Поршневой двигатель: ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия

Содержание

Роторно-поршневой двигатель

Купе “Mazda RX-8” оснащено новейшим роторно-поршневым двигателем “Renesis”.

Этот РПД стал одним из лауреатов конкурса “Лучший двигатель 2003 года”.

РОТОРНО-ПОРШНЕВОЙ двигатель (РПД) работает по тому же четырехтактному циклу, что и обычный мотор. Но их конструкции кардинально различаются.

Вместо поршня в РПД используется похожий на треугольник ротор-“дельтроид”. Он вращается внутри статора сложной формы, постоянно касаясь его своими вершинами. То есть в корпусе двигателя образуются три полости переменного объема (в каждой из которых и происходит рабочий процесс). Через специальные каналы в них подаются воздух и топливо, а также выводятся наружу выхлопные газы. Открывает и закрывает трубопроводы сам ротор, поэтому привычного механизма газораспределения здесь нет. Рабочая смесь воспламеняется с помощью обычной свечи зажигания. Крутящий момент от ротора передается через зубчатую передачу на эксцентриковый вал, а с него – на трансмиссию автомобиля. Устанавливая друг за другом несколько подобных “секций”, конструкторы получают двигатель необходимой мощности.

Чем же роторно-поршневой мотор лучше традиционного ДВС? Прежде всего РПД намного легче и компактнее (примерно в 23 раза), к тому же он состоит из меньшего количества деталей. Отсутствие перемещающихся вверх-вниз деталей поршневой группы снизило вибрации. Кроме того, двигатель Ванкеля мощнее и может раскручиваться до более высоких оборотов. Например, с 1,3 л рабочего объема при 7.0008.000 об/мин инженеры снимают 200-230 л.с. Впечатляет..

Но изготовление таких двигателей обходится недешево. Дабы обеспечить необходимую долговечность вершин ротора и рабочей поверхности статора, приходится использовать дорогие материалы и технологии.

Но это еще полбеды. Из-за сложной формы рабочих полостей процесс сгорания смеси неоптимален. Как результат – РПД менее экономичен и обладает очень ядовитым выхлопом. Чтобы уложиться в современные экологические нормы, конструкторам приходится идти на различные технические ухищрения. Сегодня лишь немногие автомобильные фирмы могут позволить себе финансировать подобные разработки. Одна из таких компаний – “Mazda”, традиционно уже много лет выпускающая спортивные купе, оснащенные роторно-поршневыми двигателями.

 

Автор
Виталий ЮРЬЕВ
Издание
Клаксон №10 2007 год

ФПИ: В России разработан высотный авиационный роторно-поршневой двигатель

6 февраля 2020 г., AEX.RU –  В рамках совместного проекта Фонда перспективных исследований (ФПИ) и Центрального института авиационного моторостроения (ЦИАМ) имени П.И. Баранова разработан перспективный авиационный односекционный турбированный роторно-поршневой двигатель (РПД). При рабочем объеме 0,4 литра и весе роторно-статорного модуля РПД в 28 килограммов достигнутое при моторных определительных испытаниях максимальное пиковое значение мощности составило более 120 лошадиных сил. Об этом сообщает пресс-служба ФПИ.

Основная задача, которая стояла перед разработчиками нового двигателя – ликвидация недостатка РПД, а именно низкого ресурса основных элементов двигателя и повышение общего ресурса силовой установки при улучшении ее высоких удельных характеристик. Решение состояло в применении в конструкции композиционных металлокерамических материалов нового поколения с высокими физико-механическими характеристиками. Композиты, в частности, применены в износостойкой вставке статора, радиальных, маслосъемных и торцевых уплотнениях ротора, подшипниковых узлах, износостойком покрытии эксцентрикового вала, рассказали в ФПИ.

В двигателе также используется специально разработанная уникальная система турбонаддува, часть ее элементов изготовлена с помощью аддитивных технологий  с использованием отечественного сырья. Также разработана отечественная электронная система управления двигателем и спроектирована современная система топливоподачи.

«Правильность выбора указанных конструкторских и технологических решений подтверждена в ходе полного комплекса стендовых испытаний. В частности, проведены круглосуточные ресурсные испытания продолжительностью более 250 часов по самолетному и вертолетному циклам работы. Последующие дефектовки подтвердили крайне низкий износ деталей на уровне допустимых износов деталей классических ДВС и лучших РПД. На основании проведенных экспериментальных исследований по утвержденным методикам Центрального института авиационного моторостроения определен межремонтный ресурс двигателя в 1000 часов и полный ресурс – 5000 часов», — отметили в ФПИ.

Также в ходе высотно-климатических испытаний на уникальном стенде УВ-3К с термобарокамерой подтверждена возможность стабильной эксплуатации РПД в широком диапазоне температур — от -63,8°С до +52°С и высот — до 10 000 метров, а также возможность поддержания взлетной мощности до высоты 7 000 метров. Двигатель способен работать на различных видах топлива, в том числе на газе, авиационном и автомобильном бензине.

Основные сферы применения перспективного двигателя— беспилотные летательные аппараты, легкомоторная авиация, робототехнические платформы различного назначения, в составе генераторов гибридных силовых установок, в качестве лодочных и автомобильных моторов.

Интерес к инновационной разработке российских ученых уже проявили ведущие предприятия авиастроительной отрасли, компании, специализирующиеся на производстве техники для активного отдыха, и представители Министерства обороны Российской Федерации.

Поршневой двигатель самолета.

 

История поршневых двигателей насчитывает на несколько десятилетий больше, чем история самой авиации. Они сдвинули с места первый автомобиль, подняли в небо первый самолет и первый вертолет, прошли две Мировые войны и до сих пор используются в 99.9% автомобилей мира. Однако в авиации на сегодняшний день поршневые двигатели практически полностью вытеснены газотурбинными двигателями и используются исключительно в малоразмерных персональных либо спортивных самолетах.

Это произошло по причине того, что даже самый простой и неэффективный газотурбинный двигатель имеет большую удельную мощность (единица мощности на единицу массы двигателя), чем самый современный поршневой, а в авиации масса – исключительно важный параметр.

Кроме того, газотурбинный двигатель более универсальный и может двигать самолет за счет реактивной струи, исключительно этот факт позволил самолетам достичь скоростей в 2, 3 или даже 4 раза выше скорости звука.

Но вернемся к поршневым двигателям. Как же они устроены? На схеме продемонстрировано устройство цилиндра четырехтактного бензинового двигателя воздушного охлаждения: 1 – впускной патрубок (подача топливно-воздушной смеси в цилиндр), 2 – стенка цилиндра (в данном случае ребристая с внешней стороны, для повышения охлаждаемой площади, поскольку цилиндр имеет воздушное охлаждение), 3 – поршень (возвратно-поступательным движением обеспечивает впуск смеси, ее сжатие, получение энергии и дальнейший вывод отработанных газов), 4, 5 – шатун и коленвал (преобразование возвратно-поступательного импульса в крутящий момент), 6 – свеча зажигания (дает искру, которая поджигает смесь), 7 – выхлопной патрубок (вывод отработанных газов), 8 – впускной и выпускной клапаны («открывают» цилиндр для входа смеси (впускной) и выхода отработанных газов (выпускной), герметизируют цилиндр во время сжатия и воспламенения. Следует отметить, что изображен лишь пример конструкции, но ее вариации могут быть значительными, к примеру цилиндры дизельных двигателей не имеют свечей зажигания, а если двигатель жидкостного охлаждения – отсутствуют «ребра», но присутствуют каналы для прогона охлаждающей жидкости и т.д. По количеству тактов (действия, происходящие поочередно в цилиндре двигателя) различают 3 типа двигателя – двухтактный, четырехтактный и шеститактный. Наиболее широко используемым является четырехтактный двигатель, четыре его такта показаны на схеме.

Коэффициент полезного действия самых современных поршневых двигателей не превышает 25-30%, т.е. реально около 70% всей энергии, получаемой во время сгорания топлива, превращается в тепло, которое необходимо выводить из двигателя. Система охлаждения очень важный компонент в силовой установке и во многом определяет ее характеристики.

По типу вывода тепла (иначе охлаждения) двигатели подразделяются на воздушный и жидкостный тип.

И если в автомобилях воздушное охлаждение практически не используется, из-за своей низкой эффективности на малых скоростях и ее полного отсутствия при остановке, то в поршневой авиации двигатели воздушного охлаждения очень и очень широко используются, ведь имеют ряд преимуществ перед двигателями жидкостного охлаждения. А именно меньшая масса, соответственно большая удельная мощность и более простая, а значит и более надежная конструкция. Кроме того, из-за большой силы набегающего потока во время полета, эффективность охлаждения обычно достаточна для нормальной работы двигателя.

 

Большинство поршневых двигателей – многоцилиндровые, это необходимо для повышения мощности и общей их эффективности. В связи с этим их классифицируют по расположению цилиндров относительно коленвала. В пик своего развития, авиационные двигатели имели до 24 цилиндров, а некоторые, несерийные экземпляры и более. И основными, наиболее широко используемыми вариантами расположения цилиндров является V-образное, рядное и звездообразное.

Различить их нетрудно, ведь если смотреть спереди они и выглядят как буква V в первом случае, один ряд (колонна) – во втором случае, и звезда (или при наличии большого количества цилиндров — скорее блюдечко) в третьем. Традиционно два первых типа используют систему жидкостного охлаждения,  в то время как последний – воздушного. Соответственно кроме вышеназванных преимуществ и недостатков двигателей по типу их охлаждения, можно еще добавить, что рядные двигатели компактные, могут быть установлены в перевернутом положении, но при наличии большого количества цилиндров, они получаются очень уж длинными.

V-образные имеют 2 цилиндра в ряду, соответственно они имеют в два раза меньшую длину, чем рядные, но зато менее компактны, хотя также могут быть установлены в перевернутом положении, имеют большее фронтальное сечение, а значит и большее лобовое сопротивление.

Звездообразные, или радиальные двигатели, имеют цилиндры, распложенные вокруг коленвала, соответственно они наиболее громоздкие, имеют просто таки огромное фронтальное сечение и лобовое сопротивление, но благодаря этому могут эффективно охлаждаться набегающим потоком и имеют очень незначительные показатели длины.

Другие агрегаты

Длинноходные и короткоходные моторы – в чем разница, и какие лучше?

Средняя скорость, и какой она бывает

Для понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

В этом году отмечается полувековой юбилей сразу двух знаковых для истории автомобилестроения моделей. Немецкий NSU Ro 80 и «японка» Mazda Cosmo стали первыми автомобилями с роторным двигателем, подходившими под определение «массовые». Но, увы, изобретенному инженерами фирмы NSU Ванкелем и Фройде новому типу двигателя внутреннего сгорания так и не удалось завоевать мир.

После создания в конце XIX столетия поршневого двигателя внутреннего сгорания прогресс в этой области пошел по пути разработки уже имеющейся концепции. Инженеры создавали все более мощные и совершенные двигатели, но суть оставалась все той же — в цилиндрическую камеру тем или иным способом попадало топливо, образовывавшиеся после сгорания топлива газы толкали поршень. И только в конце 1950-х два немецких инженера, работавшие в известной тогда своими мотоциклами фирме NSU Феликс Ванкель и Вальтер Фройде, предложили принципиально новую конструкцию.

В их двигателе цилиндры отсутствовали как класс: установленный на валу трехгранный ротор был жестко соединен с зубчатым колесом, входившим в зацепление с неподвижной шестерней — статором. По сравнению с обычным поршневым мотором внутреннего сгорания, двигатель Ванкеля (как он стал известен по имени одного из создателей) имел меньшие в 1,5-2 раза габариты, большую удельную мощность, меньшее число деталей (два-три десятка вместо нескольких сотен), а также — за счет отсутствия коленвала и шатунов — более высокие динамические показатели. Впрочем, были и недостатки, с которыми так и не удалось справиться за все время выпуска автомобилей с роторными двигателями: довольно высокий расход топлива на низких оборотах, повышенное потребление масла и сложность в производстве (из-за необходимости точности геометрических форм деталей).

NSU Spider

Фото: Science Museum / Globallookpress.com

Любопытно, что сам Ванкель не умел водить автомобиль и не имел водительских прав — поскольку с раннего детства страдал сильной близорукостью. Это, впрочем, не помешало ему доработать первоначально мотоциклетный движок под нужды автопрома, и в 1964 году NSU выпустила первый в мире серийный роторный автомобиль — кабриолет NSU Spider на базе заднеприводной модели Sport Prinz. Машина выпускалась ограниченной серией (за три года было собрано 2375 экземпляров) и была довольно дорога, в пересчете на нынешние деньги — около 22 тысяч долларов за двухместную малолитражку длиной 3,6 метра.

В 1967 году на рынок вышли сразу две модели с роторными двигателями, ставшие действительно массовыми. NSU представила топовый седан Ro 80, а японская фирма Mazda — спортивное купе Cosmo, первое в полувековой череде машин с двигателем Ванкеля в своей линейке. Немецкая машина, увы, оказалась довольно капризной и «сырой», хотя и была признана «автомобилем года-1968» в Европе. Постоянные рекламации и необходимость дорогостоящего ремонта уже проданных авто привели компанию практически к банкротству — в 1969 году она была куплена концерном Volkswagen и слита в одно подразделение с маркой Audi. Производство Ro 80 тем не менее продолжалось до 1977 года; всего было выпущено более 37 тысяч автомобилей. Передовой для конца 1960-х дизайн кузова, сперва не оцененный потребителями, оказал впоследствии влияние, в частности, на популярную модель Audi 100.

NSU Ro 80

Фото: CPC Collection / Alamy / Diomedia

Кстати, лицензию на «ванкель» купил и СССР. 140-сильным роторным двигателем оборудовались версии вазовских «пятерок» и «семерок» для милиции и КГБ. Внешне они не отличались от серийных машин, но на дороге демонстрировали необходимую резвость. В 1990-е малой серией выпускались и «гражданские» 2108 и 21099 с роторным мотором ВАЗ-415, также абсолютно идентичные по дизайну кузова с «нормальными». Обманчивая внешность породила множество шоферских легенд: неприметная «девятка» вдруг срывалась с места и обгоняла солидный BMW (разгон до сотни у роторной версии занимал 9 секунд, а максимальная скорость достигала 190 километров в час).

Экспериментировали с двигателем Ванкеля и французы из Citroen. Однако модель GS Birotor с двухроторным двигателем вышла на рынок в октябре 1973 года — точно в месяц начала крупнейшего нефтяного кризиса. Машина стоила на 70 процентов дороже стандартной модели GS с четырехцилиндровым мотором, а топлива потребляла больше, чем представительская DS. В результате удалось с большим трудом продать 847 экземпляров, после чего производство было свернуто.

В конечном счете на рынке «ванкелей» осталась только Mazda, продолжавшая совершенствовать двигатель и выпустившая около 20 моделей с роторным двигателем. Инженерам японской компании удалось повысить экономичность и снизить объем токсичных выхлопов (еще одна «врожденная болезнь» роторных двигателей), но даже со всеми усовершенствованиями последняя выпускавшаяся роторная модель, RX-8, не соответствовала нормам Евросоюза. В 2010 году ее прекратили продавать в Европе, а в 2012-м было свернуто производство и для других рынков. Спортивные роторные модели Mazda, однако, за почти полвека производства успели завоевать поклонников во многих странах, включая нашу. Вот что рассказывает о своей RX-8 москвич Олег, автолюбитель со стажем:

«Приобрести RX-8 я решил вовсе не из-за роторного двигателя, а скорее вопреки ему. Но ничего похожего на рынке тогда не было: полноценное четырехместное купе с дверями, которые по старой памяти именуют suicide doors — разве что Rolls-Royce. А еще эти «надбровные дуги» над передними колесами… Однако все, с кем я делился идеей, крутили пальцем у виска: «больше 30 тысяч ротор не ходит», «масла жрет столько же, сколько и бензина», «а бензина — как американский грузовик», «ниже нуля не заводится» и так далее. «Зато не угонят», — решил я. Машина пришла зимой, и первые же недели показали, что перемещение по заснеженной Москве не то что бы совсем невозможно, но требует очень крепких нервов — машина норовила уйти в занос в каждом повороте или забуксовать там, где легко проезжала любая переднеприводная малолитражка. Но, как назло, даже в лютый мороз заводилась исправно. Да и сколько той зимы.

Mazda RX-8

Фото: National Motor Museum / Heritage Images / Getty Images

Снег сошел, и Mazda, наконец, оказалась в своей стихии. Да, масло (каждую тысячу приходилось открывать капот и доливать до рисочки), да, расход (в особенно хорошие дни бывало и больше 20 литров на сотню), но все это компенсировалось возможностью обмануть слух окружающих и, раскрутив двигатель до 9000 оборотов, прикинуться гоночным мотоциклом. Точный руль, задний привод и 230 лошадиных сил превращали любую, еще не изобиловавшую тогда камерами дорогу, в гоночный трек практически без моего участия. Даже стоя под окном, машина, казалось, куда-то ехала. Из-под этого окна, разоблачив тем самым еще один миф, ее и угнали. К тому времени, несмотря на то, что роторного двигателя побаивались даже «официалы», машина прошла 70 тысяч километров без намеков на какие-либо неполадки.

Audi A1 E-Tron Concept

Фото: Adrian Moser / Bloomberg / Getty Images

Хотя производство серийных автомобилей с роторным двигателем прекратилось еще пять лет назад, разработчики, похоже, не собираются навсегда расставаться с «ванкелем». Перспективными в этом смысле представляются гибридные силовые установки — благодаря малому размеру роторно-поршневого двигателя. Так, Audi в 2010 году продемонстрировала в Женеве гибридный прототип A1 e-tron concept с 60-сильным электромотором и двигателем Ванкеля рабочим объемом всего 250 кубических сантиметров, развивающим мощность 20 лошадиных сил и выполняющим фактически функцию генераторной установки.

Принцип работы двигателя со встречным движением поршней

Уникальные двигатели с поршнями напротив друг друга: Видео

 

Двигатели с расположенными напротив друг друга горизонтально лежащими поршнями имеют два распространенных в мире названия. У нас их называют оппозитными моторами. На английский же манер их название звучит как «boxer engine», поскольку движение их противолежащих цилиндров напоминает боксерскую пробивку. Но на самом деле, не тому двигателю американцы дали «боксерское» название. Уж, если кто и был достоин носить такой титул, так это герой нашей сегодняшней небольшой статьи, у которого поршни и в самом деле летят на встречу друг другу, в большом едином для них цилиндре. Это силовые агрегаты со встречным движением поршней (ПДП, двигатель с противоположно-движущимися поршнями) или как их еще называют: противоположено-поршневые двигатели. Их работа действительно завораживает:

 

 

Эти силовые агрегаты насчитывают историю протяженностью более 117 лет (паровые аналоги схожей по концепции конструкции были замечены уже в конце 1800-х годов). Причем самое поразительное, что с момента появления первого экземпляра карбюраторного двигателя подобной конструкции во Франции (концепцию и рабочий прототип был разработан компанией Gobron-Brillie), до последних наработок до 2015 года включительно, компанией «Achates Power» занимающейся проблемой внедрения оппозитно-поршневых силовых агрегатов, этот тип двигателей непрерывно улучшался и множество раз попадал в поле зрения как гражданских (редко), так и военных производителей (чаще всего, разработки для военных ведутся по сей день). Но реальной популярности уникальный поршневой двигатель внутреннего сгорания так и не добился.

 

Интересно, что большой вклад в такую необычную конструкцию ДВС внес инженер Коломенского завода, Раймонд Александрович Корейво, построивший первый в мире дизельный прототип подобного двигателя. Модель оказалась настолько удачной, что немецкая компания Junkers не смогла устоять от соблазна перенять конструкцию. Не остановил немцев даже патент, дальновидно полученный русским инженером во Франции. Патентное право в те времена в будущем ЕС работало не очень хорошо.

 

Далее и параллельно с этим конструкция двигателей развивалась в США, Англии, Германии. Позднее, работы по модернизации и применению моторов на военной технике, в том числе на самолетах, судах и танках проводились в СССР.

 

По своей конструктивной сути, двигатель внутреннего сгорания с движущимися навстречу друг другу поршнями, это двухтактный мотор без головки блока цилиндров у которого установлены два отдельных коленчатых вала, на которых две пары поршней соединены с поршнями, работающими в одном цилиндре.

 

Поршни встречаются (зазор при работе получается настолько минимальный, что они буквально касаются друг друга) в центре цилиндра. Там расположена верхняя мертвая точка (ВМТ) обоих поршней. Топливовоздушная смесь подается через отверстия по бокам цилиндра. Через них же, выпускаются отработавшиеся газы, толкаемые движением поршней.

 

Вот упрощенная схема работы данного типа ДВС:

 

Поскольку эти двигатели двухтактные, они редко использовались в автомобильной промышленности, поскольку не соответствовали элементарным экологическим допускам и подходили только для дешевых автомобилей низшего класса в прошлом. Они много дымили, надрывно рычали, но ехали посредственно.

 

К минусам также можно было отнести повышенный расход топлива и сложность конструкции с двумя кривошипами двухпоршневой системы. Это сделало конструкцию прошлых лет неоправданно дорогой и сложной в изготовлении по сравнению с небольшими компактными двухтактными моторами.

 

Однако, со современными материалами и опытом доводки более чем столетней конструкции у подобных поршневых ДВС есть и неоспоримые преимущества. Так, прототипы дизельных двигателей с вертикально ориентированными цилиндрами от компании Achates Power имеют крайне высокую степень тепловой эффективности, от 40 до 50%, в основном за счет меньшей площади стенок цилиндров. При условии, что обычный четырехтактный дизельный мотор обладает лишь 35 процентной эффективностью, прибавка в 5 или даже 15% является значительной.

 

Плюс к этому, конструкция облегчается и несколько упрощается за счет отсутствия головки блока цилиндров, коромысел распредвала, клапанов, пружин клапанов и т.д.

 

У мотора также лучшее соотношение внутреннего диаметра цилиндра к ходу поршня, что позволяет совершать максимально большое количество полезной работы. Смешивание и возгорание смеси здесь происходит быстрее.

 

Achates Power в настоящее время разрабатывает двигатели для военных автомобилей, но они выпустили видеоролики, которые свидетельствуют о том, что массовое производство дизельных двигателей также может быть не за горами:

 

У 2.7-литрового дизельного ДВС 270 л. с. (!) и 650 Нм крутящего момента.

 

В общем, интересно, как современные инженеры решат давние проблемы концепции у истоков которой стояли французы и русские изобретатели и каким образом двухтактные движки смогут быть использованы на гражданских транспортных средствах, при том условии, что экологические нормы постоянно ужесточаются, а экология этих ДВС никогда не была на высоте.

Повышение эксплуатационного ресурса поршневого двигателя

Поршневые двигатели широко используются для получения энергии в различных областях науки и техники, в первую очередь в автомобильной промышленности. В процессе проектирования, крайне важно быть уверенным в том, что все части двигателя способны выдерживать высокие напряжения и нагрузки, что в свою очередь продлевает срок его эксплуатации. В данной статье мы проанализируем износ шатунов двигателя.

Преобразование давления во вращательное движение

Большинство двигателей современных средств передвижения используют возвратно-поступательный поршневой механизм в качестве источника своей энергии. В поршневом двигателе внутреннего сгорания, топливо смешивается с окислителем в камере сгорания. Сгорание заставляет газы расширяться, оказывая давление на поршень двигателя и выталкивая его из камеры. Линейное перемещение поршня преобразуется во вращательное движение посредством шатуна, который соединяет поршень с коленчатым валом. Это непрерывное движение вызывает большие напряжения в шатуне — нагрузка, которая возрастает с увеличением оборотов двигателя.

В поршневых двигателях, решающее значение имеет анализ работы каждого компонента, поскольку отказ одной части часто означает замену всего двигателя. Для оптимизации конструкции двигателя и гарантии длительного срока его эксплуатации, можно проанализировать работу шатунов с точки зрения их износостойкости.

Механические напряжения и усталость поршневого двигателя

В модели расчета многоцикловой усталости при возвратно-поступательном движении поршня рассматривается пример трех-цилиндрового поршневого двигателя, собранный в модуле Динамика многотельных систем. В этом двигателе маховик установлен в коленвале, и эта сборка поддерживается с обоих концов подшипниками скольжения. Данная модель содержит три комплекта цилиндров, поршни и идентичные шатуны. Шарнирные стыки используются для соединения нижних концов шатунов к общему коленвалу, а также для соединения поршней и шатунов в вершней части. Призматическое соединение используется для соединения каждого из цилиндров с поршнем.


Геометрия двигателя.

Предполагается, что кроме подвижной центральной части шатуна, все остальные компоненты двигателя являются жесткими. Цилиндры закреплены, а другие части двигателя имеют возможность свободно перемещаться в пространстве. Двигатель в сборке работает в режиме 1000 оборотов в минуту, при этом данные для конструкционной стали показывают, что предел усталости наступает при 210 МПа.

Наш анализ начинается с расчета временной зависимости напряжения в центральной части шатуна, так как концентрация напряжений, в силу геометрических соображений, предполагается именно в этой области. После нескольких оборотов, двигатель выходит на стационарный режим. Начиная с третьего цикла, зависимость напряжения от времени практически повторяется для каждого цикла, как показано на графике ниже. Третье главное напряжение преобладает во временной зависимости напряжения шатуна, так как часть его подвергается сжатию все время. Поскольку значения первого и второго главных напряжений малы по сравнению с третьим, мы можем рассматривать напряженное состояние в центральной части шатуна, как одноосное. Так как напряжения по Мизесу больше подходят для многоосной нагрузки, мы используем главное напряжение в качестве амплитуды напряжения в соотношении Баскина.


Временная зависимость напряжения в центральной части шатуна.

Следующий рисунок связан с прогнозом усталостной долговечности шатуна — времени до его усталостного разрушения. Сфокусируем наше внимание на центральной части около верхнего конца шатуна. Согласно модели Баскина, усталостная долговечность предсказывается на уровне двадцати пяти миллиардов циклов, что является чрезвычайно хорошим показателем. Хотя предел прочности не определяется в модели Баскина, соотношение может быть использовано для обратного расчета усталостной долговечности исходя из напряжения выносливости — 245 миллионов циклов. Поскольку прогноз модели дает большее значение времени жизни, чем обратные вычисления усталостной долговечности при пределе выносливости, мы можем предположить, что напряжение внутри сборки двигателя лежит ниже предела усталости, которое, как мы отмечали ранее, составляет величину 210 МПа для используемого материала, и, таким образом, шатун имеет неограниченный срок эксплуатации.


Прогноз усталостной долговечности шатуна.

Первоначальный график временной зависимости напряжения также показывает, что шатун спроектирован с неограниченным ресурсом эксплуатации. С диапазоном главного напряжения около 110 МПа, амплитуда напряжения имеет значение близкое к 55 МПа, что ниже усталостного предела для материала.

Попробуйте сами

Основы поршневого двигателя

— AOPA

Это не двигатель в Oldsmobile вашего отца

Марк Э. Кук

По сравнению с автомобильными или мотоциклетными двигателями поршневые двигатели самолетов более просты и, как некоторые говорят, примитивны. Тем не менее, пока вы учитесь летать, этот старый дрожащий шумогенератор перед брандмауэром таит в себе и тайну, и тревогу. Что там происходит? Будет ли он продолжать движение, пока я пересечу эту линию гребня?

Вероятно, вы много слышите о авиационных двигателях, которые находятся на одном уровне в пищевой цепочке от обычных газонокосилок или садовых тракторов, и это правда, если не считать самых грубых упрощений.Силовые установки самолетов — это, за исключением нескольких повстанцев, упрощенные, с воздушным охлаждением, горизонтально расположенные, четырехтактные устройства внутреннего сгорания с низкими рабочими скоростями и низкой удельной мощностью. Если бы вам пришлось описать автомобильный эквивалент, наиболее близкий к среднему авиационному, вы бы указали на почтенный двигатель Volkswagen Beetle.

Как и в случае с народным автомобилем, в подавляющем большинстве поршневых авиационных двигателей, используемых сегодня, используется цикл Отто, изобретенный Николаусом Августом Отто в 1876 году. Эти двигатели, также называемые четырехтактными или четырехтактными, содержат цилиндр, в который вставлен поршень. ; Поршень воздействует на коленчатый вал через шатун.Коленчатый вал, который в большинстве самолетов прикреплен болтами непосредственно к гребному винту, преобразует линейные (вперед и назад) движения поршня во вращательную работу.

В схеме цикла Отто есть четыре различных цикла, различающихся ходами поршня внутри цилиндра. При первом такте поршень движется вниз, втягивая топливо и воздух через кошмар домовладельца по водопроводу в камеру сгорания внутри цилиндра. Во втором такте поршень поднимается в канале ствола, сжимая эту смесь.Топливо в простом виде не отличается особой летучестью — то есть не загорится ни при малейшей провокации. Но в сжатом виде будет. Типичные авиационные двигатели пытаются сжать эту топливно-воздушную смесь в 6,5-8,5 раза; это называется степенью сжатия. Степень сжатия фактически измеряется путем определения объема всего цилиндра с поршнем в нижней мертвой точке хода (нижняя мертвая точка) до объема с поршнем в верхней мертвой точке хода (верхняя мертвая точка).Общий объем всех цилиндров, измеренный при НМТ, называется смещением. Таким образом, 1,6-литровый двигатель в вашем автомобиле имеет рабочий объем 1,6 литра (около 96 кубических дюймов), а Lycoming O-235 имеет рабочий объем около 235 кубических дюймов.

После того, как поршень сжал смесь, свеча зажигания (или две в авиационных приложениях) зажигает смесь. Возникающий в результате взрыв толкает поршень в сторону НМТ и называется рабочим ходом. При последнем движении вверх по стволу поршень выталкивает отработанные газы через выхлопную систему в небо.

Движение впускных и выхлопных газов в цилиндр и из него регулируется клапанами в форме тюльпана, расположенными в верхней части головки цилиндров. Клапаны, в свою очередь, активируются короткими коромыслами через длинные толкатели (вы найдете их над коленчатым валом на большинстве Lycoming и ниже на Continentals). Распределительный вал, в основном стальной стержень с яйцевидными выступами по длине, приводит в действие толкатели с помощью подъемников размером с пленочную банку (или гидравлических регуляторов зазора) в корпусе двигателя, непосредственно примыкающего к распределительному валу и коромыслам на клапанной стороне толкателей. .

Чтобы лучше понять компоновку оборудования, давайте посмотрим на Lycoming O-235, используемый в Cessna 152; другие распространенные типы, такие как Continental O-200 в Cessna 150 и другие версии силовых установок обеих марок, имеют одинаковую базовую компоновку. Между прочим, эти номера моделей что-то означают. О означает «против»; ряды цилиндров расположены на 180 градусов друг от друга или плоские, как у двигателя Beetle. (Умные инженеры иногда называют эти 180-градусные V-образные двигатели, но что они знают?) Следующее число — это общий объем двигателя в кубических дюймах, округленный до ближайшего 0 или 5.Буква I в префиксе означает впрыск топлива. Для Continentals приставка TS означает «с турбонаддувом» или «с турбонаддувом», а для Lycomings вы найдете приставку T. Наличие буквы G в приставке указывает на редукторный двигатель, у которого пропеллер вращается медленнее, чем сам двигатель; Однако подавляющее большинство популярных двигателей имеют прямой привод. Эти приставки являются аддитивными, так что GTSIO-520 — это двигатель объемом 520 кубических дюймов с турбонаддувом и оппозитным двигателем. Суффиксы к смещению обозначают вариации типа.Lycoming O-235-C2A — это, например, 115-сильный вариант двигателя, а O-235-F2A — на 10 лошадиных сил больше.

Вот и цифры. Проще говоря, двигатель внутреннего сгорания вырабатывает энергию, преобразуя тепло в движение. Тепло исходит от горения топлива (в сочетании с большим количеством воздуха, обычно в соотношении 15: 1). Поскольку они имеют воздушное охлаждение, в цилиндрах используются тонкие ребра — в отличие от Cadillac 1959 года — для содействия передаче тепла, производимого в процессе сгорания, воздушному потоку, направляемому вокруг них через капот и металлические перегородки вокруг цилиндров.

Цилиндр состоит из литой алюминиевой головки, которая постоянно — по крайней мере, для пилота — соединена со стальным стволом, на который можно наносить покрытие или обрабатывать с помощью любого количества процессов.

Если вы сравните средний авиадвигатель с новейшими двигателями из Германии, Японии или Детройта, вы будете сильно разочарованы. Вы не найдете высокотехнологичного электронного впрыска топлива, верхних распределительных валов, сверхвысоких скоростей или приемлемой для инженеров высокой удельной мощности.Но двигатели рассчитаны на длительную работу на максимальной номинальной мощности; 2000 часов в автомобиле — это 110 000 миль, и автомобиль потребляет в среднем около 20 процентов мощности. Подумайте об этом, когда пересекаете следующую линию гребня во время поездки по пересеченной местности.

Поршни двигателя внутреннего сгорания — x-engineer.org

Поршень является составной частью двигателя внутреннего сгорания. Основная функция поршня — преобразовывать давление, создаваемое горящей топливовоздушной смесью, в силу, действующую на коленчатый вал.Легковые автомобили имеют поршни из алюминиевого сплава, а грузовые автомобили также могут иметь поршни из стали и чугуна.

Поршень является частью коленчатого вала (также называемого кривошипно-шатунным механизмом ), который состоит из следующих компонентов:

  • поршень
  • поршневые кольца
  • шатун
  • коленчатый вал

Изображение: Привод коленчатого вала двигателя (кривошипно-шатунный механизм) Предоставлено: Rheinmetall

Поршень также выполняет второстепенные функции двигателя :

  • способствует отводу тепла , образующемуся при сгорании
  • обеспечивает уплотнение камеры сгорания, предотвращает утечки газа из него и проникновение масла в камеру сгорания
  • направляет движение шатуна
  • обеспечивает непрерывную смену газов в камере сгорания
  • создает переменного объема в камере сгорания

Изображение: поршни Kolbenschmidt
Кредит: Kolbenschmidt

Форма поршня в основном зависит от типа двигателя внутреннего сгорания. Поршни бензиновых двигателей обычно легче и короче по сравнению с поршнями дизельных двигателей. Геометрия поршня имеет множество тонкостей из-за сложности его рабочей среды, но основными частями поршня являются:

  • поршень головка , также называемая верхняя часть или корона : это верхняя часть поршня. который вступает в контакт с давлением газа в камере сгорания
  • кольцевой ремень : верхняя средняя часть поршня, когда поршневые кольца расположены
  • выступ штифта : нижняя средняя часть поршня который содержит поршневой палец
  • юбка поршня : область под кольцевым ремнем

Изображение: оси поршневого пальца и юбки

Изображение: Основные детали поршня
Кредит: [3]

где:

  1. верх поршня
  2. верхняя фаска
  3. кольцевой ремень
  4. распорки
  5. фиксатор штифта
  6. выступ штифта
  7. pis штифт
  8. поршневые кольца
  9. юбка поршня

Поршень соединен с шатуном через поршневой палец (7).Штифт позволяет поршню вращаться вокруг оси штифта. Штифт удерживается в поршне фиксатором пальца (5).

За головкой поршня подходит кольцевой ремень (также называемый кольцевой зоной) (3). Большинство поршней имеют три кольцевых канавки, в которые устанавливаются поршневые кольца. Верхнее кольцо называется компрессионным кольцом , среднее на нем — скребковое кольцо , а нижнее кольцо — маслоуправляющее кольцо . Компрессионное кольцо должно герметизировать камеру сгорания, чтобы предотвратить утечку внутренних газов в блок двигателя.Маслоуправляющее кольцо соскребает масло со стенок цилиндра, когда поршень находится на рабочем или выпускном такте. Среднее кольцо выполняет комбинированную функцию обеспечения сжатия в цилиндре и удаления излишков масла со стенок цилиндра.

Юбка поршня (8) удерживает поршень в равновесии внутри цилиндра. Обычно он покрывается материалом с низким коэффициентом трения, чтобы уменьшить потери на трение. В отверстии или бобышке (6) поршня находится поршневой палец (7), который соединяет поршень с шатуном.

Геометрические характеристики поршня

Поршни должны правильно работать в широком диапазоне температур, от -30 ° C до 300-400 ° C. В то же время он должен быть достаточно легким, чтобы иметь низкую инерцию и обеспечивать высокие обороты двигателя. Ниже представлена ​​пара геометрических характеристик поршня.

Овальность поршня

Из-за процесса сгорания температура внутри цилиндров двигателя достигает сотен градусов Цельсия.Поршень является одним из основных компонентов, который поглощает часть выделяемого тепла и отводит его в моторное масло. Поскольку ось поршневого пальца содержит больше материала, чем ось юбки, тепловое расширение вдоль оси пальца немного выше, чем тепловое расширение вдоль оси юбки. По этой причине поршень имеет овальную форму, диаметр по оси пальца на 0,3-0,8% меньше диаметра по оси юбки [6].

Изображение: Овальность поршня

Коническая форма поршня

Форма поршня не идеальна для цилиндра.При низкой температуре зазор между поршнем и цилиндром двигателя больше по сравнению с высокими температурами. Кроме того, зазор не является постоянным по длине поршня, он меньше вокруг верхней части поршня по сравнению с областью юбки поршня. Это необходимо для большего теплового расширения головки поршня, поскольку она содержит больший объем металла.

Изображение: Зазор поршня (коническая форма)

Изображение: Тепловое расширение поршня (если цилиндрическая форма)

Смещение поршневого пальца

Движение поршня внутри цилиндра свободы, 1 первичный и 2 вторичных:

  • вдоль вертикальной оси цилиндра, между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ) (основная, ось Y)
  • вокруг Ось пальца (вторичная, α — угол)
  • вдоль оси юбки (вторичная, ось x)

Первичное движение создает крутящий момент на коленчатом валу, это желательно с механической точки зрения. Вторичные движения происходят из-за комбинации нескольких факторов: двунаправленного движения шатуна и зазора между поршнем и цилиндром. Оба вторичных движения вызывают трение о стенки цилиндра, а также шум, вибрацию (удар поршня).

Изображения: Поршень тяга и пин-код смещение

Когда вращение коленчатого вала по часовой стрелке, левая сторона цилиндра называется сторона тяг (TS) и со стороны, противоположной известна как стороны анти-тяги (АТС) .Удары поршня могут происходить с любой стороны цилиндра. Удар поршня возбуждает блок двигателя и проявляется в виде поверхностных вибраций, которые в конечном итоге излучаются в виде шума вблизи двигателя [9]. Еще одно неудобство заключается в том, что при движении поршня через ВМТ и ВТК на коленчатый вал создается повышенная нагрузка, поскольку поршень совмещен с центром вращения коленчатого вала.

Смещение поршневого пальца — это несоосность между центром отверстия поршневого пальца и центром коленчатого вала.За счет этого в конструкции улучшаются шумовые характеристики двигателя из-за ударов поршня в ВМТ. Это основная проблема NVH (шумовая вибрация и резкость) для инженеров-технологов, которые хотят устранить тревожные шумы везде, где они могут. Вторая причина — повышение мощности двигателя за счет уменьшения внутреннего трения в TS и ATS.

Смещение пальца снижает механическое напряжение, возникающее в соединительной штанге, когда она достигает ВМТ или НМТ, поскольку шатун не должен хлопать поршнем в противоположном направлении в конце хода.Это смещение заставляет стержень перемещаться по дуге в ВМТ и НМТ.

Механические нагрузки на поршень

Поршень является элементом двигателя внутреннего сгорания (ДВС) , который должен выдерживать наибольшие механические и термические нагрузки. Из-за поршня мощность ДВС ограничена. В случае очень высокой термической или механической нагрузки поршень выходит из строя в первую очередь (по сравнению с блоком цилиндров, клапанами, головкой блока цилиндров). Это связано с тем, что поршень должен быть компромиссом между массой и устойчивостью к механическим и термическим нагрузкам.

Циклическое нагружение поршня из-за [6]:

  • сила газа от давления в цилиндре
  • сила инерции от колебательного движения поршня и
  • поперечная сила от опоры силы газа наклонным шатуном, а сила инерции колеблющегося шатуна
  • ,
,

определяет механическую нагрузку .

Вертикальные силы, действующие на поршень, состоят из: сил давления, , создаваемых расширяющимися газами, и сил инерции, , создаваемых собственной массой поршня [10].

\ [F_ {p} = F_ {gas} + F_ {ineria} \]

Силы инерции намного меньше сил давления и имеют наибольшую интенсивность, когда поршень меняет направление, в ВМТ и НМТ.

Изображение: Напряжение поршня по Мизесу и механическая деформация
Кредит: [7]

Изображение: Вертикальные силы поршня в зависимости от угла поворота коленчатого вала
Кредиты: [7]

Вышеуказанные силы поршня рассчитываются с использованием передовых методов анализа методом конечных элементов для алюминиевого поршня, используемого в легковых автомобилях с дизельным двигателем [7].

Процесс сгорания имеет разные характеристики для дизельного и бензинового ДВС. В дизельном двигателе пиковое давление газа при сгорании может достигать 150 — 160 бар. В бензиновом двигателе максимальное давление ниже 100 бар. Из-за более высокого давления поршни дизельного двигателя должны выдерживать более высокие механические нагрузки.

Чтобы работать без сбоев в таких суровых условиях, поршни дизельных двигателей конструируются более тяжелыми, прочными и имеют большую массу.Недостатком является более высокая инерция, более высокие динамические силы, поэтому максимальная частота вращения двигателя ниже. Одна из причин, по которой дизельные двигатели имеют более низкую максимальную скорость (около 4500 об / мин) по сравнению с бензиновыми двигателями (около 6500 об / мин), — это более тяжелые механические компоненты (поршни, шатуны, коленчатый вал и т. Д.).

Термические нагрузки на поршень

Головка поршня находится в прямом контакте с горящими газами внутри камеры сгорания, поэтому она подвергается высоким тепловым и механическим нагрузкам .В зависимости от типа двигателя (дизельный или бензиновый) и типа впрыска топлива (прямой или непрямой) головка поршня может быть плоской или содержать чашу .

Тепловая нагрузка от температуры газа в процессе сгорания также является циклической нагрузкой на поршень. Он действует в основном во время такта расширения на поршне со стороны камеры сгорания. В других тактах, в зависимости от принципа действия, тепловая нагрузка на поршень снижается, прерывается или даже оказывает охлаждающий эффект во время газообмена.Как правило, передача тепла от горячих дымовых газов к поршню происходит в основном за счет конвекции, и лишь небольшая часть является результатом излучения.

Изображение: Рабочие температуры поршня
Предоставлено: [3]

Тепло, выделяемое при сгорании, частично поглощается поршнем. Большая часть тепла передается через площадь кольца поршня (около 70%). Юбка поршня отводит 25% тепла, а остальное передается на поршневой палец, шатун и масло.Более высокая частота вращения двигателя означает более высокую температуру поршня . Это происходит потому, что накопленное тепло не успевает рассеяться между двумя последовательными циклами сгорания. В то же время более высокая нагрузка на двигатель означает более высокую температуру поршня, потому что при этом сгорает больше воздушно-топливной смеси, которая выделяет больше тепла.

Изображение: Распределение температуры в поршне бензинового двигателя
Кредит: [6]

Изображение: Распределение температуры в поршне дизельного двигателя с каналом охлаждения
Кредит: [6]

Изображение: Тепловая нагрузка поршня
Кредит: [7]

Что касается такта расширения, продолжительность действия тепловой нагрузки от сгорания очень мала. Следовательно, только очень небольшая часть составляющей массы поршня, вблизи поверхности на стороне сгорания, следует за циклическими колебаниями температуры. Таким образом, почти вся масса поршня достигает квазистатической температуры, которая, однако, может иметь значительные локальные изменения.

Охлаждение поршня

По мере увеличения удельной мощности в современных двигателях внутреннего сгорания поршни подвергаются возрастающим тепловым нагрузкам. Поэтому эффективное охлаждение поршня требуется чаще, чтобы обеспечить безопасность эксплуатации.

Изображение: 2009 Ecotec 2.0L I-4 VVT DI Turbo (LNF) Головка поршня и масляная форсунка
Кредит: GM

Температуру поршня можно снизить с помощью циркуляции масла по средней части поршня. Это может быть достигнуто с помощью маслоструйных устройств, установленных на блоке цилиндров, которые впрыскивают моторное масло через отверстие, когда поршень находится близко к нижней мертвой точке (НМТ).

Компания Tenneco Powertrain разработала новый стальной поршень для дизельных двигателей с «герметичной на весь срок службы» охлаждающей камерой в головке, что позволяет поршням безопасно работать при температурах в головке более чем на 100 ° C выше, чем существующие ограничения.

Изображение: Технология охлаждения поршня EnviroKool
Кредит: Tenneco

Для формирования коронки EnviroKool внутри поршня с помощью сварки трением создается цельный охлаждающий канал, который затем заполняется высокотемпературным маслом и инертным газом. Эта камера постоянно закрыта приварной заглушкой. Согласно Tenneco Powertrain, технология EnviroKool позволяет преодолеть температурные ограничения обычных открытых галерей, в которых в качестве теплоносителя используется смазочное масло.

Типы поршней

Геометрия поршня ограничена из-за кубатуры ДВС. Поэтому основной способ увеличения механического и термического сопротивления поршня — увеличение его массы. Это не рекомендуется, потому что поршень с большой массой имеет большую инерцию, которая преобразуется в высокие динамические силы, особенно при высоких оборотах двигателя. Сопротивление поршня можно улучшить за счет оптимизации геометрии, но всегда будет компромисс между массой, механическим и термическим сопротивлением.

На первый взгляд поршень кажется простым компонентом, но его геометрия довольно сложна:

Изображение: Техническое описание дизельного поршня
Кредит: Kolbenschmidt

Изображение: Техническое описание бензинового поршня
Кредит: Kolbenschmidt

Условные обозначения:

  1. Диаметр чаши
  2. днище поршня
  3. камера сгорания (чаша)
  4. кромка днища поршня
  5. верхняя шайба поршня
  6. канавка под компрессионное кольцо
  7. посадочная площадка кольца
  8. основание канавки
  9. встраиваемое кольцо земля
  10. паза сторона
  11. маслосъемных кольцевой паз
  12. возврата
  13. масла отверстие
  14. поршневого палец босс
  15. удержания для паза на расстоянии
  16. паза для стопорного кольца
  17. поршня босса расстояние
  18. поршня босс расстояния
  19. активизировал край
  20. Диаметр поршня 90 ° C относительно отверстия 90 под поршневой палец 040
  21. отверстие поршневого пальца
  22. глубина стакана
  23. юбка
  24. зона кольца
  25. высота сжатия поршня
  26. длина поршня
  27. канал маслоохладителя
  28. опора кольца
  29. втулка болта
  30. окно измерения диаметра
  31. развал короны

Как видите, между дизельными и бензиновыми поршнями есть существенные различия.

Поршни дизельного двигателя должны выдерживать более высокие давления и температуры, поэтому они больше, крупнее и тяжелее. Они могут быть изготовлены из алюминиевых сплавов, стали или их комбинации. Поршень дизеля содержит часть камеры сгорания в головке поршня. Из-за формы поперечного сечения головки поршня поршень дизельного двигателя также называют поршнем с головкой омега.

Поршни бензиновых двигателей легче, предназначены для более высоких оборотов двигателя.Они изготавливаются из алюминиевых сплавов и обычно имеют плоскую головку. Бензиновые двигатели с непосредственным впрыском (DI) имеют специальные головки, позволяющие направлять поток топлива качающимся движением.

Ниже вы можете увидеть несколько изображений дизельных и бензиновых (бензиновых) двигателей в высоком разрешении.

Изображение: LS9 6.2L V-8 SC поршень (алюминий, бензин / бензиновый двигатель с непрямым впрыском)
Кредит: GM

Изображение: Ecotec 2.0L I-4 VVT DI Turbo (LNF) поршень (алюминий, бензиновый / бензиновый двигатель с прямым впрыском)
Кредит: GM

Изображение: Поршень дизельного двигателя автомобиля с кольцами (алюминий, дизель)
Кредит: Kolbenschmidt

Изображение: Поршень из моностали (сталь, дизель) )
Кредит: Tenneco

Материалы поршней

Большинство поршней для автомобильной промышленности изготавливаются из алюминиевых сплавов .Это потому, что алюминий легкий, обладает достаточной механической прочностью и хорошей теплопроводностью. Есть тяжелые применения, коммерческие автомобили, в которых используются поршни из стали , которые более устойчивы к более высоким давлениям и температурам в камере сгорания.

Алюминиевые поршни изготавливаются из литых или кованых жаропрочных алюминиево-кремниевых сплавов. Есть три основных типа алюминиевых поршневых сплавов. Стандартный поршневой сплав представляет собой эвтектический сплав Al-12% Si, содержащий дополнительно ок.По 1% каждого из Cu, Ni и Mg [3].

Основными алюминиевыми сплавами для поршней являются [3]:

  • эвтектический сплав (AlSi12CuMgNi): литой или кованый
  • заэвтектический сплав (AlSi18CuMgNi): литой или кованый
  • специальный эвтектический сплав (AlSi12Cu4Ni240, только
cast2Mg). алюминиевый сплав имеет более низкую прочность, чем чугун, поэтому необходимо использовать более толстые секции, поэтому не все преимущества легкого веса этого материала реализуются. Кроме того, из-за более высокого коэффициента теплового расширения алюминиевые поршни должны иметь больший рабочий зазор.С другой стороны, теплопроводность алюминия примерно в три раза выше, чем у железа. Это, вместе с большей толщиной используемых секций, позволяет алюминиевым поршням работать при температурах примерно на 200 ° C ниже, чем чугунные [8].

В некоторых случаях прочность и износостойкость поршней из алюминиевого сплава недостаточны для удовлетворения требований по нагрузке, поэтому используются черные материалы (например, чугун, сталь). Существует несколько методов использования черных металлов в производстве поршней:

  • в качестве местного армирования, вставок из черных металлов (т.е.g., держатели колец)
  • в виде удлиненных частей поршней из композитных материалов (например, днища поршня, болтов)
  • поршни, полностью изготовленные из чугуна или кованой стали

Изображение: композитный поршень для тяжелого двигателя — поперечное сечение
Кредит: [8]

Изображение: Поршень композитной конструкции для судовых дизельных двигателей
Кредит: Warstila

В поршнях и поршнях используются два типа черных металлов компоненты [6]:

  • чугун :
    • аустенитный чугун для держателей колец
    • чугун с шаровидным графитом для поршней и юбок поршней
  • сталь
    • хромомолибденовый сплав (42CrMo4)
    • хромомолибден-никелевый сплав (34CrNiMo6)
    • молибден-ванадиевый сплав (38MnVS6)

чугун обычно имеют содержание углерода> 2%.Поршни высоконагруженных дизельных двигателей и другие высоконагруженные компоненты двигателей и конструкции машин преимущественно изготавливаются из сферолитического чугуна M-S70. Этот материал используется, например, для изготовления цельных поршней и юбок поршней в композитных поршнях [6].

Сплавы железа, обозначенные как стали, обычно имеют содержание углерода менее 2%. При нагревании они полностью превращаются в ковкий (пригодный для ковки) аустенит. Поэтому сплавы железа отлично подходят для горячей штамповки, такой как прокатка или ковка.

Поршневые технологии

Существует несколько передовых поршневых технологий, каждая из которых имеет целью увеличить механическое и / или термическое сопротивление, снизить коэффициент трения или общую массу (сохраняя в то же время механические и термические свойства).

Ниже вы можете найти примеры современных поршней, производимых на заводе Kolbenschmidt , каждый из которых отличается уникальными технологиями.

Изображение: Поршень бензинового двигателя в оптимизированной по весу конструкции LiteKS® с держателем кольца
Кредит: Kolbenschmidt

Изображение: Поршень дизеля с охлаждающим каналом, втулкой болта и держателем кольца
Кредит: Kolbenschmidt

Изображение: Шарнирно-сочлененный поршень дизеля с кованной верхней стальной частью и алюминиевой юбкой
Кредит: Kolbenschmidt

Изображение: Литые держатели колец из чугуна многократно увеличивают долговечность первой кольцевой канавки дизельных поршней.Kolbenschmidt является лидером в разработке соединения Alfin с держателем кольца
Кредит: Kolbenschmidt

Изображение: Канавки под кольцо с твердым анодированием предотвращают износ и микросварку поршней для бензиновых двигателей.
Кредит: Kolbenschmidt

Поршни KS Kolbenschmidt имеют специальное покрытие LofriKS®, NanofriKS® или графит на юбке поршня. Они уменьшают трение внутри двигателя и обеспечивают хорошие характеристики при аварийной работе. Покрытия LofriKS® также используются по акустическим причинам. Их использование сводит к минимуму шумы от хлопка поршня. NanofriKS® является дальнейшим развитием испытанного и испытанного покрытия LofriKS® и дополнительно содержит наночастицы оксида титана для повышения износостойкости и долговечности покрытия.
Кредит: Kolbenschmidt

Изображение: Юбки поршней с железным покрытием (Ferrocoat ®) гарантируют надежную работу при использовании в алюминиево-кремниевых поверхностях цилиндров (Alusil®).
Кредит: Kolbenschmidt

Изображение: Отверстия поршневого пальца специальной формы (Hi-SpeKS®) повышают динамическую нагрузочную способность станины поршневого пальца, тем самым увеличивая долговечность поршня
Кредит: Kolbenschmidt

Ниже вы можете найти примеры современных поршней, производимых компанией Tenneco Powertrain (ранее Federal Mogul) , каждый из которых основан на уникальных технологиях.

Изображение: Поршень Elastothermic® (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

Характеристики: Поршень с охлаждающим каналом
улучшает мощность и расход топлива уменьшенных бензиновых двигателей
— Канал эластотермического охлаждения снижает температуру днища поршня на около 30 ° C.
— снижение температуры первой кольцевой канавки примерно на 50 ° C, что приводит к уменьшению отложений нагара и износа канавок и колец для длительного срока службы; низкий расход масла и удар на
— снижение риска неконтролируемого возгорания, например, при низкой скорости предварительного нагрева. зажигание

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Алюминиевые поршни дизельного двигателя

Характеристики:
— оптимизированное расположение каналов для максимального охлаждения может привести к снижению температуры обода барабана до 10%
— улучшенная боковая забивка методы значительно улучшают конструктивную устойчивость (даже при тонкостенных конструкциях)
— реструктуризация обода камеры сгорания и дно стакана могут обеспечить увеличение усталостной долговечности до 100%.

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Поршни для дизельных двигателей из моностали (стальные поршни для дизельных автомобилей большой грузоподъемности или промышленного применения)

Поршень Monosteel® обеспечивает прочность и охлаждение, чтобы удовлетворить самые жесткие требования к двигателям на рынках тяжелых и промышленных двигателей, включая новое поколение давлений срабатывания двигателя, необходимых для дорожных правил Евро VI и выше.

Прочная конструкция, состоящая из сварных с помощью инерционной сварки кованых стальных секций, образующих большие охлаждающие галереи, позволяет поршням Monosteel выдерживать возрастающие механические нагрузки. Эволюция Monosteel включает в себя последние разработки для промышленных двигателей с большим диаметром цилиндра, а также использование тонкостенных легких поковок и отливок для дизельных двигателей легковых автомобилей.

Основные характеристики продукта:
— большая закрытая структурная галерея с превосходным охлаждением обода чаши и кольцевой канавки, уменьшающим деформацию канавки и улучшающим контроль масла и газового уплотнения
— профилированное отверстие под палец без втулки
— юбка по всей длине для стабильного поршня динамика, снижение риска кавитации гильзы и улучшение кольцевого уплотнения.
— процесс обеспечивает гибкость материала с возможностью выбора материала коронки для уменьшения коррозии или окисления и / или выбора материала юбки для повышения технологичности.

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Поршни с покрытием EcoTough® (алюминиевый поршень для бензиновых легких или тяжелых автомобилей)

Поршень с покрытием EcoTough® обеспечивает важные преимущества, которые помогают удовлетворить потребности клиентов в более эффективные конструкции двигателей, в том числе сниженный расход топлива и выбросы CO 2 . Он сочетает в себе низкий износ и низкое трение в одном применении и снижает расход топлива на 0,8% по сравнению с обычными покрытиями поршней.

Ключевые преимущества:
— совместима с существующей и улучшенной отделкой внутренних отверстий цилиндров и может быть беспрепятственно внедрена в серийное производство двигателей в качестве рабочих изменений
— состав обеспечивает большую толщину, чем поршни с обычным покрытием, обеспечивая дополнительную защиту
— соответствует строгим экологическим стандартам ; не содержит токсичных растворителей.
— запатентованное усовершенствованное покрытие юбки поршня с твердыми смазочными материалами и армированием углеродными волокнами, специально разработанное для тяжелых условий работы с бензином.
— снижение трения на 10% в блоке силового цилиндра (поршень + кольца) по сравнению сстандартные покрытия, повышение экономии топлива до 0,4% / сокращение выбросов CO 2 в европейских испытаниях ездового цикла
— уменьшение износа на 40% по сравнению со стандартными бензиновыми покрытиями, повышенная надежность современных бензиновых двигателей с наддувом DI
— EcoTough® — это запатентованное покрытие FM

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Поршень DuraBowl® (алюминиевый поршень для дизельных легких или тяжелых автомобилей)

Усиление поршня DuraBowl® Особенности частичного переплавления кромки чаши :
— чрезвычайное улучшение структуры алюминиевого материала, созданное локализованным переплавом с использованием технологии TIG.
— до 4 раз улучшенная долговечность в двигателях с высокой удельной мощностью по сравнению с поршнями без переплавки барабана.Допускает форму камеры сгорания, подвергающуюся высоким нагрузкам.
— Технология FM DuraBowl® расширяет пределы алюминиевых поршней в наиболее сложных условиях за счет увеличения усталостной прочности (циклов) поршня

Авторы и права: Tenneco Powertrain (Federal Mogul)

Изображение: Elastoval II сверхлегкие поршни (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

Технология бензиновых поршней Avanced Elastoval® II основана на:
— глубоких карманах под короной
— наклонных боковых панелях
— облегченной конструкции опоры пальца
— тонких стенках 2. 5 мм
— оптимизированная площадь юбки и гибкость
— Высокоэффективный сплав FM S2N

Характеристики и преимущества включают:
— снижение веса на 15% по сравнению с бензиновыми поршнями предыдущего поколения
— обеспечивает удельную мощность до 100 кВт / л
— оптимизировано характеристики шума и трения
Совместимость с опцией держателя кольца alfin для увеличения пикового давления в цилиндре и устойчивости к детонации

Кредит: Tenneco Powertrain (Federal Mogul)

Часто задаваемые вопросы о поршнях

Для чего используются поршни?

Поршни используются в двигателях внутреннего сгорания для передачи усилия на шатун и коленчатый вал, создавая крутящий момент двигателя.Поршни преобразуют давление газа из камеры сгорания в механическую силу.

Что такое поршень и как он работает?

Поршень — это компонент двигателя внутреннего сгорания, сделанный из алюминия или стали, используемый для преобразования давления газа из камеры сгорания в механическую силу, передаваемую на шатун и коленчатый вал.

Из чего сделан поршень?

Поршень может быть изготовлен из цветного материала, алюминия (Al) или черных металлов, например, чугун или сталь .

Какие бывают два типа поршневых колец?

Два типа поршневых колец: компрессионные, кольца и масляные кольца .

Какие два основных типа поршневых двигателей?

Двумя основными типами поршневых двигателей являются: дизельный двигатель поршневой и бензиновый двигатель поршень. Функция материала, два основных типа поршня: алюминиевый поршень и стальной поршень .

Каков срок службы поршней?

Поршень должен служить в течение всего срока службы автомобиля, если условия эксплуатации являются номинальными (нормальная смазка, регулярное обслуживание двигателя, отсутствие чрезмерной нагрузки, отсутствие чрезмерной температуры). В нормальных условиях эксплуатации поршень должен прослужить не менее 300000 км до 500000 км и более.

Что вызывает отверстия в поршнях?

Обычно из-за аномально высоких температур поршни плавятся, а детонация двигателя может вызвать трещины в поршнях.Неисправные форсунки могут подавать чрезмерное количество топлива в цилиндры, что может вызвать аномально высокую температуру сгорания и частично оплавить поршни.

Как узнать, повреждены ли поршни?

Если поршень поврежден, наиболее вероятными симптомами являются: потеря мощности из-за потери сжатия, чрезмерный дым в выхлопе или необычный шум двигателя.

Можно ли починить сломанный поршень?

Сломанный поршень не подлежит ремонту, его необходимо заменить.Поршень имеет очень жесткие геометрические допуски, которые, скорее всего, не будут соблюдены после ремонта. Кроме того, их механические и термические свойства будут изменены после ремонта, что приведет к дальнейшим повреждениям. Сломанный поршень может вызвать серьезные повреждения блока цилиндров, шатуна, клапанов и т. Д. И должен быть немедленно заменен.

Можно ли водить машину с неисправным поршнем?

Вы можете ездить с плохим поршнем, но это не рекомендуется. Повреждение поршня может привести к значительному выходу из строя блока цилиндров, коленчатого вала, шатунов, клапанов и т. Д.Если не заменить поврежденный поршень, это может привести к полному отказу двигателя.

Повредит ли мой двигатель удар поршня?

Удар поршня повредит двигатель, оставьте без присмотра. Удар поршня в течение длительного времени приведет к повреждению гильзы цилиндра и самого поршня.

Уходит ли поршень при нагревании?

Поршень частично уходит, когда двигатель прогрет. Удар поршня вызван чрезмерным износом гильзы цилиндра или самого поршня.Когда двигатель нагревается, поршень имеет тепловое расширение, и зазор между поршнем и цилиндром уменьшается, что приводит к уменьшению ударов поршня.

Могу ли я ехать с хлопком поршня?

Можно ездить с хлопком поршня, но долго водить не рекомендуется. Удар поршня вызовет износ самого поршня и гильзы цилиндра. Удар поршня также может вызвать трещины в поршне, что может привести к полному отказу двигателя, если его оставить без присмотра.

Что вызывает износ юбки поршня?

Износ юбки поршня вызван недостаточной смазкой гильзы цилиндра маслом.В нормальном рабочем состоянии система смазки разбрызгивает масло на цилиндры, чтобы избежать прямого контакта между юбкой поршня и цилиндром. При неисправности системы смазки или недостаточном уровне масла на стенках цилиндра не будет достаточно масла, и юбка поршня будет значительно изнашиваться.

Ссылки

[1] Клаус Молленхауэр, Хельмут Чоеке, Справочник по дизельным двигателям, Springer, 2010.
[2] Хироши Ямагата, Наука и технология материалов в автомобильных двигателях, Woodhead Publishing in Materials, Кембридж, Англия, 2005 .
[3] The Aluminium Automotive Manual, European Aluminium Association, 2011.
[4] Heisler, Heinz, Vehicle and Engine Technology, Society of Automotive Engineers, 1999.
[5] QinZhaoju et al., Поршневая термомеханическая муфта дизельного двигателя моделирование и многопрофильная оптимизация проектирования, Примеры в теплотехнике, Том 15, ноябрь 2019 г.
[6] Испытания поршней и двигателей, Mahle GmbH, Штутгарт, 2012 г.
[7] Скотт Кеннингли и Роман Моргенштерн, Тепловые и механические нагрузки в Область чаши сгорания легковых дизельных поршней из AlSiCuNiMg; Пересмотрено с акцентом на расширенный анализ методом конечных элементов и инструментальные методы тестирования двигателей, Federal Mogul Corporation, SAE Paper 2012-01-1330.
[8] T.K. Гарретт и др., Автомобиль, 13-е издание, Баттерворт-Хайнеманн, 2001.
[9] Н. Долатабади и др., Об идентификации событий ударов поршня в двигателях внутреннего сгорания с использованием трибодинамического анализа, Механические системы и обработка сигналов, Том 58 –59, июнь 2015 г. , страницы 308-324, Elsevier, 2014.
[10] Клаус Молленхауэр и Гельмут Чоеке, Справочник по дизельным двигателям, Springer-Verlag Berlin Heidelberg, 2010.

По любым вопросам, наблюдениям и запросам по этой статье , используйте форму комментария ниже.

Не забывайте ставить лайки, делиться и подписываться!

Поршневой двигатель — обзор

V Авиационное топливо

Сегодня авиационное топливо подразделяется на две основные группы, используемые в авиационной сфере: бензиновые топлива, используемые в поршневых двигателях, и керосиновые топлива для газотурбинных двигателей. Эти два основных класса авиационных двигателей настолько принципиально различаются, что авиационное топливо подразделяется на две указанные выше основные группы. В настоящее время в гражданской коммерческой авиации используются два основных сорта турбинного топлива: Jet A-1 и Jet A, оба являются керосиновым топливом.Существует еще один сорт реактивного топлива (Jet B), который представляет собой керосин широкого спектра действия (смесь бензина и керосина), но он используется редко, за исключением очень холодного климата. Для военных самолетов основным топливом является JP-8, который является военным эквивалентом Jet A-1 с добавлением ингибитора коррозии и противообледенительных присадок. Авиационный бензин очень летуч и поэтому очень легко воспламеняется при нормальных рабочих температурах, поэтому процедуры и оборудование для безопасного обращения с ним вызывают наибольшее беспокойство.

Марки авиационных бензинов определяются в первую очередь их октановым числом для бедной и богатой смеси.Это приводит к множественной системе нумерации. Например, сорт 100/130 соответствует рейтингу эффективности обедненной смеси 100 и рейтингу эффективности богатой смеси 130.

До Второй мировой войны между производителями двигателей и властями было мало или совсем не было сотрудничества, и в результате было много различные марки авиационного бензина общего назначения, например, 80/87, 91/96, 100/130, 108/135, 115/145. Однако с уменьшением спроса они были рационализированы до одного основного сорта Avgas 100/130 с содержанием свинца 1.28 г / литр. (Чтобы избежать путаницы и свести к минимуму ошибки при обращении с авиационным бензином, принято обозначать этот сорт только по характеристикам обедненной смеси, например Avgas 100 для Avgas 100/130.) , где LL означает «низкий свинец». Это должно было позволить использовать одно топливо в двигателях, изначально разработанных для марок с более низким содержанием свинца. Содержание свинца в этом виде топлива составляет 0,56 г / л. Причина, по которой крупные нефтяные компании представили этот бензин, заключалась в том, что некоторые из более старых двигателей с октановым числом 80/87 сталкивались с засорением свечей и ухудшением состояния выпускных клапанов при работе на Grade 100/130 с 1.28 г / литр свинца.

Все оборудование и приспособления для обработки и хранения авиационного бензина имеют цветовую кодировку и хорошо видны маркировки API, обозначающие фактический сорт. Кроме того, топливо окрашивают, чтобы упростить идентификацию. В настоящее время на международном уровне используются два основных сорта: 100LL, который окрашен в синий цвет, и 100, который имеет зеленый цвет.

Форсунки авиационного бензина для заправки ВС окрашены в красный цвет. Чтобы предотвратить возможность подачи реактивного топлива на самолет с поршневым двигателем, диаметр сопла системы заправки авиационным бензином ограничен максимальным диаметром 40 мм (49 мм в США.) и отверстие на авиационном бензобаке самолета диаметром не более 60 мм. Форсунки для реактивного топлива имеют размер более 60 мм и поэтому не могут быть помещены в авиационный бензобак самолета.

Авиационное топливо должно учитывать несколько других важных свойств в дополнение к характеристикам горения. К ним относятся летучесть (легкость испарения в воздухе), склонность к блокированию паров (кипение в топливных магистралях), легкость запуска двигателя, свойства растворителя и коррозии (которые оказывают неблагоприятное воздействие на топливные системы), а также способность топлива хранить (сопротивление) ухудшению при длительном хранении).

Технические характеристики топлива для авиационных поршневых двигателей, использовавшихся в прошлом, приведены в Таблице XVIII. Низкосвинцовый, 100LL, идентичен по содержанию свинца военному классу 100/130.

ТАБЛИЦА XVIII. Спецификации бензина для военной и коммерческой авиации США

Как упоминалось выше, бензин 9117 классифицируется по классам детонации, и когда в обозначении класса входят два числа, например, в классе 100/130, первое число дает оценку для бедной смеси, а второе — для богатой смеси.Если число 100 или меньше, оно относится к октановой шкале, а число 100 или выше — к шкале рабочих характеристик.

Для оценок ниже 100 октановые числа используются в спецификациях и атрибутах классов. Однако октановое число можно преобразовать в число рабочих характеристик в соответствии со следующим соотношением:

[Число рабочих характеристик, PN] = 2800128– [Октановое число, ВКЛ]

Например, требуемое число рабочих характеристик топлива для переменной степени сжатия. в любой данной конструкции двигателя будет примерно пропорционально используемым степеням сжатия.В результате, если для степени сжатия 7: 1 требовалось топливо с показателем эффективности 70, то теоретически для степени сжатия 9: 1 теоретически было бы необходимо значение эффективности 90. На практике, однако, это было бы более 90 показателей производительности.

Точно так же использование топлива более высокого качества позволяет увеличить наддув. Поскольку увеличение степени сжатия и давления в коллекторе действуют так же, как требования к качеству топлива, из этого следует, что если все условия, кроме вышеупомянутых, поддерживаются постоянными, то бездетонационная выходная мощность на данном топливе будет обратно пропорциональна степени сжатия.Например, двигатель мощностью 1600 л.с. при степени сжатия 7: 1 мог развивать только 1600 × 78 = 1400 л.с. при степени сжатия 8: 1. Эти цифры являются приблизительными и служат для иллюстрации взаимосвязи между различными факторами, поскольку предмет достаточно сложен, чтобы оправдать некоторую степень упрощения.

Сортировка топлива таким способом имеет первостепенное значение, поскольку склонность топлива к детонации оказывает заметное влияние на мощность, получаемую от данного двигателя.Таким образом, двигатель, рассчитанный, скажем, на 1450 л.с. на топливе класса 115/145, может безопасно эксплуатироваться только при одной трети этой мощности на классе 73.

В данном двигателе использование топлива более высокого качества, чем для который он был разработан, не даст увеличения производительности, так как он уже работает без ударов при всех настройках мощности. В лучшем случае это не может иметь никакого эффекта; в худшем случае это может вызвать проблемы с загрязнением свинцом в двигателях, не предназначенных для топлива с высоким содержанием свинца.

V.A Реактивное топливо

В отличие от поршневых двигателей, в реактивных двигателях в качестве топлива почти исключительно используется осветительный керосин.Первым в истории реактивным топливом было JP-1 (Реактивное топливо-1, в 1944 году). Это был керосин с температурой замерзания 60,5 ° C и температурой вспышки 43 ° C. Его доступность была ограничена 3% от средней сырой нефти. JP-2 (1945) был отклонен из-за неудовлетворительных характеристик по вязкости и горючести. JP-3 (1947–1951) имел высокое давление паров, сравнимое с таковым у авиационных бензинов. Это, в сочетании с тем фактом, что самолеты с газотурбинным двигателем летают на больших высотах, чем самолеты с поршневыми двигателями, привело к потерям топлива из-за выкипания и запирания пара.JP-4 (1951–1995), обозначаемый как Jet B или с кодом НАТО F-40, представлял собой керосин-бензиновую смесь с максимальным давлением паров 2–3 фунта на квадратный дюйм, чтобы уменьшить испарение топлива и запирание пара. Он имеет температуру застывания -60,5 ° C и температуру вспышки -18 ° C (температура вспышки не включена в спецификации для этого топлива). В середине 1980-х годов из соображений безопасности использовалась антистатическая добавка. JP-4 был основным боевым топливом для всех стран НАТО в течение многих лет, но недавно от него отказались из-за его высокой нестабильности.JP-5 (с 1952 г. по настоящее время), обозначаемый кодом НАТО F-44, используется военно-воздушными силами США. По соображениям безопасности он имеет минимальную температуру вспышки 60 ° C. Температура застывания составляет -46 ° C, антистатические добавки отсутствуют. JP-6 (1956 г.) был разработан для самолета XB-70; он аналогичен JP-5, но имеет более низкую температуру застывания (-54 ° C) и повышенную термическую стабильность. Нет никаких спецификаций относительно температуры вспышки для этого топлива. JP-7 (1960 г.) разработан для самолета SR-71; он имеет низкое давление пара и прекрасную термическую стабильность на больших высотах и ​​скоростях выше 3 Маха.Он имеет температуру застывания -44 ° C и минимальную температуру вспышки 60 ° C.

JP-8 впервые был использован в 1978 году и обозначается кодом НАТО F-34. JP-8 — это то же топливо, что и Jet A1, но улучшено за счет использования ингибиторов обледенения, присадок, улучшающих смазывающую способность, и антистатических присадок. Преобразование авиационного топлива в JP-8 было начато в основном из соображений безопасности и завершено в 1995 году.

JPTS (Jet Propellant Thermally Stable, 1956) был разработан для использования в самолетах U-2 и представляет собой керосин с температурой застывания −54. ° C.Топливо усилено термостойкими присадками и имеет минимальную температуру вспышки 43 ° C.

Типовые характеристики реактивного топлива, используемого в военных или гражданских авиалиниях, приведены в Таблице XIX.

ТАБЛИЦА XIX. Типичные характеристики авиационного топлива

Издательское агентство: Спецификация: ВМС США MIL-G-5572 F-Amd. 1 и ASTM D 910
Дата пересмотра: Обозначение марки: Тип топлива: Цвет: 1979 80/87 Av.бензин Красный 1981 100/130 Av. бензин Синий 115/145 Av. бензин Пурпурный Метод испытания ASTM
Состав Сера (мас.%) макс. 0,05 0,05 0,05 D-1266 / D-2622
Ароматические углеводороды (об.%) мин. 5,0 5,0 D-936, D-131 или D-2267
Летучесть Дистилляция
Темп.10% Рек. (° C) мин. 75 75 75 D-86
Темп. 40% Рек. (° C) макс. 75 75 75
Темп. 50% Рек. (° C) мин.105105105
Темп. 90% Рек. (° C) мин. 135 135 135
Конечная точка (° C) макс. 170 170 170
Сумма. 10% и 50
Темп. мин. 135 135 135
Остаток (об.%) макс. 1,5 1,5 1,5
Потери при перегонке (об.%) макс. 1,5 1.5 1,5
Плотность, ° API Отчет Отчет Отчет D-287
Давление паров по Рейду при 37,8 ° C, кПа, кПа 38,5–49,0 38,5–49,0 D-323 / D-2551
Текучесть Температура замерзания, ° C макс. −60 −60 −60 D-2386
Горение Чистая теплота сгорания, МДж / кг или мин. 43,5 43,5 44,0 D-240 / D-2382
Анилин-гравитационный продукт мин. 7,500 7,500 9,800 D-611 или D-287
Класс детонации, обедненная смесь Авиационный рейтинг мин. 80100 115 D-2700
Детонационная способность, степень наддува богатой смеси мин. 87 130 145 D-909
Коррозия (2 часа при 100 ° C) Коррозия медной ленты макс. 1 1 1 D-130
Стабильность Возможная жевательная резинка, 16-часовое старение (мг / 100 мл) макс. 6,0 6,0 6,0 D-873
Осадок (мг / 100 мл) макс. 2.0 2,0 2,0 D-873
Загрязнения Существующая смола (мг / 100 мл) макс. 3,0 3,0 3,0 D-381
Реакция воды
Рейтинг интерфейса макс. 2 2 2 D-1094
Об. изменение (мл) макс. 2 2 2 D-1094
Добавки Тетраэтилсвинец Содержание. D-3341
г / литр макс. 0,14 0,56 1,28 D-2599 / D-2547
Содержание красителя
Синий краситель (макс. 0.80–1,51 0,713–1,24 D-2392
Красный краситель (мг / литр) 1,83–2,29 0,50–0,864
мг / желтый краситель мг / л 1,4
Прочие * Код НАТО № F-12 F-18 F-22
Агентство, выдавшее сертификат: Спецификация: USAF MIL-T-56241-Amd. 1 ВВС США MIL-T-83133A-Amd.
Дата пересмотра: Обозначение марки: Тип топлива: 1980 JP-4 Широкоформатный 1980 JP-5 Керосин 1980 JP-8 Керосин Метод испытания ASTM
Состав Сера, меркаптан (мас.%) макс. 0,001 0,001 0,001 D-1323
Сера, общая (мас.%) макс. 0,4 0,4 0,3 D-1266
Ароматические углеводороды (об.%) макс. 25 25 25 D-1319
Летучесть Дистилляция
Темп.10% Рек. (° C) макс. Отчет205205 D-86
Темп. 20% Рек. (° C) макс. 145 Отчет Отчет
Темп. 50% Рек. (° C) макс. 190 Отчет Отчет
Темп. 90% Рек. (° C) макс. 245 Отчет Отчет
Конечная точка (° C) макс. 270290 300
Остаток (об.%) макс. 1,5 1,5
Потери при перегонке (об.%) макс. 1,5 1,5
Плотность, 15 ° C (кг / м 3 ) макс. 751–802 788–845 775–840 D-1298
Давление пара при 37.8 ° C, кПа 14–21 D-323 / D-2551
Текучесть Температура замерзания, ° C макс. −58 −46 −50 D-2386
Вязкость при -20 ° C (сСт) макс. 8,5 8,0 D-445
Сгорание Чистая теплота сгорания, МДж / кг мин. 42,8 42.6 42,8 D-240
Анилин-гравитационный продукт мин. 5250 4500 D-1405
Дымовая точка мин. 20,0 19,0 19,0 D-1322
Коррозия Коррозия медной ленты (2 часа при 100 ° C) макс. 1b 1b 1b D-130
Стабильность JFTOT AP (мм рт. Ст.) макс. 25 25 25 D-3241
Код цвета трубки JFTOT макс. & lt; 3 & lt; 3 & lt; 3
Загрязняющие вещества Существующая смола (мг / 100 мл) макс. 7 7 7 D-381
Твердые частицы макс. 1 1 1 D-2276
Интерфейс реакции воды макс. 1b 1b 1b D-1094
Индекс водоотделения Модифицированный мин. 70 85 70 D-2550
Время фильтрации (минут) макс. 15
Добавки Защита от обледенения (об.%) 0,10–0,15 0,10–0,15 0,10–0,15 Антиоксидант Требуется Требуется Опция 3527 FED STD 791
Ингибитор коррозии Требуется Требуется Металл Металл Требуется Опция
Антистатическая Требуется Требуется
Другое * Код НАТО No. F-40 F-44 F-34; F35

Воздействие на топливо условий высокотемпературного термического окисления приводит к образованию твердых частиц, лаков и смол, которые забивают клапаны и фильтры и ухудшают работу форсунок форсунок. В крайнем случае, коксование может вызвать серьезное загрязнение форсунок и камер сгорания, что приведет, например, к повторному зажиганию. Повышение термической стабильности «обычного», например, керосинового топлива типа JP8 с температурой 100 ° F за счет использования недорогих пакетов присадок было предметом U.Программа S. Air Force «JP8 + 100» с 1989 года основана на том, что достижения в области систем военной истребительной авиации потребуют топлива с улучшенной теплоотводящей способностью более чем на 50% по сравнению с обычным топливом JP-8.

В ходе этой программы сотни коммерческих добавок были протестированы на характеристики повышения термической стабильности или снижения осаждения. Программа продемонстрировала, что термическая стабильность реактивных топлив (особенно JP-8) действительно может быть улучшена за счет использования определенных добавок и смесей присадок, используемых в относительно низких концентрациях. Кроме того, летные испытания выявили значительное сокращение затрат на техническое обслуживание, связанных с топливом, благодаря более чистому сгоранию.

Однако одним из аспектов введения предпочтительных термостабильных присадок, который вызвал некоторую озабоченность, является связанное с этим влияние на отделение воды и твердых частиц от топлива «JP-8 + 100», хотя с эксплуатационной точки зрения это сводится к минимуму за счет внесение добавки «+100» как можно ближе к обшивке самолета. В результате крупные нефтяные компании оценивают новые многофункциональные присадки, которые повышают термическую стабильность топлива для реактивных двигателей без ущерба для других необходимых элементов качества авиационного топлива, а именно разделения воды и твердых частиц.Более того, JP-8 + 100 станет основой для будущих реактивных топлив как для военных, так и для гражданских самолетов, требующих термостойкости до 482 ° C.

Этот тип присадки может в будущем использоваться в гражданском применении и позволит разработчикам газовых турбин будущего использовать повышенный радиатор в топливе и производить более мощные и более эффективные двигательные установки. Вслед за добавками «+100» существуют возможности использования добавок для улучшения рабочих характеристик за счет изменения точки замерзания / точки текучести, а также выбросов дыма / сажи.

В ближайшем будущем могут быть введены добавки, снижающие сопротивление трубопроводу, для использования в распределении авиационного топлива. Эти добавки представляют собой полимеры с очень высокой молекулярной массой, которые уже используются в трубопроводах для транспортного сектора для некоторых других нефтепродуктов. Они действуют за счет уменьшения турбулентности и, следовательно, потерь энергии между внутренней поверхностью трубопровода и протекающей через него жидкостью. Для данного размера насоса они позволяют перекачивать больше жидкости. Возник интерес к использованию этих добавок, потому что их дешевле использовать, чем прокладывать трубы большего размера или устанавливать больше насосов, когда поставки в аэропорт достигли своего предела.

Новые продукты, такие как синтезированный авиационный керосин, появляются на рынке все чаще, и больше заводов по переработке, вероятно, будут построены там, где есть запасы природного газа, удаленные от этого рынка. «Биотопливо» также появится на рынке со временем, и скандинавские страны станут главной движущей силой их проникновения на рынок и принятия. Хотя возобновляемые и устойчивые виды топлива могут быть ответом на многие экологические проблемы, с которыми сегодня сталкивается мир, они не обязательно могут быть лучшим топливом для двигателей, как нынешних, так и будущих.Усиление давления с целью вывода этих видов топлива на рынок, безусловно, будет происходить, но его источник и время трудно предсказать.

Поршни двигателя — обзор

3.2 Силовые установки, работающие на природном газе с поршневыми двигателями

Поршневой двигатель или поршневой двигатель имеет долгую историю в производстве электроэнергии. Некоторые из самых первых угольных электростанций, построенных в 19 веке, использовали паровые поршневые двигатели для привода генераторов. Современные поршневые двигатели используются в основном на транспорте.Малые двигатели используются в отечественных транспортных средствах, а более крупные — в грузовых автомобилях, локомотивах и кораблях. Эквивалентные двигатели могут быть адаптированы для рынка производства электроэнергии. Что касается выходной мощности, размеры могут варьироваться от 0,5 кВт до 65 МВт.

Есть две основные категории поршневых двигателей, подходящих для выработки электроэнергии, двигатели с искровым зажиганием и двигатели с воспламенением от сжатия, но только первая из них может работать на природном газе. Двигатели с воспламенением от сжатия обычно работают на дизельном топливе.Также существуют разные циклы, в которых может работать поршневой двигатель. Два наиболее распространенных — это двухтактный и четырехтактный двигатель. Двигатели, использующие оба типа цикла, могут работать на природном газе.

Еще одна переменная — это соотношение воздуха и топлива в камере сгорания (цилиндре) двигателя. Некоторые работают с примерно стехиометрическим соотношением кислорода из воздуха и топлива, так что кислорода достаточно для сгорания всего топлива. Такие двигатели относят к двигателям с богатым горением.Эти двигатели, как правило, работают при высоких температурах сгорания, что может приводить к образованию относительно высоких уровней оксидов азота, а также других загрязняющих веществ. Альтернативой является двигатель, работающий на обедненной смеси, в котором гораздо больше воздуха (и кислорода), чем требуется для сгорания. Избыточный воздух приводит к более низким температурам сгорания в цилиндрах двигателя и снижению уровня загрязняющих веществ в выхлопных газах двигателя. В нормальных условиях двигатель с обогащенным газом обычно обеспечивает более высокий КПД, чем двигатель с обедненным газом.Однако современная конструкция двигателей, работающих на обедненной смеси, позволяет им достигать столь же высокого уровня эффективности при сохранении более низких уровней выбросов.

Как и в случае паротурбинных установок, работающих на природном газе, основным экологическим фактором является NO x . Для двигателей с интенсивным сгоранием, работающих на природном газе, обычно требуется какая-либо система каталитического восстановления для удаления NO x и приведения уровня выбросов в соответствие с местными нормативами. Некоторые двигатели, работающие на обедненной смеси, могут соответствовать экологическим нормам без необходимости в дополнительных системах контроля выбросов.Двигатели также выделяют углекислый газ, но маловероятно, что применение технологии улавливания углерода в поршневых двигателях будет рентабельным, за исключением самых крупных установок.

Поршневые двигатели, работающие на природном газе, доступны мощностью от 0,5 кВт до примерно 6 МВт. Для электростанций большего размера обычно требуется несколько двигателей. Хотя могут быть созданы более крупные поршневые двигатели, они обычно работают на тяжелой нефти в качестве топлива, а не на природном газе. Скорость поршневого двигателя зависит от его размера.Двигатели, работающие на природном газе, могут быть либо высокоскоростными двигателями (1000–3000 об / мин), которые доступны мощностью от 0,5 кВт до 6 МВт, либо среднеоборотными двигателями (275–1000 об / мин), которые обычно начинаются с мощности 1 МВт. Более крупные двигатели с меньшей скоростью обычно более надежны и обычно выбираются для непрерывной работы. Там, где требуется прерывистая работа, часто будут выбираться более компактные высокоскоростные двигатели, потому что они, как правило, дешевле, хотя и менее надежны.

Использование двигателей, работающих на природном газе, для выработки электроэнергии разнообразно.Многие из них используются для приложений распределенной генерации, где они поставляют электроэнергию непосредственно местным потребителям. Некоторые из этих двигателей используются в режиме когенерации, в котором отработанное тепло двигателя используется для нагрева воды. Это может привести к очень высокой общей эффективности. Еще одно распространенное применение — резервная сеть, когда системы спроектированы таким образом, что они запускаются, как только происходит перерыв в электроснабжении. Двигатели, работающие на природном газе, также могут использоваться в сочетании с возобновляемыми источниками энергии, такими как энергия ветра или солнечная энергия, в приложениях типа микросетей, где они также используются в качестве резервного источника питания.

Что такое поршень и для чего он нужен

Поршень лежит в основе поршневого двигателя. Он состоит из движущейся круглой металлической части с поршневыми кольцами для обеспечения герметичного уплотнения после установки в цилиндр двигателя. Поршень прикреплен через поршневой / поршневой палец к шатуну, который, в свою очередь, соединен с коленчатым валом.

В четырехтактных (бензиновых и дизельных) двигателях автомобилей процесс впуска, сжатия, сгорания и выпуска происходит над поршнем в головке блока цилиндров, что заставляет поршень двигаться вверх и вниз (или внутрь и наружу в плоском двигателе. ) внутри цилиндра, что приводит к проворачиванию коленчатого вала.

Из чего сделан поршень?

Компоненты двигателя должны быть износостойкими для долговечности и легкими для повышения эффективности.

В результате поршни обычно изготавливаются из алюминиевого сплава, но поршневые кольца (обычно состоящие сверху вниз, компрессионное кольцо, грязесъемное кольцо и масляное кольцо) изготавливаются из чугуна или стали.

Масляное кольцо вытирает масло со стенок цилиндра при движении поршня, но со временем оно и другие кольца могут изнашиваться, позволяя маслу из картера попасть в камеру сгорания.

Чрезмерный расход масла и белый дым из выхлопных труб указывают на износ поршневых колец.

Двигатели внутреннего сгорания могут работать с одним цилиндром и, следовательно, с одним поршнем (мотоциклы и бензиновые газонокосилки) или с 12 двигателями, но у большинства автомобилей их четыре или шесть.

Радиальные двигатели, обычно используемые в винтовых самолетах, имеют нечетное количество цилиндров и поршней для более плавной работы.

Поршни также используются в двигателях внешнего сгорания, также известных как паровые двигатели, где вода нагревается в котле, а образующийся пар используется для приведения в движение пары поршней (обычно) во внешних цилиндрах, которые затем приводят в движение колеса.Роторные двигатели не имеют цилиндров или поршней.

Поршневой двигатель

— Energy Education

Поршневой двигатель — это двигатель, в котором используется один или несколько поршней для преобразования давления во вращательное движение. Они используют возвратно-поступательное движение поршней (вверх и вниз) для передачи этой энергии. [1] Существует много различных типов, включая двигатель внутреннего сгорания, который используется в большинстве автомобилей, паровой двигатель, который является одним из типов двигателя внешнего сгорания, и двигатель Стирлинга. Роторный двигатель будет выполнять ту же задачу, что и поршневой двигатель, но совсем другим способом из-за его треугольного ротора.

Как это работает

Все типы имеют один или несколько поршней, которые следуют четырехтактному циклу, показанному на Рисунке 1. Общие конфигурации блока цилиндров включают один ряд цилиндров (рядный), два ряда, сходящихся к одной точке (V-образный двигатель), двойной зигзаг (W-образный двигатель) и два горизонтальных ряда (оппозитный двигатель). [1] Все двигатели, упомянутые выше (внутреннего сгорания, паровые, Стирлинга), используют несколько разные процессы для завершения цикла, поэтому будет рассмотрен общий случай (как показано на рисунке 2).

  1. Впуск: Чтобы начать цикл, топливная смесь вводится внутрь цилиндра через впускной канал, расширяя поршень до нижней части цилиндра.
  2. Компрессия: Затем поршень выталкивается вверх, сжимая топливную смесь и воспламеняя ее через свечу зажигания.
  3. Зажигание: Зажигание толкает поршень вниз, обеспечивая полезную работу двигателя.
  4. Выхлоп: Отработанные химические вещества выводятся через выхлопное отверстие, и цикл повторяется.
  • Поршневой двигатель
  • Рисунок 1: 4-тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [2]

  • Рис. 2: Коленчатый вал (красный) преобразует возвратно-поступательное движение поршней (серый), которое часто сочетается с маховиком (черный). [3]

Четырехтактный цикл — это то, что дает двигателю энергию, но теперь он должен преобразовать эту энергию в энергию вращения для трансмиссии, приводного вала и колес.Это осуществляется коленчатым валом, который показан на рисунке 2. Коленчатый вал преобразует это движение вверх и вниз во вращательное движение, которое часто сочетается с маховиком для сохранения энергии прерывистого возвратно-поступательного движения в качестве энергии вращения.

Для дальнейшего чтения

Список литературы

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *