Передача крутящего момента на колеса – Узлы передачи крутящего момента на колеса авто

Узлы передачи крутящего момента на колеса авто

Привод представляет собой ряд узлов передающих мощность двигателя на колеса. Всего несколько деталей и механическая работа поршней превращается в движение авто. Ниже будут рассмотрены основные составляющие используемые в гоночной технике.

Помни, профессиональный гонщик обязан активно использовать малейшую возможность повысить свой результат, путем тонкой настройки каждого узла. Именно это качество и отличает аматора от профи.

КПП

  • Пятиступенчатая

Коробка с очень близкими передаточными числами. С такой коробкой вам будет проще поддерживать обороты при любых манёврах, однако низкое число самой высокой передачи ограничивает максимальную скорость машины.

  • Шестиступенчатая

Соотношение чисел ещё ближе, чем у пятиступенчатой. Она позволяет более эффективно использовать тюнинговые двигатели с узким диапазоном рабочих оборотов. С другой стороны – лимитирует скоростной предел и требует дополнительных затрат времени на более частое переключение передач.

  • Полностью регулируемая

Все показатели могут быть настроены. Помимо индивидуальной регулировки отдельно взятой шестерни, также возможно произвести доводку выбрав необходимую скорость каждой передачи.

Определение максимальной скорости

Выбор передаточных чисел КПП позволяет настроить их в соответствии с указанной Вами максимальной скоростью. При увеличении этой скорости ухудшится разгонная динамика и увеличатся потери скорости при движении вверх по склону.

Сцепление

Сочетание облегчённого маховика и двухдискового сцепления уменьшает влияние первого приводя к улучшенной приемистости двигателя и ускорению переключения, повышенное трение в сцеплении положительно влияет на разгонную динамику.

Сочетает в себе сверхлегкий маховик и трёхдисковое сцепление. Эта модификация существенно увеличивает динамичность разгона, с другой стороны возникает и отрицательное влияние, в виде потери оборотов на подъёмах.

Кардан

  • Углепластиковый карданный вал

Элемент соединяющий КПП и задний дифференциал заднеприводного автомобиля из облегченного материала (карбон). Его установка приводит к улучшению приемистости, как следствие, динамики авто во время набора скорости. Наилучший эффект достигается в сочетании с уменьшением веса всего шасси автомобиля.

  • Регулируемый ДПВС

Представляет собой механический “дифференциал повышенного трения” (LSD), допускающий регулировку начального крутящего момента и чувствительности. Изменение этих параметров заметно влияет на поведение автомобиля. В свою очередь, чрезмерная регулировка может привести к потере баланса и управляемости.

Активный центральный дифференциал

Распределяет мощность и вращающий момент между передним и задним мостом полноприводного автомобиля. Путём его регулировки можно добиться как недостаточной, так и избыточной поворачиваемости.

Параметры

  • Начальный крутящий момент

Дифференциал предназначен для того, что бы передавать больше мощности на то колесо, которое во время поворота вращается быстрее. При спортивном вождении это не редко приводит к потерям вращающего момента, для борьбы с которыми и была разработана эта деталь. Начальным – называется усилие, при котором ДВПС ещё не вступает в работу – например, при движении по прямой. Повышение чувствительности уменьшает внезапные изменения мощности и управляемости при его активации, но добавляет склонность к недостаточной поворачиваемости.

  • Чувствительность газа

Регулировка чувствительности ДПВС при увеличении скорости. Чем выше значение этого параметра, тем больший объем мощности передаёться на дорогу при разгоне, однако по мере уменьшения разницы в скорости вращения колёс, наростает недостаточная поворачиваемость. Для дрифта можно установить особенно высокую чувствительность, чтобы способствовать входу машины в занос.

  • Чувствительность тормоза

Регулировка чувствительности при уменьшении скорости. Чем выше значение, тем стабильнее автомобиль ведёт себя при торможении и тем более он склонен к недостаточной поворачиваемости. На переднеприводных машинах это может существенно затруднить прохождение поворотов.

  • Распределение крутящего момента

Выбор процента мощности, передаваемого на передние колёса. Диапазон допустимых значений от 10% до 50%. Чтобы добиться поведения машины, характерного для заднего привода нужно уменьшить крутящий момент, при его увеличении поведение становиться более типичным для полноприводных автомобилей.

drivecontact.ru

Дифференциал: распределяем крутящий момент

В конструкции трансмиссии любого автомобиля обязательно присутствует такой составной узел как дифференциал авто. Этот элемент очень важен и выполняет ряд функций, без которых передвижение на авто и его управление было бы очень затруднительным.

Трансмиссия обеспечивает передачу крутящего момента от ДВС на колеса ведущей оси. Но поскольку условия передвижения могут быть самыми различными, необходимо обеспечить распределение подающегося вращения по колесным осям. То есть, нужно сделать так, чтобы колеса приводной оси могли крутиться с разными скоростями.

Если бы приводные колеса были связаны между собой жестко (объединены одной осью), то при определенных условиях возникала бы пробуксовка. Так, при вхождении в поворот колеса перемещаются по разным радиусам, что сказывается на пути, который каждое из них должно пройти. Колесо, перемещающееся по внутреннему радиусу, должно преодолеть значительно меньшее расстояние, чем-то, что идет по внешнему. Жесткая связка колес приведет к тому, что внутреннее колесо будет просто пробуксовывать, поскольку его скорость вращения больше, чем нужна для преодоления пути. А это в свою очередь обеспечивает повышение нагрузки на элементы трансмиссии, ухудшает управляемость, приводит к интенсивному износу шин.

Устранить этот негативный фактор и позволяет дифференциал. Этот узел обеспечивает передачу момента по полуосям, а также крутиться им с различной угловой скоростью.

Принцип работы

Для примера рассмотрим принцип работы самого распространенного типа дифференциала – конического. Состоит такой узел из корпуса, шестеренок, закрепленных на полуосях, а также сателлитов.

Устройство симметричного конического дифференциала

Компоновка дифференциала такая – корпус зафиксирован на ведомом шестеренчатом колесе главной передачи. Внутри него на жестко закрепленных осях расположены сателлиты. Полуоси, передающие вращение на колеса, своими концами заходят в корпус. Полуосевые шестеренки имеют постоянное зацепление с шестернями-сателлитами. В общем, все достаточно просто.

Сателлиты имеют две степени движения. Они зафиксированы на осях в корпусе, поэтому и вращаются вместе с ведомым шестеренчатым колесом главной передачи. Также они могут крутиться и вокруг своей оси.

При прямолинейном передвижении колеса ведущей оси испытывают одинаковое сопротивление, поэтому момент делится по полуосям равномерно. Сателлиты в этом случае вращаются лишь с корпусом, а относительно своих осей они неподвижны.

При вхождении в поворот, колесо, движущееся по внутренней стороне, испытывает повышенное сопротивление, по сравнению с внешним. Поскольку жесткой связи между ними нет, то из-за возникшего сопротивления внутреннее колесо замедляется и возникает разница в угловых скоростях на полуосях. Это приводит к тому, что сателлиты начинают крутиться на осях, передавая больший момент на полуось колеса, движущегося по внешней стороне. То есть, благодаря дифференциалу замедление одного колеса приводит к ускорению второго.

Но в функционировании дифференциала есть один существенный недостаток – при потере сопротивления на одном колесе узел весь крутящий момент подаст на него. В результате, при вывешивании одного из ведущих колес или его попадании на скользкий участок, все вращение пойдет на него, второе же колесо остановиться – автомобиль окажется обездвиженным. Для борьбы с этим негативным качеством используются блокировки, которые предотвращают подачу всего крутящего момента только на одну полуось.

Виды узлов

Выше описан принцип работы дифференциала на примере только одного типа узла. На авто же применяются различные варианты этой составляющей трансмиссии. Все существующие виды дифференциалов можно разделить по ряду категорий:

  1. Место расположения
  2. Соотношение моментов при распределении
  3. Конструкция
  4. Наличие блокировки

Помимо этого, вместо дифференциалов в конструкции авто могут применяться различные муфты, выполняющие ту же функцию, что и дифференциал. Также современные технологии позволяют полностью отказаться от использования дифференциалов, а их роль выполняют системы безопасности.

Места установки

На легковых авто с одной ведущей осью применяется только один дифференциал. В заднеприводных моделях он располагается в ведущем мосту (там, где установлена главная передача). В переднеприводных же моделях этот узел входит в конструкцию КПП.

Пример компоновки дифференциала в МКПП переднего привода

Поскольку дифференциалы на легковых авто обеспечивают распределение крутящего момента между колесами, то они получили название межколесных.

В полноприводных моделях, в которых ведущими являются обе оси, используется два межколесных дифференциала, по одному на каждый ведущий мост.

Отметим, что в полноприводных моделях есть еще одно место распределения крутящего момента – раздаточная коробка, которая подает вращение на обе оси. И здесь также требуется разделение момента, но в этом случае – между мостами, поэтому в конструкции раздатки также применяется дифференциал, называющийся межосевым.

Виды и расположение дифференциалов в зависимости от привода

На многоосных грузовиках с несколькими ведущими осями есть еще одно место установки дифференциала – между группой приводных мостов. Этот узел носит название центрального.

Распределение моментов

Соотношение моментов при распределении бывает разным – симметричным и несимметричным. Первый вариант описан выше – такой узел при движении на ровном участке дороги распределяет момент одинаково на обе полуоси, а его изменение происходи только при изменении условий движения.

Все межколесные дифференциалы являются симметричными

Несимметричные дифференциалы отличаются тем, что передача вращения между двумя осями осуществляется в определенной пропорции, причем неравной. К примеру, на многих кроссоверах используется межосевой дифференциал с соотношением 40/60. Это означает, что крутящий момент, поступающий на раздаточную коробку, делится и на передний ведущий мост поступает 40% вращения, а на задний – 60%. В этом случае передняя ось является больше вспомогательной, позволяющей повысить проходимость, основным же выступает задний мост.

Несимметричное распределение вращения обеспечивают и муфты, которые устанавливаются вместо межосевого дифференциала. При этом муфты позволяют обеспечивать распределение вращения не в строго заданной пропорции, а в целом диапазоне. То есть, на ряде авто с постоянным полным приводом, в зависимости от условий движения, муфта может менять соотношение от 40/60 до 0/100.

Конструктивное исполнение

Все дифференциалы, используемые на авто, построены по единому принципу – на основе планетарной передачи. Но конструктивных исполнений узла – несколько:

  1. Конический
  2. Цилиндрический
  3. Червячный
  4. Кулачковый

Виды конструкций дифференциалов

Во всех их, кроме кулачкового, разница сводится только к форме и конструктивному исполнению шестерен.

В конических и цилиндрических дифференциалах используются шестеренки соответствующей формы.

Более интересны в плане конструкции червячный и кулачковый узлы. В первом варианте используется червячное зацепление между сателлитами и полуосевыми шестеренками. Такие дифференциалы получили общее название Torsen. Примечательно, что разработано несколько видов конструкции Torsen. Вариант Т1 отличается тем, что сателлиты в нем располагаются перпендикулярно оси вращения. Во втором варианте – Т2, сателлиты располагаются уже параллельно полуосям. Существует еще один тип червячного дифференциала – Quaife. В нем, как и Torsen Т2, сателлиты расположены параллельно, а отличие сводится к форме самих шестеренок.

В кулачковом узле шестеренок вообще нет. В них основными рабочими элементами выступают специальные сухари, установленные между двумя звездочками (кулачковыми шайбами) – внутренней и наружной. Из-за особенностей функционирования этот узел является – дифференциалом повышенного трения.

Виды блокировки

Как уже отмечено, в дифференциалах есть один серьезный недостаток. И решается он использованием специального механизма – блокировки.

По этому критерию узлы делятся на свободные, самоблокирующиеся и с принудительной блокировкой. Узлы свободного типа не имеют в конструкции какой-либо блокировки, поэтому при создании условий негативное качество сразу же проявляется. Такие узлы обычно используются на легковых авто, предназначенных для использования в городских условиях.

В самоблокирующихся узлах дополнительные элементы в конструкции дифференциала при возникновении ситуации, когда весь момент перебрасывается на одно колесо, замедляют вращение полуоси, тем самым направляя часть вращения на другое колесо. Самым распространенным способом обеспечить самоблокировку, является установка фрикционов. Отметим, что червячные дифференциалы не требуют установки дополнительных узлов, поскольку в червячной передаче присутствует эффект самоторможения, поэтому узлы этого типа сами по себе являются самоблокирующимся.

При принудительной блокировке осуществляется жесткое соединение одной из полуосей с корпусом дифференциала, поэтому при задействовании механизма дифференциал полностью прекращает свою работу, и функционирование ведущего моста осуществляется так, как будто колеса соединены между собой жестко одной осью.

Активный дифференциал

Все перечисленные виды дифференциалов работают полностью самостоятельно и вполне справляются с поставленной задачей. Но конструкторам показалось этого мало, поэтому ими был придуман и создан так называемый активный дифференциал.

В обычных узлах распределение вращения делается пропорционально. То есть, замедление одного колеса приводит к пропорциональному возрастанию вращения на втором. Активный же дифференциал позволяет подкорректировать эти пропорции.

Суть его такова – если при прохождении поворота на наружном колесе сделать скорость вращения больше, чем это обеспечивает дифференциал, то возникает эффект подруливания. За счет этого колесо, идущее по внешнему радиусу, «доворачивает» авто, позволяя ему лучше войти в поворот.

А реализовано это путем установки дополнительных планетарных редукторов на полуоси. Причем эти редукторы срабатывают только в определенные моменты, и для этого дополнительные узлы оснастили муфтами с электроприводом.

Принцип работы активного дифференциала

Суть работы активного дифференциала такова – при вхождении в поворот, на полуоси внешнего колеса срабатывает муфта, включая редуктор. Дополнительная передача обеспечивает повышение скорости вращения полуоси, а соответственно и колеса, и оно начинает «подруливать».

Как видно дифференциалы очень разнообразны, и автопроизводители не останавливаются на достигнутом. От модели к модели повышаются их возможности и пределы, скорость работы постоянно возрастает. В конечном счете это может отразиться на надежности в любую из сторон, но безусловно наш комфорт и безопасность возрастает.

autoleek.ru

Крутящий момент

Крутящий момент – качественный показатель, характеризующий силу вращения коленчатого вала автомобиля.

Его измерение производится в ньютон-метрах (н*м). От показателя КМ зависят тяговые характеристики ДВС и динамика разгона транспортного средства.

Важно: ошибкой было бы называть крутящий момент вращающим, как это делают некоторые источники в Сети. Термин «крутящий» подразумевает внутреннюю силу, приводящую к вращению. Под словом «вращающий» подразумевается наружная сила. Так, крутящей является сила, приводящая в движение коленчатый вал. Вращающей – сила пальцев, в которых крутят карандаш.

Если простым языком отвечать на вопрос, что такое крутящий момент двигателя, то можно сказать, что КМ – сила, с которой агрегат крутит выходной вал. Например, при КМ, равном 130 Н*м и длине выходного вала 1 метр на его конец можно повесить груз весом 13 кг. При этом мотор должен провернуть вал.

Непосредственное отношение к понятию КМ имеет показатель мощности. Мощность и крутящий момент неразрывно связаны, так как одно вытекает из другого. График КМ растет только совместно с графиком мощности.

Мощность определяется количеством работы, которую мотор способен выполнять за единицу времени. Измеряется в лошадиных силах или киловаттах. При этом первая единица измерения является неофициальной, но более популярной. Вторая – официальной, но используемой только в документах.

Показатель КМ двигателя автомобиля напрямую зависит от:

Мощность двигателя определяется по формуле P=M*N, где P это мощность, М – крутящий момент, N – обороты двигателя. Соответственно, расчитать КМ можно по формуле M = P/N.

При проведении подсчетов необходимо использовать официальные единицы измерения, зарегистрированные в СИ (Н*м, ватты, радианы в секунду). Реальное измерение крутящего момента производится на специальном стенде в лабораторных условиях.

Передача КМ к ведущим колесам

Появления КМ в результате сгорания топлива недостаточно для начала движения. Момент должен быть передан к ведущим колесам транспортного средства.

Передача выработанного крутящего момента осуществляется посредством трансмиссии – коробки передач, валов, ШРУСов, заднего редуктора, раздаточной коробки. Наличие тех или иных элементов трансмиссии зависит от типа привода автомобиля.


В процессе движения водитель имеет возможность изменять КМ, передаваемый от двигателя к колесам. Чтобы добиться этого, необходимо увеличивать или уменьшать количество оборотов силового агрегата. Подобные манипуляции без потерь в скорости движения совершаются с помощью коробки передач.

Важно: коробка переключения передач – устройство, предназначенное для изменения частоты вращения и КМ на двигателях, не обладающих достаточной приспособляемостью. Сегодня в автомобильной промышленности применяются механические, гидромеханические, электромеханические и автоматические КПП.

В процессе передачи крутящего момента его показатель может уменьшаться вследствие механических потерь. Передающееся усилие ослабевает по причине трения элементов мотора и трансмиссии друг об друга, сопротивления материалов, из которых изготовлены детали автомобиля и других факторов воздействия.

Максимальный и номинальный КМ

В механике существует понятие о максимальном и номинальном КМ.

Максимальный крутящий момент – самый большой показатель КМ, который двигатель может развить.

Известно, что момент не является постоянной величиной. Его показатель растет совместно с ростом оборотов.

Однако на определенном этапе поток воздуха, поступающий в цилиндры, начинает оказывать столь высокое сопротивление, что разрежения, создаваемого поршнем, становится недостаточно для всасывания достаточного количества топливовоздушной смеси. При этом ухудшается вентиляция цилиндров, и рост к/м прекращается.

На автомобилях ВАЗ-2110 с мотором 21114 максимальный показатель КМ достигается на 3 тысячах оборотов в минуту. Дальнейшее увеличение частоты работы силового агрегата приводит к росту мощности. При этом крутящий момент снижается.

На что влияет подобное явление? Автомобиль, работающий в мощностном режиме, способен легко преодолевать подъемы, тащить тяжелый прицеп, другой автомобиль. При этом динамика разгона даже не загруженного ТС будет существенно снижена.

Номинальный крутящий момент – показатель КМ, который двигатель выдает без дополнительной нагрузки, работая в нормальном режиме.

Как увеличить КМ


Как увеличить крутящий момент двигателя? Увеличение КМ осуществляется практически аналогично увеличению такого показателя, как мощность двигателя. Для этого необходимо произвести доработку самого мотора или его агрегатов.
  • Замена распределительных валов, системы выпуска, фильтров на высокопроизводительные аналоги;
  • Повышение пропускных возможностей впускного клапана или турбирование. Это дает возможность улучшить вентиляцию цилиндров;
  • Коррекция фаз газораспределения с увеличением времени открытия впускных клапанов;
  • Увеличение степени сжатия. Данный способ позволяет значительно повысить КМ, однако сопровождается существенными техническими трудностями.
  • Замена поршней более легкими аналогами. Двигателю будет легче крутиться. Соответственно, динамика разгона вырастет.

Увеличения динамики разгона можно добиться и путем коррекции механизма передачи крутящего момента к ведущим колесам. Для этого необходимо установить в коробку передач шестерни с большим передаточным числом. Следует помнить, что увеличение КМ будет означать снижение максимальной скорости авто.

Увеличения динамики разгона можно добиться и с помощью чип-тюнинга. При этом заводская программа с блока управления двигателем заменяется на альтернативную, изменяющую параметры работы силового агрегата в ту или иную сторону.

znanieavto.ru

Передача крутящего момента на колеса

Не вся энергия, получаемая от двигателя, используется для преодоления сопротивлений движению автомобиля, т.е. непосредственно для движения автомобиля. Имеется еще и «накладной расход» на работу механизмов силовой передачи. Этот расход отнимает в отдельных случаях до 20% мощности, а у автомобиля обычной схемы — около 10%. Чем меньше этот расход, тем выше так называемый коэффициент полезного действия (к.п.д.) силовой передачи, обозначаемый греческой буквой у («эта»).

По существу коэффициент полезного действия передаточного механизма — это отношение мощности, отдаваемой механизмом, к мощности, им получаемой. Применительно к автомобилю — это отношение мощности, переданной колесам, к мощности двигателя, измеренной на его маховике.

Если к.п.д. силовой передачи равен 0,93 (93%), как это бывает у некоторых спортивных автомобилей или автомобилей высшего класса, то «накладные расходы» составляют всего 7%; если к.п.д. силовой передачи равен 0,8, как, например, у некоторых автомобилей с автоматическими передачами или у специальных автомобилей, то расходы достигают 20%.

Усилие от двигателя передается к ведущим колесам несколькими механизмами силовой передачи:

  • сцеплением
  • коробкой передач
  • карданным валом
  • главной передачей
  • дифференциалом

Механическая энергия, переданная от двигателя, не только передается через эти механизмы, но и расходуется на трение (пробуксовка дисков сцепления, трение зубьев шестерен коробки передач, главной передачи и дифференциала, трение в подшипниках, трение в карданных сочленениях), а также на взбалтывание масла в картерах коробки передач и заднего моста. От трения и взбалтывания масла возникает тепло; механическая энергия превращается в тепловую, которая не может быть использована и рассеивается. Этот «накладной расход» непостоянен — он увеличивается, когда в работу включается дополнительная пара шестерен на низших передачах, когда карданные шарниры работают под большим углом, когда вязкость масла велика (в холодную погоду), на повороте, когда в работу активно включаются шестерни дифференциала (при движении по прямой их работа невелика). Поэтому трудно дать точную, годную для всяких условий движения оценку величины к.п.д. силовой передачи каждого автомобиля.

Опытным путем определены потери мощности в силовой передаче автомобилей и в отдельных ее элементах и вычислены к.п.д.

Рис. Усилие от двигателя передается ведущим колесам через сцепление, коробку передач, главную передачу, дифференциал, полуоси.

Таблица. Коэффициенты полезного действия силовой передачи автомобиля и ее механизмов

В своих постах о КПП — Классическая «кочерга» и Классический «автомат» — я упоминал такие узлы, как главная передача и дифференциал. А потому, возможно, есть смысл чуть подробнее рассказать и о них, чтобы сложилось полное представление о работе трансмиссии.

Как известно, вращение выходного вала КПП не передается напрямую на колеса автомобиля. Передача крутящего момента происходит через такой важный узел как главная передача, которая устанавливает соответствующее режиму соотношение крутящего момента и мощности.

Главная передача – это, по сути, набор шестерен (обычно две, но в некоторых конструкциях может быть и более одной пары).
В первую очередь она предназначена для увеличение крутящего момента, получаемого на выходе из коробки переключения передач.
Во вторую — для изменения направления вращения, «поворота» — когда двигатель и ведущая ось расположены перпендикулярно друг к другу, как в классических авто с продольным расположением силового агрегата.

Понятно, что данный блок шестерен должен быть вмеру компактен, обладать изрядным запасом прочности и не быть шумным в работе.
Таким требованиям вполне отвечает стандартная главная передача переднеприводных автомобилей с поперечным расположениям двигателя. Это, пожалуй, самая простая конструкция, поскольку в ее функции не входит изменение направления вращения, и при правильной технологии изготовления и установки она не требует обслуживания весь срок эксплуатации.
Данную конструкцию главной передачи называют цилиндрической. Стандартная цилиндрическая главная передача представляет собой пару шестерен, нарезанных на цилиндрических поверхностях. При этом зубья ведущей шестерни, передавая усилие, не «вгрызаются» жестко в зазоры зубьев ведомой, а как бы катаются друг по другу, поскольку профили зубьев шестерен не прямоугольные, а эвольвентные, то есть округлые (чем-то похожие на синусоиды). Получается, что в цилиндрических главных передачах используется трения качения вместо трения скольжения, а это является более щадящим для механизма, к тому же, и мощности отбирает заметно меньше. При этом, зубья ведущей и ведомой шестерен нарезаны не перпендикулярно оси вращения, а под углом к ней, то есть, шестерни в цилиндрической главной паре косозубые, что делает их надежнее простых прямозубых.

В автомобилях с продольным расположением двигателя помимо увеличения крутящего момента требуется еще и поворот вращения, так как ведущая ось расположена под углом 90 град. Для этого обычно применяют так называемую гипоидную главную передачу, в которой ведущая и ведомая шестерни расположены перпендикулярно друг к другу, а зубья нарезаются на поверхностях, имеющих форму гиперболоидов вращения.
При этом ведущий вал шестерни ориентирован не по центру ведомой шестерни.

Когда-то эту роль выполнял система конический узел. Это была довольно массивная система, забирающая на себя немалый процент мощности, шумная, требующая постоянного контроля сальников, чтобы не было течи. Но при всех своих недостатках у конического узла было одно неоспоримое достоинство – это очень надежное и неприхотливое устройство.
В современных легковых авто гипоидные главные передачи уже давно вытеснили конический узел. И уже постепенно вытесняют его из сектора грузового автомобилестроения. Эта передача имеет гораздо более высокий КПД, меньший размер и массу, более продуманную систему смазки и пр., пр., пр.

Однако следует помнить, что у гипоидных главных передач есть три существенных недостатка:
1. Они требуют дорогостоящих конических подшипников.
2. В случае ремонта очень сложно добиться точности работы.
3. Они требовательны к качеству смазки – для них необходимо дорогостоящее противозадирное масло (тогда как в конический узел достаточно было залить дешевый нигрол). Если в редуктор гипоидной главной передачи не залить специальное (гипоидное) масло, то при включении передач устройство можно испортить, особенно при включении задней передачи, когда шестерни работают в наиболее «загруженном» режиме.

Гипоидная главная передача, как правило, одинарная, то есть состоит из пары шестерен. А вот вышеупомянутые цилиндрические главные передачи нередко бывают и двойными. Действуя в два этапа, они более эффективно изменяют крутящий момент.

Схема простая — ведомая шестерня первой пары приводит в движение находящуюся с ней на одном валу ведущую шестерню второй пары, которая вращает свою ведомую деталь, непосредственно работающую с дифференциалом.

Замечу, не следует путать двойные главные передачи с двухступенчатыми – это, как говорится, две большие разницы.

Ну и поскольку был упомянут дифференциал, то нужно сказать и о нем.
Дифференциал – узел, который, получая вращение, преобразованное главной передачей, распределяет его между колесами. без него – никак. Если не применять дифференциал, то при любом повороте ведущие колеса будут получать одинаковое вращение. А ведь известно, что в момент поворота внутреннее колесо проходит меньший путь, так как имеет меньший радиус поворота, чем колесо, движущееся по внешнему радиусу. Таким образом, на заднеприводной машине при прохождении поворота резку ухудшится управляемость, внутреннее к повороту колесо станет пробуксовывать и снашивать резину.
Что касается переднеприводного авто, то тут повернуть будет вообще практически невозможно (разве что рывками). Так что дифференциал служит именно для получения разных угловых скоростей на ведущих колесах, потому его иногда называют «системой межколесного обгона».

Межколесные дифференциалы называются симметричными, так как при прямолинейном движении всегда распределяют крутящий момент поровну.

Классический дифференциал (то есть, не оснащенный блокировками) – узел, получающий крутящий момент от ведомой шестерни главной передачи. Его конические шестерни (сателлиты) передают вращение шестерням полуосей. Когда автомобиль движется по прямой, сателлиты дифференциала не вращаются, а в случае начала поворота они приходят во вращение и перераспределяют крутящий момент.

Следует отметить, что дифференциал по одному и тому же принципу вращает не только полуоси зависимой подвески, ни и карданные шарниры равных угловых скоростей (ШРУСы) независимой подвески.

Кроме классических конических дифференциалов, массово также применяют цилиндрические и планетарные. Правда, последние используют только в качестве межосевых, а вот цилиндрические устройства могут быть и межколесными.

Говоря о дифференциале, нельзя не упомянуть о системе его блокировки.
Дело в том, что дифференциал распределяет крутящий момент симметрично только при равной нагрузке на колеса – движении по прямой. Но вот если одно из двух ведущих колес попадает в грязь или на ледовый участок, и сцепление с дорогой уменьшается, то резко уменьшается и его сопротивление вращению. В итоге, дифференциал «воспринимает» его как колесо, движущееся по внешнему радиусу поворота, передавая ему больший крутящий момент, тогда как второе ведущее колесо «воспринимает» как движущееся по внутреннему радиусу, уменьшая крутящий момент плоть до полной остановки. Каждому приходилось видеть картину, когда завязнувшее в грязи или застрявшее в яме колесо стоит «колом», тогда как вывешенное бешено раскручивается не в силах ничем помочь автомобилю выбраться. В такой пробуксовке и состоит основной недостаток дифференциалов без блокировок.

Но проблема решаема. Задача блокировки – достичь жесткого соединения одной из полуосевых шестерен с корпусом дифференциала, чтобы «насильно» передать крутящий момент колесу, находящемуся в хорошем зацеплении с дорогой.
Повышенное внутреннее трение лежит в основе принципа действия самоблокирующихся дифференциалов. Простой конический дифференциал легко превратить в самоблокирующийся с помощью комплекта фрикционных шайб.

Если использовать вместо шайб электромагнитную фрикционную муфту – тогда блокировку можно будет включать принудительно. Принудительные блокировки – удел серьезных внедорожников. Однако водителям таких автомобилей следует помнить о необходимости после преодоления тяжелого участка пути вовремя выключать блокировку и не в коем случае не разгоняться с заблокированным дифференциалом (на многих моделях вендорожников установлены: или специальный ограничитель скорости при включенной блокировке, или функция автоматического разблокирования при повышении скорости). Блокировка приводит к возрастанию нагрузки на ведущие оси и рулевое управление, и, к тому же, сокращает срок службы покрышек. Так что использовать постоянно не только расточительно, но и опасно.

Вот, пожалуй, и все, что можно сказать о конструкции и принципе работы главной передачи и дифференциала в общих чертах.

В конструкции трансмиссии любого автомобиля обязательно присутствует такой составной узел как дифференциал авто. Этот элемент очень важен и выполняет ряд функций, без которых передвижение на авто и его управление было бы очень затруднительным.

Трансмиссия обеспечивает передачу крутящего момента от ДВС на колеса ведущей оси. Но поскольку условия передвижения могут быть самыми различными, необходимо обеспечить распределение подающегося вращения по колесным осям. То есть, нужно сделать так, чтобы колеса приводной оси могли крутиться с разными скоростями.

Если бы приводные колеса были связаны между собой жестко (объединены одной осью), то при определенных условиях возникала бы пробуксовка. Так, при вхождении в поворот колеса перемещаются по разным радиусам, что сказывается на пути, который каждое из них должно пройти. Колесо, перемещающееся по внутреннему радиусу, должно преодолеть значительно меньшее расстояние, чем-то, что идет по внешнему. Жесткая связка колес приведет к тому, что внутреннее колесо будет просто пробуксовывать, поскольку его скорость вращения больше, чем нужна для преодоления пути. А это в свою очередь обеспечивает повышение нагрузки на элементы трансмиссии, ухудшает управляемость, приводит к интенсивному износу шин.

Устранить этот негативный фактор и позволяет дифференциал. Этот узел обеспечивает передачу момента по полуосям, а также крутиться им с различной угловой скоростью.

Принцип работы

Для примера рассмотрим принцип работы самого распространенного типа дифференциала – конического. Состоит такой узел из корпуса, шестеренок, закрепленных на полуосях, а также сателлитов.

Устройство симметричного конического дифференциала

Компоновка дифференциала такая – корпус зафиксирован на ведомом шестеренчатом колесе главной передачи. Внутри него на жестко закрепленных осях расположены сателлиты. Полуоси, передающие вращение на колеса, своими концами заходят в корпус. Полуосевые шестеренки имеют постоянное зацепление с шестернями-сателлитами. В общем, все достаточно просто.

Сателлиты имеют две степени движения. Они зафиксированы на осях в корпусе, поэтому и вращаются вместе с ведомым шестеренчатым колесом главной передачи. Также они могут крутиться и вокруг своей оси.

При прямолинейном передвижении колеса ведущей оси испытывают одинаковое сопротивление, поэтому момент делится по полуосям равномерно. Сателлиты в этом случае вращаются лишь с корпусом, а относительно своих осей они неподвижны.

При вхождении в поворот, колесо, движущееся по внутренней стороне, испытывает повышенное сопротивление, по сравнению с внешним. Поскольку жесткой связи между ними нет, то из-за возникшего сопротивления внутреннее колесо замедляется и возникает разница в угловых скоростях на полуосях. Это приводит к тому, что сателлиты начинают крутиться на осях, передавая больший момент на полуось колеса, движущегося по внешней стороне. То есть, благодаря дифференциалу замедление одного колеса приводит к ускорению второго.

Но в функционировании дифференциала есть один существенный недостаток – при потере сопротивления на одном колесе узел весь крутящий момент подаст на него. В результате, при вывешивании одного из ведущих колес или его попадании на скользкий участок, все вращение пойдет на него, второе же колесо остановиться – автомобиль окажется обездвиженным. Для борьбы с этим негативным качеством используются блокировки, которые предотвращают подачу всего крутящего момента только на одну полуось.

Виды узлов

Выше описан принцип работы дифференциала на примере только одного типа узла. На авто же применяются различные варианты этой составляющей трансмиссии. Все существующие виды дифференциалов можно разделить по ряду категорий:

  1. Место расположения
  2. Соотношение моментов при распределении
  3. Конструкция
  4. Наличие блокировки

Помимо этого, вместо дифференциалов в конструкции авто могут применяться различные муфты, выполняющие ту же функцию, что и дифференциал. Также современные технологии позволяют полностью отказаться от использования дифференциалов, а их роль выполняют системы безопасности.

Места установки

На легковых авто с одной ведущей осью применяется только один дифференциал. В заднеприводных моделях он располагается в ведущем мосту (там, где установлена главная передача). В переднеприводных же моделях этот узел входит в конструкцию КПП.

Пример компоновки дифференциала в МКПП переднего привода

Поскольку дифференциалы на легковых авто обеспечивают распределение крутящего момента между колесами, то они получили название межколесных.

В полноприводных моделях, в которых ведущими являются обе оси, используется два межколесных дифференциала, по одному на каждый ведущий мост.

Отметим, что в полноприводных моделях есть еще одно место распределения крутящего момента – раздаточная коробка, которая подает вращение на обе оси. И здесь также требуется разделение момента, но в этом случае – между мостами, поэтому в конструкции раздатки также применяется дифференциал, называющийся межосевым.

Виды и расположение дифференциалов в зависимости от привода

На многоосных грузовиках с несколькими ведущими осями есть еще одно место установки дифференциала – между группой приводных мостов. Этот узел носит название центрального.

Распределение моментов

Соотношение моментов при распределении бывает разным – симметричным и несимметричным. Первый вариант описан выше – такой узел при движении на ровном участке дороги распределяет момент одинаково на обе полуоси, а его изменение происходи только при изменении условий движения.

Все межколесные дифференциалы являются симметричными

Несимметричные дифференциалы отличаются тем, что передача вращения между двумя осями осуществляется в определенной пропорции, причем неравной. К примеру, на многих кроссоверах используется межосевой дифференциал с соотношением 40/60. Это означает, что крутящий момент, поступающий на раздаточную коробку, делится и на передний ведущий мост поступает 40% вращения, а на задний – 60%. В этом случае передняя ось является больше вспомогательной, позволяющей повысить проходимость, основным же выступает задний мост.

Несимметричное распределение вращения обеспечивают и муфты, которые устанавливаются вместо межосевого дифференциала. При этом муфты позволяют обеспечивать распределение вращения не в строго заданной пропорции, а в целом диапазоне. То есть, на ряде авто с постоянным полным приводом, в зависимости от условий движения, муфта может менять соотношение от 40/60 до 0/100.

Конструктивное исполнение

Все дифференциалы, используемые на авто, построены по единому принципу – на основе планетарной передачи. Но конструктивных исполнений узла – несколько:

  1. Конический
  2. Цилиндрический
  3. Червячный
  4. Кулачковый

Во всех их, кроме кулачкового, разница сводится только к форме и конструктивному исполнению шестерен.

В конических и цилиндрических дифференциалах используются шестеренки соответствующей формы.

Более интересны в плане конструкции червячный и кулачковый узлы. В первом варианте используется червячное зацепление между сателлитами и полуосевыми шестеренками. Такие дифференциалы получили общее название Torsen. Примечательно, что разработано несколько видов конструкции Torsen. Вариант Т1 отличается тем, что сателлиты в нем располагаются перпендикулярно оси вращения. Во втором варианте – Т2, сателлиты располагаются уже параллельно полуосям. Существует еще один тип червячного дифференциала – Quaife. В нем, как и Torsen Т2, сателлиты расположены параллельно, а отличие сводится к форме самих шестеренок.

В кулачковом узле шестеренок вообще нет. В них основными рабочими элементами выступают специальные сухари, установленные между двумя звездочками (кулачковыми шайбами) – внутренней и наружной. Из-за особенностей функционирования этот узел является – дифференциалом повышенного трения.

Виды блокировки

Как уже отмечено, в дифференциалах есть один серьезный недостаток. И решается он использованием специального механизма – блокировки.

По этому критерию узлы делятся на свободные, самоблокирующиеся и с принудительной блокировкой. Узлы свободного типа не имеют в конструкции какой-либо блокировки, поэтому при создании условий негативное качество сразу же проявляется. Такие узлы обычно используются на легковых авто, предназначенных для использования в городских условиях.

В самоблокирующихся узлах дополнительные элементы в конструкции дифференциала при возникновении ситуации, когда весь момент перебрасывается на одно колесо, замедляют вращение полуоси, тем самым направляя часть вращения на другое колесо. Самым распространенным способом обеспечить самоблокировку, является установка фрикционов. Отметим, что червячные дифференциалы не требуют установки дополнительных узлов, поскольку в червячной передаче присутствует эффект самоторможения, поэтому узлы этого типа сами по себе являются самоблокирующимся.

При принудительной блокировке осуществляется жесткое соединение одной из полуосей с корпусом дифференциала, поэтому при задействовании механизма дифференциал полностью прекращает свою работу, и функционирование ведущего моста осуществляется так, как будто колеса соединены между собой жестко одной осью.

Активный дифференциал

Все перечисленные виды дифференциалов работают полностью самостоятельно и вполне справляются с поставленной задачей. Но конструкторам показалось этого мало, поэтому ими был придуман и создан так называемый активный дифференциал.

В обычных узлах распределение вращения делается пропорционально. То есть, замедление одного колеса приводит к пропорциональному возрастанию вращения на втором. Активный же дифференциал позволяет подкорректировать эти пропорции.

Суть его такова – если при прохождении поворота на наружном колесе сделать скорость вращения больше, чем это обеспечивает дифференциал, то возникает эффект подруливания. За счет этого колесо, идущее по внешнему радиусу, «доворачивает» авто, позволяя ему лучше войти в поворот.

А реализовано это путем установки дополнительных планетарных редукторов на полуоси. Причем эти редукторы срабатывают только в определенные моменты, и для этого дополнительные узлы оснастили муфтами с электроприводом.

Принцип работы активного дифференциала

Суть работы активного дифференциала такова – при вхождении в поворот, на полуоси внешнего колеса срабатывает муфта, включая редуктор. Дополнительная передача обеспечивает повышение скорости вращения полуоси, а соответственно и колеса, и оно начинает «подруливать».

Как видно дифференциалы очень разнообразны, и автопроизводители не останавливаются на достигнутом. От модели к модели повышаются их возможности и пределы, скорость работы постоянно возрастает. В конечном счете это может отразиться на надежности в любую из сторон, но безусловно наш комфорт и безопасность возрастает.

t40-tractor.ru

От двигателя к колесам | Двигатель автомобиля

Не вся энергия, получаемая от двигателя, используется для преодоления сопротивлений движению автомобиля, т.е. непосредственно для движения автомобиля. Имеется еще и «накладной расход» на работу механизмов силовой передачи. Этот расход отнимает в отдельных случаях до 20% мощности, а у автомобиля обычной схемы — около 10%. Чем меньше этот расход, тем выше так называемый коэффициент полезного действия (к.п.д.) силовой передачи, обозначаемый греческой буквой у («эта»).

По существу коэффициент полезного действия передаточного механизма — это отношение мощности, отдаваемой механизмом, к мощности, им получаемой. Применительно к автомобилю — это отношение мощности, переданной колесам, к мощности двигателя, измеренной на его маховике.

Если к.п.д. силовой передачи равен 0,93 (93%), как это бывает у некоторых спортивных автомобилей или автомобилей высшего класса, то «накладные расходы» составляют всего 7%; если к.п.д. силовой передачи равен 0,8, как, например, у некоторых автомобилей с автоматическими передачами или у специальных автомобилей, то расходы достигают 20%.

Усилие от двигателя передается к ведущим колесам несколькими механизмами силовой передачи:

  • сцеплением
  • коробкой передач
  • карданным валом
  • главной передачей
  • дифференциалом

Механическая энергия, переданная от двигателя, не только передается через эти механизмы, но и расходуется на трение (пробуксовка дисков сцепления, трение зубьев шестерен коробки передач, главной передачи и дифференциала, трение в подшипниках, трение в карданных сочленениях), а также на взбалтывание масла в картерах коробки передач и заднего моста. От трения и взбалтывания масла возникает тепло; механическая энергия превращается в тепловую, которая не может быть использована и рассеивается. Этот «накладной расход» непостоянен — он увеличивается, когда в работу включается дополнительная пара шестерен на низших передачах, когда карданные шарниры работают под большим углом, когда вязкость масла велика (в холодную погоду), на повороте, когда в работу активно включаются шестерни дифференциала (при движении по прямой их работа невелика). Поэтому трудно дать точную, годную для всяких условий движения оценку величины к.п.д. силовой передачи каждого автомобиля.

Опытным путем определены потери мощности в силовой передаче автомобилей и в отдельных ее элементах и вычислены к.п.д.

Рис. Усилие от двигателя передается ведущим колесам через сцепление, коробку передач, главную передачу, дифференциал, полуоси.

Таблица. Коэффициенты полезного действия силовой передачи автомобиля и ее механизмов

Механизмы силовой передачи

 

Передача в коробке передач

 

Коэффициент полезного действия

 

автомобиль высшего классаавтомобиль массового выпуска
Механизмы силовой передачи
Сцепление

0,99

Коробка передач:
с прямозубыми шестернямиПрямая

0,96

Прочие

0,94

с косозубыми шестернямиПрямая

0,98

0,97

Прочие

0,96

0,95

Карданная передача:
с углом работы 0-7 градусов

0,99

с углом работы 7-20 градусов

0,98

Главная передача:
спирально-коническая

0,95

0,94

гипоидная

0,98

0,97

двойная (коническая и цилиндрическая)

0,85

Силовая передача автомобиля
Коробка передач с прямозубыми шестернями:
спирально-коническая главная передачаПрямая

0,88

Прочие

0,86

двойная главная передачаПрямая

0,79

Прочие

0,77

Коробка передач с косозубыми шестернями:
спирально-коническая главная передачаПрямая

0,91

0,89

Прочие

0,89

0,87

двойная главная передачаПрямая

0,94

0,92

Прочие

0,92

0,9

Приведенные в таблице величины к.п.д. всей силовой передачи автомобиля на повороте снижаются еще на 1—2%; при езде по очень неровной дороге (когда карданы работают под большими углами) — еще на 1—2%; зимой, когда масло слишком вязкое, — еще на 1—2%.

Рис. На работу механизмов передачи расходуется около 10% мощности, развиваемой двигателем.

Существуют автомобили, у которых к.п.д. силовой передачи снижен за счет наличия раздаточной коробки и переднего ведущего моста (автомобили повышенной проходимости со всеми ведущими колесами) или за счет необычной схемы коробки передач и заднего моста (некоторые автомобили с задним расположением двигателя, не имеющие прямой передачи в коробке передач, или автомобили с независимой подвеской задних колес, имеющие карданные шарниры на каждой полуоси, причем шарниры часто работают под большими углами).

В дальнейшем динамические и экономические показатели таких автомобилей рассматривать не будем, и поэтому примем к. п. д. силовой передачи приблизительно равным:

  • для легковых автомобилей высшего класса — 0,93
  • для прочих легковых автомобилей — 0,91
  • для грузовых автомобилей с одинарной главной передачей — 0,89
  • для грузовых автомобилей с двойной главной передачей — 0,85

Для учета этих «накладных расходов» во внешнюю характеристику двигателя следует внести поправки, чтобы получить характеристику мощности Nк и крутящего момента Мк, передаваемых на ведущие колеса автомобиля.

ustroistvo-avtomobilya.ru

О полке крутящего момента и переключении передач на конкретном примере - Взгляд технаря - Блоги

  • Главная
  • Допинг
  • Футбол
    • Матчи
    • Новости
    • Блоги
    • Статусы
    • Трансферы
    • Золотой мяч 19
    • Реал Мадрид – Барселона
    • Россия
    • Лига чемпионов
    • Лига Европы
    • Англия
    • Испания
    • Италия
    • Германия
    • Франция
    • Сборные
    • Олимп-ФНЛ
    • Евро-2020
    Все турниры
    • Ливерпуль
    • Тоттенхэм
    • Челси
    • Арсенал
    • Зенит
    • Барселона
    • Реал Мадрид
    • Спартак
    • Сборная России
    • Манчестер Юнайтед
    Все клубы
    • Салах
    • Сон Хын Мин
    • Азар
    • Месси
    • Роналду
    • Головин
    • Мбаппе
    • Суарес
    • Дзюба
    • Неймар
    Все футболисты
  • Хоккей
    • Матчи
    • Новости
    • Блоги
    • Статусы
    • КХЛ
    • НХЛ
    • Кубок Первого канала
    • Кубок Шпенглера
    • Молодёжный чемпионат мира
    • Шведские игры
    • Чешские игры
    • Юниорский чемпионат мира
    Все турниры
    • Вашингтон
    • СКА
    • ЦСКА
    • Авангард
    • Тампа-Бэй
    • Питтсбург
    • Спартак
    • Динамо Москва
    • Рейнджерс
    • Нью-Джерси
    Все клубы
    • Александр Овечкин
    • Артемий Панарин
    • Никита Кучеров
    • Андрей Свечников
    • Евгений Малкин
    • Евгений Кузнецов
    • Сергей Бобровский
    • Андрей Василевский
    • Никита Гусев
    • Илья Михеев
    Все хоккеисты
  • Баскетбол
    • Матчи
    • Новости
    • Блоги
    • Статусы
    • НБА
    • Turkish Airlines EuroLeague
    • Единая лига ВТБ
    • НБА плей-офф
    • Зарплаты НБА
    Все турниры
    • Лейкерс
    • ЦСКА
    • Бостон
    • Голден Стэйт
    • Милуоки
    • Торонто
    • Чикаго
    • Сан-Антонио
    • Оклахома-Сити
    • Зенит
    • Сборная России
    • Сборная США
    Все клубы
    • Леброн Джеймс
    • Стефен Карри
    • Кобе Брайант
    • Джеймс Харден
    • Кайри Ирвинг
    • Кевин Дюрэнт
    • Кавай Ленард
    • Расселл Уэстбрук
    • Алексей Швед
    • Яннис Адетокумбо
    Все баскетболисты
  • Авто
    • Гонки
    • Новости
    • Блоги
    • Статусы
    • Формула 1
    • MotoGP
    • Формула 2
    • Формула E
    • Ралли Дакар
    • Шелковый путь
    Все турниры
    • Феррари
    • Макларен
    • Ред Булл
    • Мерседес
    • Уильямс
    • Хаас
    • Торо Россо
    • Рейсинг Пойнт
    • Рено
    • Альфа Ромео
    Все команды
    • Льюис Хэмилтон
    • Себастьян Феттель
    • Роберт Кубица
    • Даниил Квят
    • Кими Райкконен
    • Фернандо Алонсо
    • Шарль Леклер
    • Валттери Боттас
    • Даниэль Риккардо
    • Макс Ферстаппен
    Все пилоты
  • Теннис
    • Новости
    • Блоги
    • Статусы
    • US Open
    • Australian Open
    • Ролан Гаррос
    • Уимблдон
    • Мужчины
    • Женщины
    • Кубок Дэвиса
    Все турниры
    • Новак Джокович
    • Роджер Федерер
    • Рафаэль Надаль
    • Наоми Осака
    • Симона Халеп
    • Мария Шарапова
    • Серена Уильямс
    • Карен Хачанов
    • Даниил Медведев
    • Александр Зверев
    • Эшли Барти
    Все теннисисты
  • Бокс/MMA/UFC
    • Новости
    • Блоги
    • Статусы
    • UFC
    • MMA
    • Бокс
    • UFC 245
    Все турниры
    • Хабиб Нурмагомедов
    • Конор Макгрегор
    • Федор Емельяненко
    • Александр Усик
    • Василий Ломаченко
    • Энтони Джошуа
    • Деонтей Уайлдер
    • Сауль Альварес
    • Джон Джонс
    • Александр Емельяненко
    Все бойцы
  • Ставки
  • Фигурное катание
    • Новости
    • Блоги
    • Статусы
    • Гран-при
    • Чемпионат Европы
    • Чемпионат мира
    Все турниры
    • Сборная России
    • Сборная Японии
    • Сборная США
    • Сборная Канады
    • Сборная Франции
    Все сборные
    • Алина Загитова
    • Евгения Медведева
    • Александра Трусова
    • Анна Щербакова
    • Михаил Коляда
    • Елизавета Туктамышева
    • Этери Тутберидзе
    • Татьяна Тарасова
    Все фигуристы
  • Биатлон
    • Гонки
    • Новости
    • Блоги
    • Статусы
    • Кубок мира
    • Кубок IBU
    • Чемпионат мира-2020
    • Ижевская винтовка
    Все турниры
    • Сборная России
    • Сборная России жен
    • Сборная Германии
    • Сборная Германии жен
    • Сборная Норвегии
    • Сборная Норвегии жен
    Все сборные
    • Александр Логинов
    • Мартен Фуркад
    • Йоханнес Бо
    • Доротея Вирер
    • Дмитрий Губерниев
    • Лиза Виттоцци
    • Светлана Миронова
    • Екатерина Юрлова
    • Дмитрий Малышко
    Все биатлонисты
  • Стиль
  • Лыжи
  • Легкая атлетика
  • Волейбол
  • Регби
  • Олимпиада-2020
  • Американский футбол
  • Бадминтон
  • Бейсбол
  • Бильярд/снукер
  • Борьба
  • Бобслей/сани/скелетон
  • Велоспорт
  • Водные виды
  • Гандбол
  • Гимнастика
  • Гольф
  • Гребля
  • Единоборства
  • Керлинг
  • Конный спорт
  • Коньки/шорт-трек
  • Мини-футбол
  • Настольный теннис
  • Парусный спорт
  • Пляжный футбол
  • Покер
  • Современное пятиборье
  • Стрельба
  • Триатлон
  • Тяжелая атлетика
  • Фехтование
  • Хоккей на траве
  • Хоккей с мячом
  • Шахматы
  • Экстремальные виды
  • Экзотические виды
  • Промокоды
  • Прочие
  • Главная
  • Допинг
  • Футбол
  • Хоккей
  • Баскетбол
  • Авто
  • Теннис
  • Бокс/MMA/UFC
  • Ставки
  • Фигурное катание
  • Биатлон
  • Стиль
  • Лыжи
  • Легкая атлетика
  • Волейбол
  • Регби
  • Олимпиада-2020
  • Американский футбол
  • Бадминтон
  • Бейсбол
  • Бильярд/снукер
  • Борьба
  • Бобслей/сани/скелетон
  • Велоспорт
  • Водные виды
  • Гандбол
  • Гимнастика
  • Гольф
  • Гребля
  • Единоборства
  • Керлинг
  • Конный спорт
  • Коньки/шорт-трек
  • Мини-футбол
  • Настольный теннис
  • Парусный спорт
  • Пляжный футбол
  • Покер
  • Современное пятиборье
  • Стрельба
  • Триатлон
  • Тяжелая атлетика
  • Фехтование
  • Хоккей на траве
  • Хоккей с мячом
  • Шахматы
  • Экстремальные виды
  • Экзотические виды
  • Промокоды
    • Матч-центр
      • Футбол
      • Хоккей
      • Баскетбол
      • Авто
      • Биатлон
    • Новости
      • Футбол
      • Хоккей
      • Баскетбол
      • Теннис
      • Авто
      • Бокс/MMA/UFC
      • Биатлон
      • Фигурное катание
      • Прочие
    • Блоги
      • Блоги
      • Форумы
      • Статусы
      • Комментарии
      • Футбол
        • Россия
        • Сборные
        • Лига чемпионов
        • Лига Европы
        • Англия
        • Испания
        • Италия
        • Германия
        • Франция
        • Украина
        • Южная Америка
        • Голландия
        • Португалия
        • Африка
        • Любительский
        • Азия
        • Беларусь
        • ФНЛ
      • Хоккей
        • 🏒Чемпионат мира по хоккею 2019
        • Россия
        • Сборные
        • НХЛ
        • КХЛ
      • Баскетбол
        • Turkish Airlines Euroleague
        • Россия
        • НБА
        • Зарплаты НБА
        • Еврокубки
        • Сборные
        • Еврочемпионаты
        • Женский баскетбол
      • Биатлон
        • Чемпионат мира по биатлону
        • Кубок мира по биатлону
      • Теннис
        • ATP
        • WTA
        • Кубок Дэвиса
        • Кубок Федерации
        • Ролан Гаррос
      • Авто
        • Формула-1
        • Мото
        • Ралли
        • ДТМ
        • Другие серии
      • Бокс/MMA/UFC
        • UFC
        • Бокс Профи
        • ММА
        • Прочее
      • Фигурное катание
        • Чемпионат мира по фигурному катанию
      • Прочие
        • Американский футбол
        • Бадминтон
        • Бейсбол
        • Бильярд/снукер
        • Борьба
        • Бобслей/сани/скелетон
        • Велоспорт
        • Водные виды
        • Волейбол
        • Гандбол
        • Гимнастика
        • Гольф
        • Гребля
        • Единоборства
        • Керлинг
        • Конный спорт
        • Коньки/шорт-трек
        • Легкая атлетика
        • Лыжи
        • Мини-футбол
        • Настольный теннис
        • Парусный спорт
        • Пляжный футбол
        • Покер
        • Регби
        • Современное пятиборье
        • Стрельба
        • Триатлон
        • Тяжелая атлетика
        • Фехтование
        • Хоккей на траве
        • Хоккей с мячом
        • Шахматы
        • Экстрим
        • Экзотические виды
      Все блоги
    • Подкасты
    • Статусы
      • Популярные
      • Новые
    • Рейтинг букмекеров
      • Бонусы букмекеров
      • Легальные
      • Зарубежные
      • Киберспортивные
      • Мобильные
      • Российские
      • С кэшбеком
    • Fantasy
      • Fantasy
      • Прогнозы
      • Редакционные игры
      Fantasy-команды
        Другие лигиЛига Прогнозов
          Больше лиг
        • Киберспорт
        • Прогнозы на спорт

        www.sports.ru

        Мощность и крутящий момент

        Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.

        Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.

        Очевидно, что эти утверждения не соответствуют действительности.

        Определения и разъяснения:

        Крутящий момент:

        Крутящий момент двигателя прилагается к коленчатому валу двигателя или к первичному валу коробки передач. Крутящий момент изменяется в зависимости от частоты вращения двигателя. Крутящий момент на колесах зависит от передаточного отношения трансмиссии.

        Крутящий момент на колесах:

        Это преобразованный трансмиссией крутящий момент двигателя.

        Мощность двигателя непосредственно взаимосвязана с крутящим моментом двигателя, а именно, через соотношение P=M*n/9550, где М- крутящий момент двигателя. Единица измерения 1 Н*м, n – частота вращения двигателя в об/мин.

        Диаграммы крутящего момента достаточно, чтобы просчитать кривую мощности (и наоборот).

        Возьмем два двигателя. У обоих максимальный крутящий момент 200 Нм при 4000 об/мин и мощность 147 л.с. при 6000 об/мин. Несмотря на то, что основные данные этих двух моторов одинаковы, они все же отличаются по динамическим характеристикам. Диапазон крутящего момента и мощности первого двигателя лучше чем у второго. Предположим, что переключение передач происходит при 6500 об/мин и обороты двигателя на следующей, более высокой передаче опускаются до 4300 об/мин. Первый двигатель имеет до точки при 6000 об/мин непрерывно больший крутящий момент и мощность. Таким образом, первый автомобиль будет ускоряться лучше. Это показывает, что основные данные двигателя дают только частичную информацию.

        Так что мы теперь знаем о «крутящем моменте» и «мощности двигателя»? На самом деле сравнительно мало. Поскольку трансмиссия и ее передаточное отношение играю существенную роль в движении автомобиля. Старые американские автомобили были оборудованы 2-3 ступенчатыми коробками передач, и несмотря на значительные мощности двигателей, разгонялись они достаточно скромно, т.к. падение оборотов при переключении передач было слишком большим. Как грубое сравнение можно привести Mercedes S-Klasse. Он оборудован 7-ступенчатым автоматом, который позволяет полностью использовать имеющуюся в распоряжении мощность двигателя.

        Почему это так?

        Все мы знаем, что ускоряется автомобиль лучше в определенной области оборотов двигателя. Оптимально, когда обороты двигателя постоянно находятся в этом диапазоне. Но это возможно лишь на немногих автомобилях оборудованных CVT (безступенчатыми трансмиссиями).

        Чем больше передач имеется в распоряжении, тем меньше становится скачок оборотов и тем ближе мы становимся к оптимальному числу оборотов двигателя между переключениями. Усилие на ведущих колесах, это то, что приводит автомобиль в движение. Это сила, приложенная по касательной к окружности колеса. Она несет в себе всю информацию (Крутящий момент, передаточное отношение трансмиссии, размер колес) и направлена противоположно силе сопротивления движению и силе инерции.

        Когда нужно переключаться?

        Оптимальная точка переключения достигается тогда, когда на следующей высшей передаче имеется большее усилие на ведущих колесах чем на актуальной передаче. Чтобы найти оптимальную точку переключения, необходимо воспользоваться кривой крутящего момента. Диаграмма тягового усилия на ведущих колесах зависит от передаточного отношения трансмиссии и размера установленных шин. Как только пересекутся кривые отдельных передач, нужно переключиться на следующую передачу, чтобы достичь лучшего ускорения. Если же кривые не пересекаются, тогда следует выкручивать двигатель до ограничителя. Далее отображены диаграммы тягового усилия на ведущих колесах, чтобы можно было прочувствовать теорию в деле.

        Влияние передаточного отношения

        Турбодизель достигает очень высоких значений крутящего момента при низких оборотах двигателя.

        Но это только цифры, по которым можно судить о том, как автомобиль будет ускоряться и по ним нельзя делать окончательные выводы. Почему? Потому что дизелю нужно значительно дольше переключаться, чтобы достичь одинаковую с бензином скорость(т.к. число оборотов дизеля существенно ниже чем у бензинового двигателя). Это приводит к тому, что бензиновый двигатель свой низкий крутящий момент преобразует значительно лучше за счет коротких передач, чем дизель с длинными передачами.

        Турбодизель против высокооборотистого атмосферного двигателя.

        Несмотря на длинные передаточные отношения дизель как правило имеет лучшую тяговитость при низких оборотах. Наглядно это отображено на диаграмме сравнения BMW М3 3.2 л двигателя и BMW 535d. Несмотря на гигантский крутящий момент дизеля (520Нм), бензиновый двигатель (365Нм) в очень широком диапазоне оборотов двигателя имеет значительно большее тяговое усилие на ведущих колесах. Так что этот бензиновый двигатель (вопреки многим мнениям) может ездить с редкими переключениями, иногда даже ленивее чем 535d (на шестой передаче тяговое усилие на колесах стабильно выше чем у 535d, независимо при каких оборотах и какой скорости). Но можно говорить о том, что большая часть турбированных двигателей имеет лучшую приемистость (на низких оборотах) чем атмосферные двигатели. Так что предпочитаете ли вы двигатели имеющие «подрыв» на низких скоростях, или те, которые выдают тягу плавно, это остается делом вкуса.

        Турбодизель против турбобензина

        Сравним BMW E90 335i с 306 л.с. и 400 Нм и BMW E90 335d с 286 л.с. и 560 Нм. На низших передачах в среднем диапазоне оборотов тяга на колесах дизеля существенно выше, чем у бензинового двигателя. При высоких оборотах бензин свою мощность отыгрывает. На 6-й передаче бензин имеет стабильно большее усилие на колесах чем дизель.

        Диаграмма тягового усилия BMW E90 335i и E90 335d

        Дизель или бензин как тягач

        Широко распространено мнение, что дизельный двигатель из-за его высокого крутящего момента лучше подходит для буксировки. Тем не менее из-за огромного скачка в развитии бензиновых двигателей это не совсем верно. Современные бензиновые двигатели все чаще оснащаются турбонагнетателями, которые могут создавать достаточное давление наддува при низких оборотах, и следовательно достигать высокого крутящего момента. Сравним двигатели 1.4 TSI (170 л.с., 240 Нм) и 2.0TDI (170 л.с., 350 Нм) в VW Golf5.

        За основу взят 5% уклон, коэффициент лобового сопротивления 0.7, площадь лобового сопротивления 5.87 м2 и общая масса 3250 кг. 1-я передача для лучшего рассмотрения исключена.

        Все режимы выше голубой линии возможны с вышеназванными условиями. Все режимы ниже голубой линии ведут к снижению скорости и в конечном счете к переходу на низшую передачу. Можно увидеть, что дизель может использовать первые четыре передачи, TSI – первые пять. Максимально допустимые скорости следующие:

        TDI:

        68 км/ч на второй передаче (в ограничителе оборотов)

        104 км/ч на третьей передаче (вблизи ограничителя оборотов около 4400 об/мин)

        TSI:

        99 км/ч на второй передаче (вблизи ограничителя оборотов около 7000 об/мин)

        106 км/ч на третьей передаче (при около 5500 об/мин)

        90 км/ч на четвертой передаче (при около 3500 об/мин)

        65 км/ч на пятой передаче (при около 2300 об/мин)

        В целом TSI гораздо лучше подходит для движения с прицепом. Единственным недостатком может быть значительный рост расхода топлива у бензина.

        Как выглядит диаграмма тягового усилия авто со ступенчатыми коробками передач мы уже знаем.

        Для полноты картины следует отметить бесступенчатую трансмиссию Audi «Multitronic».

        Рассмотрим кратко, так как эта трансмиссия имеет призрачные шансы на существование. Это безступенчатая трансмиссия с различными профилями вождения. Спортивно настроенный водитель использует голубую линию для максимального ускорения, с высокими оборотами и большим расходом. Средний водитель будет использовать более низкие обороты. А значит тяга на колесах будет не так высока как в спорт режиме. Соответственно автомобиль ускоряется медленнее. CVT, как уже говорилось ранее, превосходное решение. Теоретически она позволяет получить максимальную производительность. На практике все выглядит по другому. Авто с Мультитроником ускоряются хуже, чем авто с МКПП. Потери в трансмиссии слишком велики и перекрывают все преимущества.

        А что же насчет двигателей грузовиков и коммерческих автомобилей?

        Глядя на кривые мощности и крутящего момента грузовиков можно быстро обнаружить существенные отличия от легковых автомобилей. В то время как на двигателях легковых авто целью является как можно более равномерное и высокое значение крутящего момента, двигателям грузовиков необходим пик крутящего момента. Покажем качественные отличия грузовых и легковых турбодизелей:

        Почему так?

        Области применения полностью различны. Легковому автомобилю необходимо достичь максимального ускорения и как можно более высокой максимальной скорости. В тоже время необходимо принять во внимание тот факт, что эти двигатели практически постоянно используются в режимах частичной нагрузки. Грузовые же двигатели (в качестве простого примера возьмем двигатели бульдозера или трактора) обычно используются на максимальной нагрузке. Максимальные крутящие момент и мощность ему необходимы при низких оборотах, а также как можно большее нарастание крутящего момента. Почему не падение а именно нарастание крутящего момента станет ясно в следующем абзаце.

        Цель этого нарастания величины крутящего момента может быть хорошо объяснена на примере бульдозера. Насыпь земли перед ковшом бульдозера всегда большая, поэтому возникает необходимость увеличить мощность, чтобы продвинуть насыпь дальше. При этой нагрузке частота вращения двигателя падает и вместе с тем падает скорость сдвига. Снижение числа оборотов двигателя благодаря типичной для грузовых транспортных средств кривой крутящего момента ведет к росту крутящего момента и мощности двигателя (смотри график). Таким образом в некоторой степени предотвращается дальнейшее падение оборотов и скорости сдвига – чем сильнее падение числа оборотов, тем больше мощности отдает двигатель. В переносном смысле можно сказать: кривая крутящего момента таких двигателей позволяет независимо от нагрузки относительно сохранять необходимую скорость. Такие моторы имеют «иммунитет» против увеличения нагрузки и становятся ненамного медленнее при ее увеличении. Но все же почему «нарастание крутящего момента» а не «падение»? Теперь нужно смотреть на график в направлении рабочих оборотов. При нагрузке число оборотов падает и происходит РОСТ крутящего момента.

        www.auto-diagnostic.by

Отправить ответ

avatar
  Подписаться  
Уведомление о