Двс принцип действия: Принцип работы ДВС. Рабочие циклы двигателя

Содержание

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Двигатель внутреннего сгорания – как работает, принцип действия и типы

4. 6

Средняя оценка: 4.6

Всего получено оценок: 394.

4.6

Средняя оценка: 4.6

Всего получено оценок: 394.

Двигатель внутреннего сгорания (ДВС) на сегодняшний день является самым популярным двигателем в мире. ДВС заставляют двигаться самолеты, морские и речные суда, тепловозы, сельскохозяйственную технику и, конечно, автомобили. Огромное значение ДВС имеют в военной технике. Рассмотрим как работает двигатель внутреннего сгорания.

Основные принципы действия ДВС

Ключевым элементом ДВС является один или несколько металлических цилиндров, внутри которых происходит сжигание топлива.

Рис. 1. Внутреннее устройство двигателя внутреннего сгорания.

Внутри цилиндра расположен поршень, диаметр которого чуть меньше диаметра цилиндра, что позволяет ему свободно перемещаться.

Рис. 2. Устройство поршня ДВС.

Поршень представляет собой полый металлический цилиндр, опоясанный пружинящими кольцами, вложенными в канавки на поршне (поршневые) кольца.

Назначение поршневых колец — не пропускать газы, образующиеся при сгорании топлива, в промежутки между поршнем и стенками цилиндра. К поршню прикреплен металлический стержень (“палец”), который соединяет поршень с шатуном. Шатун служит для передачи вертикального усилия от поршня к коленчатому валу. В верхней части цилиндра имеются два канала, закрытые клапанами. Через один канал — впускной подается горючая смесь (топливо с воздухом), а через другой — выпускной — выбрасываются продукты сгорания.

В верхней части цилиндра размещена свеча зажигания. С помощью этой детали производится поджиг горючей смеси от искры, возникающей между близко расположенными электродами свечи.

Первый поршневой двигатель в 1807 г. изобрел швейцарец Франсуа Исаак де Риваз.

Для чего нужен карбюратор

Карбюратор необходим для получения горючей смеси. Рассмотрим принцип действия этого устройства.

Рис. 3. Как работает карбюратор ДВС

Если в цилиндре открыт только впускной клапан и поршень движется к коленчатому валу, то сквозь отверстие в разряженное пространство атмосферное давление резко подает воздух. Поток воздуха с большой скоростью проходит мимо инжектора (карбюраторной трубки) и засасывает бензин. Таким образом получается горючая смесь (бензиновые пары и воздух). Искра от свечи поджигает смесь, получается микровзрыв, в результате которого раскаленные продукты сгорания (газы) расширяясь давят на поршень, и этим создается полезная работа. Внутренняя энергия газовой смеси преобразуется в механическую энергию поршня. Поршень через шатун передает усилие на коленчатый вал, который создает вращательный момент, передавая его на колеса (или на винт, пропеллер и т.д.).

Четырехтактный ДВС

Одноцилиндровые двигатели ставятся главным образом на мотоциклах. На автомобилях тракторах и т.п. ставятся 4, 6, 8 и более цилиндров.

Рабочий цикл цилиндра состоит из четырех тактов: всасывания смеси, сжатия, сгорания и выхлопа. Получается, что только один такт является полезным (рабочим). Поэтому был разработан двигатель, состоящий из четырех цилиндров, которые работают поочередно и, таким образом, при каждом такте по крайней мере один из цилиндров работает: вращает коленчатый вал.

Какие есть типы ДВС

Кроме бензиновых двигателей внутреннего сгорания, есть и другие, которые не так популярны, но тоже имеют свои преимущества:

  • Дизельные двигатели работают при степенях сжатия горючей смеси в 3-4 раза больших, чем бензиновые. Это позволило повысить к.п.д. двигателя и дало возможность отказаться от системы зажигания. Смесь самовоспламенятся при высоком давлении, когда воздух от сжатия разогревается до 500-600С
    0
    . Кроме этого, такие двигатели работают на дешевых сортах топлива, которое так и называют “дизтопливо”.
  • Газовые двигатели работают от смеси сжиженных природных газов, хранящихся в баллонах под давлением насыщенных паров.

Необходимо понимать, что для обеспечения постоянной работы ДВС в автомобиле должны работать также система охлаждения двигателя, система подачи топлива и воздуха, система запуска и система выхлопа. На современных автомобилях большое значение приобретает компьютерный блок, держащий под контролем параметры всех систем.

Что мы узнали?

Мы познакомились с принципом работы двигателя внутреннего сгорания. Топливная смесь, состоящая из паров бензина и воздуха, воспламеняясь в цилиндре двигателя, оказывает давление на поршень, который приводит во вращательное движение коленчатый вал двигателя. Внутренняя энергия горючей смеси преобразуется в механическую.

Тест по теме

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Александр Чулков

    5/5

  • Артём Гарипов

    5/5

  • Виталий Захаров

    5/5

  • Мария Кшевач

    4/5

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 394.


А какая ваша оценка?

Устройство и принцип работы двигателя внутреннего сгорания презентация, доклад

Слайд 1
Текст слайда:

Устройство и принцип работы двигателя внутреннего сгорания


Слайд 2
Текст слайда:

УСТРОЙСТВО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединенный при помощи шатуна 4 с коленчатым валом 5.

В верхней части цилиндра имеется два клапана 1 и 2, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 6, а через клапан 2 выпускаются отработавшие газы. В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600—1800 градусов Цельсия.


Слайд 3
Текст слайда:

РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
I ТАКТ

Один ход поршня, или один такт
двигателя, совершается за пол-оборота
коленчатого вала. При повороте вала
двигателя в начале первого такта поршень
движется вниз . Объем над поршнем
увеличивается. Вследствие этого в
цилиндре создается разрежение.

В это время открывается клапан 1 и в
цилиндр входит горючая смесь.
К концу первого такта цилиндр
заполняется горючей смесью, а клапан 1
закрывается.


Слайд 4
Текст слайда:

РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
II ТАКТ

При дальнейшем повороте вала
поршень движется вверх (второй такт) и
сжимает горючую смесь. В конце второго такта,
когда поршень дойдет до крайнего
верхнего положения, сжатая горючая смесь
воспламеняется (от электрической искры)
и быстро сгорает.


Слайд 5
Текст слайда:

РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
III ТАКТ

Под действием расширяющихся
нагретых газов (третий такт) двигатель
совершает работу, поэтому этот такт
называют рабочим ходом. Движение поршня
передается шатуну, а через него коленчатому

валу с маховиком. Получив сильный толчок,
маховик затем продолжает вращаться
по инерции и перемещает скрепленный
с ним поршень при последующих тактах.
Второй и третий такты происходят при
закрытых клапанах.


Слайд 6
Текст слайда:

РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

IV ТАКТ

В конце третьего такта открывается
клапан 2, и через него продукты
сгорания выходят из цилиндра в атмосферу.
Выпуск продуктов сгорания продолжается
и в течение четвертого такта, когда поршень
движется вверх. В конце четвертого
такта клапан 2 закрывается.


Слайд 7
Текст слайда:

Итак, цикл работы двигателя состоит из следующих четырех процессов (тактов):

впуска,
сжатия,
рабочего хода,

выпуска.


Слайд 8
Текст слайда:

Щелкните на картинке


Слайд 9
Текст слайда:

Карбюраторные двигатели

900igr.net


Слайд 10
Текст слайда:

История создания карбюраторного двигателя

В 1885 году немецкие инженеры Готлиб Даймлер (1834-1900) и Вильгельм Майбах (1846-1929) изобрели легкий, быстроходный двигатель внутреннего сгорания (ДВС), использовавший качестве топлива бензин. Они установили его на деревянный велосипед и создали первый в мире мотоцикл.
В 1889 году Даймлер и Майбах построили первый четырехколесный автомобиль. На этом автомобиле впервые был установлен двигатель, оснащенный четырехступенчатой коробкой передач и карбюратором. Карбюратор был разработан Даймлером, в нем топливо распыляется, смешивается с воздухом и подается в цилиндр.

Это обстоятельство значительно повышало эффективность работы данного двигателя, впоследствии названного карбюраторным.


Слайд 11
Текст слайда:

Применение карбюраторных двигателей

Карбюраторные двигатели находят широкое применение в современной жизни. Их используют в основном на транспортных средствах (из-за высокой стоимости топлива которые данные виды двигателей используют), к таким транспортным средствам относятся:
Мотоциклы, Автомобили, а также Катера; Моторные лодки и т. п.
Мне бы хотелось сосредоточить ваше внимание на использование карбюраторных двигателей в современном автомобильной промышленности.
Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства — автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей.


Слайд 12
Текст слайда:

После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность.
Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.
В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.
В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский
автомобильный завод. За годы послевоенных пятилеток вступили в строй:
Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы.
Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.


Слайд 13
Текст слайда:

Спасибо за внимание!


Скачать презентацию

Принцип действия двигателя внутреннего сгорания. Двигатель внутреннего сгорания (ДВС)

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков , к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели . Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Устройство двигателя внутреннего сгорания

Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Работа двигателя внутреннего сгорания

Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Большинство водителей понятия не имеют, каким является устройство двигателя автомобиля. А знать это необходимо, ведь не зря при обучении во многих автошколах ученикам рассказывают принцип работы ДВС. Иметь представление о работе двигателя должен каждый водитель, ведь эти знания могут пригодиться в дороге.

Конечно, существуют разные типы и марки двигателей автомобилей, работа которых отличается между собой в мелочах (системы впрыскивания топлива, расположение цилиндров и т. д.). Однако основной принцип для всех типов ДВС остается неизменным.

Устройство двигателя автомобиля в теории

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора — это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения — верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун — с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

Но главная задача — заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Четырехтактный цикл

Практически все двигатели работают по 4-тактному циклу:

  1. Впуск топлива.
  2. Сжатие топлива.
  3. Сгорание.
  4. Вывод отработанных газов за пределы камеры сгорания.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

На этой схеме четко показаны основные элементы:

A — Распределительный вал.

B — Крышка клапанов.

C — Выпускной клапан, через который отводятся газы из камеры сгорания.

D — Выхлопное отверстие.

E — Головка цилиндра.

F — Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

G — Блок мотора.

H — Маслосборник.

I — Поддон, куда стекает все масло.

J — Свеча зажигания, образующая искру для поджога топливной смеси.

K — Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L — Впускное отверстие.

M — Поршень, который движется вверх-вниз.

N — Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O — Подшипник шатуна.

P — Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами). Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня. Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и «жор» масла.

Это основные элементы конструкции, которые имеют место во всех двигателях внутреннего сгорания. На самом деле элементов намного больше, но тонкостей мы касаться не будем.

Как работает двигатель?

Начнем с начального положения поршня — он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап — это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

Отличие в бензиновых моторах

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч — элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. То есть на третьем цикле поршень поднимается вверх, сильно сжимает топливную смесь, и та взрывается естественным образом под действием давления.

Альтернатива ДВС

Отметим, что в последнее время на рынке появляются электрокары — автомобили с электрическими двигателями. Там принцип работы мотора совершенно другой, т. к. источником энергии является не бензин, а электричество в аккумуляторных батареях. Но пока что автомобильный рынок принадлежит автомобилям с ДВС, а электрические двигатели не могут похвастаться высокой эффективностью.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов «пробегают» миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

Двигателем внутреннего сгорания (ДВС) называют двигатель, в котором сгорание топлива происходит непосредственно внутри рабочей камеры. Именно такие агрегаты широко применяются в автомобильной индустрии, обеспечивая преобразование тепловой энергии от сгорания топлива в механическую силу.

Способ осуществления рабочего цикла может происходить в один такт, или в два такта. Поэтому различают двухтактные и четырехтактные ДВС. Тактом называется ход поршня между двумя мертвыми точками, с поворотом коленчатого вала на 180 градусов.

Принцип работы

Принципы работы каждого из типов двигателей несколько отличаются. В двухтактном моторе за один оборот происходит завершение рабочего цикла за два этапа – за счет сжатия и расширения. Клапаны в таком устройстве отсутствуют, а их функцию выполняет поршень. Его перемещение обеспечивает открытие и закрытие продувочных окон.

Рабочий процесс в четырехтактном моторе происходит за четыре этапа. При этом к сжатию и расширению добавляются такие процессы, как впуск на первом и выпуск на четвертом этапах, соответственно.

Главным различием таких моторов являются отличные механизмы газообмена, т.е. подача топлива в цилиндры и отвод отработанных газов. В конструкцию четырехтактных агрегатов включен газораспределительный механизм, обеспечивающий открытие и закрытие клапанов в определенные моменты времени. В двухтактных моторах цилиндры опорожняются и заполняются в моменты тактов сжатия и расширения.

Видео: Устройство и как работает двигатель внутреннего сгорания

Общее устройство ДВС

По типу преобразования тепловой энергии все двигатели можно разделить на такие виды:

  • Поршневые. В таких агрегатах сгорание топлива происходит в цилиндрах, а благодаря возвратно-поступательному движению поршня за счет кривошипно-шатунного механизма тепловая энергия преобразуется в механическую;
  • Роторно-поршневые. Энергия преобразовывается при помощи вращения ротора со специальным профилем за счет рабочих газов;
  • Газотурбинные. В таких двигателях превращение энергии обеспечивает ротор с клиновидными лопатками.

Самым популярным и востребованным среди всех видов агрегатов является поршневой ДВС, за счет своей универсальности, способности к быстрому запуску и возможностью работы с различными видами горючего.

Общее устройство ДВС включает корпус агрегата, а также два типа механизмов – кривошипно-шатунный и газораспределительный. Помимо этого он содержит ряд систем – питания, зажигания, пуска, охлаждения и смазки. Все перечисленные системы состоят из определенных узлов и механизмов, а также необходимых коммуникационных элементов.

Важно! Только благодаря слаженному выполнению механизмами и системами своих функций обеспечивается бесперебойная работа ДВС.

Кривошипно-шатунный механизм

Циклическое поступательное движение поршня, описываемое им при перемещении в цилиндре, должно быть преобразовано во вращательное движение коленчатого вала. Именно это действие и обеспечивается благодаря кривошипно-шатунному механизму (КШМ).

В конструкцию такого механизма входят подвижные составляющие – поршни, поршневые кольца, пальцы, шатуны, маховик и коленчатый вал. Также КШМ включает и неподвижные элементы – блок цилиндров и прокладка, головка блока цилиндров, цилиндры, картер, поддон. Кроме того, устройство включает и различные элементы креплений, крепежные и шатунные подшипники.

Газораспределительный механизм

Благодаря газораспределительному механизму (ГРМ) своевременная подача в цилиндры в зависимости от типа ДВС воздуха или топливно-воздушной смеси, а также выпуска в систему выхлопа отработанных газов.

Интересно! Благодаря своевременному открытию или закрытию клапанов ГРМ обеспечивается бесперебойная работа механизма.

В состав конструкции ГРМ входят такие узлы и механизмы:

  • Распредвал. Чугунный или стальной элемент, который открывает или закрывает клапаны.
  • Толкатели. Обеспечивают передачу усилий на клапаны от кулачков.
  • Впускные и выпускные клапаны. Способствуют подачи смеси в камеру, а также удаляют отработанные газы. В зависимости от диаметра головки различаются впускные и выпускные клапаны. Кроме того головка впускного клапана – имеет хромированное покрытие, а головка выпускного изготовлена из жаропрочной стали.
  • Штанги. Благодаря которым происходит передача усилия от толкателей к штангам.
  • Привод ГРМ, который обеспечивает открытие и закрытие клапанов, за счет передачи вращения коленвала на распредвал. В качестве привода может использоваться как ремень, так и цепь ГРМ, а также зубчатая передача.

Система питания

В состав данной системы входят такие устройства, как элементы, предназначенные для хранения топлива, воздухоочистительные приборы, узлы, обеспечивающие очистку и подачу топлива, а также приборы для приготовления топливной смеси.

Элементами питания ДВС являются:

  • Топливный бак и топливопровода;
  • Топливный фильтр и насос;
  • Воздушный фильтр;
  • Карбюратор, моновпрыск или инжектор, в зависимости от устройства системы питания.
Интересно! В инжекторных системах питания регулировку работы топливных форсунок осуществляет электронное устройство – блок управления, в конструкцию которого включены различные датчики контроля.

Главными функциями топливной системы являются:

  • Подача топлива из бака;
  • Фильтрация горючего;
  • Образование горючей смеси;
  • Подача смеси в цилиндры.

Отличаются топливные системы в зависимости от типа используемого горючего: в дизельных агрегатах впрыск в камеру происходит под высоким давлением, для чего применяется топливный насос высокого давления.

Система зажигания

Главная функция данной системы является подача искры к свечам зажигания в определенный момент времени. Системы зажигания бывают трех основных типов:

  • Контактная. Создание импульсов происходит в момент разрыва контактов.
  • Бесконтактная. Управляющие импульсы создает транзисторное управляющее устройство.
  • Микропроцессорная система зажигания управляется электронным устройством.

Основными элементами системы являются:

  • Источник питания;
  • Выключатель зажигания;
  • Накопитель;
  • Свечи зажигания;
  • Система распределения;
  • Высоковольтный провод.

Принцип работы данной системы основан на накоплении катушкой зажигания напряжения с низкими характеристиками и его преобразовании в высокое. После накопленная энергия передается к свечам зажигания, а образовываемая в необходимый момент времени искра воспламеняет топливно-воздушную смесь.

Пуск

Основными составными механизмами системы пуска ДВС являются:

  • Стартер;
  • Аккумуляторная батарея;
  • Включатель зажигания.

Данная система обеспечивает удобный, надежный и быстрый пуск двигателя в независимости от условий эксплуатации автомобиля.

Охлаждение

Функционирование систем и механизмов ДВС без организации отвода излишнего тепла не возможно, так как их работа сопряжена с повышенным температурным режимом. Основное назначение системы охлаждения – это уменьшение температуры рабочих элементов мотора.

Интересно! Если авто оборудовано автоматической трансмиссией, то система охлаждения участвует также в организации охлаждения трансмиссионной жидкости.

Существует два основных типа систем охлаждения ДВС:

  • Жидкостная;
  • Воздушная.

Помимо основных функций, система охлаждения отвечает за:

  • Работу системы отопления, вентиляции и кондиционирования;
  • Охлаждение масла в смазывающей системе;
  • Охлаждение газов в системе выхлопа.

Наиболее распространенной является жидкостная система охлаждения, чему способствуют равномерное и эффективное охлаждение узлов и механизмов, а также низкий уровень шумности при работе.

Важными элементами системы охлаждения являются:

  • Жидкостной радиатор;
  • Масляный радиатор;
  • Теплообменник;
  • Вентилятор;
  • Центробежный насос;
  • Расширительный бачок;
  • Термостат.

Важным расходным материалом, благодаря которому обеспечивается охлаждение, является рабочая жидкость – антифриз.

Система смазки

Работа механизмов и узлов ДВС происходит в условиях постоянного трения элементов. Это отрицательно влияет на их состояние, вызывая износ и снижая эксплуатационные характеристики агрегата. Именно для предотвращения таких негативных явлений в конструкцию ДВС включена система смазки. Она является комбинированной, т.е. происходит смешивание моторного масла с топливом.

Основными элементами системы смазки ДВС являются:

  • Масляный фильтр и насос;
  • Поддон;
  • Заборник;
  • Контуры, обеспечивающие подачу масла к элементам.

При помощи масляного насоса происходит подача масла в фильтр, а далее оно распределяется между узлами и каналами смазки. Этот процесс происходит постоянно, а благодаря наличию специальных датчиков контролируется давление в системе.

Тюнинг

Для повышения эксплуатационных характеристик двигателя, его модернизации и увеличения крутящего момента используется такая процедура, как тюнинг. Основными видами тюнинга являются:

  • Расточка цилиндров, которая способствует увеличению камеры сгорания топлива, что несколько увеличивает силовые возможности агрегата.
  • Установка турбины, что обеспечивает увеличение мощности и КПД двигателя;
  • Чип-тюнинг – увеличение эксплуатационных характеристик за счет изменения работы электронной части блока управления.
  • Установка закиси азота, что способствует значительному увеличению мощности мотора.

Как правило, тюнинг проводится только в случае полной исправности узлов и механизмов силового агрегата и должен выполняться квалифицированными мастерами автосервисов.

Для бесперебойной и эффективной работы ДВС следует обращать внимание на любые изменения и своевременно производить диагностику и ремонт оборудования.

Более сотни лет в качестве силовых установок большинства машин и механизмов используются двигатели внутреннего сгорания. В начале 20-го века они заменили собой паровой мотор внешнего сгорания. ДВС сейчас является самым экономичным и эффективным среди прочих моторов. Давайте рассмотрим устройство

История создания

История этих агрегатов началась примерно 300 лет назад. Именно тогда Леонардо Да Винчи разработал первый чертеж примитивного двигателя. Разработка этого агрегата дала толчок к сборке, испытаниям и постоянному совершенствованию ДВС.

В 1861 году по чертежам, которые оставил миру Да Винчи, создали первый двухтактный мотор. Тогда еще никто и не думал, что подобными установками будут комплектоваться все автомобили и другая техника, хотя тогда использовались паровые агрегаты на железнодорожной технике.

Первым, кто стал использовать ДВС на автомобилях, стал Генри Форд. Он первым написал книгу об устройстве и работе ДВС. Форд стал первым, кто вычислял КПД этих двигателей.

Классификация ДВС

В процессе развития усложнялось и устройство двигателя внутреннего сгорания. Назначение его при этом оставалось прежним. Можно выделить несколько основных видов ДВС, которые являются наиболее эффективными сегодня.

Первые по эффективности и экономичности — поршневые установки. В этих агрегатах энергия, образовавшаяся от сгорания топливной смеси, превращается в движение через систему из шатунов и коленчатого вала.

Общее устройство двигателя внутреннего сгорания карбюраторного ничем не отличается от других моторов. Но горючая смесь приготавливается непосредственно в карбюраторе. Впрыск осуществляется в общий коллектор, откуда под воздействием разряжения смесь попадает в цилиндры, где затем загорается от электрического разряда на свече.

Инжекторный двигатель отличается от карбюраторного тем, что топливо подается в каждый цилиндр непосредственно через отдельные форсунки. Затем после того, как бензин смешается с воздухом, топливо поджигается от искры свечи.

Дизельный мотор отличается от бензиновых. Рассмотрим кратко устройство внутреннего сгорания. Здесь для воспламенения не используются свечи. Данное топливо загорается под воздействием высокого давления. В результате дизель нагревается. Температура превышает температуру горения. Впрыск осуществляется посредством форсунок.

К ДВС относят и роторно-поршневые двигатели. В этих агрегатах тепловая энергия от сгорания топлива воздействует на ротор. Он имеет особенную форму и специальный профиль. Траектория движения ротора — планетарная (элемент находится внутри специальной камеры). Ротор одновременно выполняет огромное количество функций — это газораспределение, функция коленчатого вала и поршня.

Существуют и газотурбинные ДВС. В этих агрегатах тепловая энергия преобразуется через ротор с клиновидными лопатками. Затем эти механизмы заставляют турбину вращаться.

Самыми надежными, не требующими частого обслуживания и экономичными считаются поршневые моторы. Роторные практически не используют в массовой автомобильной технике. Сейчас модели автомобилей, оснащенных роторно-поршневыми двигателями, выпускает только японская “Мазда”. Опытные авто с газотурбинными моторами в 60-х годах выпускал “Крайслер”, и после этого больше к этим установкам не возвращался ни один автопроизводитель. В Советском Союзе газотурбированными моторами недолго оснащали некоторые модели танков и десантных кораблей. Но затем было решено отказаться от таких силовых агрегатов. Именно поэтому мы рассматриваем устройство двигателя внутреннего сгорания — они наиболее популярны и эффективны.

Устройство ДВС

В корпусе мотора объединено несколько систем. Это блок цилиндров, в котором и находятся те самые камеры сгорания. В последних сгорает топливная смесь. Также двигатель состоит из кривошипно-шатунного механизма, призванного превращать энергию движения поршней во вращение коленчатого вала. В корпусе силового агрегата имеется и Его задача — обеспечивать своевременное открытие и закрытие впускных и выпускных клапанов. Двигатель не сможет работать без системы впрыска, зажигания, а также без выхлопной системы.

При запуске силового агрегата в цилиндры через открытые впускные клапаны подается смесь топлива и воздуха. Затем она воспламеняется от электрического разряда на свече зажигания. Когда смесь воспламенится и газы начнут расширятся, увеличится давление на поршень. Последний приведется в движение и заставит вращаться коленчатый вал.

Устройство и работа таковы, что мотор работает определенными циклами. Эти циклы постоянно повторяются с высокой частотой. За счет этого обеспечивается непрерывное вращение коленчатого вала.

Принцип действия двухтактных ДВС

Когда мотор запускается, поршень, который приводится в движение посредством вращения коленвала, начинает двигаться. Когда он достигнет самой нижней своей точки и начнет двигаться вверх, в цилиндр подается топливо.

При движении вверх поршень сжимает смесь. Когда он достигнет верхней мертвой точки, то свеча за счет электрического разряда воспламеняет смесь. Газы моментально расширяются и толкают поршень вниз.

Затем открывается выпускной клапан цилиндра, и продукты сгорания выходят из цилиндров в выхлопную систему. Затем, снова дойдя до нижней точки, поршень начнет двигаться вверх. Коленчатый вал сделает один оборот.

Когда начнется новое движение поршня, впускные клапаны снова откроются, и будет подана топливная смесь. Она займет весь объем, который занимали продукты сгорания, и цикл повторится снова. За счет того, что поршни в таких двигателях работают только в двух тактах, совершается меньше движений, в отличие от четырехтактного ДВС. Снижаются потери на трение деталей. Но эти моторы сильнее нагреваются.

В двухтактных силовых агрегатах поршень также играет роль газораспределительного механизма. В процессе движения открываются и закрываются отверстия для впуска топливной смеси и выпуска отработанных газов. Худший газообмен в сравнении с четырехтактными моторами — это основной недостаток таких двигателей. В момент выпуска отработанных газов значительно теряется мощность.

На данный момент двухтактные двигатели применяются в мопедах, скутерах, лодках, бензиновых пилах и на другой маломощной технике.

Четырехтактный

Устройство двигателя внутреннего сгорания такого типа немного отличается от двухтактного. Принцип работы тоже немного другой. На одно вращение приходится четыре такта.

Первым тактом является подача горючей смеси в цилиндр двигателя. Мотор под воздействием разряжения всасывает смесь в цилиндр. Поршень в цилиндре в этот момент направляется вниз. Впускной клапан открыт, и распыленный бензин вместе с воздухом попадет в камеру сгорания.

Далее идет такт сжатия. Впускной клапан закрывается, а поршень двигается по направлению вверх. При этом смесь, находящаяся в цилиндре, значительно сжимается. По причине давления смесь нагревается. Давлением повышается концентрация.

Далее следует третий рабочий такт. Когда поршень почти доходит до своего верхнего положения, срабатывает система зажигания. На свече проскакивает искра, и смесь воспламеняется. Из-за мгновенного расширения газов и распространения энергии взрыва, поршень под давлением движется вниз. Данный такт в работе четырехтактного мотора основной. Прочие три такта не влияют на создание работы и являются вспомогательными.

На четвертом такте начинается фаза выпуска. Когда поршень достигает низа камеры сгорания, открывается выпускной клапан и отработанные газы выходят сначала в выхлопную систему, а затем в атмосферу.

Вот такое устройство и принцип работы двигателя внутреннего сгорания четырехтактного, который установлен под капотами большинства автомобилей.

Вспомогательные системы

Мы рассмотрели устройство двигателя внутреннего сгорания. Но любой мотор не смог бы работать, если бы не был оснащен дополнительными системами. О них мы расскажем ниже.

Зажигание

Эта система — часть электрического оборудования. Она предназначена для формирования искр, которые поджигают топливную смесь.

Система включает в себя АКБ и генератор, замок зажигания, катушку, а также специальное устройство — распределитель зажигания.

Впускная система

Она необходима для того, чтобы в мотор без каких-либо перебоев поступал воздух. Кислород необходим для образования смеси. Сам по себе бензин гореть не будет. Нужно отметить, что в карбюраторах впуск представляет собой только фильтр и воздуховоды. Впускная система современных авто более сложная. Она включает в себя воздухозаборник в виде патрубков, фильтр, дроссельную заслонку, а также впускной коллектор.

Система питания

Из принципа устройства двигателя внутреннего сгорания мы знаем, что мотору нужно что-то сжигать. Это бензин или дизельное топливо. Система питания обеспечивает подачу горючего в процессе работы мотора.

В самом примитивном случае данная система состоит из бака, а также топливной магистрали, фильтра и насоса, которые обеспечивает подачу горючего в карбюратор. В инжекторных автомобилях система питания контролируется ЭБУ.

Смазочная система

В смазочную систему входит масляный насос, поддон, фильтр для очистки масла. В дизельных и мощных бензиновых силовых агрегатах также имеется радиатор для очистки смазки. Насос приводится в действие от коленчатого вала.

Заключение

Вот что представляет собой двигатель внутреннего сгорания. Устройство и принцип действия его мы рассмотрели, и теперь понятно, как работает автомобиль, бензопила или дизельный генератор.

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Принцип работы двс кратко

Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.

Виды моторов

Существует три вида двигателей, встречаемых в транспортных средствах:

  • поршневой
  • роторно-поршневой
  • газотурбинный

Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.

Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.

Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

🔧 Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье «как устроены бензиновые и дизельные двигатели».

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

🔧 Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

🔧 Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

  • блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

— Принцип работы четырёхтактного двигателя

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

— Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

— Выхлопная система

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Устройство и принцип действия двухтактного двигателя внутреннего сгорания

Всі

Авторське

Досвід

Заходи

Подорожі

Про все

Ремзона

Вихлопна система

Двигун

Довідник

Електрообладнання

Підвіска

Система живлення

Трансмісія

Автор: GiS

    Многие из нас ездят на мотороллерах, но вот как устроен и работает двигатель внутреннего сгорания (далее ДВС), который приводит в движение Вашу двухколесную технику, знает не каждый. А вот хорошо зная все принципы работы ДВС, Вы сможете быстро и правильно диагностировать его неполадки. Да и вообще, в ознакомительных целях знание принципов работы не помешает.
    Вообще-то существует два основных типа двигателей: двухтактные и четырехтактные. Практически на каждом мотороллере, особенно до 2000 года выпуска, установлен двухтактный двигатель. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.
    Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60. ..70%.
    Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:



    Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Далее уже, в частности на мотороллере, вращательное движение передается на вариатор, принцип работы которого описан в статье: Устройство и принцип работы вариатора.
    Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр.  Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.
    Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.


Такт сжатия.

    1. Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.



    2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.



    Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.



    Далее цикл повторяется.

    Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому-что поршень от момента искры быстрее доходит до ВМТ.  Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя. Практически у мотороллеров до 2000 г. в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.

    Наглядно просмотреть работу двухтактного ДВС можно на этом ролике:

Фото 1/5

02.02.2004 р., переглядів: 10079

Подібні статті

Коментарі1

Силовая установка самолета (ПРИНЦИПЫ РАБОТЫ ПОРШНЕВОГО ДВИГАТЕЛЯ)

Аэронавтика. Силовая установка самолета (ПРИНЦИПЫ РАБОТЫ ПОРШНЕГО ДВИГАТЕЛЯ)
Дом Исследования Для учителей ИСТОРИЯ
Уровень 1
Уровень 2
Уровень 3
ПРИНЦИПЫ
Уровень 1
Уровень 2
Уровень 3
КАРЬЕРА
Уровень 1
Уровень 2
Уровень 3
Галерея Горячие ссылки Что нового!
Интернет Администрирование и инструменты

   Поршневой двигатель также известен как двигатель внутреннего сгорания. двигатель. Это название используется потому, что топливная смесь сгорает в двигателе. К понять, как работает поршневой двигатель, мы должны сначала изучить его части и функции, которые они выполняют.

Семь основных частей:

(1) Цилиндры
(2) Поршни
(3) Шатуны
(4) Коленчатый вал
(5) Клапаны
(6) Свечи зажигания
(7) Привод клапана (кулачок).
См. взаимное расположение этих частей на Рисунке 6-2.

Работа двигателя.

   Цилиндр закрыт с одной стороны (головка цилиндра), а поршень плотно входит в цилиндр. Стенка поршня имеет канавки для размещения колец, которые подходят плотно прилегают к стенке цилиндра и помогают герметизировать открытый конец цилиндра, чтобы газы не может выйти из камеры сгорания. Камера сгорания – это пространство между верхняя часть поршня и головка цилиндра, когда поршень находится в самой верхней точке путешествия.
Движение поршня вверх-вниз преобразуется во вращательное движение. вращайте гребной винт за шатун и коленчатый вал, как и в большинстве автомобилей. Обратите внимание на расположение коленчатого вала, шатуна и поршня на рис. 6 и представьте, как движение поршня преобразуется во вращательное движение коленчатого вала. Примечание особенно то, как шатун соединен с коленчатым валом со смещением.
Клапаны в верхней части цилиндра открываются и закрываются, чтобы впустить смесь. топлива и воздуха, а также выпускать или отводить сгоревшие газы из камеры сгорания. открытие и закрытие клапана осуществляется кулачком, зацепленным с коленчатым валом. Эта передача расположение гарантирует, что два клапана открываются и закрываются в нужное время.
Теперь давайте рассмотрим движение поршня (четыре хода) и пять событий цикла (см. рис. 6-3).

Чтобы увидеть анимацию 6-3, нажмите здесь.

1. Такт впуска

   Цикл начинается с поршня в центре вверху; как коленчатый вал тянет поршень вниз, в камере цилиндра создается частичный вакуум. камера устройство открыло впускной клапан, и вакуум вызывает смесь топлива и воздуха втягиваться в цилиндр.

2. и 3. Такт сжатия и зажигания

   Когда коленчатый вал толкает поршень вверх в цилиндре, топливо и воздушная смесь сжимается. Впускной клапан, конечно же, закрылся, так как это вверх начинается инсульт. По завершении такта сжатия и непосредственно перед тем, как поршень его верхнее положение, сжатая смесь воспламеняется свечой зажигания.

4. Рабочий ход

   Очень горячие газы расширяются с огромной силой, толкая поршень вниз и проворачивая коленчатый вал. Клапаны закрыты во время этого такта.

5. Такт выпуска

   На второй вверх (или наружу, в зависимости от направления заостренный) ход, выпускной клапан открывается и сгоревшие газы вытесняются поршень.
В момент, когда поршень завершает такт выпуска, цикл снова начинается с такта впуска. Каждый поршень в двигателе должен совершать четыре такта. чтобы завершить один цикл, и этот полный цикл происходит сотни раз в минуту, поскольку двигатель работает.

Общие принципы работы поршневого двигателя легко понять, если вы помните, что происходит с каждым ходом поршня. По этой причине вы можете найдите диаграмму в Таблице 6-3 полезной.

Таблица 6-3
  Направление движения Событие (что происходит)
1. Внутрь (вниз) Впуск
2. наружу (вверх) Сжатие и зажигание
3. Внутрь (вниз) Мощность
4. наружу (вверх) Выхлоп

Мощность поршневого двигателя.

   Большинству людей знаком термин лошадиных сил как применяется в автомобильных и авиационных поршневых двигателях. Термин был введен Джеймсом Уатта, изобретателя паровой машины, который хотел оценить выходную мощность своего двигателя. паровой двигатель. Уатт привязал лошадь к аппарату и определил, что лошадь может поднять 550 фунтов на один фут за одну секунду. Таким образом, одна лошадиная сила стала мощностью, позволяющей поднять 550 фунтов на один фут в секунду или 33 000 фут-фунтов в минуту (550 x 60).
Если поршневой двигатель самолета рассчитан на 150 лошадиных сил, значит двигатель способен производить столько мощности. Но двигатель должен работать на определенной скорости до того, как будет произведена такая большая мощность. То же верно и для всех других типы поршневых двигателей.

 


Присылайте все комментарии по адресу [email protected]
1995-98 ALLSTAR Network. Все права защищены по всему миру.

Частично финансируется Из
Гражданский воздушный патруль
Учебные материалы

Обновлено: 23 февраля 1999 г.

Двигатели внутреннего сгорания 24-421

24-421, осень 2018 г.


Экспериментальное изображение сгорания дизельного топлива в прозрачном двигателе


Лекция:

День и время: вторник и четверг, 13:30–14:50
Адрес: SH 220

Часы работы инструктора:

Время: Четверг: с 12:00 до 13:00
Адрес: Scaife Hall 319

ТА Часы работы:

Время: Среда: 17:00 — 18:00
Адрес: SH 203

Описание курса:

Этот курс обеспечит понимание принципов работы обычных и усовершенствованных двигателей внутреннего сгорания (ДВС). Особое внимание будет уделено термодинамическим, гидромеханическим аспектам и аспектам внутреннего сгорания двигателя внутреннего сгорания. Пройдя этот курс, студенты смогут получить общее представление о том, как конфигурация системы сгорания, поток жидкости в цилиндрах, химические характеристики топлива, теплопередача двигателя и смешивание топлива и воздуха в цилиндрах влияют на производительность и выбросы загрязняющих веществ от автомобилей. и двигатели внутреннего сгорания для тяжелых условий эксплуатации. Студенты будут анализировать данные, полученные от многотопливного бензинового двигателя с переменной степенью сжатия. Студенты также выполнят моделирование системы сгорания дизельного двигателя с использованием вычислительной гидродинамики (CFD).
Предпосылки: Термодинамика, гидромеханика или эквивалент
Учебник:
  • Основы двигателя внутреннего сгорания, Джон Хейвуд
Оценка:
  • Домашнее задание (40%)
  • Анализ лабораторных данных и отчетность (10%)
  • ЦФО проект (20%)
  • Экзамен 1 (15%)
  • Экзамен 2 (15%)
Предварительный план программы: ————————————————— ——
27 августа — 07 декабря (15 недель)
————————————————— ——————-
1 неделя Введение и принципы работы
История двигателей внутреннего сгорания, расположение поршней, двухтактные и четырехтактные циклы, типы систем сгорания
Неделя 2 Геометрические и эксплуатационные параметры
Геометрическая терминология двигателя, взаимосвязь движения кривошипа и поршня, введение в важные рабочие параметры
Неделя 3 Система впуска и обработка воздуха
Расположение клапанов, движение клапанов и синхронизация, различные потери во впускной системе, объемный КПД, факторы, влияющие на объемный КПД, наддув наддува (нагнетатель против турбонагнетателя)
Неделя 4 Топливо и термохимия
Моторные топлива и их химические характеристики, химия реакций горения, расчет теплотворной способности топлива, максимальная температура пламени, анализ выхлопных газов двигателя
Неделя 5 Термодинамический анализ циклов двигателя
Воздушные стандартные циклы Отто и Дизеля, цикл Брайтона, сравнение идеального и реального циклов, введение в перерасширенный цикл, максимально возможная работа
6 неделя Двигатель с искровым зажиганием (SI)
Дозирование топлива и приготовление смеси, искровое зажигание, развитие пламени, аномальное сгорание, влияние параметров двигателя на мощность и детонацию
Неделя 7 Двигатель внутреннего сгорания с воспламенением от сжатия (CI)
Конфигурации системы сгорания, впрыск топлива, распыление, различные фазы сгорания дизельного топлива, структура пламени, анализ скорости горения
Неделя 8 Взаимодействие гидромеханики с горением-I
Генерация турбулентности, кувыркающиеся и закрученные потоки
18 октября Экзамен 1
Неделя 9 Гидромеханическое взаимодействие с Combustion-II
Связь течения в цилиндре и сгорания, концепции ламинарной и турбулентной скоростей горения

Образование и контроль загрязнителей
Виды загрязняющих веществ, источники загрязняющих веществ в двигателях SI и CI, технологии снижения образования загрязняющих веществ, очистка отработавших газов

Неделя 10 Введение в передовые концепции двигателя
Бензиновые двигатели с непосредственным впрыском, двигатели HCCI, двухтопливные двигатели, знакомство с гибридными автомобилями, последовательные и параллельные гибридные системы
Неделя 11 Компьютерное моделирование двигателей внутреннего сгорания
Цель моделирования, феноменологические модели для SI и сгорания дизельного двигателя, введение в анализ двигателя CFD, обучение настройке анализа сгорания дизельного двигателя в коммерческом программном обеспечении CFD. После этого обучения студенты смогут работать над вычислительным проектом.
Неделя 12 Теплопередача двигателя
Поток энергии в двигателе внутреннего сгорания, различные режимы теплообмена, влияние теплообмена на КПД двигателя при различных скоростях и нагрузках

Утилизация отработанного тепла двигателей внутреннего сгорания
Термодинамический анализ энергетического баланса, внедрение двигателя Стерлинга и термоэлектричества для рекуперации тепла

Неделя 13 Рабочие характеристики двигателя и Performancenace
Различная мощность в зависимости от оборотов, влияние угла опережения зажигания и соотношения топливо/воздух на мощность и КПД, влияние рециркуляции отработавших газов на эффективность и время ОБТ, влияние степени сжатия и объема двигателя на КПД, характеристики двигателя

День благодарения

Неделя 14 Газотурбинные двигатели
Анализ цикла Брайтона, конструкция и характеристики камеры сгорания
04 декабря Презентации проектов CFD
06 декабря Экзамен 2

Принцип действия и работа четырехтактного бензинового двигателя

удары, составляющие единый термодинамический цикл. Под ходом понимается полный ход поршня по цилиндру в любом направлении. Четыре отдельных штриха называются:

  1. ВПУСК : этот ход поршня начинается в верхней мертвой точке. Поршень опускается от верхней части цилиндра к нижней части цилиндра, увеличивая объем цилиндра. Смесь топлива и воздуха нагнетается атмосферным (или более высоким) давлением в цилиндр через впускное отверстие.
  2. СЖАТИЕ : при закрытых впускном и выпускном клапанах поршень возвращается в верхнюю часть цилиндра, сжимая воздух или топливно-воздушную смесь в головке цилиндра.
  3. МОЩНОСТЬ : это начало второго оборота цикла. Пока поршень находится близко к верхней мертвой точке (ВМТ), смесь сжатого воздуха и топлива в бензиновом двигателе воспламеняется от свечи зажигания в бензиновых двигателях или воспламеняется за счет тепла, выделяемого при сжатии в дизельном двигателе. Возникающее в результате сгорания сжатой топливно-воздушной смеси давление заставляет поршень вернуться к нижней мертвой точке (НМТ).
  4. ВЫПУСК : в течение выпуск ход, поршень снова возвращается в верхнюю мертвую точку при открытом выпускном клапане. Это действие вытесняет отработанную топливно-воздушную смесь через выпускной клапан (клапаны).

Design and engineering principles

Power output limitations

The four-stroke cycle
A: Intake
B: Compression
C: Power
D: Exhaust

1=ВМТ
2=НМТ

Максимальное количество энергии, вырабатываемой двигателем, определяется максимальным количеством всасываемого воздуха. Количество энергии, вырабатываемой поршневым двигателем, связано с его размером (объемом цилиндра), будь то двухтактная или четырехтактная конструкция, объемным КПД, потерями, соотношением воздух-топливо, теплотворной способностью топлива. , содержание кислорода в воздухе и скорость (об/мин). Скорость в конечном итоге ограничивается прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают большие силы ускорения. На высоких оборотах двигателя может произойти физическая поломка и вибрация поршневых колец, что приведет к потере мощности или даже разрушению двигателя. Флаттер поршневых колец возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер колец нарушает герметичность между кольцом и стенкой цилиндра, что вызывает потерю давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапанов не могут сработать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «поплавком клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. При высоких скоростях смазка поверхности контакта поршень-цилиндр имеет тенденцию к нарушению. Это ограничивает скорость поршня промышленных двигателей примерно до 10 м/с.

Поток впускных/выпускных отверстий

Выходная мощность двигателя зависит от способности впускных (воздушно-топливной смеси) и выхлопных газов быстро проходить через отверстия клапанов, обычно расположенные в головке блока цилиндров. Для увеличения выходной мощности двигателя можно устранить неровности во впускных и выпускных трактах, такие как дефекты литья, а также с помощью стенда воздушного потока можно изменить радиусы поворотов портов клапанов и конфигурацию седла клапана, чтобы уменьшить сопротивление. Этот процесс называется портированием, и его можно выполнить вручную или на станке с ЧПУ.

Наддув

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы при каждом рабочем такте вырабатывалась большая мощность. Это можно сделать с помощью устройства сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема. Чаще всего нагнетатель работает всегда, но существуют конструкции, которые позволяют отключать его или запускать на различных скоростях (относительно частоты вращения двигателя). У наддува с механическим приводом есть недостаток, заключающийся в том, что часть выходной мощности используется для привода нагнетателя, в то время как мощность тратится впустую на выхлоп высокого давления, поскольку воздух сжимается дважды, а затем получает больший потенциальный объем при сгорании, но только расширяется. в один этап.

Турбокомпрессор

Турбокомпрессор — это нагнетатель, приводимый в действие выхлопными газами двигателя посредством турбины. Он состоит из двух частей высокоскоростного узла турбины, одна сторона которого сжимает всасываемый воздух, а другая сторона приводится в действие отходящим потоком выхлопных газов.

На холостом ходу и на низких и средних оборотах турбина вырабатывает небольшую мощность из-за небольшого объема выхлопных газов, турбонагнетатель малоэффективен, и двигатель работает почти как без наддува. Когда требуется гораздо большая выходная мощность, скорость двигателя и открытие дроссельной заслонки увеличиваются до тех пор, пока выхлопных газов не станет достаточно, чтобы «раскрутить» турбину турбонагнетателя, чтобы начать сжимать во впускном коллекторе гораздо больше воздуха, чем обычно.

Турбокомпрессор обеспечивает более эффективную работу двигателя, поскольку он приводится в действие давлением выхлопных газов, которое в противном случае (в основном) было бы потрачено впустую, но существует конструктивное ограничение, известное как турбозадержка. Повышенная мощность двигателя доступна не сразу из-за необходимости резко увеличить обороты двигателя, создать давление и раскрутить турбо, прежде чем турбо начнет выполнять какое-либо полезное сжатие воздуха. Увеличенный объем впуска вызывает увеличение выхлопа и ускорение вращения турбонагнетателя и т. д., пока не будет достигнута устойчивая работа с высокой мощностью. Другая трудность заключается в том, что более высокое давление выхлопных газов заставляет выхлопные газы отдавать больше своего тепла механическим частям двигателя.

Отношение штока и поршня к ходу

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, увеличивая срок службы двигателя. Это также увеличивает стоимость и высоту двигателя и вес.

«Квадратный двигатель» представляет собой двигатель с диаметром цилиндра, равным его длине хода. Двигатель, у которого диаметр цилиндра больше, чем длина его хода, является двигателем с квадратным сечением, и наоборот, двигатель с диаметром отверстия, который меньше длины его хода, является двигателем с квадратным сечением.

Клапанный механизм

Клапаны обычно приводятся в действие распределительным валом, вращающимся со скоростью, равной половине скорости коленчатого вала. Он имеет ряд кулачков по всей длине, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска. Толкатель между клапаном и кулачком представляет собой контактную поверхность, по которой кулачок скользит, открывая клапан. Во многих двигателях используется один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как на иллюстрации, на которой каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В других конструкциях двигателей распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с коромыслом, открывающим клапан. Конструкция верхнего кулачка обычно допускает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Клапанный зазор

Клапанный зазор представляет собой небольшой зазор между толкателем клапана и штоком клапана, обеспечивающий полное закрытие клапана. На двигателях с механической регулировкой клапанов чрезмерный зазор вызывает шум в клапанном механизме. Слишком маленький зазор клапана может привести к тому, что клапаны не будут закрываться должным образом, что приведет к снижению производительности и возможному перегреву выпускных клапанов. Как правило, зазор необходимо регулировать каждые 20 000 миль (32 000 км) с помощью щупа.

В большинстве современных серийных двигателей используются гидравлические подъемники для автоматической компенсации износа компонентов клапанного механизма. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели Отто имеют КПД около 30%; другими словами, 30% энергии, вырабатываемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть представляет собой потери из-за отходящего тепла, трения и агрегатов двигателя. Существует несколько способов восстановить часть энергии, потерянной в результате сброса тепла. Использование турбокомпрессора в дизельных двигателях очень эффективно за счет повышения давления входящего воздуха и, по сути, обеспечивает такое же увеличение производительности, как и увеличение рабочего объема. Компания Mack Truck несколько десятилетий назад разработала турбинную систему, которая преобразовывала отработанное тепло в кинетическую энергию, которая возвращалась в трансмиссию двигателя. В 2005 году BMW объявила о разработке турбопарогенератора, двухступенчатой ​​системы рекуперации тепла, аналогичной системе Mack, которая рекуперирует 80% энергии выхлопных газов и повышает эффективность двигателя Отто на 15%. Напротив, шеститактный двигатель может снизить расход топлива на целых 40%.

Современные двигатели часто намеренно строятся так, чтобы они были чуть менее эффективными, чем могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция отработавших газов и каталитические нейтрализаторы, которые уменьшают смог и другие атмосферные загрязнители. Снижение эффективности можно компенсировать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси.

В Соединенных Штатах корпоративная средняя экономия топлива предписывает, что транспортные средства должны достигать в среднем 35,5 миль на галлон (миль на галлон) по сравнению с текущим стандартом 25 миль на галлон. Поскольку автопроизводители стремятся соответствовать этим стандартам к 2016 году, возможно, придется рассмотреть новые способы проектирования традиционных двигателей внутреннего сгорания (ДВС). Некоторые потенциальные решения по повышению эффективности использования топлива для удовлетворения новых требований включают в себя зажигание после того, как поршень находится на максимальном расстоянии от коленчатого вала, известного как верхняя мертвая точка (ВМТ), и применение цикла Миллера. Вместе эта модернизация может значительно снизить расход топлива и выбросы NOx.

Начальное положение, такт впуска и такт сжатия.

Зажигание топлива, такт рабочего хода и такт выпуска.

Ссылки: Википедия

Разница между 2-тактным и 4-тактным двигателями четырехтактные двигатели. Хотя вы, возможно, слышали об этих типах двигателей раньше, вы можете спросить себя, в чем разница между ними. Вот что вам нужно знать об эффективности и обслуживании каждого типа двигателя.

В чем разница между двухтактным и четырехтактным двигателем?

Основное различие между 4-тактным двигателем и 2-тактным двигателем заключается в том, что 4-тактный двигатель проходит четыре этапа или два полных оборота, чтобы завершить один рабочий такт, а 2-тактный двигатель проходит 2 этапа. , или один полный оборот, чтобы выполнить один рабочий такт. Это означает, что двухтактный двигатель потенциально может производить в два раза больше мощности, чем четырехтактный двигатель, а также весить меньше.

4-тактный двигатель

Четырехтактные двигатели экономичны и экологичны. Они работают в четыре этапа:

  1. Впуск: Впускной клапан открыт, и топливо всасывается движением вниз.
  2. Сжатие:  При движении поршня вверх топливо сжимается.
  3. Мощность:  После того, как топливо сжато, оно воспламеняется для обеспечения мощности двигателя.
  4. Выхлоп:  Выпускной клапан открывается, и выхлопные газы выходят из цилиндра.

Двухтактный двигатель

Двухтактный двигатель сочетает в себе этапы сжатия и воспламенения при ходе вверх и этапы мощности и выпуска при ходе вниз. Этот процесс требует меньшего количества движущихся частей для упрощения обслуживания, но обеспечивает меньший крутящий момент.

Двухэтапный процесс включает:

  1. Ход вверх (зажигание/сжатие):  Поршень поднимается, воздух и топливо поступают в картер. Топливно-воздушная смесь сжимается и воспламеняется.
  2. Ход поршня вниз (мощность/выхлоп):  После воспламенения топлива поршень толкается вниз, и выхлоп выбрасывается.

Оба типа двигателей имеют свои плюсы и минусы, и тот, который подойдет вам лучше всего, зависит от потребностей вашего приложения. В то время как 4-тактные двигатели работают хорошо и обычно служат дольше, чем 2-тактные двигатели, 2-тактные двигатели легче и быстрее, чем 4-тактные двигатели.

Сравнение двухтактных и четырехтактных двигателей

При сравнении двухтактных и четырехтактных двигателей основное различие заключается в том, как они работают. Оба двигателя используют цикл сгорания для производства энергии.

Основное различие между 2-тактным и 4-тактным двигателями заключается в том, что 4-тактный двигатель проходит четыре стадии или два полных оборота, чтобы завершить один рабочий такт. Двухтактный двигатель проходит 2 этапа или один полный оборот, чтобы завершить один рабочий такт.

Во время цикла сгорания в двигателе поршень перемещается вверх и вниз внутри цилиндра, в котором движется поршень. Ход — это когда поршень перемещается из верхней части цилиндра в нижнюю. Во время цикла сгорания, когда поршень движется вниз по цилиндру, он захватывает воздух и газ. Когда поршень движется обратно вверх, выпускной клапан открывается, чтобы вытеснить выхлоп.

Двухтактные двигатели объединяют больше функций в одно движение поршня; при движении поршня вверх (сжатие смеси воздух/топливо/масло) в камере сгорания под поршень в герметично закрытый картер всасывается свежая смесь воздух/топливо/масло.

Четырехтактный двигатель — очень распространенная разновидность двигателя внутреннего сгорания. Во время работы двигателя поршни проходят 4 этапа для достижения каждого рабочего цикла. Определение события — это движение поршня вверх или вниз. По завершении 4 событий цикл завершается и готов к повторному запуску.

Хотя цикл сгорания в обоих двигателях относительно одинаков, они различаются количеством ходов, которые должен совершить поршень, чтобы завершить процесс. Двухтактный двигатель выполняет пять функций цикла сгорания (впуск, сжатие, воспламенение, сгорание и выпуск) за два хода поршня. С другой стороны, четырехтактный двигатель завершает цикл сгорания после четырех ходов поршня. Другой способ представить этот процесс как один оборот коленчатого вала для двухтактного двигателя и два оборота коленчатого вала для четырехтактной версии.

Преимущества двухтактного двигателя

Использование двухтактного двигателя дает множество преимуществ. Вот некоторые преимущества:

  1. Двухтактный двигатель весит меньше, чем четырехтактный, и занимает меньше места.
  2. Движение двигателя равномерным, так как на каждый оборот коленчатого вала требуется один рабочий такт.
  3. Конструкция этого двигателя проста из-за отсутствия клапанного механизма.
  4. Во время работы этот двигатель создает меньшее трение деталей и имеет повышенный механический КПД.
  5. Этот двигатель отличается значительным увеличением мощности и высоким удельным весом.
  6. Двигатель может работать при низких и высоких температурах наружного воздуха.
  7. Двигатель имеет впускной и выпускной каналы.

Недостатки двухтактного двигателя

Использование двухтактного двигателя имеет некоторые недостатки, такие как:

  1. Двухтактные двигатели потребляют больше топлива, и только небольшое количество свежих зарядов смешивается с газами от выхлопных газов.
  2. Во время работы может возникать сильная вибрация или шум.
  3. Этот двигатель имеет более короткий срок службы, поскольку он подвергается повышенному износу.
  4. Двухтактный двигатель имеет узкий диапазон мощности или диапазон скоростей, при которых двигатель наиболее эффективен.
  5. Этот тип двигателя может работать нестабильно на холостом ходу.
  6. У вас могут возникнуть проблемы с очисткой с помощью этого ядра.
  7. Двухтактный двигатель не сгорает так чисто, что приводит к более высокому уровню загрязнения воздуха, чем четырехтактный двигатель.

Применение двухтактного двигателя

Двухтактный двигатель можно использовать в самых разных целях. В силовом оборудовании для наружного применения, таком как бензопилы, воздуходувки, триммеры и кусторезы, используется двухтактный двигатель. Вы также можете использовать двухтактный двигатель в транспортных средствах и устройствах, таких как подвесные моторы, мотоциклы или велосипеды для бездорожья.

Плюсы четырехтактного двигателя

Использование четырехтактного двигателя дает ряд преимуществ. Вот некоторые из этих преимуществ:

  1. Четырехтактные двигатели обеспечивают более высокий крутящий момент при более низких оборотах во время работы.
  2. Четырехтактный двигатель потребляет топливо только один раз за четыре такта, что делает его более экономичным вариантом двигателя.
  3. Четырехтактные двигатели выделяют меньше вредных веществ, поскольку они не требуют добавления масла или смазки в топливо.
  4. Эти двигатели долговечны и могут выдерживать более высокие степени износа.
  5. Для четырехтактного двигателя дополнительное масло не потребуется.
  6. Четырехтактный двигатель производит меньше шума и вибрации при работе.

Минусы четырехтактного двигателя

Четырехтактные двигатели также имеют некоторые недостатки, такие как:

  1. Дополнительные компоненты в четырехтактной конструкции делают эти двигатели более тяжелыми по сравнению с двухтактной версией.
  2. Четырехтактный двигатель содержит больше деталей и клапанов, что делает ремонт и обслуживание более дорогим.
  3. Поскольку он получает мощность только один раз за каждые четыре оборота поршня, эта конструкция менее мощная, чем сопоставимый двухтактный двигатель.
  4. Двигатель этой конструкции имеет зубчато-цепной механизм, что может вызвать сложности при техническом обслуживании.
  5. Четырехтактный двигатель требует регулярного обслуживания, что приводит к увеличению затрат на продукцию и услуги.

Области применения 4-тактного двигателя

Четырехтактные двигатели — отличный выбор для различных целей, например, для наружного энергетического оборудования и транспортных средств. Одним из наиболее распространенных примеров техники с четырехтактным двигателем является газонокосилка. Вы также можете найти эти двигатели от двигателя RC объемом 7 куб. см до дизельного двигателя Cat C18 мощностью примерно 800 л.с.

Какой двигатель лучше?

Однозначного ответа на вопрос, что лучше двухтактный двигатель или четырехтактный, не существует — ваш выбор полностью зависит от ваших личных предпочтений и областей применения.

Перед тем, как выбрать двигатель, также важно понять потребности каждого типа в смазке. Для двухтактного двигателя требуется смесь масла и топлива, которая воспламеняется при работе двигателя и постоянно потребляет масло. В четырехтактном двигателе масло возвращается в картер после смазывания различных частей двигателя.

Работа системы смазки заключается в распределении масла по движущимся частям, чтобы уменьшить трение между поверхностями, которые трутся друг о друга. Трение повреждает не только движущиеся части, но и эффективность двигателя. Снижение эффективности означает мощность и крутящий момент, сокращение срока службы двигателя, увеличение затрат на техническое обслуживание и увеличение выбросов.

В конечном счете, понимание разницы между двухтактными и четырехтактными двигателями и их потребностей поможет вам сделать правильный выбор и активно проводить техническое обслуживание на протяжении всего срока службы вашего двигателя.

Выберите запасные части и оборудование от Prime Source для ваших потребностей в малом двигателе

Учитывая различия между 2-тактными и 4-тактными дизельными двигателями, необходимо учитывать многое.

В Prime Source Parts and Equipment мы предлагаем решения по поддержке продуктов для владельцев двухтактных и четырехтактных двигателей. У нас есть обширная сеть поставщиков, чтобы помочь нашим клиентам найти нужные детали для всех их потребностей.

Наш опытный штат технических специалистов, сертифицированных OEM и прошедших обучение на заводе, может помочь вам найти лучший продукт для любого проекта, независимо от того, нужны ли вам детали или услуги для двухтактных или четырехтактных двигателей. Для получения дополнительной информации или если у вас есть какие-либо вопросы, свяжитесь с нами, позвонив по телефону 704.610.5081 или заполнив нашу контактную форму сегодня!

Двигатель внутреннего сгорания — Wikicars

Четырехтактный цикл (или цикл Отто)
1. впуск
2. сжатие
3. мощность
4. выпуск

Двигатель внутреннего сгорания — это тепловой двигатель, в котором топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы высокой температуры и давления, которые могут расширяться. Отличительной чертой двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, непосредственно вызывающими движение, например, воздействуя на поршни, роторы или даже за счет давления и перемещения всего двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, которые используют процесс сгорания для нагрева отдельной рабочей жидкости, обычно воды или пара, которая затем, в свою очередь, работает, например, путем нажатия на паровой поршень.

Термин «Двигатель внутреннего сгорания» (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание прерывистое. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также определенно являются двигателями внутреннего сгорания.

Раскрашенный автомобильный двигатель

Содержание

  • 1 История
    • 1.1 Применение
    • 1.2 Механика внутреннего сгорания
  • 2 Операция
  • 3 детали
  • 4 Классификация
    • 4.1 Принцип работы
    • 4.2 Цикл двигателя
      • 4.2.1 Двухтактный
      • 4.2.2 Четырехтактный
      • 4.2.3 Двигатель Бурка
      • 4.2.4 Двигатель внутреннего сгорания с регулируемым двигателем
      • 4.2.5 Ванкель
      • 4.2.6 Скудери
      • 4.2.7 Вышедшие из употребления методы
    • 4. 3 Типы топлива и окислителя
    • 4.4 Цилиндры
    • 4.5 Система зажигания
    • 4.6 Топливные системы
    • 4.7 Конфигурация двигателя
    • 4,8 Объем двигателя
    • 4.9 Загрязнение двигателя
  • 5 См. также
  • 6 Библиография
  • 7 Внешние ссылки

История

Первые двигатели внутреннего сгорания не имели компрессии, а работали на топливно-воздушной смеси, которую можно было всосать или вдуть во время первой части такта впуска. Наиболее существенное различие между современных двигателей внутреннего сгорания и ранних конструкций является использование сжатия и, в частности, внутрицилиндрового сжатия.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание может не подразумевать, что идея исходила от него или что она была построена на самом деле.)
  • 1673: Кристиан Гюйгенс описал двигатель без сжатия.
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет ([1]), в котором электрическая искра взрывала смесь воздуха и водорода, выбивая пробку из конца пистолета.

Ранние двигатели внутреннего сгорания использовались для привода сельскохозяйственного оборудования, аналогичного этим моделям.

  • 17 век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794:Роберт Стрит построил двигатель без сжатия, принцип действия которого доминировал почти целое столетие.
  • 1823: Сэмюэл Браун запатентовал первый промышленный двигатель внутреннего сгорания. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, в то время уже устарел. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
  • 1824: Сади Карно установил термодинамическую теорию идеализированных тепловых двигателей во Франции в 1824 году. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом раньше. сжатие уже широко использовалось. Это могло ввести в заблуждение дизайнеров, которые пытались подражать циклу Карно бесполезными способами.
  • 18:26 1 апреля: Американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
  • 1838: патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о компрессии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы он был достаточно развит.
  • 1854: Итальянцы Эудженио Барсанти и Феличе Маттеуччи запатентовали в Лондоне первый работающий эффективный двигатель внутреннего сгорания (номер 1072), но не запустили его в производство. По концепции он был похож на успешный непрямой двигатель Отто Лангена, но не так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822 — 1900) создал газовый двигатель внутреннего сгорания, очень похожий по внешнему виду на горизонтальный паровой лучевой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в котором газ в основном место пара. Это был первый серийный двигатель внутреннего сгорания. Его первый двигатель с компрессией развалился на части.
  • 1862: Николаус Отто разработал свободнопоршневой двигатель непрямого действия без сжатия, чья большая эффективность завоевала поддержку Langen, а затем и большей части рынка, который в то время был в основном для небольших стационарных двигателей, работающих на зажигательном газе.
  • 1870: В Вене Зигфрид Маркус поставил на ручную тележку первый передвижной бензиновый двигатель.
  • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто). Однако немецкие суды не получили его патент на все двигатели с компрессией в цилиндре или даже на четырехтактный цикл, и после этого решения компрессия в цилиндре стала универсальной.

Карл Бенц

  • 1879: Карл Бенц, работая независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц разработал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, ставших первыми серийными автомобилями.
  • 1892: Рудольф Дизель изобрел дизельный двигатель.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально-оппозитный двигатель, в котором соответствующие поршни достигают верхней мертвой точки одновременно, таким образом уравновешивая друг друга по импульсу.
  • 19:00: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на Всемирной выставке (Всемирная выставка ) с использованием арахисового масла (см. Биодизель).

Применение

Двигатели внутреннего сгорания чаще всего используются в мобильных силовых установках. В мобильных сценариях внутреннее сгорание является предпочтительным, поскольку оно может обеспечить высокое отношение мощности к весу вместе с превосходной плотностью энергии топлива. Эти двигатели появились почти во всех автомобилях, мотоциклах, многих лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень большая мощность, например, в реактивных самолетах, вертолетах и ​​больших кораблях, они появляются в основном в виде газовых турбин. Они также используются для электрических генераторов и в промышленности.

Механика внутреннего сгорания

Картофельная пушка использует основные принципы любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива (например, бензина) в небольшое замкнутое пространство и подожжете его, вы получите невероятное количество энергии. выделяется в виде расширяющегося газа. Вы можете использовать эту энергию, чтобы толкнуть картофелину на 500 футов. В этом случае энергия преобразуется в движение картофеля. Вы также можете использовать его для более интересных целей. Например, если вы можете создать цикл, который позволяет вам запускать подобные взрывы сотни раз в минуту, и если вы можете использовать эту энергию с пользой, то у вас есть сердцевина автомобильного двигателя!

Почти все автомобили в настоящее время используют так называемый четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный подход также известен как цикл Отто в честь Николауса Отто, который изобрел его в 1867 году. Четыре удара показаны на рисунке 1. Это:

  1. Такт впуска
  2. Такт сжатия
  3. Такт сгорания
  4. Такт выпуска

Эксплуатация

Все двигателей внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться и другие окислители, такие как закись азота. См. также стехиометрию.

Наиболее распространенные виды топлива, используемые сегодня, состоят из углеводородов и получены из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и сжиженный нефтяной газ. Большинство двигателей внутреннего сгорания, предназначенных для бензина, могут работать на природном газе или сжиженных нефтяных газах без модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол. Некоторые могут работать на водороде, однако это может быть опасно. Водород горит бесцветным пламенем, и для герметизации фронта пламени требуются модификации блока цилиндров, головки цилиндров и прокладки головки.

Все двигатели внутреннего сгорания должны иметь средства зажигания, способствующие сгоранию. В большинстве двигателей используется электрическая система зажигания или система зажигания с подогревом от сжатия. Системы электрического зажигания обычно полагаются на свинцово-кислотную батарею и индукционную катушку, чтобы обеспечить электрическую искру высокого напряжения для воспламенения воздушно-топливной смеси в цилиндрах двигателя. Аккумулятор можно заряжать во время работы с помощью генератора переменного тока, приводимого в движение двигателем. Системы воспламенения с подогревом от сжатия, такие как дизельные двигатели и двигатели HCCI, полагаются на тепло, выделяемое в воздухе за счет сжатия в цилиндрах двигателя для воспламенения топлива.

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имеет более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть преобразованы двигателем в работу. В поршневом двигателе газообразные продукты высокого давления внутри цилиндров приводят в движение поршни двигателя.

После удаления доступной энергии оставшиеся горячие газы удаляются (часто путем открытия клапана или открытия выпускного отверстия), что позволяет поршню вернуться в исходное положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя. Любое тепло, не переведенное в работу, является отходами и удаляется из двигателя воздушной или жидкостной системой охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо системы клапанов может быть просто выпускной патрубок и впускной патрубок для топлива. В обоих типах двигателей есть один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Однократное движение поршня вверх или вниз по цилиндру называется тактом, а ход вниз, который происходит непосредственно после воспламенения топливно-воздушной смеси в цилиндре, называется рабочим тактом.

Двигатель Ванкеля имеет треугольный ротор, который вращается в эпитроихоидальной камере (в форме восьмерки) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск происходят при каждом ходе этого хомута. Честно говоря, я понятия не имею, что я делаю или говорю.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным областям применения. Точно так же существует широкий спектр способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латыни, через старофранцузское, ingenium , «способность») означало любую часть машины. «Мотор» (от латинского двигатель , «двигатель») — это любая машина, производящая механическую энергию. Традиционно электродвигатели не называют «двигателями», но двигатели внутреннего сгорания часто называют «двигателями». (Электродвигатель относится к локомотиву, работающему на электричестве).

Принцип действия

Бензиновый двигатель А 1906

Поршневой:

  • Двигатель на сырой нефти
  • Двухтактный цикл
  • Четырехтактный цикл
  • Двигатель с горячей лампой
  • Тарельчатые клапаны
  • Втулочный клапан
  • Предлагается
    • Двигатель Бурка
  • Улучшения
  • Управляемый двигатель внутреннего сгорания

Роторный:

  • Продемонстрировано:
    • Двигатель Ванкеля
  • Предлагаем:
    • Орбитальный двигатель
    • Квазитурбина
    • Тороидальный двигатель

Непрерывное горение:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два такта (один вверх, один вниз) на каждый рабочий такт. Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы для продувки цилиндров. Наиболее распространенным методом в двухтактных двигателях с искровым зажиганием является использование движения поршня вниз для создания давления в картере свежего заряда, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для своей выходной мощности) и очень простые механически. Общие области применения включают снегоходы, газонокосилки, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы. К сожалению, они также, как правило, громче, менее эффективны и гораздо больше загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий такт на каждые четыре такта (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и больше, чем их двухтактные аналоги. Существует ряд вариаций этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве грузовых и автомобильных дизельных двигателей используется четырехтактный цикл, но с системой воспламенения с подогревом от сжатия можно говорить отдельно о дизельном цикле.

Двигатель Bourke

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом с помощью шатунной шейки, проходящей через общую шпильку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, за один оборот приходится два рабочих такта. Однако, в отличие от обычного двухтактного двигателя, сгоревшие газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе. Кривошипный механизм также устраняет боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров.

Управляемый двигатель внутреннего сгорания

Это также цилиндровые двигатели, которые могут быть однотактными или двухтактными, но вместо коленчатого вала и поршневых штоков используют два соединенных зубчатых колеса, концентрические кулачки, вращающиеся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили выступов кулачка (всегда нечетные и не менее трех) определяют ход поршня в зависимости от передаваемого крутящего момента. В этом двигателе есть два цилиндра, которые расположены на 180 градусов друг от друга для каждой пары кулачков, вращающихся в противоположных направлениях. Для однотактных версий на пару цилиндров приходится столько же циклов, сколько кулачков на каждом кулачке, и вдвое больше для двухтактных агрегатов.

Ванкеля

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без хода поршня, правильнее было бы назвать его четырехфазным двигателем), поскольку фазы происходят в разных местах двигателя. ; однако, как и двухтактный поршневой двигатель, он обеспечивает один «такт» мощности на оборот на ротор, что дает ему аналогичную эффективность пространства и веса. Фаза сгорания цикла Бурка более точно соответствует сгоранию при постоянном объеме, чем четырехтактный или двухтактный циклы. В нем также используется меньше движущихся частей, поэтому он должен преодолевать меньшее трение, чем два других возвратно-поступательных типа. Кроме того, его более высокая степень расширения также означает, что используется больше тепла от фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Scuderi

Новое изобретение Кармело Скудери, двигатель с разделенным циклом Scuderi, как утверждается, повышает эффективность двигателя с 33,2% до 42,6%. Кроме того, утверждается, что токсичные выбросы снижаются на целых 80%.

Вышедшие из употребления методы

В некоторых старых бескомпрессорных двигателях внутреннего сгорания: В первой части хода поршня вниз всасывалась или вдувалась топливно-воздушная смесь. На остальной части хода поршня вниз впускной клапан закрывался и топливо/ сгорела воздушная смесь. При движении поршня вверх выпускной клапан был открыт. Это была попытка имитировать работу поршневого парового двигателя.

Типы топлива и окислителя

Используемые виды топлива включают бензин (британский термин: бензин), сжиженный нефтяной газ, испаренный нефтяной газ, сжатый природный газ, водород, дизельное топливо, JP18 (реактивное топливо), свалочный газ, биодизельное топливо, биобутанол, арахис масло и другие растительные масла, биоэтанол, биометанол (метиловый или древесный спирт) и другое биотопливо. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли некоторое применение. Двигатели, которые используют газы в качестве топлива, называются газовыми двигателями, а те, которые используют жидкие углеводороды, называются масляными двигателями. Однако бензиновые двигатели, к сожалению, также часто в просторечии называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы сделать использование двигателя практичным.

Окислитель обычно представляет собой воздух, и его преимущество заключается в том, что он не хранится внутри транспортного средства, что увеличивает удельную мощность. Однако воздух можно сжимать и перевозить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили используют закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, использовались в экспериментах; но в основном непрактичны.

Дизельные двигатели обычно тяжелее, шумнее и мощнее при более низких скоростях, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (все чаще из-за их более высокой топливной экономичности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельными двигателями стали широко распространены с 19 века.90-х годов, что составляет около 40% рынка. Как бензиновые, так и дизельные двигатели производят значительные выбросы. Существуют также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Двигатели, работающие на парафине и тракторном масле (ТВО), больше не видны.

Некоторые предполагают, что в будущем такое топливо может заменить водород. Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание углеводородов, при котором также образуется двуокись углерода, основная причина глобального потепления, а также угарный газ в результате неполного сгорания. Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше плотности воды и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии по-прежнему примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендолой, создает водород по мере необходимости, но у него есть другие проблемы, такие как относительно дорогое сырье.)

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно от одного до двенадцати, хотя используется до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: Первое. двигатель может иметь больший рабочий объем с меньшими отдельными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрировать в результате движения поршней вверх и вниз). Во-вторых, при большем рабочем объеме и большем количестве поршней может быть сожжено больше топлива и может быть больше событий сгорания (то есть больше рабочих тактов) за заданный период времени, а это означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет весить больше и создавать большее внутреннее трение, поскольку большее количество поршней трется о внутреннюю часть цилиндров. Это имеет тенденцию снижать эффективность использования топлива и лишать двигатель части его мощности. Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (таких как двигатели, используемые в современных автомобилях), кажется, что точка разрыва составляет около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. такие как двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, в некоторых высокопроизводительных автомобилях их десять, двенадцать или даже шестнадцать, а в некоторых очень маленьких автомобилях и грузовиках — два или три. В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиадвигатели, ныне устаревшие, имели от трех до 28 цилиндров, например Pratt & Whitney R-4360. Ряд содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым крупным из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а некоторые высокопроизводительные модели имеют шесть (хотя существуют некоторые «новинки» с 8, 10 и 12 цилиндрами).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но и туристических машин) их четыре.
  • Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют цепные пилы с двумя цилиндрами.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на эффективность и мощность ДВС. Для типичного 4-тактного автомобильного двигателя максимальное давление горючей смеси должно достигаться, когда коленчатый вал находится в положении 90 градусов после ВМТ. Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для воспламенения смеси в нужное время, чтобы фронт пламени не соприкасался с опускающейся головкой поршня. Если фронт пламени соприкасается с поршнем, возникает порозовение или стук. Более обедненные смеси и более низкое давление смеси сгорают медленнее, что требует более опережающего опережения зажигания. Сегодня в большинстве двигателей для зажигания используется электрическая или компрессионная система подогрева. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США 609.,250 , «Электрический воспламенитель для газовых двигателей », 16 августа 1898 г.

Топливные системы

Основная статья: Впрыск топлива

Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль правильного количества топлива, подаваемого в двигатель, невозможен.

Большие бензиновые двигатели, например, используемые в автомобилях, в основном перешли на системы впрыска топлива (см. Бензиновый непосредственный впрыск). Дизельные двигатели всегда используют впрыск топлива.

Двигатели, работающие на сжиженном газе, используют комбинацию систем впрыска топлива и карбюраторов с замкнутым контуром.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа/жидкости, предварительные горелки и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или встроенную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или оппозитную конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, обеспечивающую более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вообще не обязательно нуждаются в головке цилиндра, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на каждом конце одного ряда цилиндров, и, что наиболее примечательно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех рядов двухсторонних цилиндров. цилиндры расположены равносторонним треугольником с коленчатыми валами по углам. Он также использовался в однорядных локомотивных двигателях и продолжает использоваться в судовых двигателях, как для силовых установок, так и для вспомогательных генераторов. Роторный двигатель Gnome, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Рабочий объем двигателя

Рабочий объем двигателя — это смещение или рабочий объем поршней двигателя. Обычно он измеряется в литрах или кубических дюймах для больших двигателей и в кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера. Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент при более низких оборотах, но также потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличить мощность двигателя. Во-первых, увеличить ход поршня, а во-вторых, увеличить диаметр поршня 9.0820 (См. также: Коэффициент хода) . В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель для обеспечения оптимальной производительности.

Указанная мощность двигателя может быть больше вопросом маркетинга, чем инженерии. Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II имели двигатели с одинаковым ходом поршня и диаметром цилиндра в соответствии с их спецификациями и были от одного и того же производителя. Однако объемы двигателей были указаны как 1000 куб.см, 1100 куб.см и 109 куб.см.8cc соответственно в торговой литературе и на значках автомобилей.

Загрязнение двигателя

Как правило, двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию угарного газа и некоторого количества сажи вместе с оксидами азота и серы и некоторыми несгоревшими углеводородами в зависимости от от условий эксплуатации и соотношения топливо/воздух. Основными причинами этого являются необходимость работы бензиновых двигателей, близких к стехиометрическому соотношению, чтобы добиться сгорания (топливо сгорало бы более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели производят широкий спектр загрязняющих веществ, включая аэрозоли, состоящие из множества мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (СНГ), имеют очень низкий уровень выбросов, поскольку сжиженный нефтяной газ сгорает очень чисто и полно и не содержит серы или свинца.

  • Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, вызывая кислотные дожди.
  • Высокая температура горения приводит к увеличению содержания оксидов азота (NOx), которые опасны как для растений, так и для животных.
  • Чистое производство двуокиси углерода не является необходимой характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Водородные двигатели должны производить только воду, но когда в качестве окислителя используется воздух, также образуются оксиды азота.

См.

также
  • Уильям Барнетт — один из первых патентообладателей (1838 г.)

Библиография

  • Зингер Чарльз Джозеф; Рэпер, Ричард, История технологий: двигатель внутреннего сгорания , под редакцией Чарльза Сингера … [и др.], Clarendon Press, 1954–1978. стр. 157-176 [2]
  • Харденберг, Хорст О., Средневековье двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999

Внешние ссылки

  • Анимированные двигатели — объясняет разнообразие типов
  • Библия о топливе и двигателе — хороший ресурс по различным типам двигателей и видам топлива
  • Модификации двигателя — поясняет, какие модификации доступны для двигателя автомобиля
  • .
  • Среда самосовершенствования — ABC 702 Drive audio
  • Роль технологии распыления и двигателей внутреннего сгорания
  • Работа с полуцилиндрами — от V8 до V4

Демистификация двигателя внутреннего сгорания

28 ноября 2019 г.

Большинству из нас водить машину может быть довольно легко, особенно после того, как мы к ней привыкли. Однако поддержание его в хорошем состоянии — это совсем другая история. В этой статье мы демистифицируем машину, которая является двигателем внутреннего сгорания.

Введение

Вождение автомобиля может быть довольно легким для большинства из нас, особенно после того, как мы к нему привыкнем. Однако поддержание его в хорошем состоянии — это совсем другая история. Безусловно, самая важная часть в автомобиле – это двигатель. Думайте об автомобиле как о человеческом теле: как нам нужны кислород и пища, чтобы оставаться в живых и нормально «функционировать», так и двигатель внутреннего сгорания нуждается в топливе и кислороде. Но как он превращает свою «пищу» в энергию, топливо в движение?

От жидкости к энергии

Фото Riccardo Annandale

Принцип действия двигателя внутреннего сгорания упоминается в его названии. Все, что нам нужно от топлива, чтобы машина двигалась, — это сгорание: мини-взрывы, возникающие при смешивании топлива с кислородом под определенным давлением внутри цилиндров — маленьких металлических трубок в двигателе. Эти небольшие, контролируемые и периодические взрывы приводят к расширению газов и нагреванию, что вызывает движение поршней вниз, что приводит к вращению коленчатого вала двигателя (аналогично голени в человеческом теле), что в конечном итоге приводит в движение ведущие колеса автомобиля.

Почти все современные двигатели внутреннего сгорания используют четырехтактный цикл сгорания (также известный как цикл Отто ) для преобразования бензина в движение, но дизельный цикл также используется сегодня многими производителями автомобилей. Четыре такта:

  • Такт впуска
  • Такт сжатия
  • Такт сгорания
  • Такт выпуска

Основное различие между дизельными и бензиновыми двигателями заключается в тактах сжатия и сгорания. Теперь мы посмотрим, что на самом деле происходит при каждом ударе, и объясним эту небольшую разницу:

Цикл Отто для бензиновых и дизельных двигателей

2. Впуск

В этой фазе выпускной клапан закрыт, а поршень изначально находится в высшей точке. Затем открывается впускной клапан, и поршень движется вниз, позволяя двигателю «вдохнуть» воздух и сделать «маленький глоток» бензина. Для воспламенения достаточно лишь небольшой капли бензина.

2. Сжатие

  • Бензин: На ​​этом этапе оба клапана закрыты. Поршень поднимается и сжимает воздушно-топливную смесь. Это простое сжатие повысит температуру внутри цилиндра примерно на 300°C. Если температура повысится еще на 100°С, смесь может самовозгореться.
  • Дизель: Тот же процесс происходит и для этого двигателя, с той лишь разницей, что на этом этапе внутри цилиндра находится только воздух.

3. Сгорание

  • Бензин: Поршень достиг высшей точки; свеча зажигания испускает искру для воспламенения газов. Это приводит к повышению температуры и давления, которые толкают поршень обратно в его нижнюю точку. Оба клапана закрыты на протяжении всей фазы.
  • Дизель: Этот тип двигателя не имеет свечи зажигания, поэтому небольшой взрыв будет вызван впрыском небольшой капли дизельного топлива в сжатый горячий воздух, заставляющий поршень опускаться.

4. Выхлоп

Выпускной клапан теперь открыт, и поршень возвращается в исходное положение, готовясь к следующему циклу, в результате чего выхлопные газы покидают цилиндр и выходят в выхлопную трубу.

Этот цикл происходит в каждом цилиндре двигателя. Наиболее распространенное количество цилиндров в автомобиле — четыре, шесть или восемь, которые могут быть расположены тремя различными способами: рядным, V или плоским.

Дизель против бензина

Фото Кэрил Бартон

Давайте начнем с понимания разницы между тем, что происходит на каждой фазе цикла Отто в двух типах двигателей, чтобы иметь возможность сравнить их сильные и слабые стороны.

1. Впуск

В бензиновом двигателе всасываемая и дозируемая воздушно-топливная смесь имеет переменный объем. Для дизеля количество «вдыхаемого» воздуха постоянно.

2. Компрессия

Давление в конце этой фазы внутри бензинового двигателя достигает 10-15 бар, а температура внутри цилиндров колеблется от 300 до 400°С; внутри дизеля давление внутри камеры сгорания значительно выше и колеблется от 30 до 40 бар (что также объясняет температуру внутри цилиндров, достигающую 700°С). Вот почему дизельному двигателю нужны более прочные и широкие органы, чтобы выдерживать высокое давление, а также более сложная система смазки, чтобы противостоять нагреву: теперь вы понимаете, почему дизельные двигатели дороже бензиновых.

3. Сгорание

Как мы видели в предыдущем разделе, дизельные двигатели используют непосредственный впрыск топлива для сгорания, что делает сгорание медленнее, чем в бензиновом двигателе.

4. Выхлопные газы

Химические реакции сгорания приводят к разным выбросам газов для двух типов двигателей, поскольку два нефтяных топлива имеют разный химический состав. Для создания дизельного топлива требуется меньше переработки, поэтому оно дешевле бензина. В следующем абзаце мы подробно рассмотрим эти две химические реакции.

Различные свойства

Хорошо изучив разницу в принципах работы бензиновых и дизельных двигателей, теперь мы можем разбить основные различия в их свойствах:

  • Газовые двигатели больше подходят для людей, которые любят скорость, потому тип двигателя, вам нужно больше разогнаться, чтобы получить больше мощности. С другой стороны, дизель предлагает больший крутящий момент на более низких скоростях: это означает, что у вас есть мощность без необходимости развивать высокую скорость — вот почему двигатели для фургонов или грузовиков почти исключительно дизельные двигатели, потому что более высокий крутящий момент позволяет им нести гораздо более тяжелые нагрузки.
  • Процесс охлаждения должен быть более сложным для дизельных двигателей, чтобы двигатель работал дольше, потому что части двигателя должны подвергаться гораздо более высокому давлению и температуре для самовозгорания.
  • Риск возгорания в дизельных двигателях ниже, поскольку температура вспышки дизельного топлива выше, чем у бензина.

От энергии к движению

Фото Алессио Лин

Коленчатый вал

Поступательное движение поршней преобразуется во вращательное благодаря коленчатому валу. На самом деле количество оборотов кривошипа в этом органе равно количеству поршней в двигателе: ход кривошипа — это то, что позволяет поршню преобразовывать (или «отбрасывать») линейное движение во вращение коленчатого вала, и они действуют как рычаги, приводимые в действие поршнями. Коленчатый вал также сконструирован таким образом, чтобы уменьшить вибрации двигателя.

Маховик

Маховик представляет собой вращающийся металлический диск, расположенный между двигателем и сцеплением и обеспечивающий передачу между ними. Его основная цель также состоит в том, чтобы регулировать и стабилизировать вращение двигателя, чтобы уменьшить толчки, вызванные цилиндрами. Вот почему он может показаться вам относительно тяжелым (от 5 до 10 кг). Наличие зубьев вокруг маховика соединяет двигатель со стартером и, следовательно, позволяет ему запускаться.

Сцепление

Основная функция сцепления заключается в передаче крутящего момента от маховика к коробке передач путем плавной передачи мощности двигателя. Фактически, когда педаль сцепления нажата, диск сцепления отсоединяется от вращающегося маховика, позволяя водителю переключать передачи, не останавливая вращение колес. Когда педаль отпущена, диск входит в контакт с маховиком и передает крутящий момент от двигателя к остальной части трансмиссии.

Коробка передач

Шестерня является второй ступенью в системе трансмиссии после сцепления. Обычно он крепится к задней части двигателя со сцеплением между ними. Он предназначен для передачи мощности, вырабатываемой двигателем, на ведущие колеса путем более или менее умножения скорости вращения выходного вала в зависимости от скорости с использованием шестерен разного диаметра, потому что двигатель внутреннего сгорания ограничен точной скоростью. диапазон.

Если бы колеса были напрямую связаны с двигателем (то есть без коробки передач), они могли бы вращаться только с той же частотой, что и двигатель. Использование редукторов с двигателем внутреннего сгорания позволяет увеличить диапазон вращения колес, что позволяет приспособить колеса к различным условиям.

Колеса

Крутящий момент, исходящий от коробки передач, будет окончательно преобразован в движение благодаря вращению колес.

Проблемы, которые могут возникнуть с двигателем

Фото Читто Кансио 

Некоторые из вас, возможно, пережили болезненный опыт, пытаясь завести машину несколько раз, прежде чем сдаться и обратиться в службу спасения. Прочитав предыдущий абзац и узнав больше о том, как работает двигатель, вы теперь можете понять основные причины, которые могут вызвать его неисправность, и, надеюсь, предотвратить это.

Следующие указатели должны помочь вам быстрее диагностировать эти проблемы:

Двигатель вообще не запускается

Первая часть автомобиля, которую нужно проверить, если двигатель даже не запускается, это аккумуляторная батарея, потому что это самая доступная и простая замена различных деталей; если ваша машина заводится и внезапно останавливается во время движения или время от времени не заводится, возможно, один из проводов плохо подсоединен.

Также проблема может быть связана с блоком управления двигателем — в этом случае вам придется провести диагностику автомобиля и узнать у специалиста, можно ли починить блок управления или его необходимо заменить.

Двигатель не «схватывает»

Фото Фабио Иенго

Три другие распространенные проблемы, которые могут возникнуть в двигателе: : плохая топливная смесь , отсутствие искры или отсутствие компрессии .

Плохая топливная смесь

Плохая топливная смесь может возникнуть, если:

  • Очевидно, что если у вас закончилось топливо, без него сгорание невозможно.
  • Если топливная система добавляет в смесь слишком много или слишком мало топлива, возможно, вам придется проверить лямбда-зонд и при необходимости заменить. Вы сами можете узнать, в норме ли топливно-воздушная смесь, просто взглянув на выхлоп. Если она темная, то смесь содержит слишком много топлива.
  • В смеси может быть вода, которая препятствует горению топлива. Обычно, если вы заметили белый дым, выходящий из выхлопной трубы, это означает, что в вашем автомобиле происходит утечка охлаждающей жидкости. Это может быть связано с тем, что головка блока цилиндров больше не является водонепроницаемой.
  • Забит воздухозаборник, значит смеси не хватает воздуха. Вы можете сами проверить, загрязнен ли воздушный фильтр, просто взглянув на него, если он коричневого или черного цвета, и вы видите грязь и пыль, возможно, пришло время его заменить.
Отсутствие искры

Отсутствие искры может быть вызвано несколькими причинами:

  • Если свеча зажигания изношена, искра может стать слабой или отсутствовать.
  • Обрезан провод, ведущий к свече зажигания.
  • Слишком раннее или слишком позднее время зажигания в цикле.
Отсутствие компрессии

Отсутствие компрессии может произойти по следующим причинам:

  • В цилиндре имеется отверстие.
  • Износ поршневых колец приводит к утечке воздуха или топлива.
  • Впускной или выпускной клапаны не герметичны.

В вашем двигателе могут возникнуть многие другие проблемы, например, чрезмерный расход масла, который проявляется в виде синего дыма в выхлопных газах, или износ подшипников, препятствующий вращению коленчатого вала.

Ежедневное техническое обслуживание

Фото Тори Бишоп 

Использование даже простого ритуала технического обслуживания автомобиля действительно полезно, поскольку оно может избавить вас от ненужных расходов, повысить вашу безопасность, повысить производительность вашего двигателя и внести свой вклад в более чистую окружающую среду, особенно если это легко сделать. Ниже вы можете увидеть несколько советов по обслуживанию вашего двигателя:

Проверка приводных ремней

Приводной ремень играет важную роль в электрической системе зарядки автомобиля. Он передает мощность от коленчатого вала к другим частям и аксессуарам автомобиля, таким как генератор переменного тока, воздушный и водяной насосы, аккумулятор и другие аксессуары, которые зависят от механической энергии.

К сожалению, современные ремни сделаны из резины или других полимеров, которые изнашиваются после определенного пробега, даже если вы хорошо ухаживаете за своим автомобилем. Поэтому я рекомендую вам время от времени визуально осматривать приводной ремень и проверять, нет ли в нем трещин или каких-либо других изменений.

Как правило, вам следует заменять поликлиновой ремень каждые 40 000 км, а ремень ГРМ – каждые 60 000 км, но не забудьте прочитать руководство по эксплуатации, чтобы узнать рекомендуемый пробег для своего автомобиля, и начать тщательный осмотр приводных ремней.

Проверка уровня масла

Фото Тима Моссхолдера

Масло очень важно для правильной работы двигателя. Без него все механические части, движущиеся внутри вашего двигателя, будут создавать трение, когда они касаются друг друга, это трение будет выделять тепло, которое может значительно снизить производительность вашего автомобиля, а также вызвать громкие шумы и увеличить расход топлива.

Для проверки уровня масла необходимо подождать не менее 10 минут после остановки автомобиля. Затем вы должны вынуть масляный щуп, протереть его чистой тряпкой, вставить обратно и снова вытащить, чтобы четко видеть уровень масла. Вы должны найти индикаторы на щупе, которые помогут вам определить уровень.

Для большинства автомобилей должны быть индикаторы H (высокий) и L (низкий), а уровень должен располагаться где-то между этими точками. Также убедитесь, что цвет масла не слишком темный — это признак старого или грязного масла, содержащего примеси, которые мешают ему работать должным образом. Обычно вы можете найти в руководстве по эксплуатации, как часто вы должны менять моторное масло и необходимую вязкость, однако это также зависит от качества используемого вами масла.

Замена свечей зажигания

Если ваш автомобиль время от времени не заводится или вы заметили увеличение расхода топлива и отсутствие ускорения, возможно, пришло время заменить свечи зажигания. Если вы следите за своим пробегом, может быть полезно знать, что их обычно приходится заменять после 50 000 км, но это также зависит от качества свечей зажигания, которые вы используете.

Обычно свечи зажигания легко заменить самостоятельно, но если вы не уверены в своих навыках или не имеете инструментов, вы всегда можете обратиться за помощью к профессионалу, хотя это будет стоить вам денег.

Замените воздушный фильтр двигателя.

Воздухозаборник можно сравнить с легкими человека. Наше тело нуждается в кислороде, чтобы жить, как автомобиль нуждается в воздухе, чтобы функционировать. Если воздушный фильтр грязный, машина задохнется. Таким образом, вы всегда должны визуально осматривать и менять его всякий раз, когда замечаете на нем грязь и мусор, или если он становится коричневым или черным. Воздушный фильтр обычно легко доступен с капота.

Проверьте уровень охлаждающей жидкости в двигателе

Двигатели внутреннего сгорания нуждаются в системе, помогающей избавляться от выделяемого тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *