Цикл двс – —

Содержание

Теоретические циклы двигателей внутреннего сгорания

При анализе термодинамических циклов делаются следующие допущения:

    1. химический состав и количество рабочего тела – постоянны;

    2. процесс горения топлива заменен обратимым процессом подведения теплоты;

    3. выпуск продуктов сгорания заменен обратимым процессом отведения теплоты в окружающую среду;

    4. температура рабочего тела не зависит от температуры окружающей среды;

    5. рабочее тело находится в равновесии с источником теплоты и охладителем (окружающей средой).

Основные циклы ДВС:

    • со смешанным подводом теплоты при постоянном объеме и давлении (цикл Сабатэ) – отражает процесс

      дизеля без компрессора, который наиболее близок к реальным условиям сгорания топлива;

    • с подводом теплоты при постоянном давлении (цикл Дизеля) – отражает процесс тихоходного дизеля;

    • с подводом теплоты при постоянном объеме (цикл отто) – отражает процесс двигателя быстрого сгорания (карбюраторного и газового).

    Теоретические циклы, давая максимально возможное превращение теплоты в работу при приведенных выше условиях, схематизируют действительные явления и позволяют изучать эти явления, отмечая главные факторы, которые влияют на экономику этих явлений.

    Цикл со смешанным (комбинированным) подводом теплоты (рисунок 1)

    смешанный цикл, в котором подвод теплоты осуществляется частично при v = const, а частично при р = const был предложен советским инженером Г.В. Тринклером. Работающие по этому циклу двигатели называются без компрессорными дизелями. в настоящее время дизели строятся только с комбинированным подводом тепла.

    По этой схеме цикла ДВС работают с внутренним смесеобразованием и воспламенением рабочей смеси.

    Рисунок 1– Смешанный цикл ДВС в pv и Ts координатах

    В этом виде цикла (рисунок 1) в процессе 1-2 происходит адиабатное сжатие рабочего тела, после чего подводится теплота сначала при v =const (линия 2-3), а затем при р = const (линия 3-4). Далее происходит адиабатное расширение (линия 4-5) и, наконец, отвод теплоты при v =const (линия 5-1).

    Процессы всасывания (линия 0-1) и выхлопа (линия 1-0) в термодинамике не рассматриваются, так как это механические процессы.

    Характеристики цикла:

    ; (2)

    . (3)

    Термический кпд цикла (см. прямой цикл Карно – )

    ; (4)

    и ; (5)

    термический КПД: , если поделить числитель и знаменатель на на сv, то получим:

    . (6)

    Выразим T2, T3, T4, T5 через T1.

    Рассмотрим процессы.

    1-2 – процесс адиабатического сжатия:

    T2 = T1ε k – 1. (7)

    2-3 – процесс нагрева при ν = const:

    ;

    T3 = T2λ;

    T3 =T1ε k – 1λ. (8)

    3-4 – процесс нагрева при р= const:

    ;

    T4 = T3ρ;

    T4 = T1ε k – 1λρ; (9)

    4-5 – процесс адиабатического расширения: ,

    v5 = v1, а v4 = v2, тогда .

    . (10)

    Подставив в формулу (6) t2,t3,t4,T5 через t1 из формул (7), (8), (9), (10) получим:

    . (11)

    из уравнения (11) видно, что ηt растет с увеличением ε и k.

    Таблица 1 – Значения р2 и T2при различных значениях ε

    k

    ε

    8

    9

    12

    13

    14

    15

    16

    17

    1,30

    p2

    13,42

    15,70

    22,70

    25,20

    27,80

    30,30

    33,00

    35,80

    T2

    708

    734

    801

    822

    840

    856

    873

    889

    1,35

    p2

    14,90

    17,50

    25,70

    28,80

    31,80

    34,90

    38,20

    41,40

    T2

    795

    850

    901

    932

    956

    980

    1 004

    1 020

    Цикл с подводом теплоты при постоянном давлении

    в таких двигателях топливо распыляется сжатым воздухом.

    если сжимать один воздух, а топливо вводить в цилиндр после сжатия, то степень сжатия может быть значительно большей. Такая схема применяется в дизель-моторах, и была предложена инженером Дизелем в 1897 г.

    в цикле с подводом тепла при р = const первоначальное состояние рабочего тела в pv-координатах характеризуется точкой 1 (рисунок 2).

    В течение первого хода справа налево совершается сжатие воздуха, которое происходит без теплообмена с внешней средой (линия 1-2). На участке 2-3 к рабочему телу подводится тепло q

    1 таким образом, что давление при этом остается постоянным (так как увеличивается объем), что приближенно соответствует реальным условиям сгорания трудно сгораемого топлива.

    Дальнейшее расширение рабочего тела (линия 3-4) происходит без теплообмена с внешней средой (по адиабате). Для приведения рабочего тела в первоначальное состояние 1, от него отводится тепло q2 при v =const (линия 4-1).

    Рисунок 2 – Цикл ДВС в pv и Ts- координатах с подводом тепла при р = const

    Теоретический цикл – (1-2-3-4). процессами 0-1 (процесс всасывания) и 1- 0 (процесс выхлопа) – пренебрегают, считая, что в цилиндре находится

    постоянное количество газа (механические процессы).

    В рассматриваемом цикле степень повышения

    давления при сгорании топлива .

    Основные величины этого цикла:

    (12)

    Тогда подставив в уравнение (173) λ = 1 в ηt цикла с комбинированным подводом теплоты получим:

    . (13)

    Выводы:

    1. термический КПД двигателя Дизеля зависит от степени предварительного расширения ρ и с увеличением  уменьшается экономичность цикла;

    2. с увеличением степени сжатия ε увеличивается термический КПД цикла.

    Таблица 2– Значения термического КПД цикла Дизеля при различных значениях и k = 1,35

    ε

    10

    12

    14

    16

    18

    ρ = 1,5

    ηt

    0,52

    0,54

    0,57

    0,59

    0,61

    ρ = 2,1

    ηt

    0,49

    0,52

    0,55

    0,57

    0,58

    ρ = 2,5

    ηt

    0,46

    0,49

    0,52

    0,54

    0,56

    Цикл с подводом теплоты при постоянном объеме

    studfile.net

    Рабочий цикл ДВС

    Рабочий цикл одноцилиндрового двигателяРабочий цикл одноцилиндрового двигателя

    В автомобилях применяются двигатели внутреннего сгорания (ДВС) названные так потому, что сгорание топлива происходит непосредственно в цилиндре. Основными деталями ДВС, кроме цилиндра, являются поршень, шатун, коленчатый вал. На кривошипе коленчатого вала подвижно закрепляется шатун. К верхней головке шатуна шарнирно, с помощью пальца, крепится поршень. Цилиндр сверху закрывается крышкой, которая называется головкой цилиндра. В головке имеется углубление, называемое камерой сгорания. Также в головке имеются впускное и выпускное отверстия, закрываемые клапанами. К коленчатому валу крепится маховик – массивный круглый диск.

    При вращении коленвала происходит перемещение поршня внутри цилиндра. Крайнее верхнее положение поршня называется верхней мертвой точкой (В.М.Т.), крайнее нижнее положение – нижней мертвой точкой (Н.М.Т.). Расстояние, которое проходит поршень между мертвыми точками, называется ходом поршня. Пространство, находящееся над поршнем, когда он находится в н.м.т., называется рабочим объемом цилиндра. Когда поршень находится в в.м.т., над ним остается пространство, называемое объемом камеры сгорания. Сумма рабочего объема и объема камеры сгорания называются полным объемом цилиндра. В технических данных объем указывается в литрах или кубических сантиметрах. Объем многоцилиндрового двигателя равен сумме полных объемов всех его цилиндров. Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя. Она показывает, во сколько раз сжимается рабочая смесь в цилиндре.

    Рабочий цикл двигателяРабочий цикл двигателяПараметры КШМПараметры КШМ

    Один ход поршня от одной мертвой точке к другой называется тактом. Коленвал при этом совершает полоборота. Как работает ДВС? Во время первого такта происходит впуск горючей смеси в цилиндр. Клапан впускного отверстия открыт, выпускного – закрыт. Поршень, перемещаясь от в.м.т к н.м.т, подобно насосу, создает разряжение в цилиндре и топливо, перемешанное с воздухом, заполняет его.

    Во время второго такта, при движении поршня от н.м.т. к в.м.т., происходит сжатие горючей смеси. При этом и выпускной, и впускной клапаны закрыты. В результате давление и температура в цилиндре повышаются. В конце такта сжатия, при приближении поршня к в.м.т., горючая смесь поджигается искрой от свечи зажигания (в бензиновых ДВС) или самовоспламеняется от сжатия (в дизельных ДВС).

    Порядок работы цилиндровПорядок работы цилиндров

    Во время третьего такта происходит сгорание рабочей смеси. Клапана остаются закрытыми. Воспламенившаяся рабочая смесь резко повышает температуру и давление в цилиндре, которое заставляет поршень с усилием двигаться вниз. Поршень через шатун передает усилие на коленвал, создавая на нем крутящий момент. Таким образом, происходит преобразование энергии сгорания топлива в механическую энергию, которая двигает автомобиль. Поэтому этот такт называется рабочим ходом. Маховик, закрепленный на коленчатом валу, запасает энергию, обеспечивая вращение коленвала за счет сил инерции во время подготовительных тактов.

    В ходе четвертого такта происходит выпуск отработанных газов и очистка цилиндра. Поршень, двигаясь от н.м.т. к в.м.т., выталкивает продукты горения через открытый выпускной клапан.

    Далее весь процесс повторяется. Таким образом, рабочий цикл описанного ДВС происходит за четыре такта. Поэтому он и называется четырехтактным. Коленвал за это время совершает два оборота. Существуют и двухтактные двигатели, в которых рабочий цикл происходит за два такта. Однако такие ДВС в настоящее время на автомобилях практически не применяются.

    Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал такты рабочего хода в разных цилиндрах должны происходить в определенной последовательности. Такая последовательность называется порядком работы двигателя. Он определяется расположением шеек коленчатого вала и кулачков распределительного вала. Например, в двигателях ВАЗ порядок работы 1-3-4-2. Так как в четырехтактном двигателе полный цикл в каждом цилиндре совершается за два оборота коленчатого вала, то, следовательно, в четырехцилиндровом двигателе для равномерной его работы за каждые пол-оборота коленчатого вала в одном из цилиндров должен происходить рабочий такт.

    Рассмотренные детали составляют в совокупности кривошипно-шатунный механизм. Кроме него, для обеспечения работы ДВС нужны газораспределительный механизм, система охлаждения, система смазки, система питания и система зажигания (в бензиновых двигателях).

    Газораспределительный механизм, управляя работой клапанов, обеспечивает своевременное их открытие и закрытие. Система охлаждения отводит тепло от деталей двигателя, нагревающихся при работе. Система смазки подает масло к трущимся поверхностям. Система питания служит для приготовления рабочей смеси и подачи ее в цилиндры. Система зажигания преобразует низковольтное напряжение от АКБ в высоковольтное и подает его на свечи для воспламенения рабочей смеси.

    avtonov.info

    Идеальные циклы поршневых двигателей внутреннего сгорания.

    Идеальные циклы поршневых двигателей

    

    Понятие о цикле двигателя внутреннего сгорания

    Последовательность термодинамических процессов в любом современном поршневом двигателе внутреннего сгорания в той или иной степени приближена к одному из трех характерных циклов, называемых идеальными циклами Отто, Дизеля и Сабатэ – Тринклера (Сабатье – Тринклера).
    При этом принципиальное различие этих циклов проявляется лишь в характере процесса сгорания топлива (подвода теплоты), который в идеальном цикле Отто протекает в условиях постоянного объема камеры сгорания, в цикле Дизеля – при постоянном давлении в цилиндре, а в цикле Сабатэ – последовательно по изохорному, а затем по изобарному процессам.

    Исходя из приведенных характеристик, циклы Отто, Дизеля и Сабатэ – Тринклера иногда называют, соответственно, циклами быстрого, постоянного и смешанного сгорания, которые положены в основу работы карбюраторного, компрессорного и бескомпрессорного двигателей.

    Приведенные ниже идеальные циклы тепловых двигателей внутреннего сгорания описывают последовательность термодинамических процессов, протекающие по двухтактному сценарию, т. е. поршень в цилиндре совершает за один цикл два хода — вверх и вниз. Реальные тепловые двигатели могут работать и по двухтактному, и по более эффективному четырехтактному циклу.

    ***

    Цикл Отто

    Идеальный цикл теплового двигателя внутреннего сгорания с принудительным воспламенением горючей смеси, который обычно называют циклом Отто, на самом деле был описан и предложен еще в 1862 году французским инженером Альфонсом Бо Де Роша (1815-1891), т. е. задолго до создания Николаусом Августом Отто своего знаменитого двигателя, первый образец которого был изготовлен спустя полтора десятилетия — в 1878 году. Поэтому заслуга Отто заключается лишь в осуществлении указанного цикла на практике.

    В своем двигателе Отто первым применил сжатие рабочей смеси для поднятия максимальной температуры цикла, которое осуществлялось по адиабате (т. е. без теплообмена с внешней средой). Последовательность термодинамических процессов в цикле Отто можно проследить по приведенной ниже диаграмме (рис. 1).
    После сжатия газо-топливной смеси она воспламенялась от внешнего источника (свечи), после чего начинался процесс подвода теплоты, который протекал практически по изохоре (т. е. при постоянном объеме цилиндра двигателя). Этот процесс на диаграмме представлен в виде вертикального участка, начинающегося с момента воспламенения горючей смеси в цилиндре.
    Изохорный характер процесса подвода теплоты объясняется тем, что воспламенившаяся газо-топливная смесь сгорает очень быстро, при этом процесс сопровождается резким повышением (скачком) давления и температуры в цилиндре.

    Далее следовало адиабатическое расширение, в процессе которого двигателем осуществлялась полезная работа (рабочий ход поршня). В конце процесса расширения следовал изохорный отвод теплоты (открывание клапанов и продувание цилиндра). На этом цикл завершался, после чего следовало повторение указанной последовательности процессов, составляющих череду аналогичных циклов.

    Как указывалось выше, А. Отто первым применил сжатие рабочей смеси перед воспламенением, благодаря чему КПД его двигателя значительно превышал КПД двигателя Э. Ленуара, в котором сжатие не предусматривалось. Современные двигатели, работающие по схеме цикла Отто, имеют степень сжатия (в зависимости от конструктивных особенностей) от 8 до 12,5. По такому циклу работают двигатели с принудительным воспламенением горючей смеси, использующие в качестве топлива бензин или газ.
    Более высокая степень сжатия в таких двигателях приводит к детонационному самовоспламенению смеси, т. е. теряется контроль над процессом воспламенения и сгорания топлива, а сам двигатель, по существу, начинает «превращаться» в беспорядочно работающий дизель со всеми вытекающими от детонации последствиями.

    Из-за относительно невысокой степени сжатия горючей смеси в цилиндрах, термический КПД таких двигателей ниже, чем в дизельных двигателях, и достигает 30-35 %.

    Двигатели, работающие по циклу Отто, в настоящее время широко применяются в автомобилях, лодочных моторах, маломощных летательных аппаратах и т. п.

    ***

    

    Цикл Дизеля

    Другой характерный идеальный цикл для ДВС называют циклом Дизеля, по имени изобретателя дизельного двигателя. Этот цикл характеризуется подводом теплоты (сгоранием топлива) по изобаре, т. е. при постоянном давлении в цилиндре двигателя.

    Как и в случае с циклом Отто, называть цикл, в котором сгорание топлива осуществляется по изобаре, циклом Дизеля будет не совсем справедливо.
    Изначально Р. Дизель предлагал осуществлять сжигание топлива по изотерме (как в идеальном цикле Карно) и запатентовал именно такой способ подвода тепла к рабочему телу.
    Однако, уже первые практические испытания показали, что цикл, предложенный Р. Дизелем, не имеет никакого практического и теоретического значения. Всякое приближение процессов горения к изотерме в цикле Дизеля приводило к увеличению расхода топлива.
    И лишь некоторое время спустя анализ диаграммы рабочего цикла дизельного двигателя, построенного в России на заводе «Л.Нобеля» показал, что линия сгорания топлива в нем протекает по изобаре. При этом достигался наиболее высокий КПД.
    Тем не менее, название цикл Дизеля установилось и теперь навсегда связано с именем знаменитого изобретателя конструкции тепловых двигателей уникального типа.

    Цикл Дизеля протекает по следующему сценарию (см. диаграмму на рис. 1).
    Сжатие осуществляется по адиабате, как и в цикле Отто, с той лишь разницей, что степень сжатия и давление в конце такта значительно выше. Это прослеживается на приведенной диаграмме.
    В конце такта сжатия происходит впрыск топлива и начинается его горение (подвод теплоты), которое осуществляется по изобаре, т. е. при постоянном давлении.
    Именно в этом заключается принципиальное отличие цикла Дизеля от цикла Отто, где теплота подводится изохорно (при постоянном объеме), поскольку топливо сгорает очень быстро, а его воспламенение (от искры) начинается чуть раньше, чем поршень достигал верхнего положения.
    Изобарное сжигание топлива в дизельном двигателе связано с относительно медленным (лавинообразным) воспламенением – сначала сгорают легкие фракции, затем более тяжелые. В результате процесс горения растягивается во времени и поршень успевает «убежать» от верхней мертвой точки, при этом давление в цилиндре остается неизменным.
    Далее, как и в цикле Отто, следовало адиабатическое расширение, а затем изохорный отвод теплоты (выпуск газов и продувка цилиндра после открывания клапанов).

    Принципиальное и конструктивное отличие заключалось в том, что Дизель предложил сжимать в цилиндре не топливовоздушную смесь, как в двигателях Отто, а воздух. В конце такта сжатия температура воздуха поднималась настолько, что впрыскиваемое в цилиндр топливо возгоралось самостоятельно, т. е. происходило самовоспламенение топлива.
    Для осуществления самовозгорания приходилось значительно увеличить степень сжатия, которая в дизельных двигателях в 2-3 раза выше, чем в карбюраторных двигателях.
    Дизель, проектируя свой двигатель, предполагал применить стократную степень сжатия, но, как показали первые же испытания, тепловая и механическая напряженность деталей двигателя при таких нагрузках превышала допустимые значения. Опытные образцы не выдерживали нагрузки и разрушались даже при значительном утяжелении конструкции с целью повышения прочности.
    Тем не менее, современные разработки по усовершенствованию дизельных двигателей направлены, в том числе, на значительное увеличение степени сжатия, поскольку это напрямую связано с повышением КПД и экономичности двигателя.

    По легенде считается, что Р. Дизель изобрел свой знаменитый двигатель, накачивая ручным насосом колесо велосипеда. После нескольких энергичных манипуляций насосом, он заметил, что его корпус-цилиндр сильно нагрелся, и даже обжигал руку. Это и натолкнуло изобретателя на идею, которая принесла ему мировую славу и бессмертие в памяти благодарного человечества.

    Особенностью системы питания Дизеля, в его первозданном виде, было компрессорное пневматическое распыливание топлива, на смену которому со временем пришло механическое распыливание посредством топливных насосов высокого давления (ТНВД) и форсунок, предложенных в 1898 году французом Сабатэ.

    Отказ от пневматического (компрессорного) впрыска был связан с тем, что на привод компрессора приходилось 10-15% полезной работы двигателя, в связи с чем расход топлива у таких дизелей был не совсем приемлемым, т.е. эффективные показатели были ниже, чем у цикла Сабатэ – Тринклера. Кроме того, гидравлический впрыск топлива позволял увеличить динамические показатели работы дизельного двигателя.
    Однако индикаторные и экологические показатели компрессорного («чистого») дизельного двигателя были выше, чем у двигателей, работающих по циклу Сабатэ – Тринклера (о них речь пойдет ниже). Связанно это было с более качественным смесеобразованием – в цилиндр подавалась топливовоздушная смесь, а не топливо в жидкой фазе как у современных дизелей.

    Повсеместный переход от пневматического на механическое (бескомпрессорное) распыливание топлива и соответственно с цикла Дизеля на цикл Сабатэ — Тринклера начался в 30-х годах прошлого столетия.
    В настоящее время двигатели, работающие по «чистому» циклу Дизеля не производятся, за исключением экспериментальных и опытных образцов.

    ***

    Цикл Сабатэ – Тринклера

    Цикл, включающий два последовательных термодинамических процесса сгорания топлива – сначала по изохоре, а затем по изобаре, называют циклом Сабатэ – Тринклера. Пожалуй, это название цикла тоже можно оспорить, поскольку французский инженер Сабатэ (Сабатье) запатентовал в 1898 году не цикл, а механическое устройство (форсунку с распылителем), которое должно было подавать жидкое топливо непосредственно в цилиндры в два этапа. По замыслу Сабатэ это должно привести к более полному и быстрому сгоранию топлива.

    В начале прошлого века российский инженер Густав Тринклер изобрел принципиально новый двигатель, опытный образец которого был изготовлен в 1902 году на Путиловском заводе. Снятая с работающего двигателя индикаторная диаграмма показала, что сгорание топлива в нем происходило по смешанному циклу – сначала по изохоре (при постоянном объеме), а затем по изобаре (при постоянном давлении).
    Таким образом, первым в мире двигателем с самовоспламенением, работающим по циклу смешанного сгорания, был двигатель конструкции Г. Тринклера, изготовленный в России.

    Термодинамические процессы в цикле Сабатэ – Тринклера осуществляется в следующей последовательности (см. диаграмму на рис. 1).
    Сжатие воздуха, как и в цикле Дизеля, осуществлялось по адиабате. Теплота подводится смешанно: изохорно (вертикальный участок на p-V диаграмме), а затем изобарно (горизонтальный участок на диаграмме).
    Далее следовало адиабатическое расширение, после чего изохорный отвод теплоты (вертикальный отрезок в конце такта расширения на диаграмме).

    Смешанный цикл в двигателе Тринклера имел место благодаря применению гидравлического впрыска топлива посредством форсунок, а также предварительному воспламенению топлива не в цилиндре, а в отдельной небольшой камере, соединенной каналом с объемом цилиндра. Именно в эту камеру бескомпрессорным (гидромеханическим) способом впрыскивалось топливо, где и начинался процесс его горения.
    Применение отдельной камеры позволяло поддерживать в ней более высокую температуру, чем в цилиндре, поскольку ее стенки не успевали остыть при отводе теплоты из цилиндра. Благодаря этому процесс горения топлива в камере протекал очень быстро (практически, по изохоре, как в цикле Отто), а затем горение распространялось в цилиндр и здесь уже протекало по изобарному сценарию, как в цикле Дизеля.
    Двигатели Тринклера чаще называют бескомпрессорными или форкамерными дизелями или просто дизелями.

    Как упоминалось выше, все выпускающиеся в настоящее время дизельные двигатели на самом деле работают по циклу Сабатэ — Тринклера, т. е. циклу со смешанным подводом теплоты и с механическим распыливанием топлива.

    Степень сжатия у безнаддувных двигателей достигает значения 18-22; у наддувных высокофорсированных двигателей — 13-15.
    Замечено, что с увеличением рабочего объема цилиндров дизельного двигателя и с уменьшением его оборотистости возрастает экономичность, т. е. КПД.

    Область применения этих двигателей очень широкая. Их устанавливают в генераторных, насосных, энергетических установках и на электростанциях, в легковых и грузовых автомобилях, тракторах, сельскохозяйственной и дорожной технике, на тепловозах, судах, самолетах и т. д.

    ***

    Сравнение эффективности идеальных циклов

    Попробуем сравнить эффективность рассмотренных выше идеальных циклов с помощью диаграммы T-s (рис. 2), описывающей зависимость между энтропией и температурой рабочего тела. Анализ будет наиболее наглядным при одинаковых степенях сжатия в рассматриваемых двигателях (представим, что такое возможно).

    Из приведенной диаграммы (рис. 2б) видно, что процессы сжатия 1-2 у всех трех типов двигателей (карбюраторного, дизельного и бескомпрессорного) совпадают, а если отводить одинаковое количество теплоты, то будут совпадать и процессы 4-1.

    Следует отметить, что на диаграмме T–s изохора всегда проходит круче изобары, следовательно, в карбюраторном двигателе при одинаковом количестве подведенной теплоты будет совершаться больше работы на величину заштрихованной площади. Исходя из этого, можно сделать вывод: изохорное сжигание топлива эффективнее изобарного.

    Однако в действительности названные двигатели работают при разных степенях сжатия, и практический интерес представляет сравнение их эффективности при одинаковых максимальных температурах сгорания, поскольку именно они определяют в основном температурную напряженность машины и ее КПД.

    Следующая диаграмма T-s (рис. 2в) показывает циклы Отто, Дизеля и Сабатэ-Тринклера при одной и той же максимальной температуре. В этом случае на диаграмме T–s должны совпадать точки 3, что соответствует одинаковой максимальной температуре в цикле и одинаковому количеству отводимой за цикл теплоты.

    Здесь отрезки 1–2, 1–2′ и 1–2″ изображают адиабатное сжатие в циклах Отто, Дизеля и Сабатэ-Тринклера соответственно, 2–3 – изохорный подвод теплоты в цикле Отто, 2’–3 – изобарный в цикле Дизеля, 2″–3′ и 3’–3 – изохорный и изобарный в цикле Сабатэ-Тринклера. Остальные процессы – адиабатное расширение (рабочий ход) 3–4 и изохорный отвод теплоты 4–1 – при рассматриваемых условиях одинаковы для всех трех циклов.

    Как видно из этой диаграммы, максимальная теплота q0 (площадь, заключенная внутри контура цикла), преобразуемая в полезную работу и, следовательно, максимальный термодинамический КПД имеет место в случае цикла Дизеля, минимальный – в случае цикла Отто. Цикл Сабатэ-Тринклера по эффективности преобразования теплоты в полезную работу занимает промежуточное положение.

    Конечно, наиболее ценные результаты дает сопоставление циклов при одинаковых максимальных температурах и одинаковых расходах топлива (одинаковых количествах подводимой за цикл теплоты). Но сделать это с помощью диаграммы T–s практически невозможно, поскольку пришлось бы так подбирать количество отводимой теплоты, чтобы площади каждого из сравниваемых циклов были одинаковы.
    Такой анализ может быть проведен с помощью моделирования на компьютере.

    ***

    Термодинамика поршневого двигателя

    Скачать теоретические вопросы к экзаменационным билетам
    по учебной дисциплине «Основы гидравлики и теплотехники»
    (в формате Word, размер файла 68 кБ)

    Скачать рабочую программу
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    Скачать календарно-тематический план
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    

    k-a-t.ru

    Термодинамические циклы двигателей внутреннего сгорания (ДВС)

     

    Первые поршневые двигатели внутреннего сгорания (ДВС) работали на газообразном топливе, используя светильный газ. Значительный вклад в развитие таких двигателей внес немецкий изобретатель Н.Отто, разработавший двигатель с предварительным сжатием и искровым зажиганием.

    Несколько позднее Рудольф Дизель разработал двигатель, до сих пор носящий его имя, в котором используется специальное дизельное топливо. Благодаря высокой концентрации энергии в единице объема, оно практически вытеснило газообразное топливо в двигателях внутреннего сгорания.

    Рассмотрим следующие основные циклы ДВС, работающие на жидком топливе при различных способах воспламенения топлива или при различных способах подвода теплоты.

    Различают следующие циклы ДВС. Двигатели с подводом теплоты при постоянном объеме (V = const), двигатели с подводом теплоты при постоянном давлении (Р = const) и двигатели, работаю-

    щие по смешанному циклу.

    Идеальный цикл ДВС при подводе теплоты V = const (цикл Отто) в P-V и T-S диаграммах представлен на рис.7.1.

     

    Рис.7.1. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при V = const в P-V и T-S диаграммах

     

    В этом цикле процесс сжатия рабочей смеси происходит по адиабате 1-2. Изохора 2-3 соответствует горению топлива, воспламеняемого от электрической искры и подводу теплоты q1. Рабочий ход поршня осуществляется при адиабатическом расширении продуктов сгорания, изображен линией 3-4. Отвод теплоты q2 осуществляется по изохоре 4-1, соответствующей выхлопу отработанных газов в атмосферу.

    Термический КПД рассматриваемого цикла, характеризующий эффективность использования теплоты сжигаемого топлива, вычисляется следующим образом:

    . (7.1)

    Сравнение адиабат 1-2 и 3-4 позволяет сделать вывод, что

    (7.2)

    и, следовательно, получить

    . (7.3)

    Отношение всего объема рабочего цилиндра V1 к объему камеры сжатия V2 называется степенью сжатия и является основной характеристикой цикла Отто

    . (7.4)

    Для адиабатического процесса справедливо следующее соотношение, устанавливающее связь между V и Т:

    , (7.5)

    которое позволяет записать уравнение для термического КПД в следующем виде:

    . (7.6)

    Из последнего соотношения видно, что термический КПД двигателей, работающих по циклу Отто, зависит только от степени сжатия и с ее увеличением возрастает. При этом температура в конце сжатия Т2 не должна достигать температуры самовоспламенения горючей смеси. Поэтому степень сжатия в реальных двигателях такого типа не превышает 10 и зависит от характеристик применяемого топлива.

    Степень сжатия в цикле может быть повышена, ес­ли сжимать не горючую смесь, а воздух, и затем, полу­чив высокие давление и температуру, обеспечить само­воспламенение распыленного в цилиндре топлива. В этом случае процесс горения затягивается и двигатели такого типа характеризуются постепенным (или медленным) сгоранием топлива при постоянном давлении. Идеальный цикл такого двигателя внутреннего сгорания называется циклом Дизеляи осуществляется следую­щим образом (рис. 7.2). Рабочее тело (воздух) сжи­мается по адиабате 1-2, изобарный процесс 2-3 соот­ветствует процессу горения топлива, т.е. подводу теп­лоты q1 а рабочий ход выражен адиабатным расшире­нием продуктов сгорания 3-4. Наконец, изохора 4-1характеризует отвод теплоты q2, заменяя для четырех­тактных двигателей выхлоп продуктов сгорания и вса­сывание новой порции воздуха.

    Формула для расчета термического КПД в этом слу­чае принимает вид

    . (7.7)

    Кроме степени сжатия , у цикла Дизеля имеется еще одна характеристика — степень предварительного расширения :

    . (7.8)

     

    Рис.7.2. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при Р = const (цикл Дизеля) в P-V и T-S диаграммах

     

    Для изобары 2-3 можно записать V3/V2=Т32. Рас­сматривая изохору 4-1 и учитывая, что P4Vk4=P3Vk3, P1Vk1=P2Vk2 и V4=V1 , получаем

    . (7.9)

    Окончательно с учетом соотношения (7.9) формула для расчета термического КПД цикла Дизеля имеет вид:

    . (7.10)

    Выражение (7.10) показывает, что основным факто­ром, определяющим экономичность двигателей, рабо­тающих по циклу Дизеля, также является величина степени сжа­тия , с увеличением которой термический КПД цикла возрастает. Как указывалось, нижний предел опреде­лен необходимостью получения в конце сжатия темпе­ратуры, значительно превышающей температуру само­воспламенения топлива. Верхний предел (до 20) огра­ничен допустимым давлением в цилиндре, превышение которого приводит к утяжелению конструкции и увели­чению потерь на трение. Повышение степени предварительного расширения вызывает снижение термиче­ского КПД цикла с подводом теплоты при постоянном давлении. Отсюда следует, что с увеличением нагрузки и удлинением процесса горения топлива экономичность двигателя уменьшается. Это следует учитывать наряду с другими обстоятельствами при определении оптималь­ного режима работы двигателя.

    Цикл Тринклера или цикл со смешанным подводом теплоты, по которому работают современные беском­прессорные дизели (рис.7.3), осуществляется по сле­дующей схеме. Адиабата 1-2соответствует сжатию в цилиндре воздуха до температуры, превышающей тем­пературу самовоспламенения топлива. Изохора 2-3 со­ответствует процессу горения топлива, впрыскиваемого в цилиндр, а изобара 3-4 изображает процесс горения остальной части топлива по мере поступления его из форсунки. Расширение продуктов сгорания идет по адиабате 4-5, а изохора 5-1соответствует выхлопу отработавших газов в атмосферу. Таким образом, теп­лота q1подводится в двух процессах 2-3 и 3-4.

    q1= q11 + q12 . (7.11)

     

     

    Рис.7.3. Идеальный цикл Тринклера со смешанным подводом теплоты в P-V и T-S диаграммах

     

    Выражение для термического КПД цикла со смешанным подводом теплоты записывается в следующем виде:

    . (7.12)

    Параметр называется степенью повышения давления в изохорном процессеи рассчитывается по формуле

    = Рз/Р2 . (7.13)

    В двигателях, работающих по циклу Тринклера, рас­пыление топлива производится топливным насосом высоко­го давления, а компрессор, применяемый при пневма­тическом распылении топлива, отсутствует. Степень сжатия в рассматриваемом цикле может достигать 18.

    Выражение (7.12) является об­щим для циклов поршневых ДВС и при =1 и =1 пе­реходит в соответствующие формулы для термического КПД циклов с подво­дом теплоты при постоян­ном давлении или посто­янном объеме. Сравнение эффектив­ности рассмотренных цик­лов проведем с помощью T-S диаграммы (рис. 7.4), пред­положив, что в каждом из них достигается одинако­вая максимальная темпе­ратура Т3. Одинаковы и количества отведенной теплоты q2в каждом цикле (площадь 14ав). При таких условиях полезно используемая теплота цикла, равная полезной ра­боте цикла, будет наибольшей для цикла Дизеля 12’34 и наименьшей для цикла Отто 1234. Цикл Тринклера 1dс34занимает промежуточное положение.

     

    Рис.7.4. Идеальные циклы ДВС при V=const, P=const и цикл Тринклера с одинаковой температурой Т3

     

    Таким образом, термический КПД, характеризую­щий степень термодинамического совершенства цикла, будет наибольшим для цикла с подводом теплоты при постоянном давлении и наименьшим для цикла с под­водом теплоты при постоянном объеме.

     


    Похожие статьи:

    poznayka.org

    Принцип работы ДВС. Рабочие циклы двигателя

    На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

    Рабочий цикл четырехтактного бензинового двигателя
    Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

    Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.


    Принцип работы ДВС (для просмотра нажмите на иконку «Play» на иллюстрации)

    Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).



    Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь. Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

    Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

    При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

    Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

    Рабочий цикл четырехтактного дизеля

    В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.


    Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

    Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

    Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

    Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

    Принцип работы многоцилиндровых двигателей
    На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

    Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


    Диаграмма работы двигателя по схеме 1-2-4-3

    Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

    amastercar.ru

    Рабочие циклы ДВС.

    Что такое рабочие циклы двигателя внутреннего сгорания — расскажем в этой сатье.

    Что такое рабочие циклы? Это строгое последовательное выполнение тактов, они повторяются всеми цилиндрами двигателя с четкой периодичностью и являются составляющей частью цикла. Двигатели всех автомобилей сейчас четырехтактные. Значит один цикл, будет состоять из 4 тактов, а каждый из тактов выполняется за 1 ход поршня. Это может быть как крайнее верхнее, так и крайнее нижнее положение («мертвые» точки). Не будет лишним дополнить, что цикл в таком моторе совершается за 2 оборота коленвала.

    Музыка или такты в двигателе:

    • Впуск – здесь работа цикла начинается, когда поршень начинает движение вниз, создавая вакуум в цилиндре сверху поршня. Клапан впуска открывается и под действием силы всасывания в него всасывается порция топливной смеси. Если дополнительно установлен нагнетатель, то смесь будет подаваться под давлением.
    • Сжатие – движение поршня в этом такте устремлено вверх. Клапана впуска и выпуска в этот момент закрыты, содержимое цилиндра сжимается. Во время сжатия смесь хорошо перемешивается и на пике сжатия запускается процесс воспламенения с помощью свечи зажигания. На свече зажигания генерируется высоковольтный электрический импульс. Получает его свеча от катушки зажигания. Для двигателя с четырьмя цилиндрами используют четыре свечи, по одной на каждый цилиндр. По аналогии в трех, шести, восьми, десяти и двенадцати цилиндровом двигателе.
    • Рабочий ход – поршень опускается к нижней точке под огромным давлением увеличивающихся газов. В этот момент впускной и выпускной клапан остаются закрытыми. Коленчатый вал приводит в движение шатун, соединенный посредством поршневого пальца с поршнем.
    • Выпуск – это конечный такт из всего рабочего цикла. По достижению поршнем крайней нижней точки он готов устремиться вверх. Под давлением эксцентрика распредвала клапан выпуска откроется, а поднимающийся поршень выдавливает отработанные газы, освобождая цилиндр. Отвод газов происходит очень быстро и только в момент достижения поршнем верхней крайней точки.

    А затем весь процесс будет повторяться в такой же последовательности циклично, до того момента пока вы не выключите зажигание (нажмете кнопку EngineStart/Stop).

    В заключении можно сказать, что в тактах двигателя нет ничего сложного. Достаточно попробовать визуализировать прочитанное и все вопросы, непонимания уйдут на второй план. Помните, что только в такте рабочего хода совершается полезная работа. Остальные являются сопутствующими или подготовительными. Так как запускаются за счет инерции маховика.

    Рабочие циклы четырехтактного двигателя (видео):

     

     

    autoportal.pro

    рабочие циклы, действит циклы ДВС

    ДЕЙСТВИТЕЛЬНЫЕ ЦИКЛЫ ДВС

    Замкнутые теоретические (идеальные) циклы ДВС дают представление о протекании процессов в реальных двигателях, качественных зависимостях основных показателей этих двигателей от различных параметров циклов. В то же время количественные значения параметров реальных циклов весьма далеки от них в силу целого ряда причин. На рис.2.1 представлены циклы Отто, Дизеля и Тринклера, рассматриваемые при анализе идеальных циклов ДВС.

    Р ис.2.1. Идеальные циклы Отто, Дизеля и Тринклера

    Методы расчета действительных циклов

    Замкнутые теоретические (идеальные) циклы ДВС дают наглядное представление о протекании процессов в реальных двигателях, качественных зависимостях основных показателей этих двигателей от различных параметров циклов. В то же время количественные значения параметров реальных циклов весьма далеки от них в силу целого ряда причин. Среди них, в первую очередь, необходимо отметить следующие.

    1. Теплоемкость рабочего тела не постоянна, как это принимается при рассмотрении идеальных циклов, а существенно изменяется с изменением состава и температуры рабочего тела.

    2. Процесс сгорания топлива в ДВС происходит по достаточно сложным законам и сопровождается интенсивным теплообменом.

    3. Непрерывный интенсивный теплообмен через стенки, головку цилиндров, поршни и др. элементы конструкции.

    4. Процессы газообмена, т. е. впуска и выпуска рабочего тела.

    5. Утечки рабочего тела.

    6. Подогрев воздуха, поступающего в двигатель.

    Многие из перечисленных факторов удается учесть при рассмотрении действительных циклов, которые иногда называют «разомкнутыми». Эти циклы, по сравнению с идеальными, в значительно большей степени отражают параметры реальных двигателей, поскольку они учитывают следующие факторы.

    1. Процессы впуска и выпуска (изменения температуры и давления рабочего тела, а также гидравлические потери при этом не учитываются).

    2. Изменение состава рабочего тела в течение протекания цикла, а также его теплоемкости с изменениями температуры.

    3. Зависимость показателей адиабат сжатия и расширения от средней теплоемкости.

    4. Процесс сгорания топлива, а также изменение молекулярного состава рабочего тела.

    5. Потери теплоты от химической неполноты сгорания топлива, а также на подогрев остаточных газов и избыточного воздуха.

    В настоящее время разработаны методики расчета подобных циклов, однако, достаточно надежные и достоверные результаты теплового расчета дают только полуэмпирические методики теплового расчета, учитывающие результаты экспериментальных исследований, накопленный опыт конструирования, изготовления и эксплуатации двигателей. В них расчет параметров и характеристик ДВС осуществляется на основе детального анализа процессов газообмена, сжатия, смесеобразования и сгорания, расширения.

    Р ис.2.2. Действительные циклы четырехтактных и двухтактных ДВС

    Основные сведения о рабочих циклах двс

    Рабочий цикл карбюраторного четырехтактного двигателя.

    Такт впуска. Поршень движется от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ), создавая разрежение в полости цилиндра, над собой. Впускной клапан открыт, и цилиндр заполняется горючей смесью. Горючая смесь, перемешиваясь с остаточными газами в цилиндре, образует рабочую смесь. Из-за гидравлического сопротивления впускного тракта и нагрева смеси, давление в конце такта впуска составляет примерно 0,07-0,09 МПА, а температура 100-130°С.

    Такт сжатия. Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Рабочая смесь в цилиндре сжимается до 0,7 -1,5 МПа. Температура сжатой смеси достигает 300-450ОС. В конце такта сжатая смесь воспламеняется электрической искрой. В процессе сгорания топлива давление в цилиндре повышается до 3,0-4,5 МПа, а температура газов до 1900-2400°С.

    Такт расширения. Иногда его называют рабочим ходом. Начинается движением поршня от ВМТ к НМТ под действием давления образовавшихся продуктов сгорания. Оба клапана закрыты. Шарнирно связанный с поршнем шатун приводит во вращение коленчатый вал, совершая полезную работу. К концу такта расширения давление газов уменьшается до 0,3-0,5 МПа, а температура до 1000 — 1200°С.

    Такт выпуска. Поршень движется от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выходят из цилиндра в атмосферу через выпускную трубу. К концу такта выпуска давление в цилиндре составляет около 0,11-0,12 МПа, а температура 500-800°С.

    После прохождения поршнем ВМТ закрывается выпускной клапан и рабочий цикл завершается. Последующее движение поршня к НМТ — такт впуска — является началом следующего цикла.

    Цикл четырехтактного дизеля

    В дизеле в отличие от карбюраторного двигателя воздух и топливо в цилиндры вводятся раздельно.

    Такт впуска. Поршень двигается от ВМТ к НМТ, впускной клапан открыт и в цилиндр поступает воздух либо за счет разрежения в цилиндре, либо за счет избыточного давления воздуха, создаваемого нагнетателем у дизеля с наддувом. Давление в конце такта впуска у дизеля без наддува 0,08-0,09 МПа, а температура воздуха 50-80ОС.

    Такт сжатия. Оба клапана закрыты. Поршень двигателя от НМТ к ВМТ и сжимает воздух, перемешанный с остаточными продуктами сгорания. Из-за большой степени сжатия (14-21) давление воздуха в конце этого такта достигает 3,5-4,0 МПа, а температура 500-700°С. При этом положении поршня в камеру сгорания впрыскивается мелко распыленное топливо, которое, попадая в среду сильно нагретого воздуха, нагревается, испаряется, воспламеняется и сгорает. Давление газов повышается до 5,5-9,0 МПа, а температура до 1600-2000°С.

    Такт расширения. Оба клапана закрыты. Продукты сгорания, стремясь расшириться, давят на поршень, заставляя его перемещаться от ВМТ к НМТ. В такте расширения догорает оставшаяся часть топлива. К концу такта расширения давление газов уменьшается до 0,3-0,4 МПа, а температура до 600-900°С.

    Такт выпуска. Поршень движется от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются в атмосферу. Давление газов в конце такта выпуска составляет 0,11-0,12 МПа, а температура 400 — 6000С. Затем рабочий цикл повторяется.

    У вышеописанных четырехтактных двигателей при выполнении тактов выпуска, впуска и сжатия необходимо перемещать поршень, вращая коленчатый вал. Эти такты называются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком двигателя в течение такта расширения.

    Рабочий цикл двухтактного карбюраторного двигателя

    В двухтактных двигателях для вытеснения отработавших газов из цилиндра используют принудительное вдувание воздуха или горючей смеси в цилиндр. Такой процесс называется продувкой. Продувка может осуществляться различными способами. Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. Когда поршень находится в положении близком в ВМТ камера сгорания заполнена сжатой рабочей смесью, кривошипная камера заполнена свежей порцией горючей смеси. В этот момент рабочая смесь в цилиндре воспламеняется электрической искрой от свечи. Давление газов резко возрастает, и поршень начинает перемещаться к НМТ — совершается рабочий ход. Когда поршень закроет впускное окно, в кривошипной камере начнется сжатие горючей смеси. Следовательно, при движении поршня к НМТ одновременно совершаются такты расширения и сжатия горючей смеси в кривошипной камере. В конце рабочего хода поршень открывает выпускное окно, через которое отработавшие газы с большой скоростью выходят в атмосферу. Давление в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу попадает в цилиндр и, наполняя его, выталкивает остатки отработавших газов через выпускное окно в атмосферу.

    Второй такт происходит при движении поршня от НМТ к ВМТ. В начале хода из цилиндра продолжают вытесняться оставшиеся продукты сгорания вместе с частью рабочей смеси. Затем поршень последовательно перекрывает продувочное окно и выпускное окно. После этого в цилиндре начинается сжатие рабочей смеси. В это же время за счет освобождения поршнем некоторого объема в герметически закрытой кривошипной камере создается разрежение. Поэтому, как только нижняя кромка юбки поршня откроет впускное окно, через него из карбюратора в кривошипную камеру поступает горючая смесь. Таким образом, во время второго такта происходит сжатие рабочей смеси в цилиндре и заполнение камеры новой порцией горючей смеси из карбюратора. После прихода поршня к ВМТ все процессы повторяются в такой же последовательности.

    Кривошипно-камерная продувка наиболее проста, но наименее совершенна, так как при этом недостаточно полно осуществляется очистка цилиндра от продуктов сгорания. Поэтому она применяется только в двигателях малой мощности с небольшим абсолютным расходом топлива (двигатели мотоциклов, лодочные, модельные и т.п.). В строительных машинах и на транспорте подобные схемы используются в пусковых карбюраторных двигателях.

    Цикл двухтактного дизеля

    Протекает аналогично рабочему циклу двухтактного карбюраторного двигателя и отличается только тем, что у дизеля в цилиндре поступает не горючая смесь, а чистый воздух и в конце процесса сжатия впрыскивается топливо, которое воспламеняется от соприкосновения с нагретым воздухом. Так как в дизелях продувка осуществляется чистым воздухом, а не горючей смесью, они оказываются более экономичными по сравнению с карбюраторными двигателями.

    studfile.net

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *