заряженные машины могут иметь под свои капотом до 800 и более «лошадей».

Однако, профессионалы говорят, что мощность продаёт машину, а вот гонки выигрывает не мощность, а крутящий момент. Это в определённой степени правда. Крутящий момент — это мгновенная сила именно кручения, которую даёт двигатель. Крутящий момент прямо пропорционален мощности, и обычно его значение (измеряется он в Ньютон×метрах) больше значения мощности в лошадиных силах. Причём, если у бензиновых моторов момент больше примерно в 1,2-1,5 раза, то у дизельных — до соответствующего значения в 3 раза. Именно поэтому дизели считаются более тяговитыми.

Максимальное число оборотов коленчатого вала двигателя — это число оборотов в минуту, больше которого «мозг» автомобиля не даст раскрутить двигатель и которое не приведёт к его поломке. Опять же, максимальное число оборотов отличается у дизелей и бензиновых моторов — у первых оно существенно меньше.

Компрессия и степень сжатия — очень похожие характеристики, хотя физики будут гневно критиковать такое утверждение. Обе характеристики означают давление внутри камеры сгорания цилиндра при сжатии топливо-воздушной смеси.

Расход топлива измеряется в литрах на 100 километров и также является важным показателем при выборе авто. Дизельные двигатели расходуют примерно в два раза меньше топлива, нежели бензиновые (за счёт меньшего числа оборотов). Наличие турбины также даёт существенную экономию. Но главным образом, на значение расхода топлива влияет, конечно же, рабочий объём двигателя, число оборотов мотора при его эксплуатации и в целом манера езды.

Автомобили Двигатели

Автомобили Двигатели

Двигатель всегда считается сердцем автомобиля. Это связано с термином «сердце», потому что это самая важная часть автомобиля. Двигатель — это машина, преобразующая энергию в механическое движение. Это двигатель, который преобразует поток жидкости в механическую энергию.

Большинство современных автомобилей сегодня оснащены двигателем внутреннего сгорания. Двигатель внутреннего сгорания воспламеняет топливо вместе с окислителем в камере сгорания.Высокая температура и давление, возникающие в процессе сгорания, непосредственно прикладывают силу к подвижной части двигателя, которой может быть поршень или лопатки турбины, для выработки механической энергии или обеспечения движения транспортного средства.

Автомобильные двигатели могут отличаться по конструкции, но некоторые основные элементы всегда остаются неизменными.

Существуют различные типы автомобильных двигателей, и их можно классифицировать в соответствии с:

Тип топлива: Наиболее распространенная классификация двигателя может быть сделана на основе топлива, на котором он работает.Двигатели используют два типа топлива для преобразования энергии в механическую работу — это бензин и дизельное топливо. В последнее время рассматривается ряд альтернативных видов топлива, таких как электричество, этанол, метанол, водород, пропан и природный газ из-за роста цен на бензин и дизельное топливо.

Система зажигания: Термин зажигание относится к среде, с помощью которой топливо преобразуется в энергию. Существует два способа воспламенения топлива в двигателе автомобиля: искровое зажигание и воспламенение от сжатия.Бензиновые двигатели используют искровое зажигание, в то время как дизельные двигатели используют воспламенение от сжатия.

Геометрия блока или расположение цилиндров: Цилиндры автомобиля расположены следующим образом: V-образный, рядный и горизонтально противоположный и наклонный. В случае рядного двигателя цилиндры расположены в ряд, в V-образном типе цилиндры образуют два расположенных под углом ряда, образующих V-образную форму, в горизонтально противоположном двигателе цилиндры расположены горизонтально и расположены напротив друг друга, а в случае горизонтально расположенного двигателя. В наклонном двигателе цилиндры расположены в один ряд, образующий половину V.

Количество цилиндров: Количество цилиндров в автомобиле колеблется от 3 до 12. Количество цилиндров указывает, насколько плавный ход автомобиля. Чем больше цилиндров, тем плавнее движется машина. Автомобиль с 5 цилиндрами будет работать легче, чем автомобиль с 3 цилиндрами. Количество цилиндров также влияет на выходную мощность; больше цилиндров, больше мощности. Однако это не всегда хороший показатель выходной мощности. Четырехцилиндровый двигатель с турбонаддувом может производить больше мощности, чем шестицилиндровый двигатель без наддува.

ходов за цикл: ходов за цикл указывает количество раз, когда поршень перемещается вверх и вниз за один цикл. Сегодня двигатели имеют четыре такта на цикл: впуск, сжатие, мощность и выпуск.

Камера сгорания: В двигателе в основном используются камеры сгорания трех форм: полусферическая, клиновидная и блинная. Полусферическая форма — самая распространенная из всех. Полусферический, также называемый «полуголовым», имеет впускной и выпускной клапаны, расположенные под углом и противостоящие друг другу, в форме клина клапаны расположены бок о бок и слегка наклонены, а в форме блина клапаны расположены вертикально.

Расположение распределительного вала: Распределительный вал обычно расположен в головке цилиндров или блоке двигателя. Автомобильные двигатели, в которых распределительный вал расположен в головке цилиндров, называются двигателем с верхним расположением распредвала (OHC). Есть два типа двигателей с верхним расположением кулачков: двойной верхний кулачок и один верхний кулачок. В двигателе с двумя верхними распредвалами (DOHC) используются два распредвала: один для впускных клапанов, а другой — для выпускных. В двигателях с одним верхним кулачком (SOHC) один кулачок используется как для впускных, так и для выпускных клапанов.В двигателях с распределительным валом в блоке для перемещения клапанов используются толкатели.

Система охлаждения: Автомобильные двигатели могут иметь жидкостное или воздушное охлаждение. Без системы охлаждения автомобильные двигатели быстро разрушатся из-за экстремальных температур. Двигатели с воздушным охлаждением имеют охлаждающие ребра, окружающие цилиндры, которые отводят тепло, окружающее цилиндры. Двигатели с жидкостным охлаждением оснащены водяными рубашками в блоке цилиндров или головке цилиндров, через которые циркулирует охлаждающая жидкость и отводит тепло.Двигатели с жидкостным охлаждением более широко используются в наши дни.

Последнее обновление 09.01.2012

типов автомобильных двигателей | Rapid-Racer.com.

Роторный двигатель или двигатель Ванкеля, как известно, не имеет поршней, вместо них используются роторы. Этот двигатель небольшой, компактный и имеет изогнутую продолговатую внутреннюю форму. Его центральный ротор вращается только в одном направлении, но он эффективно производит все четыре хода OTTO (впуск, сжатие, мощность и выпуск) во время вращения.

Единственный серийный автомобиль, у которого на сегодняшний день все еще выпускается двигатель Rotary / Wankel, — это Masda RX-8 и предыдущие модели RX-7.

Роторный двигатель / двигатель Ванкеля ограничен присущим ему ограничением дыхательной способности из-за необходимости всасывания топливно-воздушной смеси через полый коленчатый вал и картер, что напрямую влияет на его объемный КПД, также известны низкие уровни крутящего момента. проблема и двигатель имеет конструктивные ограничения. Турбонаддув этого двигателя — один из самых простых способов обойти эти недостатки, и он был замечен в RX-7.

Вращающие силы массы Роторного двигателя / веса Ванкеля создают мощный гироскопический эффект маховика.Это сглаживает подачу мощности и снижает вибрацию. Вибрация была такой серьезной проблемой для обычных поршневых двигателей, что пришлось добавить тяжелые маховики к общей конструкции двигателя, чтобы помочь противодействовать эффектам.

Цилиндры сами по себе функционировали как маховики. Роторные двигатели получили существенное преимущество по соотношению мощности к массе по сравнению с более традиционными двигателями. Еще одним преимуществом было улучшенное охлаждение, поскольку вращающийся блок цилиндров создавал собственный быстро движущийся воздушный поток даже в неподвижном состоянии.

Без отдельных цилиндров, поршней, клапанов и коленчатого вала роторный двигатель передает мощность непосредственно на трансмиссию. Его конструкция позволяет ему обеспечивать мощность обычного двигателя, который в два раза больше и больше по размеру и весу и в котором в два раза больше деталей.

Роторный двигатель / двигатель Ванкеля сжигает на 20% больше топлива, чем обычный двигатель, и потенциально является более загрязнителем, но его небольшой размер позволяет более удобно добавлять детали для контроля выбросов, чем поршневой двигатель.

Основным узлом роторного двигателя является большая камера сгорания в виде защемленного овала. В этой камере все четыре функции поршня выполняются одновременно в трех карманах, образованных между ротором и стенкой камеры. Как добавление цилиндров увеличивает мощность поршневого двигателя, так и добавление камер сгорания увеличивает мощность роторного двигателя. В более крупных автомобилях со временем могут быть использованы роторы с тремя или четырьмя роторами.

Mazda добилась большого успеха с этой конструкцией, особенно с моделями RX-7 и RX-8.При добавлении турбокомпрессора, как обсуждалось ранее, дефицит крутящего момента несколько преувеличивается, а также значительно увеличивается мощность двигателя. Это в сочетании с меньшим весом обеспечивало эффективную и конкурентоспособную производительность.

ДВИГАТЕЛЬ | Строительство автомобилей

Двигатель — это энергетическая машина, которая преобразует тепловую энергию в механическую работу. Двигатель — это сложная машина, построенная для преобразования тепла от горящего газа в силу, вращающую опорные колеса. Эти двигатели называются тепловыми. Есть много видов двигателей, таких как электродвигатели, пневматические двигатели и другие. Эта статья о конструкции двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из следующих основных частей: кривошипно-шатунный , привод клапана , система охлаждения , система смазки , топливная система , система зажигания и система запуска .

Двигатель имеет два основных механизма и 5 систем двигателя:

Кривошипно-шатунный механизм — преобразует возвратно-поступательное движение поршней во вращение коленчатого вала ;

Привод клапана — вовремя открывает и закрывает впускной и выпускной клапан.

Пять системы главного двигателя:

Система охлаждения двигателя — охлаждение двигателя до рабочей температуры;

Масляная система двигателя — уменьшает трение между поверхностями за счет распределения масла по движущимся частям, которые трутся друг о друга;

Топливная система двигателя — отвечает за подачу топлива к двигателю;

Система зажигания двигателя — генерирует искру для воспламенения топливно-воздушной смеси в двигателях внутреннего сгорания с искровым зажиганием;

Система запуска двигателя — используется для запуска двигателя.

Существует основных типов двигателей .

Типы двигателей

Автомобильный двигатель конструкция

Автомобильный двигатель это тепловая машина. Тепловые двигатели в современные автомобили — это двигатели внутреннего сгорания. Все двигатели имеют основные рабочие части и вспомогательные части.

Двигатель должен иметь прочную конструкцию, чтобы выдерживать большие нагрузки. Таким образом, он состоит из двух основных частей: блока цилиндров двигателя и ГБЦ .

основные части:

  1. Блок двигателя;
  2. Цилиндр;
  3. Распредвал;
  4. Толкатель;
  5. Клапан;
  6. Головка цилиндра, обычно с впускным и выпускным клапанами;
  7. Рубашка охлаждения двигателя;
  8. Поршень;
  9. Шатун;
  10. Маховик;
  11. Коленвал.

Один Схема цилиндрового двигателя

Один цилиндр конструкции двигателя

Внутренний ДВС состоит из механизмов и систем, выполняющих различные функции.Конструкция одноцилиндрового двигателя показана на рисунке 1.

Есть поршень с поршневыми кольцами , соединенный с коленчатым валом через шатун . Поршень движется вперед и назад по времени вращения коленчатого вала. При этом вращение распредвала обеспечивает своевременное открытие и закрытие впускных и выпускных клапанов через
частей клапанного механизма (толкатель, коромысло клапана).

Как работает двигатель?

Как работает двигатель

Почему охлаждающая жидкость двигателя так важна | Автосервис

  • Личное
  • Бизнес
  • Около
Личный дом Членство Членство Становиться участником Становиться участником Членство в NRMA Blue Просмотреть все варианты членства Помощь на дороге Помощь на дороге Сравнить обложку Подросток водитель — Free2go Обочина для бизнеса Управлять моей учетной записью Управлять моей учетной записью Продлить мое членство Создайте онлайн-аккаунт Обновить мои данные мое приложение nrma Страхование Страхование Страхование автомобиля Страхование автомобиля .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *