Двигатель внутреннего сгорания где применяются: Где ещё, кроме автомобилей, применяют двигатели внутреннего сгорания?

Содержание

Двигатель внутреннего сгорания

Определение 1

Двигатель внутреннего сгорания — двигатель, в котором топливо сгорает непосредственно в рабочей камере двигателя.

Первый двигатель внутреннего сгорания (коммерчески успешный) был создан Этьеном Ленуар около $1859$ г. и первый современный двигатель внутреннего сгорания был создан в $1876$ году Николаусом Отто.

Двигатели внутреннего сгорания чаще всего используются для приведения в движение транспортных средств - (автомобилей, мотоциклов, судов, локомотивов, самолетов) и других мобильных машин.

Применение

Поршневые двигатели являются на сегодняшний день наиболее распространенным источником питания для наземных и водных транспортных средств, в том числе автомобилей, мотоциклов, кораблей и в меньшей степени, локомотивов (некоторые из них электрические, но большинство используют дизельные двигатели). Роторные двигатели конструкции Ванкеля используются в некоторых автомобилях, самолетах и мотоциклах.

Там, где требуются очень высокие соотношения мощности к весу, двигатели внутреннего сгорания используются в виде турбин внутреннего сгорания или двигателей Ванкеля.

Классификация

Есть несколько возможных способов классификации двигателей внутреннего сгорания.

Поршневые:

По количеству ударов

  • Двухтактный двигатель;
  • Четырехтактный двигатель (с циклом Отто)
  • Шеститактный двигатель

По типу розжига

  • Двигатель с воспламенением от сжатия;
  • Двигатель с искровым зажиганием (обычно встречаются в бензиновых двигателях)

Роторные:

Следующие типы реактивных двигателей также типы газовых турбин:

  • турбореактивный
  • турбовентиляторный
  • турбовинтовой

Запуск (стартер)

Стартер является электродвигателем, пневматическим двигателем, гидравлическим двигателем, двигателем внутреннего сгорания, используемый для вращения двигателя внутреннего сгорания таким образом, чтобы инициировать работу двигателя под его собственной силой.

Двигатели внутреннего сгорания должны иметь циклы, с которых начинается запуск. В поршневых двигателях это достигается путем поворота коленчатого вала, который запускает циклы пуска, сжатия, сгорания и выхлопа.

Замечание 1

Наиболее часто встречающиеся способы запуска ДВС сегодня это с помощью электрического двигателя.

Другой способ запуска является использование сжатого воздуха, который прокачивают в некоторых цилиндрах двигателя, для того, чтобы запустить его.

Турбинные двигатели часто запускаются с помощью электромотора.

Загрязнение воздуха

Двигатели внутреннего сгорания, такие как поршневые двигатели внутреннего сгорания, производят выбросы в воздух, из-за неполного сгорания углеродистого топлива. Основные производные процесса являются диоксид углерода СО2, вода и сажа – ее также называют твердой частицей. Следствия от вдыхания частиц были изучены в организме человека и животных, и включают в себя астму, рак легких, сердечно - сосудистые проблемы, и преждевременную смерть. Есть, однако, некоторые дополнительные продукты процесса горения, которые включают оксиды азота и серы, а также некоторые несгоревшие углеводороды, которые зависят от условий эксплуатации.

Не все топливо полностью израсходуется в процессе сгорания. Небольшое количество топлива, присутствует после сгорания, а некоторое вступает в реакцию с образованием кислородсодержащих соединений, таких как формальдегид или ацетальдегид. Неполное сгорание обычно возникает в результате недостатка кислорода для достижения идеального стехиометрического соотношения.

Угольное топливо содержит серу и примесь, которое в конечном счете производит монооксид и диоксид серы, который содержится в выхлопных газах, что способствует кислотным дождям.

Двигатель внутреннего сгорания - Что такое Двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания - тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

  • принципиально проще (нет парокотельного агрегата),

  • компактнее,

  • легче,

  • экономичнее,

  • требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания


По назначению:

  • транспортные, 

  • стационарные, 

  • специальные.

По роду применяемого топлива:

  • легкие жидкие (бензин, газ), 

  • тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

  • внешнее (карбюратор),

  • внутреннее (в цилиндре ДВС).

По способу воспламенения:

  • с принудительным зажиганием, 

  • с воспламенением от сжатия, 

  • калоризаторные.

По расположению цилиндров:

  • рядные, 

  • вертикальные, 

  • оппозитные с одним и с двумя коленвалами, 

  • V-образные с верхним и нижним расположением коленвала, 

  • VR-образные и W-образные, 

  • однорядные и двухрядные звездообразные, 

  • Н-образные, 

  • двухрядные с параллельными коленвалами, 

  • "двойной веер", 

  • ромбовидные, 

  • трехлучевые и др.

Поршневой двигатель - это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель - это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. 

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. 

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. 

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. 

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель - двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель - двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века. 

Основа двигателя - треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. 

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения.  

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

устройство, принцип действия, достоинства и недостатки

Бензиновый двигатель – разновидность двигателей внутреннего сгорания, в которых в качестве топлива используется бензин. Воспламенение топливно-воздушной смеси осуществляется при помощи электрической искры. Области применения бензиновых двигателей: транспортные средства, строительная, коммунальная и садовая техника, генераторы электрического тока.

Общее устройство и принцип действия бензинового двигателя

В устройство бензомотора входят:

  • Блок цилиндров. Это самая массивная часть бензомотора. Выполняется из чугуна или более легкого сплава на основе алюминия. Снизу блок цилиндров закрыт блоком коренных крышек, а в его верхней части установлена головка блока цилиндров. По количеству цилиндров блоки могут быть одно- или многоцилиндровыми.
  • Поршни. В цилиндрах движутся поршни, получающие энергию, которая выделяется при сгорании топливно-воздушной смеси в специальной камере. Поршни движутся по цилиндрам с большой скоростью, поэтому при изготовлении этих деталей требуется высокая точность и их взаимная подгонка по размерам.
  • Коленвал. Поршень присоединен к шатуну, который крепится к коленвалу. Оба соединения являются скользящими, что позволяет этим деталям двигаться друг относительно друга. Поршни посредством шатунов приводят в движение коленвал.
  • Маховик. Жестко закреплен на валу. С его помощью осуществляется первичный запуск двигателя, при котором зубья стартера и зубья маховика взаимозацепляются, благодаря чему начинается вращение вала.
  • Дроссельная заслонка. Регулирует количество топливно-воздушной смеси, которая подается в камеру сгорания.

По способу осуществления рабочего цикла различают двухтактные и четырехтактные моторы:

  • Двухтактные. Их используют в случаях, когда на первом месте стоит не высокая мощность и эффективность, а небольшой размер двигателя. Двухтактные бензомоторы устанавливают на мотоциклах, небольших автомобилях, малогабаритной садовой и строительной технике.
  • Четырехтактные. Это наиболее распространенный тип бензодвигателей, используемый для установки в большинстве транспортных средств.

Карбюраторные и инжекторные бензиновые двигатели – основные характеристики

Традиционный вариант – приготовление топливно-воздушной смеси в карбюраторе, в котором бензин смешивается с воздушным потоком за счет искусственной конвекции. В инжекторных агрегатах топливо впрыскивают через форсунки в поток воздуха.

Инжекторный способ, осуществляемый в комплексе с бортовым компьютером, обеспечивает высокую точность дозирования бензина. Применение новой технологии позволило создать легкий и компактный двухтактный двигатель, аналогичный по экономичности четырехтактному карбюраторному мотору. Инжекторные бензиновые моторы соответствуют новым требованиям экологических стандартов к чистоте выхлопных газов.

Преимущества и недостатки универсальных бензиновых двигателей

Основные плюсы бензомотора, по сравнению с дизелем:

  • удобство эксплуатации, отсутствие необходимости в использовании сезонного топлива;
  • более низкий уровень шума;
  • более высокий экологический стандарт;
  • возможность достичь большей мощности при меньшем объеме двигателя.

Бензиновые моторы проигрывают дизельным агрегатам по нескольким характеристикам, среди которых:

  • меньший крутящий момент;
  • более высокое потребление топлива;
  • более высокая пожароопасность из-за легкого возгорания бензина.

Двигатели внешнего сгорания

Энергосберегающие технологии: Теплоэнергетическая установка FX-38 на основе двигателя внешнего сгорания с сжиганием газообразного топлива

Принцип работы

Предлагаемая инновационная технология основана на использовании высокоэффективного четырехцилиндрового двигателя внешнего сгорания. Это - тепловой двигатель. Тепло может поставляться от внешнего источника тепла или производиться путем сжигания широкого спектра видов топлива внутри камеры сгорания.

Тепло поддерживается при постоянной температуре в одном отделении двигателя, где оно преобразуется в водород, находящийся под давлением. Расширяясь, водород толкает поршень. В отделении двигателя с низкой температурой водород охлаждается при помощи аккумуляторов тепла и охладителей жидкости. При расширении и сжатии водород вызывает возвратно-поступательное движение поршня, которое преобразуется во вращательное движение при помощи наклонной шайбы, которая приводит в действие стандартный, емкостный электрический генератор. В процессе охлаждения водорода также производится тепло, которое можно использовать для комбинированного производства электроэнергии и тепла во вспомогательных процессах.

Общее описание

Теплоэнергетическая установка FX-38 представляет собой единый модуль "двигатель-генератор", который включает двигатель внешнего сгорания, систему сгорания, работающую на пропане, природном газе, попутном нефтяном газе, других видах топлива со средней и низкой энергоемкостью (биогаз), индуктивный генератор, систему контроля двигателя, защищенный от атмосферных воздействий корпус со встроенной системой вентиляции и другое вспомогательное оборудование для параллельной работы с сетью высокого напряжения.

Номинальная мощность по электричеству при работе на природном газе или биогазе при частоте 50 Гц составляет 38 кВт. Кроме того, установка производит 65 кВт-ч извлекаемого тепла с поставляемой по специальному заказу системой комбинированного производства тепла и электроэнергии.

Установка FX-38 может быть оснащена различными опциями системы охлаждения для обеспечения гибкости схемы установки. Продукт разработан для простого подключения к электрическим контактам, системам подачи топлива и внешним трубам системы охлаждения, если оборудованы таковыми.

Дополнительные детали и опции

  • Модуль измерения мощности (обеспечивает установленный трансформатор тока для считывания на дисплее параметров переменного тока)
  • Опция дистанционного мониторинга по интерфейсу RS-485
  • Опции встроенного, либо удаленно смонтированного радиатора
  • Опция использования пропанового топлива
  • Опция использования природного газа
  • Опция использования попутного нефтяного газа
  • Опция использования топлива низкой энергоемкости

Установка FX-48 может применяться в нескольких вариантах следующим образом:

  • Параллельное подключение к высоковольтной сети при 50 Гц, 380 В переменного тока
  • Режим совместной выработки тепла и электроэнергии

Эксплуатационные характеристики установки

Выходная мощность складывается из электрической мощности и тепловой мощности. Для работы при частоте 50 Гц установка работает с тепловым коэффициентом 12230 кДж/кВт-ч (низшая теплота сгорания) и рассчитана на электрическую мощность 38 кВт. Показатель вырабатываемой электроэнергии 38 кВт включает паразитные потери, связанные с радиатором системы охлаждения, водяным насосом, вентилятором подачи воздуха в камеру сжигания, масляным насосом, контрольной системой и системой вентиляции блока.

В режиме производства электроэнергии и тепла при частоте 50 Гц установка производит 65 кВт-ч извлекаемого тепла. Продукт оборудован системой труб, готовой для подключения к поставляемому заказчиком теплообменнику типа жидкость/жидкость. Горячая сторона теплообменника представляет собой схему замкнутого цикла с охладителем кожуха двигателя и встроенным радиатором системы, если таковые присутствуют. Холодная сторона теплообменника предназначена для схем теплоприемника заказчика.

Техническое обслуживание

Установка предназначена для непрерывной работы и отбора мощности. Базовая проверка эксплуатационных характеристик проводится заказчиком с интервалом в 1000 часов и включает проверку системы водяного охлаждения и уровня масла. Через 10000 часов эксплуатации производится обслуживание передней части установки, включающее замену поршневого кольца, сальника штока, ремня привода и различных сальников. Специфические ключевые компоненты проверяются на износ. Скорость работы двигателя составляет 1500 оборотов в минуту для работы на частоте 50 Гц.

Бесперебойность

Бесперебойность работы установки составляет свыше 95%, исходя из интервалов эксплуатации, и учитывается при графике технического обслуживания.

Уровень звукового давления

Уровень звукового давления блока без встроенного радиатора составляет 64 дБА на расстоянии 7 метров. Уровень звукового давления блока с встроенным радиатором с вентиляторами охлаждения составляет 66 дБА на расстоянии 7 метров.

Выбросы

При работе на природном газе выбросы двигателя меньше или равны 0,0574 г/Нм3 NOx, 15,5 г/Нм3 летучих органических соединений и 0,345 г/Нм3 СО.

Газообразное топливо

Двигатель рассчитан на работу на различных типах газообразного топлива со значениями низшей теплоты сгорания от 13,2 до 90,6 МДж/Нм3, попутный нефтяной газ, природный газ, угольный метан, газ вторичной переработки, пропан и биогаз полигонов ТБО. Для охвата данного диапазона устройство может быть заказано со следующими конфигурациями топливной системы:

Система сгорания требует регулируемого давления подачи газа в 124-152 мбар для всех типов топлива.

Окружающая среда

Установка в стандартном исполнении работает при температуре окружающей среды от -20 до +50°С.

Описание установки

Теплоэнергетическая установка FX-38 полностью готова для выработки электроэнергии в заводской поставке. Встроенный электрический пульт монтируется на блок для удовлетворения требований интерфейса и контроля. Устойчивый к атмосферным воздействиям цифровой дисплей, встроенный в электрический пульт, обеспечивает оператору интерфейс запуска, остановки и перезапуска с помощью кнопок. Электрический пульт также служит основным местом подключения оконечного электрического устройства заказчика, а также с оконечными устройствами проводной связи.

Установка способна достигать выходной мощности полной нагрузки примерно через 3-5 минут с момента запуска в зависимости от изначальной температуры системы. Последовательность запуска и установки приводится в действие нажатием кнопки.

После команды пуска установка подключается к высоковольтной сети путем закрытия внутреннего контактора на сеть. Двигатель немедленно поворачивается, очищая камеру сжигания до открытия топливных клапанов. После открытия топливного клапана энергия подается на запальное устройство, поджигая топливо в камере сжигания. Наличие сжигания определяется по повышению температуры рабочего газа, что приводит в действие процедуру управления разгоном до точки рабочей температуры. После этого пламя остается самоподдерживающимся и постоянным.

После команды остановки установки сначала закрывается топливный клапан для прекращения процесса сжигания. По прошествии предварительно установленного времени, в течение которого механизм охлаждается, откроется контактор, отключая установку от сети. В случае если таковые установлены, вентиляторы радиатора могут работать некоторое время для уменьшении температуры охлаждающей жидкости.

В установке используется двигатель внешнего сгорания с постоянной длиной хода, подключенный к стандартному индукционному генератору. Устройство работает параллельно с высоковольтной сетью или параллельно с системой распределения энергии. Индукционный генератор не создает своего собственного возбуждения: он получает возбуждение от подключенного источника электросети. Если напряжение в электросети исчезает, установка отключается.

Описание узлов установки

Конструкция установки обеспечивает ее простой монтаж и подключение. Имеются внешние соединения для топливных труб, оконечных устройств электроэнергии, интерфейсов коммуникаций и, если это предусмотрено, внешнего радиатора и система труб теплообменника жидкость/жидкость. Установку можно заказать в комплекте со встроенным или удаленно монтированным радиатором и/или системой труб теплообменника жидкость/жидкость для охлаждения двигателя. Также предоставляются инструменты для безопасного отключения и логические схемы управления, разработанные специально для желаемого режима работы.

Кожух имеет две эксплуатационные панели на каждой стороне отделения двигатель/генератор и внешнюю однопетельную дверь для доступа к электрическому отделению.

Вес установки: около 1770 кг.

Двигатель является 4-цилиндровым (260 см3/цилиндр) двигателем внешнего сгорания, поглощающим тепло непрерывного сжигания газового топлива в камере внутреннего сгорания, и включает следующие встроенные компоненты:

  • Вентилятор подачи воздуха в камеру сгорания, приводится в действие двигателем
  • Воздушный фильтр камеры сгорания
  • Топливная система и кожух камеры сгорания
  • Насос для смазочного масла, приводится в действие двигателем
  • Охладитель и фильтр для смазочного масла
  • Водяной насос системы охлаждения двигателя, приводится в действие двигателем
  • Температурный датчик воды в системе охлаждения
  • Датчик давления смазочного масла
  • Датчик давления и температуры газа
  • Все необходимое контрольное и защитное оборудование

Характеристики генератора приводятся ниже:

  • Номинальная мощность 38 кВт при 50 Гц, 380 В переменного тока
  • Электрический КПД 95,0% при коэффициенте мощности 0,7
  • Возбуждение от коммунальной электросети при помощи индукционного мотора/генераторного возбудителя
  • Менее 5% общих гармонических искажений от отсутствия нагрузки до полной нагрузки
  • Класс изоляции F

Интерфейс оператора – цифровой дисплей обеспечивает управление установкой. Оператор может запустить и остановить установку с цифрового дисплея, посмотреть время работы, рабочие данные и предупреждения/сбои. При установке опционального модуля измерения мощности оператор может видеть многие электрические параметры, такие как вырабатываемая мощность, киловатт-часы, киловатт-амперы и коэффициент мощности.

Функция диагностики оборудования и сбора данных встроена в систему контроля установки. Диагностическая информация упрощает удаленный сбор данных, отчет по данным и устранение неисправностей устройства. Эти функции включают сбор системных данных, таких как информация о рабочем состоянии, все механические рабочие параметры, такие как температура и давление цилиндров, а также, если подключен опциональный измеритель мощности, – электрические параметры значений вырабатываемой мощности. Данные могут быть переданы через стандартный порт соединения RS-232 и показаны на персональном компьютере или ноутбуке при помощи программного обеспечения для сбора данных. Для нескольких установок или в случаях, когда расстояние передачи сигнала превышает возможности RS-232, для получения данных используется опциональный порт RS-485 с использованием протокола MODBUS RTU.

Для переноса горячих выхлопных газов от системы сгорания используются трубы из нержавеющей стали. К выхлопной трубе в месте выхода из кожуха прикреплена сбалансированная выхлопная заслонка с защитным колпаком от дождя и снега.

Для охлаждения могут применяться различные прикладные технологии и конфигураций:

Встроенный радиатор – предоставляет собой радиатор, рассчитанный на температуру окружающей среды до +50°C. Все трубы подключаются в заводских условиях. Это типичная технология в случае, если не используется утилизация отходящего тепла.

Внешний радиатор – предназначен для установки заказчиком, рассчитан на температуру окружающей среды до +50°C. Короткие несущие ножки поставляются с радиатором для монтажа на контактном столике. При необходимости установки в помещении можно использовать данный вариант вместо предоставления системы вентиляции, требуемой для подачи охлаждающего воздуха во встроенный радиатор.

Внешняя система охлаждения – предоставляет систему труб снаружи кожуха для поставляемой заказчиком системы охлаждения. Ей может выступать теплообменник или удаленно монтированный радиатор.

Хладагент состоит из 50% воды и 50% этиленгликоля по объему: можно заменить смесью пропиленгликоля и воды, при необходимости.

Установка FX-38 использует водород в качестве рабочего тела для приведения в движение поршней двигателей по причине высоких способностей водорода к передаче тепла. В нормальном режиме работы потребляется предсказуемое количество водорода из-за нормальных утечек, вызванных проницаемостью материала. Для учета этого темпа потребления место установки требует наличия одного или нескольких наборов баллонов с водородом, отрегулированных и подсоединенных к блоку. Внутри установки встроенный водородный компрессор увеличивает давление в баллоне до более высокого давления в двигателе и вводит малые порции по запросу встроенного программного обеспечения. Встроенная система не требует технического обслуживания, а баллоны подлежат замене в зависимости от работы двигателя.

Для подачи топлива поставляется труба со стандартной трубной резьбой 1 дюйм для всех стандартных типов топлива, за исключением низкоэнергетических вариантов, для которых используется стандартная трубная резьба 1 1/2 дюйма. Требования к давлению топлива для всех видов газообразного топлива составляют от 124 до 152 мбар.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ -

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол "Ленин"). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей- подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ "ОБОРУДОВАНИЕ"    

 


 
"Аппаратдизель", ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : - Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. - Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 - Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД - тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах - дизель генератор.

Судовой дизель генератор
СДГ - агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. - экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС - уст-во, использующее  хим. энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
"РА Корабел.ру", ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Пороховой двигатель - Энергетика и промышленность России - № 14 (90) ноябрь 2007 года - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 14 (90) ноябрь 2007 года

Двигатель внутреннего сгорания является самым распространенным устройством для преобразования энергии химических топлив в механическую работу. Поршневые ДВС до сих пор прочно удерживают позиции во многих отраслях– они являются практически единственным видом двигателей в автомобильном, речном и морском транспорте.

Однако дальнейшее развитие ДВС сегодня связано с решением насущных топливных и экологических проблем.

Топливо для тепловых двигателей

Существование ДВС неразрывно связано с химическими топливами, сжигаемыми для получения зарядов сжатых рабочих газов. При этом в качестве топлив в обычных двигателях используются горючие органические вещества и воздушный окислитель из атмосферы. Первичным энергоносителем, как известно, считают горючие вещества, хранимые на борту транспортного средства. Доминирует среди них жидкое горючее нефтяного происхождения (бензин, дизтопливо, керосин). Ежегодно двигатели автомобилей потребляют около 1 млрд. тонн нефтяных топлив. Но запасы нефти ограничены и невозобновляемы.

По оценке специалистов, при существующей тенденции потребления, рентабельные месторождения горючих ископаемых будут исчерпаны примерно через 50 лет. Прогнозы специалистов на период «нефтяного голода» отличаются друг от друга, но все они укладываются в диапазон: от «проблематично» до «катастрофично». Однозначным является то, что эра дешевой нефти уже закончилась и стоимость нефтяного топлива будет лишь неуклонно возрастать – так как нефть, добытая из сверхглубоких скважин и на континентальном шельфе, всегда дороже той, которая добывалась в предыдущие годы.

В ближайшее время реальной замены ДВС, по мнению авторов, скорее всего, не предвидится. В связи с этим идет активный поиск альтернативных энергоносителей для использования в качестве моторного топлива. Впрочем, вопрос об альтернативе существующим видам топлива стоял уже с момента появления ДВС – и даже раньше.

Распространение дымного пороха в Европе XIII века и изобретение пушек навели изобретателей на мысль о возможности использования пороха для получения механической энергии. Такие попытки делали Гойтфель (1678 г.) и Гюйгенс (1680 г.).

В 1688 г. Папен продолжил опыты с пороховой машиной Гюйгенса. Эти попытки не привели к успеху.

Изобретатель процесса газификации древесного топлива француз Лебон, оформив патент на получение генераторного газа, в 1801 г. дал дополнение к своему патенту, в котором он описывает принцип газового двигателя внутреннего сгорания. К сожалению, идея Лебона не была реализована.

В 1820 г. в Англии Сесиль описал опыты с двигателем, работающим на водороде.
Известно, что первый серийный двигатель внутреннего сгорания Ленуара (1860 г.), первый четырехтактный двигатель Отто (1878 г.), ставший прообразом современных четырехтактных двигателей, и первый двухтактный двигатель Клерка (1880 г.), – все они работали на искусственном газе, как единственном виде моторного топлива, доступном в то время.

«Оторвать» ДВС от стационарных газовых сетей и сделать возможным применение его в качестве привода транспортных средств позволило сжигание в цилиндрах ДВС жидкого топлива – керосина. Это было сделано Даймлером и его сподвижником Майбахом, создавшим пульверизационный карбюратор (1893 г.), но приоритет создания пульверизационного карбюратора был отдан венгерскому ученому Банки, описавшему принцип работы карбюратора ранее (что было установлено в 30‑х гг. ХХ века).

Отсутствие нефти в Европе привело к разработке технологии каталитического синтеза жидких углеводородов из угля (реакция Фишера–Тропша). Сейчас синтетическое топливо производится на трех заводах в ЮАР, обеспечивая в стране парк автомобилей жидким топливом.

Освоение технологии сжижения попутного нефтяного газа (пропан-бутана С3Н8, С4Н10) и развитие добычи природного газа (метана СН4) привели к созданию надежных систем питания двигателей, в том числе транспортных, газовым топливом.

В качестве моторного топлива используются также спирты – метанол СН3ОН и этанол С2Н5ОН, – как в чистом виде, так и в смесях с бензином, – сокращая потребление последнего и выполняя роль экологически чистых антидетонационных добавок. Спирты производятся в основном из растительного сырья, поэтому их считают «биотопливом». Больших успехов в производстве «моторных» биоспиртов достигла Бразилия – в свое время этот вопрос решался в этой стране как государственная программа.

В некоторых сельскохозяйственных районах, где освоена технология метанового сбраживания отходов, в качестве моторного топлива используется биогаз – метан (70‑80%) в смеси с углекислым газом (20‑30%).

Для дизельных двигателей топливом может служить растительное масло или продукты его обработки метанолом (этанолом) с получением метанольного (этанольного) эфира. Перспективным в этом направлении является использование рапсового масла ввиду высокой масляничности этой культуры. В настоящее время в ряде стран, в частности в Европе, производство рапсового масла и рапсово‑метанольного эфира достигает нескольких тысяч тонн в год.

В последнее время перспективным направлением считается применение водорода. В Германии уже появились водородные заправки и автомобили на водороде, а в США проблема «водородного топлива» решается на уровне национальной программы.
Из приведенного выше краткого анализа можно видеть, что в настоящее время для питания ДВС используется целая гамма первичных энергоносителей, которые можно подразделить на две основные группы: жидкие и газообразные. Из опыта эксплуатации известно, что жидкие энергоносители более технологичны и удобны при хранении; системы жидкостного питания двигателей проще и надежнее, а зона их использования значительно шире, чем газовых двигателей.

Все рассмотренные типы ДВС на жидком или газовом топливе работают по воздушно-тепловым (газовым) циклам. Это значит, что заряд воздуха-газа {2N2 + ½ O2}, предварительно сжатого в цилиндре, за счет «подвода теплоты» реакций сгорания топлива (окислитель – кислород воздуха), нагревается до 2000‑2500 °С. При этом при нагреве его давление повышается.

Следовательно, химическая энергия топливной смеси вначале преобразуется в термическую, а затем – в потенциальную (сжатого газа). Далее газ, расширяясь, давит на поршень, преобразуя энергию избыточного давления в механическую – которая, в свою очередь, преобразуется из линейного движения поршня во вращательное движение вала двигателя. Диапазон нагрева газов, их термодинамические свойства, степень полезного расширения и сопутствующие потери при преобразовании энергии определяют, в целом, эффективность воздушно-тепловых двигателей: бензиновых ДВС – не более 30‑35%, дизельных ДВС – около 40%.

Принцип порохового цикла

Вернемся к идее порохового двигателя. В принципе, огнестрельные орудия – это пороховые ДВС, преобразующие энергию горячих сжатых рабочих газов из объема заряда в механическую (кинетическую) энергию движения снаряда. Здесь не важно, что процесс выстрела расчленен на отдельные операции, а метаемый снаряд не имеет связи с механизмом преобразования движения.

Процесс преобразования химической энергии порохового заряда происходит по другому принципу, отличному от воздушных циклов ДВС. Порох – разновидность унитарных топлив и взрывчатых веществ, содержащих в составе твердой фазы как окислитель (донор кислорода), так и горючее вещество (реципиент кислорода), способные к экзотермической реакции.

Главная особенность порохового цикла – превращение высокоплотной фазы твердых компонентов заряда в низкоплотную фазу рабочих газов. Это – результат необратимых окислительно-восстановительных реакций «горючее + окислитель = продукты-газы». Масса продуктов‑газов равна массе пороха, поэтому объем пороховых газов будет превышать объем пороха – пропорционально отношению плотностей исходного заряда и газовой фазы.

Исторически первым топливом-порохом был так называемый дымный порох – тонкая смесь порошков калиевой селитры КNO3 (68‑75%), серы (10‑15%) и древесного угля (15‑17%) – первое в эпоху Средневековья вещество, обладавшее неизвестными ранее взрывчатыми свойствами. Высокая скорость сгорания пороха (до 400 м/с) объясняется быстрым проникновением горячих поджигающих газов между частицами пороховой смеси. Эпоха дымного пороха длилась свыше 500 лет, до середины XIX века; за это время не было найдено других порохов, удобных для применения.

Сгорание дымного пороха за счет «встроенного» кислорода калиевой селитры протекает, в основном, по следующему уравнению:
2КNO3 + 3C + S = K2S + 3CO2 + N2.

Температура продуктов вспышки дымного пороха достигает до Т1 = 2100 °С, с выделением до Q = 585 ккал теплоты и до Vн. у. = 280 л газов на 1 кг смеси. Продукты реакции содержат примерно 50% по массе твердых и жидких частиц калиевых солей (K2S, K2CO3, K2SO4), почти не участвующих в работе расширения газов (CO2, N2, СО). Это снижает работоспособность заряда из «слабого» дымного пороха – в сравнении с показателями бездымных порохов на основе пироксилина, имеющего более высокую теплоту сгорания и не содержащего в продуктах твердых остатков (Q = 900 ккал/кг, Vн. у. = 1000 л/кг):
C24h39O9 (ONO2) 11 = 12СО2 + 12СО + 6Н2О (пар) + 8,5Н2 + 5,5N2.

Таким образом, главная физико-химическая особенность пороховых систем как энергоносителей состоит в том, что все топливные компоненты (и горючие, и окислители, и рабочие газы), подобно чрезвычайно сжатой пружине, хранятся при весьма высокой плотности кристаллов и молекулярных связей конденсированной фазы (K-фазы). При возбуждении реакции от искры или капсюля-воспламенителя происходит необратимое экзотермическое фазовое превращение вещества (газораспад), когда объем полученных газов превышает объем исходного заряда примерно в тысячу раз. При сжигании навески бездымного пороха в камере постоянного объема V = const, содержащей n0 моль газов, продукты сгорания (n1 моль) по уравнению состояния газов развивают давление Р1 – пропорционально отношению присутствующих количеств газов в камере после реакции и до нее (n1/n0 >>1), умноженному на отношение их абсолютных температур (Т1/Т0).

Из рассмотренного следует, что на первом этапе (подготовка рабочего заряда) процессы в воздушно-тепловых ДВС отличаются от подготовки стрелкового выстрела. Так, топливная смесь в обычных ДВС готовится из двух компонентов: заряда воздуха-окислителя (более 90‑94%) и дозы горючего (менее 6‑10%). Поскольку плотность газов мала, весь воздушный окислитель (все газы) перед сжиганием топливной смеси предварительно сильно сжимают.

В «пороховом» сценарии необходимости в такте сжатия нет. Плотность порохов – «уже» на 3 порядка выше плотности газов. Монотопливо‑порох при плотности 1 г/см3 будет эквивалентно 700-кратно сжатому заряду воздуха с добавкой нефтяного горючего. На этапе сжигания зарядов процессы энерговыделения также идут различно. Сжигая в камере V пороховой заряд, мы получим более высокое начальное давление газов по сравнению с давлением вспышки сжатой воздушно-нефтяной смеси той же массы m и калорийности Q.

Дело в том, что сгорающая пороховая масса образует новые газы, которых ранее не было ,– в дополнение к уже присутствующим (или сжатым) газам в надпоршневом объеме V цилиндра ДВС. Но при сгорании воздушно-нефтяной смеси число молей продуктов воздушного сгорания почти не отличается от числа молей исходного воздуха (n1/n0 ~ 1), поскольку кислород воздуха О2 расходуется на образование оксидов Н2О и СО2. В итоге при одинаковой калорийности зарядов Q (и одинаковой температуре сгорания Т1) начальное давление газов в пороховом цилиндре может быть намного выше. После окончания сгорания термодинамические процессы в такте расширения будут примерно одинаковы, но с учетом более высокого давления Р1 пороховых газов полезная работа продуктов сгорания топлива-пороха может быть существенно выше работы «термического» расширения газов в цилиндрах воздушно-тепловых ДВС.

Таким образом, пороховой цикл не «привязан» к воздушному окислителю, процессам впуска и сжатия в цилиндрах ДВС. С учетом высокого газообразования и более высокой калорийности пороховых навесок (Q ~ 900 кал/г) по сравнению с той же массой воздушно-нефтяной смеси (Q = 630 кал/г) эффективность пороховых двигателей может намного превосходить мощностные показатели обычных ДВС.

Современные пороховые системы

Пороховые системы настоящего времени отличаются более сложным составом. Сегодня разрабатываются даже технологии жидких метательных монотоплив для артиллерии (не считая «давно известных» взрывчатых веществ с близким химическим составом). Но суть твердых или жидких энергонасыщенных систем остается прежней: пороха, ракетные топлива и пиротехнические смеси – это концентрированные носители и рабочих тел, и химической энергии «окислитель + горючее». Как правило, активный кислород в таких энергона-сыщенных системах закреплен в азотных соединениях (в солях-нитратах NO3- и нитросоединениях R – NO2), где его связи с азотом менее прочные, чем вновь образуемые связи кислорода с водородом (Н2О) и углеродом (СО2, СО).

Возможность использования пороховых систем как моторных топлив для двигателей ограничена тем же признаком, который препятствовал этому и на заре создания ДВС. А именно – сложностью подачи цикловой порции (дозы) твердого топлива в реакционную камеру цилиндра. Кроме того, сухие пороховые смеси чрезвычайно пожароопасны; продукты сгорания многих энергонасыщенных систем – весьма неэкологичны; стоимость порохов – весьма и весьма велика.

Свойство некоторых азотных соединений, богатых кислородом, отдавать последний (кислород) для окисления горючих веществ, используется для форсирования некоторых ДВС на обычном жидком топливе. Так, еще в 1930‑е годы, решая вопрос кратковременного увеличения мощности бензиновых авиадвигателей самолетов на большой высоте, использовали введение в цилиндры жидкой закиси азота N2О. При вспышке бензино-воздушной смеси закись азота легко распадается в цилиндрах ДВС на азот и свободный кислород:
N2O = N2 + ½ O2.

Реакция распада закиси азота – экзотермическая (Q = 445 ккал/кг), с образованием новых газов (Vн. у. = 763 л/кг). Кроме того, массовая доля кислорода в продуктах распада N2O составляет 36%, что в 1,6 раза выше содержания кислорода (23%) в воздушном окислителе {2N2 + ½ O2}. Избыток кислорода в цилиндрах (по аналогии с «наддувом» двигателя) позволяет увеличить подачу горючего–бензина, чем достигается форсирование ДВС, потребляющего часть окислителя из жидкой фазы N2O, не требующей затрат на работу сжатия. В настоящее время в спортивном тюнинге автомобильных двигателей, наряду с подсадками закиси азота (технология фирмы «NOS»), применяют добавки в бензин растворимых окислительсодержащих нитросоединений: нитробензол, нитрометан, нитропропан. Механизм действия нитроприсадок аналогичен форсирующей подсадке закиси азота: часть кислорода для сгорания топливного заряда несут в себе сами нитросоединения, где атомы окислителя «хранятся» в непрочных связях нитрогрупп NO2 в жидкой фазе топливного раствора. Широко этот метод не используется, так как нитроприсадки токсичны и дороги, некоторые из них в индивидуальном виде взрывоопасны.

В ракетной, космической и оборонной технике известны смесевые топлива на основе соединений азота, содержащие и горючие компоненты, и окислители в твердой, жидкой или гелеобразной фазе.

Исследования процессов горения в середине ХХ века показали, что сгорание многих жидких смесей «горючее + окислитель» склонно к самоускорению с возмущением и турбулизацией горящей поверхности (эффект Ландау). В то же время твердые ракетные топлива могут содержать десятки процентов бризантных взрывчатых веществ (тротил, гексоген, нитроглицерин и др.), но не детонировать, а лишь гореть при высокой плотности (до 1,7‑2,0 г/см3) твердотопливного монозаряда. Применение жидких ракетных топлив в обычной наземной технике практически исключено – по причине пожаро- и взрывоопасности компонентов, токсичности и дороговизны (примером могут служить гидразиновые топлива и гептил космических ракет). Но заметим, что при обязательном условии безопасности и дешевизны возможных энергона-сыщенных композиций именно жидкая форма энергоносителя обеспечивала бы необходимую технологичность.

Варианты использования азотных топлив

Азотные энергоносители могут использоваться в поршневых, роторных и газотурбинных двигателях. Однако такие двигатели должны быть адаптированы к особенностям азотных топлив. Впрочем, это не исключительная особенность азотных топлив: бензиновые, дизельные, газовые двигатели также имеют свои особенности, характерные для используемого вида топлива. Остановимся на поршневых двигателях.

При использовании сбалансированных по кислороду сплавов топливных стехиометрий или их растворов может быть применен двухтактный цикл без впуска воздуха (подобный цикл используется, например, в поршневых двигателях морских торпед). Более широкие возможности по диапазону рабочих температур и хранению топлива в жидкой фазе имеют водно‑солевые и водно-аммиачные растворы-эвтоники азотных компонентов. В этом случае топливная масса будет содержать 2‑4 -кратный избыток горючих веществ (без использования специальных компонентов). Здесь должен применяться двухтактный цикл с впуском и сжатием воздуха, но количество воздуха в таком случае требуется меньшее (до 10‑15 раз) по сравнению с подобными циклами на нефтяном топливе, так как часть окислителя содержится в топливной смеси. Следовательно, затраты энергии на предварительное сжатие воздуха для сжигания окислительсодержащих азотных топлив будут меньшими. Учитывая, что для быстрого разложения топливного окислителя-АС необходима температура не менее 300 оС, а объем цикловой дозы и теплоемкость азотных топлив выше, чем нефтепродуктов по дизельному циклу,  теплоты сжатого воздуха может быть недостаточно для запуска двигателя. Поэтому в пусковом режиме необходимо применять подогреваемую камеру термолиза. Для этого применимы свечи накаливания. В режиме установившейся работы двигателя камера термолиза разогревается за счет теплоты реакций сгорания. С учетом потенциальной энергонасыщенности азотных топлив возможны технические решения организации запуска двигателя без впуска и сжатия воздуха.

Расширение газов в цилиндре «воздушно-порохового» ДВС целесообразно более полное, до давления выпуска, близкого к атмосферному. Расчеты показывают, что при параметрах сжатия и сгорания, близких к показателям обычных воздушно-тепловых ДВС, термический КПД «воздушно-порохового» цикла может достигать 80‑85%.

Теплонапряженность двигателя на водо-нитратных топливах будет существенно ниже ввиду меньших температур процесса (в 1,5‑2 раза) – по сравнению с обычными ДВС на нефтяном топливе. В связи с этим целесообразен отказ от системы жидкостного охлаждения ДВС; необходимый уровень температуры стенок цилиндров обеспечит организация воздушного охлаждения. Соответственно, потери теплоты будут меньшими, а индикаторный КПД цикла ожидается на уровне 70‑75%.

Водо-нитратные растворы не допускают контакта топлива с маслом в связи с возможностью эмульгирования и старения масел, с потерей ими смазывающих свойств. Поэтому кинематическая схема двигателя должна предусматривать крейцкопфный узел в механизме преобразования движения и отделение цилиндра от картера двигателя. В качестве такого варианта может применяться кривошипно-кулисный механизм преобразования движения с линейным движением штока поршня, отделением цилиндра от масляного картера и использованием подпоршневого объема в качестве продувочного насоса в двухтактном цикле. Уплотнение поршня в цилиндре может быть сухим с применением компрессионных колец из железо-графита.

В качестве механизма газораспределения применима клапанно-щелевая схема с выпуском отработавших газов через клапаны в головке цилиндра и впуском продувочного воздуха через окна в средней части цилиндра с поворотной гильзой.

Учитывая особенности кривошипно-кулисного механизма, обладающего более высоким механическим КПД по сравнению с традиционным кривошипно-шатунным механизмом, эффективный КПД двигателя на азотных топливах может быть близок к 70%, что примерно в два раза выше, чем для бензиновых или дизельных двигателей.

Все отмеченные конструктивные особенности двигателя технически реализуемы и позволяют выполнить такой двигатель для использования в нем азотных топлив по обычным машиностроительным технологиям.

Следует учитывать, что по объемному расходу азотного топлива двигатель будет уступать показателям расхода горючего нефтяных ДВС до 2– 2,5 раза. Это может отразиться на емкости топливных баков на автомобиле, но не более. Стоимость единицы механической энергии, произведенной с использованием азотных топлив, по сравнению с эксплуатационными расходами на нефтяные моторные топлива будет снижаться примерно в 3 раза (при существующих мировых ценах на бензин около 1500 долл./т или 1,1 долл./л).

Азотное топливо должно рассматриваться как новое направление в получении и использовании альтернативных, возобновляемых и экологически чистых энергоносителей применительно для автомобильного, железнодорожного, речного, морского транспорта, а также для электроэнергетики (в основном, для автономных и локальных энергоустановок), для привода дорожно‑строительных и подъемно-транспортных машин и механизмов, для привода двигателей механизмов в шахтах и горных выработках, для снабжения сжатым газом пневматического инструмента и механизмов. Но, учитывая, что в современных условиях автомобильный транспорт является основным потребителем энергии химических топлив, именно автомобильная промышленность может и должна одной из первых освоить применение этого перспективного топлива.

Операторы АЗС Тестирование для подготовки Билеты с ответами Сервис он-лайн тестирования

Тема Операторы АЗС Тестирование для подготовки
Билет № 1

  • Тема 1 Нефтепродукты и их свойства

    1.Какой способ перегонки нефти применяют для получения бензина с повышенной детонационной стойкостью?

  • 1

  • Термический крекинг
  • 2

  • Каталитический крекинг
  • 3

  • Гидрокрекинг
  • 4

  • Каталитический риформинг
  • Комментарии
  • Комментарий: Каталитический крекинг - термокаталитическая переработка нефтяных фракций с целью получения компонента высокооктанового бензина, легкого газойля и непредельных жирных газов.

    Термический крекинг происходит при сильном нагревании, а каталитический проводится в присутствии катализатора и благодаря этому можно применять более низкую температуру. 

    Поэтому бензин каталитического крекинга обладает большей детонационной стойкостью (из-за наличия разветвленных углеводородов) и большей устойчивостью к окислению (из-за меньшего содержания непредельных углеводородов) и является поэтому более ценным топливом.

  • 2.Какой способ перегонки нефти применяют для получения стабильного бензина?
  • 1

  • Термический крекинг
  • 2

  • Каталитический крекинг
  • 3

  • Гидрокрекинг
  • 4

  • Каталитический риформинг
  • 5

  • На монтажные полиспасты
  • Комментарии
  • Комментарий:  Каталитический риформинг – это процесс облагораживания низкокачественного бензина путем его каталитической переработки под давлением водорода в присутствии катализатора. В результате каталитического риформинга получается высокооктановый компонент автомобильных бензинов в результате каталитических превращений низкооктановых фракций, вырабатываемых при прямой перегонке и крекинге.

  • 3.Для какого вида двигателя внутреннего сгорания применяется бензин?
  • 1

  • Дизельного
  • 2

  • Поршневого
  • 3

  • Карбюраторного
  • 4

  • Автомобильного
  • Комментарии
  • Комментарий:  Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

    Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания.

  • 4.Какое число определяет детонационную стойкость бензина?
  • 1

  • Цетановое
  • 2

  • Октановое
  • 3

  • Нафтеновое
  • 4

  • Маркировочное
  • Комментарии
  • Комментарий:  Детонационная стойкость — параметр, характеризующий способность топлива противостоять самовоспламенению при сжатии. Это важнейшая количественная характеристика топлива, на основе которой определяется его сортность и применимость в двигателях той или иной конструкции.

    Окта́новое число́ (от [изо]октан) — показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания.

  • 5.Концентрационные пределы распространения пламени для бензина составляют:
  • 1

  • Нижний - 5,0 %, верхний – 15,0 % (по объему)
  • 2

  • Нижний - 1,0 %, верхний – 6,0 % (по объему)
  • 3

  • Нижний - 0,1 %, верхний – 10,0 % (по объему)
  • 4

  • Нижний - 0,1 %, верхний – 5,0 % (по объему)
  • Комментарии
  • ГОСТ 32513-2013 Топлива моторные. 5.4 Бензины в соответствии с требованиями ГОСТ 12.1.044 представляют собой легковоспламеняющуюся жидкость с температурой самовоспламенения 255 °С - 370 °С.

    Температурные пределы распространения пламени: нижний - минус 27 °С - минус 39 °С, верхний - минус 8 °С - минус 27 °С.

    Концентрационные пределы распространения пламени: нижний - 1,0% об., верхний - 6% об.

  • 6.В каких видах двигателей внутреннего сгорания применяется дизельное топливо?
  • 1

  • С воспламенением от искры
  • 2

  • С воспламенением от впрыска
  • 3

  • С воспламенением от сжатия
  • 4

  • С воспламенением от наддува
  • Комментарии
  • Комментарий:  Дизельные двигатели

    Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. 

    По способу воспламенения:

    - от искры (бензиновые),

    - от сжатия (дизельные).

  • 7.Температура, при которой пары вещества над поверхностью горючего вещества вспыхивают, при наличии источника воспламенения называется …
  • 1

  • Температурой вспышки
  • 2

  • Температурой воспламенения
  • 3

  • Температурой самовоспламенения
  • 4

  • Температурой возгорания
  • Комментарии
  • ГОСТ ISO 2719-2013 3.1 температура вспышки Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.

  • 8.Что означает цетановое число дизельного топлива?
  • 1

  • Воспламеняемость
  • 2

  • Детонационную стойкость
  • 3

  • Теплоту сгорания
  • 4

  • Дымность горения
  • Комментарии
  • Комментарий:  Цетановое число — характеристика воспламеняемостидизельного топлива, определяющая период задержки горения рабочей смеси (т. е. свежего заряда) (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.

  • 9.Плотность паров бензина по отношению к плотности воздуха…
  • 1

  • Меньше
  • 2

  • Больше
  • 3

  • Плотности равны
  • Комментарии
  • Комментарий:  Единицы измерения плотности (ρ) – (1 г/л = 1 кг/м3)

    Воздух — 1.2928 кг/м3

    Бензин (плотность 710-750 кг/м3.

  • 10.Плотность бензина по отношению к воде…
  • 1

  • Меньше
  • 2

  • Больше
  • 3

  • Плотности равны
  • Комментарии
  • Коршак А. А., Коробков Г. Е. и Муфтахов Е. М. Нефтебазы и АЗС. стр. 29.

    относительной плотностью ρ 420 , численно равной отношению плотности нефтепродукта при 20 °С к плотности воды при 4 °С.

    Плотность  различных  нефтепродуктов  при  20 °С  (293  К)  находится в пределах (кг/м 3 ): бензины — 726...785,

    Вода дистиллированная при 4°С 1000

  • Двигатель внутреннего сгорания - обзор

    1 ВВЕДЕНИЕ

    Топливная эффективность двигателя внутреннего сгорания может быть увеличена за счет снижения механических потерь, вызванных, главным образом, трением. Использование соответствующих масел снижает трение, увеличивает топливную экономичность и в то же время поддерживает низкий износ. Существует два подхода, с помощью которых можно достичь снижения трения в двигателях внутреннего сгорания: за счет уменьшения вязкости масла, что приводит к снижению трения в режиме смазки жидкой пленкой, и за счет использования присадок, снижающих трение, которые минимизируют трение в смешанной / граничной смазке. режим при контакте неровностей поверхности [1].

    Очень важным классом присадок, снижающих трение, широко используемых в составах картерных масел, являются молибденосодержащие соединения, такие как диалкилдитиокарбамат молибдена (MoDTC). Общее количество присадок в масле может составлять от 5 до 25% [2], а эффективность MoDTC в снижении трения сильно зависит от синергетических или антагонистических эффектов с другими присадками, особенно с диалкилдитиофосфатом цинка (ZDDP) [3– 5]. Присадка ZDDP, помимо антиоксидантных свойств, как известно, очень эффективна для защиты поверхностей от износа в условиях граничной смазки; свойства, которые делают его незаменимым ингредиентом в подавляющем большинстве текущих составов масел [6].Таким образом, понимание взаимодействия ZDDP и MoDTC в трибологических характеристиках, являющихся двумя ключевыми компонентами масел, имеет важное значение для достижения оптимальных характеристик. Предыдущая работа [7] также указала на необходимость усовершенствования математических моделей смазки клапанного механизма, чтобы повысить их чувствительность к характеристикам состава масла. Такие улучшения станут возможными только путем развития лучшего понимания образования трибопленки, структуры, химических и морфологических свойств и их соотнесения с приработкой систем клапанного механизма.

    MoDTC зарегистрировано для уменьшения трения за счет образования пленки, содержащей MoS 2 , на металлических поверхностях [8–12]. Было замечено, что трение уменьшилось через определенное время, определяемое как фаза индукции, после чего трение упало с высоких значений примерно 0,12 до уменьшенных значений порядка 0,05. Ямамото и Гондо [9, 13, 14] в своей работе с использованием рентгеновской фотоэлектронной спектроскопии (XPS) предположили, что для образования MoS 2 необходимо предварительное формирование слоя MoO 3 .Было показано, что образование M0S 2 из MoDTC происходит в результате контакта твердое тело-твердое тело [15]. Образование MoO 3 перед любым падением трения предполагает, что может произойти увеличение шероховатости, которое может способствовать образованию M0S2, что указывает на физический эффект MoO 3 на образование M0S 2 . Хотя в нескольких работах [9, 11, 15] было показано, что только MoDTC эффективен в уменьшении трения, есть сообщения, которые показывают, что MoDTC может быть эффективным в уменьшении трения только в присутствии добавки ZDDP [3-5].Sogawa et al. [16] показал, что присутствие ZDDP способствует образованию M0S 2 из MoDTC. Они обнаружили, что при использовании модельного масла, содержащего как ZDDP, так и MoDTC, около 40% S из ZDDP было использовано для образования трибопленки M0S 2 в рубце износа, но точный механизм не был исследован. С другой стороны, Martin et al. [17] предложил реакцию отщепления M0O3 фосфатом цинка, генерируемым из ZDDP, в соответствии с принципом жестких и мягких кислот и оснований (HSAB).Устранение M0O 3 считалось причиной того, что система ZDDP / MoDTC более эффективна в снижении трения, чем один MoDTC - химический эффект ZDDP на снижение трения MoDTC. Однако топографический анализ трибопленок ZDDP подтвердил высокую шероховатость этой пленки [18, 19], что свидетельствует о влиянии ZDDP на образование M0S 2 , имеющего физическую природу .

    Хотя указание на виды, образующиеся при использовании добавки MoDTC, можно получить из анализа работы, проделанной несколькими группами, последовательность реакций, с помощью которых MoDTC образует M0S 2 , еще не установлена ​​и не доказана экспериментально.Кроме того, влияние ZDDP на механизм образования M0S 2 от MoDTC до сих пор полностью не изучено. В данной статье представлена ​​полная характеристика с точки зрения химических и топографических свойств трибопленок, образовавшихся до падения трения, и обсуждаются условия, благоприятные для образования M0S 2 и, следовательно, снижения трения. Процедура испытания, включающая замену масла одной модели на другую, использовалась для того, чтобы понять, имеют ли взаимодействия ZDDP / MoDTC физическую природу или химическую или их комбинацию.

    Двигатель внутреннего сгорания | Encyclopedia.com

    Обзор

    Физики называют двигатель внутреннего сгорания «первичным двигателем», что означает, что он использует некоторую форму энергии (например, бензин) для перемещения объектов. Первые надежные двигатели внутреннего сгорания были разработаны в середине девятнадцатого века и почти сразу же стали использоваться для транспортировки. Развитие двигателя внутреннего сгорания помогло освободить людей от тяжелейшего ручного труда, сделало возможным создание самолетов и других видов транспорта и помогла произвести революцию в производстве электроэнергии.

    Общие сведения

    В 1698 году Томас Савери (ок. 1650-1715), британский военный инженер, построил «Друг шахтера», устройство, которое использовало давление пара для откачки воды из затопленных шахт. Несколько лет спустя Томас Ньюкомен (1663-1729) расширил конструкцию Савери и создал первый настоящий двигатель. В двигателе Ньюкомена, в отличие от двигателя Христиана Гюйгенса (1629-1695) и Савери, использовался поршень, прикрепленный к самому двигателю. Следовательно, он мог производить постоянную (хотя и не плавную) мощность.

    Три условия, существовавшие в девятнадцатом веке, способствовали развитию двигателя внутреннего сгорания. Главным условием была потребность в энергии, представленная Промышленной революцией. Во-вторых, физики начали понимать ключевые концепции, на которых построен двигатель внутреннего сгорания. В-третьих, топливо, необходимое для работы двигателя, становилось доступнее.

    Между 1700 и 1900 годами ученые разработали область термодинамики, которая дала изобретателям инструменты для расчета КПД и выходной мощности различных типов двигателей.Эти расчеты показали, что внутренняя Двигатель внутреннего сгорания потенциально был намного эффективнее парового двигателя (который, напротив, был двигателем внешнего сгорания, то есть воспламенял топливо вне самого двигателя).

    Самое важное событие в ранней истории двигателя внутреннего сгорания произошло в 1859 году под руководством бельгийского изобретателя Жана-Жозефа Этьена Ленуара (1822-1900). Двигатель Ленуара был одновременно прочным (некоторые из них отлично работали после 20 лет использования) и, что более важно, надежным.Более ранние версии двигателя были плохого качества и перестали работать без причины. Двигатель Ленуара выдавал постоянную мощность и работал плавно. В 1862 году Ленуар изобрел первый в мире автомобиль.

    В 1860-е годы Николаус Отто (1832–1891) начал экспериментировать с двухтактными двигателями Ленуара и теоретическими четырехтактными двигателями Альфонса Бо де Роша (1815–1893). Отто был продавцом бакалеи; у него не было технического образования или опыта. В 1866 году Отто с помощью Ойгена Лангена (1833-1895), немецкого промышленника, разработал успешный, но тяжелый и шумный двигатель Отто и Лангена.Он продолжал экспериментировать с двигателями. В 1876 году он выпустил «Silent Otto», первый в мире четырехтактный двигатель. Silent Otto был не только более тихим, чем предыдущие двигатели, но и гораздо более экономичным.

    Двигатель Отто установил стандарт времени. Фактически, основная конструкция современных двигателей остается такой же, как у Отто. Как и предсказывала термодинамика, двигатель внутреннего сгорания был намного более экономичным, чем паровой. Двигатели внутреннего сгорания, которые были тише, дешевле в эксплуатации и менее громоздкими, чем паровые, начали появляться на промышленных предприятиях по всей Северной Европе.

    Чтобы двигатель внутреннего сгорания мог использовать жидкое топливо, он должен сначала перевести жидкость в парообразное состояние. Следующей задачей для производителей двигателей было найти способ осуществить это изменение. Между 1880 и 1900 годами были изобретены различные процессы для выполнения этой задачи. Между 1885 и 1892 годами были разработаны три метода: карбюрация, испарение горячей лампы и дизельный двигатель.

    При карбюрации устройство, называемое карбюратором, смешивает воздух с парами жидкого топлива.Затем карбюратор подает смесь в двигатель. Искра или пламя внутри двигателя воспламеняют смесь. Это функция карбюратора в современных автомобилях. Для сравнения, двигатель с горячей лампой распыляет бензин на горячую поверхность рядом с цилиндром, а затем втягивает испаряющееся топливо в двигатель в виде пара. С двигателем с горячей лампой можно было использовать менее летучие виды топлива, такие как керосин. Третий метод - дизельный компрессорный двигатель. Вместо того, чтобы использовать внешний источник тепла для воспламенения газа, как в первых двух методах, немецкий инженер Рудольф Дизель (1858-1913) изобрел процесс, при котором газ воспламеняется сам.У Дизеля был большой опыт в математике и естественных науках, и он знал, что когда газ сжимается, его температура повышается до точки, при которой топливо воспламеняется.

    Удар

    На рубеже веков двигатели внутреннего сгорания стали неотъемлемой частью западной жизни. Промышленные предприятия по всей Европе и Америке широко использовали их, и открылись ворота для крупномасштабного производства автомобилей в 1900-х годах.

    В области транспорта бензиновый двигатель внутреннего сгорания и его варианты (в основном дизельный двигатель) были адаптированы для использования в путешествиях по морю, суше и воздуху.В море большое количество небольших кораблей было и продолжает работать на дизельных двигателях, ускоряющих перемещение людей и товаров между любыми местами, связанными водой. Это сделало торговлю более быстрой и менее дорогой. Сочетание морских перевозок с более эффективной наземной перевозкой грузов делает эти преимущества еще более значительными. В свою очередь, расширение торговли ведет к большему благосостоянию и более высокому уровню жизни для обеих сторон, не говоря уже о создании новых рабочих мест.

    Самолеты тоже обязаны своим существованием развитию бензинового двигателя. Многие изобретатели пытались летать с двигателями в конце девятнадцатого века, но только после того, как появились легкие и мощные бензиновые двигатели, возникла область авиации. Фактически, бензиновые двигатели преобладали в авиации в первой половине двадцатого века и даже сегодня играют важную роль в частной, коммерческой и военной авиации.

    Также необходимо учитывать влияние на сельское хозяйство и производство продуктов питания.Тракторы и другое современное сельскохозяйственное оборудование, обычно работающее с дизельными или бензиновыми двигателями, играет значительную роль в изобилии продуктов питания в развитых и некоторых частях развивающегося мира. Использование тракторов для обработки почвы, посадки и сбора урожая, а также для буксировки тяжелых грузов помогло увеличить количество земли, которое может обработать один фермер, а также увеличение урожайности с гектара. Это двойное повышение эффективности индивидуальных фермеров приводит к увеличению количества продуктов питания по более низким ценам. В развитом мире это означает не только больше и более дешевую еду, доступную для его граждан, но и больше еды, доступную для экспорта во все страны.

    Дизельный двигатель является развитием двигателя внутреннего сгорания, как упоминалось ранее. Дизельные двигатели мощные, требуют меньшего обслуживания и используют менее очищенное топливо, чем бензиновые двигатели. Эти факторы делают их менее дорогими, и они стали предпочтительным двигателем для путешествий по железной дороге, больших лодок и малых судов, а также грузовиков. Дизельные двигатели также широко используются для выработки электроэнергии, особенно в качестве аварийных резервных источников питания для таких объектов, как больницы и атомные электростанции.В обоих случаях дизельные двигатели зарекомендовали себя как надежные и недорогие в обслуживании и эксплуатации.

    Последним воздействием, которое необходимо обсудить, является воздействие двигателя внутреннего сгорания на окружающую среду. Все двигатели внутреннего сгорания работают за счет сжигания углеводородов в той или иной форме и выпуска выхлопных газов. Эти углеводороды обычно получают из нефти, и они горят с образованием диоксида углерода, монооксида углерода и воды. Хотя были разработаны водородные двигатели, которые сжигают водород и производят водяной пар в качестве выхлопного газа, на момент написания этой статьи они были редкостью.

    С точки зрения топлива, запасы нефти ограничены, и их становится все труднее обнаружить и добыть. Процесс добычи неизменно приводит к некоторому воздействию на окружающую среду не только на буровой, но и на маршруте транспортировки. Поскольку большая часть нефти добывается в регионах, удаленных от нефтеперерабатывающих заводов и промышленных стран, большая часть ее транспортируется океанскими танкерами, которые иногда вызывают разливы с потенциально серьезными последствиями.

    При сжигании в двигателях углеводородное топливо выделяет много газов, большая часть которых способствует загрязнению воздуха.До запрета в США многие виды топлива также содержали соединения свинца, которые были причастны к случаям отравления свинцом. Однако даже без свинца углекислый газ, основной выхлопной газ сгорания, по всей видимости, производится в достаточно больших количествах, и было отмечено, что его уровни в атмосфере повышаются во всем мире. Поскольку известно, что углекислый газ улавливает солнечное тепло, есть много предположений о том, что широкое использование двигателей внутреннего сгорания вызывает повышение температуры во всем мире с потенциально катастрофическими результатами.Однако следует подчеркнуть, что данные, которые были интерпретированы как показывающие глобальное потепление, могут быть интерпретированы по-разному, и не все ученые считают, что глобальное потепление действительно происходит. Кроме того, следует помнить, что на протяжении большей части истории Земли температуры были намного выше, чем в настоящее время. Таким образом, даже если глобальное потепление происходит, оно может быть связано или не быть результатом сжигания ископаемого топлива в двигателях внутреннего сгорания.

    ТОДД ДЖЕНСЕН И П. ЭНДРЮ КАРАМ

    Дополнительная литература

    Гребни, Гарри. Убить Дьявольский холм. Бостон: Компания Houghton Mifflin, 1979.

    Харденберг, Хорст О. Средние века двигателей внутреннего сгорания 1794–1886. Детройт: Общество автомобильных инженеров, 1999.

    Робертс, Питер. Ветеранские и старинные автомобили. Лондон: Drury House, 1967.

    Наука и ее времена: понимание социального значения научных открытий

    Двигатель внутреннего сгорания - энциклопедия Нового Мира

    Четырехтактный цикл (или цикл Отто)
    1.впуск
    2. сжатие
    3. мощность
    4. выпуск

    Двигатель внутреннего сгорания - это двигатель, в котором сгорание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем нажатия и перемещения самого двигателя.

    Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

    Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.

    Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель. Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрогенератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.

    Преимущество этого - портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством. Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора.Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить. Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток - размер. Очень непрактично иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее.Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.

    История

    Демонстрация непрямого или всасывающего принципа внутреннего сгорания. Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранее двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

    Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска.Наиболее существенное различие между современными двигателями внутреннего сгорания и более ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.

    • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что эта идея была оригинальной или что она была построена на самом деле.)
    • 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
    • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
    • Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
    • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
    • 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
    • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
    • 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых двигателей. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться.Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
    • 1826 1 апреля: Американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
    • 1838: Патент был выдан Уильяму Барнету (английский язык). Это было первое зарегистрированное предположение о сжатии в цилиндре. Он, очевидно, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
    • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый работающий эффективный двигатель внутреннего сгорания в Лондоне (pt.Num. 1072), но в производство с ним не попал. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
    • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двустороннего действия, с цилиндрами, поршнями, шатунами и маховиком, в котором газ, по существу, занял место пара. Это был первый серийный двигатель внутреннего сгорания.Его первый двигатель с компрессией шокировал сам себя.
    • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого завоевала поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на газовом топливе.
    • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
    • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
    • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
    • 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
    • 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным запуском и воспламенением от сжатия. В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
    • 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
    • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
    • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально-оппозитный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
    • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
    • 1900: Вильгельм Майбах разработал двигатель, построенный в Daimler Motoren Gesellschaft - в соответствии со спецификациями Эмиля Еллинека - который потребовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.

    Приложения

    Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другой переносной технике. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией.Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень высокая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.

    Эксплуатация

    Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.

    Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и в основном производится из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло.Некоторые также могут работать на водороде.

    Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.

    Процесс розжига бензина

    Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на комбинации свинцово-кислотной батареи и индукционной катушки для создания электрической искры высокого напряжения для воспламенения. воздушно-топливная смесь в цилиндрах двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.

    Процесс воспламенения дизельного двигателя

    Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенное воспламенение от сжатия), полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия для воспламенения.Возникающая компрессия обычно более чем в три раза выше, чем в бензиновом двигателе. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и высокой температуры. Это также является причиной того, что дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они будут работать так же хорошо в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для работы вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также управляют процессом сгорания, чтобы повысить эффективность и сократить выбросы.

    Энергия

    После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

    После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка - ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

    Детали

    Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

    Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Одиночный ход поршня вверх или вниз известен как ход поршня, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

    Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

    В двигателе Bourke используется пара поршней, встроенных в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск - все это происходит при каждом такте вилки.

    Классификация

    Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

    Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от лат. motor, «движитель») - это любая машина, которая производит механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями."(Электродвигатель относится к локомотиву, работающему на электричестве.)

    С учетом сказанного, следует понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют свою энергию изнутри, а двигатели - как требующие внешний источник энергии для выполнения своей работы. Очевидно, что корни слов, кажется, на самом деле указывают на реальную разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не текущее употребление.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.

    Принципы работы

    Поршневой:

    • Двигатель на сырой нефти
    • Двухтактный цикл
    • Четырехтактный цикл
    • Двигатель с горячим термометром
    • Тарельчатые клапаны
    • Рукавный клапан
    • Цикл Аткинсона
      • Усовершенствования
      • Двигатель внутреннего сгорания

      Роторный:

      • Продемонстрированный:
      • Предложено:
        • Орбитальный двигатель
        • Квазитурбинный
        • Роторный двигатель с циклом Аткинсона
        • Двигатель непрерывного сгорания
        • турбина
        • Реактивный двигатель
        • Ракетный двигатель

        Цикл двигателя

        Двухтактный

        Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, может иногда выходить из выхлопного тракта вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими нейтрализаторами.

        Четырехтактный

        Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.

        Пятитактный

        Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла - это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , - это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов эффективнее эквивалентного четырехтактного двигателя.

        Двигатель Bourke

        В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, который проходит через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработанные газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе. Механизм с кулисой также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

        Двигатель внутреннего сгорания

        Это также цилиндровые двигатели, которые могут быть одно- или двухтактными, но в них вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.

        Ванкель

        Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы называть четырехфазным двигателем), поскольку фазы находятся в разных местах в двигателе. .Этот двигатель обеспечивает три рабочих хода на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.

        Газовая турбина

        В газотурбинных циклах (особенно реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.

        Вышедшие из употребления методы

        В некоторых старых двигателях внутреннего сгорания без компрессии: В первой части хода поршня вниз была засасана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрывается, а топливо / воздушная смесь горит. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

        Типы топлива и окислителя

        Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла, биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

        Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

        Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность. Однако воздух можно сжимать и переносить на борту транспортного средства.Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.

        Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

        Водород

        Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, которое производит двуокись углерода, главную причину глобального потепления, окись углерода в результате неполного сгорания, а также другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди. , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода в первую очередь самым простым и распространенным методом - электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему переносимости и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность - в 14 раз меньше, чем вода, и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, такие как относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Они не могут дать чистого прироста углекислого газа.

        Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

        Цилиндры

        Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно с номерами от одного до двенадцати, хотя было использовано до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими отдельными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию к вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.

        • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
        • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
        • Мотоциклы обычно имеют от одного до четырех цилиндров, у некоторых высокопроизводительных моделей их шесть (хотя существуют «новинки» с 8, 10 и 12).
        • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
        • Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

        Система зажигания

        Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени соприкасается с поршнем, это приводит к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубками. Никола Тесла получил один из первых патентов на механическую систему зажигания - патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.

        Топливные системы

        Топливо сгорает быстрее и полнее, когда оно имеют большую площадь поверхности, контактирующей с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.

        Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы - это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.

        Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.

        Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.

        В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

        Конфигурация двигателя

        Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

        Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в двигателях одноблочных локомотивов и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

        Объем двигателя

        Рабочий объем двигателя - это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или кубических дюймов) для двигателей большего размера и кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

        Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый - удлинить ход, второй - увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

        Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках транспортных средств объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

        Смазочные системы

        Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в поток впуска в виде спрея.Ранние тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером, заполняющим их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, потребность в высоком соотношении мощности к массе привела к увеличению скорости вращения, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна, при условии, что либо за счет прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что имело преимущество в обеспечении более высоких давлений при увеличении частоты вращения двигателя.

        Загрязнение двигателя

        Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию монооксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов, в зависимости от от условий эксплуатации и соотношения топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей со стехиометрическим соотношением для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

        Дизельные двигатели производят широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.

        • Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
        • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны для здоровья растений и животных.
        • Чистое производство диоксида углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
        • Водородные двигатели должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.

        КПД двигателя внутреннего сгорания

        КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлоп. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потраченную впустую энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.

        впрыск водородного топлива, или HFI, представляет собой систему надстройки двигателя, которая, как известно, улучшает экономию топлива двигателей внутреннего сгорания за счет впрыска водорода для улучшения сгорания во впускной коллектор. Можно увидеть прирост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому воздушно-топливному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.

        Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.

        Примечания

        Ссылки

        • Харденберг, Хорст О. 1999. Средние века двигателей внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
        • Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
        • Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
        • Тейлор, Чарльз Фейет. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.

        Внешние ссылки

        Все ссылки получены 4 марта 2018 г.

        • Знакомство с автомобильными двигателями - короткие изображения и хороший обзор двигателя внутреннего сгорания
        • Библия по топливу и двигателям - хороший ресурс для различных типов двигателей и видов топлива
        • youtube - Анимация компонентов 4-цилиндрового двигателя
        • youtube - Анимация внутренних движущихся частей 4-цилиндрового двигателя

        Кредиты

        New World Encyclopedia писатели и редакторы переписал и дополнил статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:

        История этой статьи с момента ее импорта в энциклопедию Нового Света :

        Примечание. могут применяться ограничения на использование отдельных изображений, на которые распространяется отдельная лицензия.

        ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

        Двигатель внутреннего сгорания (ВС) был доминирующим двигателем в нашем обществе с момента его изобретения в последней четверти XIX века [подробнее см. , Например, Heywood (1988)]. Его цель - генерировать механическую энергию из химической энергии, содержащейся в топливе и высвобождаемой при сгорании топлива внутри двигателя. Именно этот конкретный момент, когда топливо сжигается внутри производственной части двигателя, дает двигателям внутреннего сгорания их название и отличает их от других типов, таких как двигатели внешнего сгорания.Хотя газовые турбины удовлетворяют определению двигателя внутреннего сгорания, этот термин традиционно ассоциировался с с искровым зажиганием (иногда называемым Otto, бензиновые или бензиновые двигатели ) и с дизельными двигателями (или с двигателями с воспламенением от сжатия ).

        Двигатели внутреннего сгорания используются в самых разных областях, от судовых силовых установок и электростанций мощностью более 100 МВт до ручных инструментов, мощность которых составляет менее 100 Вт.Это означает, что размер и характеристики современных двигателей сильно различаются между большими дизелями, имеющими диаметр цилиндра более 1000 мм и совершающим возвратно-поступательное движение на скорости до 100 об / мин, и маленькими бензиновыми двухтактными двигателями с диаметром цилиндра около 20 мм. В пределах этих двух крайностей находятся среднеоборотные дизельные двигатели, автомобильные дизели для тяжелых условий эксплуатации, двигатели грузовых и легковых автомобилей, авиационные двигатели, двигатели мотоциклов и небольшие промышленные двигатели. Среди всех этих типов бензиновые и дизельные двигатели для легковых автомобилей занимают видное место, поскольку они, безусловно, являются крупнейшими производимыми двигателями в мире; как таковые, их влияние на социальную и экономическую жизнь имеет первостепенное значение.

        Большинство поршневых двигателей внутреннего сгорания работают в так называемом четырехтактном цикле (рис. 1), который подразделяется на четыре процесса: впуск, сжатие, расширение / мощность и выпуск. Каждому цилиндру двигателя требуется четыре хода поршня, что соответствует двум оборотам коленчатого вала, чтобы завершить последовательность, которая приводит к выработке мощности.

        Рисунок 1. Цикл четырехтактного двигателя.

        Такт впуска инициируется движением вниз поршня, который втягивает в цилиндр свежую топливно-воздушную смесь через узел порта / клапана и заканчивается, когда поршень достигает нижней мертвой точки (НМТ).Смесь создается либо с помощью карбюратора (как в обычных двигателях), либо путем впрыска бензина под низким давлением во впускной канал через инжектор игольчатого типа с электронным управлением (как в более совершенных двигателях). Фактически, процесс впуска начинается с открытия впускного клапана непосредственно перед верхней мертвой точкой (ВМТ) и заканчивается, когда впускной клапан (или клапаны в четырехклапанных двигателях на цилиндр) закрывается вскоре после НМТ. Время закрытия впускного клапана (ов) зависит от конструкции впускного коллектора, которая влияет на газовую динамику и объемный КПД двигателя, а также на частоту вращения двигателя.

        За тактом впуска следует такт сжатия и , который фактически начинается при закрытии впускного клапана. Его цель - подготовить смесь к горению за счет повышения ее температуры и давления. Горение инициируется энергией, выделяемой через свечу зажигания в конце такта сжатия, и связано с быстрым ростом давления в цилиндре.

        Ход поршня с усилением или расширением начинается с поршня в ВМТ сжатия и заканчивается в НМТ.В этот момент газы с высокой температурой и давлением, образующиеся во время сгорания, толкают поршень вниз, заставляя рукоятку вращаться. Непосредственно перед достижением поршнем НМТ открывается выпускной клапан (ы), и сгоревшие газы могут выйти из цилиндра из-за разницы давлений между цилиндром и выпускным коллектором.

        Этот ход выхлопа завершает цикл двигателя, откачивая цилиндр от сгоревших, частично сгоревших или даже несгоревших газов, выходящих из процесса сгорания; следующий цикл двигателя начинается, когда впускной клапан открывается около ВМТ, а выпускной клапан закрывается на несколько градусов позже.

        Важно отметить, что свойства бензина в сочетании с геометрией камеры сгорания оказывают значительное влияние на продолжительность горения, скорость повышения давления и образование загрязняющих веществ . При определенных условиях смесь конечного газа может самовоспламеняться до того, как пламя достигнет этой части цилиндра, что приведет к детонации , что вызывает колебания давления высокой интенсивности и частоты.

        Способность бензинового топлива противостоять самовоспламенению и, таким образом, предотвращать возможное повреждение двигателя в результате детонации характеризуется своим октановым числом .До недавнего времени добавление небольшого количества свинца в бензин было предпочтительным методом подавления детонации, но связанные с этим риски для здоровья в сочетании с необходимостью использования катализаторов для снижения выбросов выхлопных газов вызвали необходимость введения неэтилированного бензина. Это требует уменьшения степени сжатия двигателя (отношения объема цилиндра в НМТ к объему в ВМТ), чтобы предотвратить детонацию с нежелательным влиянием на термический КПД.

        Как уже упоминалось, четырехтактный цикл, также известный как цикл Отто по имени его изобретателя Николауса Отто, который построил первый двигатель в 1876 году, обеспечивает рабочий ход на каждые два оборота коленчатого вала.Один из способов увеличить выходную мощность двигателя заданного размера - преобразовать ее в двухтактный цикл (рис. 2), в котором мощность вырабатывается при каждом обороте двигателя.

        Рисунок 2. Цикл двухтактного двигателя.

        Поскольку этот режим работы приводит к увеличению выходной мощности - хотя и не до двойного уровня, ожидаемого из простых вычислений, - он широко используется в мотоциклах, легковых автомобилях и морских судах как с искровым зажиганием, так и с дизельными двигателями.Дополнительным преимуществом является простая конструкция двухтактных двигателей, поскольку они могут работать с боковыми отверстиями в гильзе, закрытыми и открытыми движением поршня, вместо громоздкого и сложного верхнего кулачкового механизма.

        В двухтактном цикле такт сжатия и начинается после того, как впускные и выпускные боковые окна закрываются поршнем; топливно-воздушная смесь сжимается и затем воспламеняется свечой зажигания, аналогично зажиганию в четырехтактном бензиновом двигателе, чтобы инициировать сгорание около ВМТ.В то же время свежий заряд может попасть в картер перед его последующим сжатием движущимся вниз поршнем во время хода мощности или расширения . В этот период сгоревшие газы толкают поршень, пока он не достигнет НМТ, что позволяет открыть сначала выпускные отверстия, а затем впускные (переходные) отверстия. Открытие выпускных отверстий позволяет сгоревшим газам выходить из цилиндра, в то время как частично в то же время свежий заряд, сжатый в картере, входит в цилиндр через правильно ориентированные перекачивающие каналы.

        Перекрытие тактов впуска и выпуска в двухтактных двигателях является причиной того, что часть свежего заряда вытекает непосредственно из цилиндра во время процесса продувки. Несмотря на различные попытки уменьшить масштаб этой проблемы путем введения дефлектора в поршень (рис. 2) и направления входящего заряда от места расположения выпускных отверстий, эффективность зарядки в обычных двухтактных двигателях остается относительно низкой. Решение этой проблемы состоит в том, чтобы подавать топливо непосредственно в цилиндр, отдельно от свежего воздуха, через форсунки с подачей воздуха в период, когда и выпускной, и перекачивающий каналы закрыты.Несмотря на короткий период, доступный для перемешивания, распылители с подачей воздуха могут создавать однородную обедненную смесь во время воспламенения за счет образования капель бензина со средним диаметром менее 40 мкм, которые очень легко испаряются во время такта сжатия.

        Среди различных типов двигателей внутреннего сгорания дизельный двигатель или двигатель с воспламенением от сжатия славится своим высоким КПД, пониженным расходом топлива и относительно низкими общими выбросами газов. Его название происходит от немецкого инженера Рудольфа Дизеля (1858-1913), который в 1892 году описал в своем патенте вид двигателя внутреннего сгорания, который не требует внешнего источника воспламенения и в котором сгорание инициируется самовоспламенением жидкого топлива, впрыскиваемого в него. воздух с высокой температурой и давлением в конце такта сжатия.

        Преимущества, присущие дизельному двигателю с точки зрения эффективности, обусловлены его обедненной общей смесью, высокой степенью сжатия двигателя, обеспечиваемой из-за отсутствия воспламенения (детонации) отходящих газов и большей степени расширения. Как следствие, дизельные двигатели в двухтактной или четырехтактной конфигурации традиционно были предпочтительными силовыми установками для коммерческих применений, таких как корабли / катера, энергогенераторы, локомотивы и гусеницы, и в течение последних 20 лет или около того. , легковые автомобили, особенно в Европе.

        Недостаток низкой выходной мощности дизельных двигателей был устранен за счет использования нагнетателей или турбонагнетателей, которые увеличивают отношение мощности к массе двигателя за счет увеличения плотности воздуха на входе. Ожидается, что турбокомпрессоры станут стандартными компонентами всех будущих дизельных двигателей независимо от области применения.

        Работа дизельного двигателя отличается от двигателя с искровым зажиганием, главным образом, тем, как смесь образуется перед сгоранием.Только воздух вводится в двигатель через винтовой или направленный канал, и топливо смешивается с воздухом во время такта сжатия после его впрыска под высоким давлением в форкамерный дизельный двигатель с непрямым впрыском или IDI) или в главную камеру (дизельное топливо с прямым впрыском. или DI) непосредственно перед началом горения.

        Необходимость в достижении хорошего смешивания топлива с воздухом в дизельных двигателях удовлетворяется за счет систем впрыска топлива под высоким давлением, которые генерируют капли со средним диаметром около 40 мкм. Для легковых автомобилей системы впрыска топлива состоят из роторного насоса, нагнетательных трубок и форсунок топливных форсунок, конструкция которых различается в зависимости от области применения; В дизельных двигателях с прямым впрыском используются форсунки с отверстиями, в то время как в дизелях с непрямым впрыском используются форсунки игольчатого типа.В более крупных дизельных двигателях используются насосы с рядным впрыском топлива, насос-форсунки (насос и форсунка, объединенные в один блок) или отдельные одноствольные насосы, которые устанавливаются рядом с каждым цилиндром.

        За последние 20 лет или около того осознание того, что ресурсы сырой нефти ограничены и что окружающая среда, в которой мы живем, становится все более и более загрязненной, побудило правительства принять законы, ограничивающие уровней выбросов выхлопных газов транспортных средств. и двигатели всех типов. С момента их введения в Японии и США в конце 60-х годов и в Европе в 1970 году нормы выбросов постоянно становятся более строгими, и производители двигателей сталкиваются с самой серьезной проблемой в истории со стандартами, согласованными на 1996 год и позднее, которые для легковых автомобилей кратко изложены в таблице. 1.Ожидается, что новые стандарты, которые будут введены в Европе в 2000 году, будут еще ниже, после калифорнийских уровней, которые требуют нулевых уровней выбросов на рубеже веков. Однако неясно, будут ли существующие двигатели соответствовать этим ограничениям, несмотря на отчаянные попытки инженеров по всему миру.

        Таблица 1. Европейские стандарты выбросов на 1996 год

        Рисунок 3. Модель трехкомпонентного каталитического нейтрализатора.

        Из таблицы 1 видно, что основными загрязнителями в двигателях с искровым зажиганием являются углеводороды (HC), монооксид углерода (CO) и оксиды азота (NO x = NO + NO 2 ), а в дизельных двигателях. , NO x и твердые частицы, состоящие из частиц сажи, образующихся при сгорании смазочного масла и углеводородов, являются наиболее вредными.

        В настоящее время трехкомпонентные катализаторы, которые являются стандартным компонентом современных легковых автомобилей, оснащенных двигателями с искровым зажиганием, работающими на неэтилированном бензине, позволяют примерно на 90% снизить выбросы HC, CO и NO x путем их преобразования в диоксид углерода ( CO 2 ), вода (H 2 O) и N 2 .

        К сожалению, эти катализаторы требуют стехиометрической (соотношение воздух-топливо ~ 14,5) работы двигателя, что нежелательно как с точки зрения расхода топлива, так и с точки зрения выбросов CO 2 .Альтернативным подходом является концепция сжигания обедненной смеси, которая обещает одновременное снижение расхода топлива и выбросов выхлопных газов за счет удовлетворительного сжигания бедных смесей с соотношением воздух-топливо, намного превышающим 20. Ожидается, что разработка катализаторов сжигания обедненной смеси с эффективностью преобразования более 60% может позволить двигателям сжигания обедненной смеси соответствовать будущему законодательству по выбросам; это область активных исследований как в промышленности, так и в академических кругах. С другой стороны, новые дизельные двигатели зависят от двухкомпонентных или окислительных катализаторов для уменьшения количества твердых частиц в выхлопных газах за счет преобразования HC в CO 2 и H 2 O, а также от рециркуляции выхлопных газов и замедленного времени впрыска для снижения NO. х уровней.

        ССЫЛКИ

        Аркуманис, К. (Ред.) (1988) Двигатели внутреннего сгорания . Академическая пресса.

        Блэр, Г. П. (1990) Базовая конструкция двухтактных двигателей . Общество Автомобильных Инженеров.

        Фергюсон, К. Р. (1986) Двигатели внутреннего сгорания . Джон Вили и сыновья.

        Хейвуд, Дж. Б. (1988) Основы двигателя внутреннего сгорания . Макгроу Хилл.

        Стоун Р. (1992) Введение в двигатели внутреннего сгорания . Macmillan Education Ltd. 2-е изд.

        Уивинг, Дж. Х. (ред.) (1990) Техника внутреннего сгорания: наука и технологии . Прикладная наука Elsevier.

        Двигатели внутреннего сгорания | IFPEN

        Двигатель внутреннего сгорания автомобиля обычно содержит несколько камер сгорания . Каждый из них ограничен головкой блока цилиндров, цилиндром и поршнем.

        Архитектура двигателя также шарнирно закреплена вокруг системы коленчатого вала , что позволяет преобразовывать возвратно-поступательное движение (движение поршня) во вращательное движение (вращение коленчатого вала).


        Во время каждого цикла сжигание топливной смеси (воздушно-топливной смеси) в камере приводит к увеличению давления газа, который приводит в движение поршень и систему коленчатого вала. Поскольку коленчатый вал соединен с компонентами механической трансмиссии (коробки передач, приводные валы и т. Д.), Его движение приводит в движение колеса автомобиля.

        Коробка передач позволяет адаптировать скорость вращения колеса к скорости двигателя.

        Характеристики двигателя в первую очередь зависят от количества энергии, генерируемой при сгорании, а следовательно, от количества топливной смеси, присутствующей в камере сгорания.Таким образом, он напрямую связан с объемом камеры (единичный рабочий объем), количеством камер или цилиндров в двигателе (общий объем) и количеством впрыскиваемого топлива.

        Почему «4-х тактный»?

        Термин относится к тому факту, что для преобразования химической энергии, содержащейся в топливе, в механическую энергию требуется 4 отдельных хода. Каждый ход соответствует половине оборота коленчатого вала (одно движение поршня вверх или вниз).Такты 1 и 4 предназначены для перекачки газа (забора свежего газа и удаленных выхлопных газов), а такты 2 и 3 необходимы для подготовки к сгоранию с последующим сгоранием и его преобразованием в механическую энергию.

        Для двигателя с искровым зажиганием и непрямым впрыском используются следующие 4 такта:

        • 1 st ход : Впуск (наполнение цилиндра)
          Поршень опускается и втягивает топливовоздушную смесь.
        • 2 nd ход : Сжатие
          Поршень снова поднимается, сжимая топливно-воздушную смесь. Для воспламенения смеси образуется искра.
        • 3 ряд ход : Сгорание - расширение
          Этот ход соответствует развитию сгорания и расширению сгоревших газов: поршень сжимается, и химическая энергия преобразуется в механическую энергию.
        • 4 -й ход : Выхлоп (Сгоревшие газы отводятся из цилиндра)
          Поршень снова поднимается и удаляет сгоревшие газы.

        Для дизельного двигателя с воспламенением от сжатия и прямым впрыском 4 такта работают одинаково, с двумя отличиями:

        • Чистый воздух всасывается и сжимается во время тактов 1 и 2 , затем топливо вводится непосредственно в цилиндр (путем впрыска) в конце сжатия.
        • Смесь самовозгорается без искры из-за высокой температуры воздуха в результате его сжатия.

        Цетановое число / октановое число

        Цетановое число указывает на способность дизельного топлива самовоспламеняться.

        Октановое число указывает на способность бензина противостоять самовоспламенению и предотвращать неконтролируемое возгорание из-за электрической искры (ненормальное горение, детонация).

        Что такое горение?

        Теоретически для полного сгорания 1 г обычного топлива (бензина или дизельного топлива) требуется около 14.6 г воздуха. Эта идеальная смесь называется стехиометрической.

        Бензиновые двигатели с непрямым впрыском топлива в основном работают со стехиометрической смесью . После введения в двигатель гомогенной смеси воздуха и бензина сгорание (воспламенение смеси) инициируется искрой (искровое зажигание). Горение вызывает распространение фронта пламени, который проходит через камеру.

        Современные бензиновые двигатели с прямым впрыском : воздух поступает через впускное отверстие, а топливо, как в дизельном двигателе, поступает непосредственно в камеру сгорания, что позволяет более точно управлять впрыском.Вместо топливовоздушной смеси двигатель работает на так называемом стратифицированном заряде. Горение по-прежнему инициируется искрой (искровое зажигание).

        Дизельные двигатели работают с избытком воздуха . Дизель впрыскивается под давлением в предварительно сжатую воздушную массу. Возгорание инициируется самовоспламенением (воспламенение от сжатия). Сгорание называют расслоенным или неоднородным, поскольку оно происходит как в богатой топливом (расположенной рядом с соплом форсунки), так и в бедной (рядом со стенкой цилиндра) зонах.

        Топливо

        В Европе используются бензиновые или дизельные двигатели с искровым зажиганием. Бензин и дизельное топливо являются двумя основными конечными продуктами, получаемыми в результате переработки сырой нефти, и их состав меняется в зависимости от требований к двигателям и, что более важно, экологических норм, связанных с качеством воздуха и сокращением выбросов парниковых газов.

        Биотопливо можно смешивать непосредственно с бензином и дизельным топливом в различных пропорциях без необходимости адаптации двигателей, тем самым извлекая выгоду из существующих распределительных сетей.Во Франции дизельное топливо B7, продаваемое на заправке, обычно содержит до 7% (по объему) биотоплива и бензина E10 до 10%.

        Краткая история двигателя внутреннего сгорания - _ памятует

        18 апреля 2019 г.

        Можно было ходить пешком, верхом или в экипаже - после изобретения колеса возможности для путешествий по суше стали недоступны человечеству. развивалась 4000 лет. Это не изменилось до появления новаторов и изобретателей в конце 19 века.После того, как железная дорога сделала возможным перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

        Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания для удивления: трехколесная повозка, напоминавшая нечто среднее между конным экипажем и велосипедом, катилась по улицам их городов. .За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала. Женщину звали Берта Бенц, подростками - ее сыновья Ричард и Ойген, а транспортным средством - запатентованный Бенц автомобиль № 3.

        Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме.«Нет никаких сомнений в том, что у этого моторизованного велосипеда скоро появится множество друзей», - было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года. И все же первые попытки найти покупателей, готовых вложить деньги в этот «бензиновый вагон», не увенчались успехом. , а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив своего колеблющегося мужа заранее.Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

        Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху.К 1893 году было продано 69 автомобилей, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены. На рубеже веков компания Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

        Обзор трансмиссии: Двигатель внутреннего сгорания

        С момента создания первого современного автомобиля почти полтора века назад на рынке преобладал один вариант двигателя - бензиновый двигатель внутреннего сгорания.Теперь у бензинового двигателя внутреннего сгорания есть претенденты, пытающиеся украсть корону. В прошлом было много различных типов двигателей, но многие из них работали исключительно на ископаемом топливе.

        В последнее время из-за повышения стандартов экономии топлива и осведомленности о выбросах появляется новое поколение двигателей. Многие полагаются на электричество в качестве источника энергии для автомобиля. С этими новыми электростанциями добавлен новый набор правил и предупреждений о том, как их ремонтировать. Многие специалисты по столкновениям имеют представление о том, как работают некоторые из новых силовых агрегатов, но не полностью понимают, что происходит под капотом.Важно понимать внутреннюю работу двигателя, чтобы безопасно и правильно диагностировать и отремонтировать его после столкновения. В этой серии мы расскажем вам о многих текущих вариантах двигателей и о том, как они преобразуют потребляемое топливо в полезную мощность. Давайте рассмотрим бензиновый двигатель внутреннего сгорания.

        В двигателях внутреннего сгорания топливо используется для создания взрыва (силы), который перемещает поршень вниз. Несмотря на то, что существует множество различных конструкций двигателя внутреннего сгорания, для его запуска необходимы три важных компонента: топливо для сжигания, кислород для поддержки горения и источник воспламенения для начала горения.В этих трансмиссиях используется система аккумуляторных батарей 12 В для запуска автомобиля и питания аксессуаров. Аккумулятор заряжается генератором переменного тока, приводимым в действие двигателем.

        Поршень прикреплен к коленчатому валу через шатун, который преобразует движение поршня вверх и вниз во вращательную силу. Это вращение затем используется для включения трансмиссии, заставляя автомобиль двигаться. Во время работы двигателя он также заряжает аксессуары автомобиля и заряжает аккумулятор. Для ремонта при столкновении это стандартный двигатель, который использовался десятилетиями.

        Современные двигатели внутреннего сгорания содержат значительное количество чувствительных электрических компонентов. В связи с этим крайне важно отключить и изолировать аккумулятор и электрическую систему при ремонте и сварке автомобиля. Дополнительный электрический ток от сварки может повредить важные электрические компоненты двигателя. Наконец, охлаждение и смазка двигателя - основная часть двигателя внутреннего сгорания. Тепло, образующееся при сгорании, необходимо отводить, а масло может нуждаться в охлаждении.Это делает передний радиатор критически важным для работы двигателя, и при его замене следует соблюдать соответствующие процедуры.

        Дополнительные новости о ремонте при столкновении I-CAR, которые могут оказаться полезными:
        Обзор трансмиссии


        Связанные курсы I-CAR

        Курс «Трансмиссия и система трансмиссии, анализ работы и повреждений»

        Курс «Устранение неисправностей и обслуживание силового агрегата и систем трансмиссии»

        .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *