Аккумулятор состав: Из чего состоит аккумулятор

Содержание

Устройство аккумуляторов

Аккумуляторы, а в быту мы их называем «батареи», используются сейчас повсеместно в виду появления все большего числа различной электроники (например, смартфоны, ноутбуки, планшеты, фотокамеры и др.). Вообще, аккумуляторы в электротехнике в широком смысле понимаются как специальные приборы, которые способны как накапливать заряд, так и расходовать его в зависимости от ситуации. С момента появления данные устройства существенно модернизировались и теперь облегчают жизнь человека в различных сферах. Но несмотря на большую распространенность аккумуляторов мало кто из потребителей полноценно знаком со спецификой их функционирования и, соответственно, с правилами их использования. 

Главное предназначение любого типа аккумулятора – это накапливание электроэнергии для последующего ее использования в совершении каких-либо масштабных работ.

Помимо выше указанных аккумуляторов, используемых в современной цифровой технике, существуют более серьезные устройства.

Одним из таких является гидравлический аккумулятор, который применяется, как правило, в шлюзах. Такие аккумуляторы способны поднимать судна на более высокие уровни русла рек.

Электрический аккумулятор функционирует по аналогичному принципу, что и гидравлическое устройство. То есть, первоначально электричество аккумулируется в устройстве от внешнего источника. После оно передается потребителям и используется для совершения тех или иных работ. Данные аккумуляторы являются химическими и отличаются возможностью неоднократного заряда/разряда.

В процессе заряда в аккумуляторе в непрерывном режиме совершаются те или иные химические реакции между электродными пластинами и тем химическим веществом, что заполняет пространство между ними. Последнее вещество именуется электролитом.
  
Примитивным образом схему устройства аккумулятора можно изобразить так: внутри корпуса размещается пара металлических пластин, оснащенных специальными выводами для контактов, а промежуток между ними заполняется электролитом.

 

Функционирование аккумулятора в процессе разряда и заряда

Разряд

Через замкнутую электрическую цепь протекает ток разряда. Например, при подключении к электродам нагрузки. Данный ток сформирован двигающимися в металлических элементах электронами, а также анионами и катионами, что находятся в электролите.

Данный процесс схематично отображен на рисунке с никель-кадмиевыми электродами. Материалом положительного электрода является окись никеля с добавлением графита, за счет чего возрастает электропроводимость. Основа отрицательно заряженного электрода – губчатый кадмий. При разряде из окиси никеля выделяются микрочастицы активного кислорода в электролит, после чего передаются на отрицательно заряженные пластины. Здесь происходит окисление кадмия.

Заряд

Во время отсутствия нагрузки на клеммы пластин из однородного металла происходит подача постоянного (реже пульсирующего) напряжения. Показатель данного напряжения несколько превышает то, которое присуще заряжаемому аккумулятору.

Все зарядные устройства имеют гораздо большую мощность, способную подавить энергию, неизрасходованную аккумулятором. В следствие чего возникает электрический ток, направление которого противоположно направлению разряда. При этом химические процессы претерпевают изменения. 

Важно отметить, что процессы разряда и заряда изменяют химический состав электродов. Электролит же при этом не испытывает никаких изменений.

Каким образом могут соединяться аккумуляторы?



Аккумуляторы могут соединяться между собой двумя способами: параллельным соединением и последовательным.

Параллельный способ

То, какой показатель тока разряда может выдержать корпус аккумулятора, напрямую зависит от различных факторов. Например, очень важным моментом являются конструктивные особенности, используемые материалы, а также размеры. Таким образом, чем больше площадь имеющихся пластин, тем выше способность выдержать большие токи.

На данном принципе основано параллельное подключение аккумуляторов одного типа с существующей необходимостью увеличения показателя тока нагрузки. В данной ситуации необходимо будет увеличить мощность источника питания.

Данный метод крайне редко применяется в готовых конструкциях, поскольку сегодня гораздо удобнее купить полноценный аккумулятор. В основном параллельный способ применим в производстве кислотных автомобильных аккумуляторах для соединения пластин в единый блок.

Последовательный способ

В популярных в бытовом применении аккумуляторах напряжение между пластинами достигает 1,5 В или 2 В (на данный показатель также влияет используемый материал). Большая часть используемого электрооборудования требует более высокого напряжения. Для этого аккумуляторы одного типа соединяют последовательным образом, помещая их под единый корпус. Самый яркий пример – автомобильный аккумулятор, в основе которого серная кислота и электродные пластины из свинца.

Отметим важный и интересный факт: сегодня автолюбители привыкли называть аккумулятором любой источник питания, что не совсем верно. Например, правильное наименование напрямую зависит от числа составных элементов. Так, если несколько так называемых «банок» соединены единой схемой, то это уже батарея, а сокращенно АКБ – автомобильная аккумуляторная батарея.

Каждая «банка» имеет в своем составе два блока с пластинами, часть которых предназначена для отрицательных электродов, а часть – для положительных. Данные блоки не имеют металлического контакта между собой, а имеют крепкую гальваническую связь посредством электролита.

Между контактными пластинами установлен сепаратор – разделитель в виде дополнительной решетки с целью увеличения расстояния. Таким образом, соединенные в блоки пластины увеличивают показатель мощности подаваемых нагрузок.

Корпус данных АКБ изготовлен из прочной пластмассы и плотно закрывается крышкой. Сверху имеются две клеммы, используемые в подключении к электросхеме автомобиля. Обязательно каждая клемма маркирована знаками полярности, а именно знаки «+» и «-«. также во избежание ошибочного подключения положительная клемма имеет больший диаметр, чем отрицательная.

Над каждой банкой также располагается специальная горловина, которая предназначена для отслеживания уровня электролита, а также для доливания воды при возникновении таковой необходимости вовремя эксплуатации. Горловина закрывается пробкой, дабы избежать попадания внутрь банки посторонних частиц и предотвратить выливание электролита при движении аккумуляторной батареи.

Пробки имеют отверстия, которые служат отводами возникающих при быстрой езде газов в электролите. Тем самым предотвращается возникновение давления внутри банок. То есть, через отверстия пробок выходят кислород и водород, а также образующиеся электролитом пары. Безусловно, лучше избегать ситуации, которые возникают из-за высоких токов заряда.

Свинцово-кислотные АКБ основаны на принципе двойной сульфатации. В таких устройства при заряде или разряде происходят электрохимические процессы, которые изменяют химический состав основной доли активных электродов, при этом либо выделяя в серную кислоту воду, либо поглощая ее из электролита.

Именно данные нюансы объясняют рост показателя плотности электролита во время заряда, а также его снижение во время разряда. Таким образом, степень плотности является показателем оценки состояния батареи. С целью измерения используется специально предназначенный для этого прибор – ареометр.

Как было сказано выше, в состав электролита кислотных АКБ входит вода. Известно, что при низких температурах она замерзает. Следовательно, для предотвращения замерзания АКБ с наступлением холодов необходимо следовать всем правилам эксплуатации. 

Сегодня производители выпускают свыше 30 аккумуляторов. Различаются изделия между собой составом электродов и самого электролита. Например, в основу 12 популярных типов входит литий.

Электроды могут изготавливаться из свинца, железа, лития, титана, кобальта, кадмия, никеля, цинка, ванадия, серебра, алюминия и др. От того, какие вещества использованы в электродах, зависят свойства и характеристики аккумулятора и, соответственно, сфера использования.

Например, свинцово-кислотные АКБ используются в ИБП, автотранспорте, системах электроснабжения за счет высокой способности выдерживать колоссальные кратковременные нагрузки.

Гальванические стандартные батареи сегодня вытесняются никель-кадмиевыми, никель-цинковыми, никель-металлгидридными аккумуляторами.

В мобильных устройствах и другой цифровой технике, а также в электроинструментах, используются литий-ионные и литий-полимерные типы аккумуляторов.

Аккумуляторы различаются между собой также типом используемого электролита. Таким образом, устройства бывают щелочными и кислотными.

Также классифицируются устройства и по назначению. Например, сегодня особенно популярными внешние аккумуляторы, которые спасают владельцев современных смартфонов в ситуации отсутствия возможности подзарядки от электросети.

Важные характеристики аккумулятора – это емкость, плотность энергии, самозаряд и температура эксплуатации.

Торговая сеть «Планета Электрика» имеет в своем ассортименте аккумуляторы. 


Аккумуляторы для ИБП. Классификация


Содержание:

Аккумулятор ИБП — основная часть бесперебойника

Очень важной частью любого источника бесперебойного питания является аккумуляторная батарея. От технических характеристик аккумулятора для ИБП зависят все основные параметры бесперебойника. Именно аккумулятор ИБП определяет в конечном счете и мощность источника и длительность резерва бесперебойника. Вот почему необходимо грамотно подойти к вопросу выбора аккумулятора для источника бесперебойного питания.

Аккумуляторы для бесперебойников. Классификация по конструктивному типу

В наше время в мире выпускаются аккумуляторы различных типов. Вот далеко не полный список: свинцово-кислотные, медно-литиевые, никель-кадмиевые, никель-металлогидридные, железо-никелевые, серно-натриевые, серебряно-цинковые, серебряно-кадмиевые, литий-ионные, литий-полимерные, никель-водородные, марганцево-цинковые. Все типы аккумуляторных батарей имеют различную конструкцию, различные свойства и различные цены.
Рассмотрим основные типы аккумуляторов, применяемых для источников бесперебойного питания.

Свинцово-кислотные аккумуляторы для ИБП

Свинцово-кислотные (с английского Sealed Lead Acid) аккумуляторные батареи получили наибольшее распространение. К положительным свойствам относятся: низкая стоимость, низкий саморазряд, высокая надежность, стабильность напряжения, работа в широком диапазоне температур, длительность циклов работы, возможность совершать до тысячи циклов заряда / разряда. К отрицательным свойствам можно отнести: большой вес и габариты, маленькая удельная ёмкость, теряют работоспособность при глубоких разрядах.

Никелево-кадмиевые аккумуляторы для ИБП

Никелево-кадмиевые (Ni-Cd) аккумуляторные батареи получили большую известность в последние годы благодаря маленькому весу и размерам широко применяются в различных электронных устройствах. К положительным свойствам относятся: высокая энергетическая плотность, возможность осуществления до 1500 перезарядок, низкий саморазряд (менее 20 % в месяц), не дорогая цена, высокая надежность, простота в эксплуатации, хорошая стойкость к перепадам температур. К отрицательным свойствам относятся: наличие «эффекта памяти», постепенное уменьшение ёмкости АКБ, использует высокотоксичное вещество, высокая стоимость переработки и утилизации.

Никелево-металлогидридные аккумуляторы для ИБП

Никелево-металлогидридные (Ni-MH) аккумуляторные батареи известны довольно давно и обладают рядом улучшенных характеристик, но они не получили большого распространения, прежде всего из-за сложностей в эксплуатации. К положительным свойствам относятся: высокая удельная ёмкость, стабильная работа, большая энергетическая плотность, не снижает уровень ёмкости. К отрицательным свойствам относятся: малое число циклов заряда / разряда, высокая цена батареи, более узкий температурный режим работы, малая нагрузочная способность, не переносит глубоких разрядов, высокий уровень саморазряда, сложность процесса зарядки, большие расходы на эксплуатацию.

Литиево-ионные аккумуляторы для ИБП

Литиево-ионные (Li-Ion) аккумуляторные батареи были изобретены ещё в первой половине 20 века, однако их массовое производство началось только в 90-х годах. Сегодня они являются наиболее перспективными для использования в электронных устройствах. Такие батареи имеют большую удельную ёмкость и могут обеспечить мощного потребителя при малом собственном весе и размере. К положительным свойствам относятся: высокая надёжность работы, большая энергетическая плотность (около 100 Вт*ч/кг), очень маленькая скорость саморазряда (около пяти процентов в месяц), АКБ не теряет ёмкости в процессе работы, низкая стоимость обслуживания. К отрицательным свойствам относятся: высокая цена, не достаточно широкий диапазон температур работы, АКБ необходимо хранить в заряженном виде, есть эффект старения, необходимо использовать специальные зарядные устройства.

В настоящее время наибольшее распространение получили обычные свинцово-кислотные аккумуляторы для ИБП. Основные причины — высокая надёжность аккумуляторных батарей, низкая стоимость приобретения, простота в обслуживании, работоспособность в тяжелых климатических условиях, возможность многократных процедур заряда.

Аккумуляторы для бесперебойников. Классификация по типу электролита

По типу используемого электролита все аккумуляторные батареи можно разделить на три основные группы: АКБ с жидким электролитом, АКБ по технологии GEL, АКБ по технологии AGM. Рассмотрим основные характеристики этих типов аккумуляторов.

Аккумуляторы для источника бесперебойного питания с жидким электролитом

Аккумуляторные батареи с жидким электролитом имеют наибольшее распространение. Эта технология включает использование раствора серной кислоты в качестве электролита. К такому типу относятся обычные автомобильные АКБ. Основной их недостаток состоит в том, что они не герметичны. В процессе работы такие батареи выделяют водород и пары серной кислоты, что негативно сказывается на их экологичности. Негерметичные аккумуляторы требуют сложного обслуживания, специального помещения для проведения работ по зарядке и обслуживанию. К положительным свойствам следует отнести низкую стоимость приобретения батареи. Такие аккумуляторы редко используются для источников бесперебойного питания, однако могут быть применены в случае внешнего подключения АКБ и наличия специального не жилого помещения.

Аккумуляторы GEL для источника бесперебойного питания

Аккумуляторы GEL (гелиевые аккумуляторы) производятся по технологии GEL-Electrolite. Для получения нужного желеобразного состояния в состав электролита АКБ добавляют специальный загуститель. Аккумуляторы, созданные по этой технологии, не имеют выделения газов. Поэтому они изготавливаются герметичными. Герметичные аккумуляторы для ИБП безопасны и не требуют специального обслуживания. GEL АКБ имеют высокую надёжность, работоспособны в широком диапазоне температур, имеют высокую ёмкость и длительный срок эксплуатации. Однако их стоимость более высокая, чем у негерметичных АКБ. Также необходимо не допускать глубокого разряда таких батарей.

Аккумуляторы AGM для источника бесперебойного питания

Аккумуляторы по технологии AGM (Absorptive Glass Mat) являются самыми современными. По сути они являются модернизацией АКБ типа GEL. В качестве электролита в таких батареях используют жидкий электролит, абсорбированный специальными пористыми волокнами. Такая технология позволяет делать батареи герметичными. При их работе не выделяются вредные пары. В то же время электрическое сопротивление таких АКБ ниже, что существенно улучшает показатели. В производстве источников бесперебойного питания именно аккумуляторы по технологии AGM получили большое распространение. Такие АКБ имеет ряд положительных свойств: высокая надёжность работы, простое обслуживание, большая эпикритическая ёмкость, низкая стоимость приобретения и низкая стоимость обслуживания, большой срок службы.

Купить аккумуляторы для ИБП в Ростове-на-Дону, Москве, Санкт-Петербурге, Новосибирске в магазинах СКАТ

Получить необходимые консультации специалистов, подобрать нужный аккумулятор по размерам и техническим характеристикам помогут специалисты сети магазинов СКАТ. Большой выбор различных моделей аккумуляторов для бесперебойников вы найдете в фирменных салонах в городах: Москва, Ростов-на-Дону, Санкт-Петербург, Новосибирск.

Читайте также:

Аккумуляторные батареи. Виды и устройство. Применение

АКБ или аккумуляторные батареи – это оборудование, которое состоит из нескольких аккумуляторов. Оно может накапливать, хранить и расходовать энергию. Благодаря обратимости химических процессов, происходящих внутри аккумулятора, такие устройства могут заряжаться и разряжаться многократно.

Сфера применения аккумуляторов весьма обширна. Они применяются в автомобилях и различной бытовой технике, например, в пультах ДУ и ноутбуках. Но также и в качестве резервных источников питания в медицинской сфере, производстве, космической отрасли, дата-центрах.

Виды и типы АКБ

Сегодня производят около 30 типов аккумуляторов. Такое большое количество обуславливается возможностью применять в качестве электродов и электролитов различные химические элементы. Именно от материала электрода и состава электролита зависят все характеристики аккумулятора.

Мы не будем приводить все типы, а лишь дадим небольшую таблицу с описанием наиболее распространенных:

Устройство

1 — Отрицательный электрод
2 — Разделительный слой
3 — Положительные электроды
4 — Отрицательный контакт
5 — Предохранительный клапан
6 — Положительные электроды
7 — Положительный контакт

Аккумуляторные батареи состоят из нескольких банок аккумуляторов, соединенных либо параллельно, либо последовательно. Последовательное соединение применяют в целях увеличения напряжения, а параллельное для увеличения силы тока.

Каждый из отдельно взятого аккумулятора в АКБ состоит из двух электродов и электролита, помещенных в корпус из специального материала.

Электрод с отрицательным зарядом – анод, с положительным зарядом – катод. Анод содержит восстановитель, катод – окислитель. Внутри корпуса аккумулятора стоит разделительная пластина, которая не позволяет электродам замыкаться.

Электролит – водный раствор, в который погружены оба электрода.

При разрядке аккумулятора восстановитель анода начинает окисляться и выделяются электроны. Электроны затем попадают в электролит и оттуда движутся к катоду, при этом создавая разрядный ток. Попадая в катод электроны восстанавливают его окислитель. Простыми словами можно описать процесс так: электроны идут от отрицательного электрода к положительному и создают разрядный ток.

При зарядке аккумулятора электроды меняются своим химическим составом и происходит обратная реакция. Электроны здесь двигаются от положительного анода к отрицательному катоду.

Особенности разных типов АКБ
Свинцово-кислотные аккумуляторы

Разработан Гастоном Планте в 19 веке. Эти аккумуляторные батареи сегодня наиболее актуальны благодаря дешевизне и универсальности. Сфера их применения обширна ввиду большого количества разновидностей этого типа. В качестве отрицательно заряженных электродов здесь используется оксид свинца. Положительные электроды выполняются из свинца. Электролит – серная кислота.

У свинцовых-кислотных батарей есть следующие разновидности:
  • LA – аккумуляторы с напряжением 6 или 12 Вольт. Традиционное устройство для осуществления запуска двигателей автомобилей. Требуют постоянного обслуживания и вентиляции.
  • VRLA – напряжением 2, 4, 6 или 12 Вольт. Клапанно-регулируемая свинцово-кислотная аккумуляторная батарея. Как видно из названия этот АКБ укомплектован разгрузочным клапаном. Его роль – минимизировать выделение газа и расход воды. Такие батареи можно устанавливать в жилых помещениях.
  • AGM VRLA – как и предыдущий тип оснащен клапаном, но имеет совсем другие свойства. В аккумуляторах, сделанных по технологии AGM роль сепаратора играет стекловолокно. Его микропоры пропитаны жидким электролитом. Такие АКБ не требуют обслуживания и устойчивы к вибрациям.
  • GEL VRLA – подвид свинцово-кислотных аккумуляторов с гелеобразным электролитом. Благодаря этому увеличен их ресурс заряда/разряда. Не требуют обслуживания.
  • OPzV – герметичные аккумуляторы используемые в области телекоммуникации и для аварийного освещения. Электролит, как и в предыдущем случае гелевый. В электродах содержится кальций, благодаря которому срок службы такого типа батарей – 20 лет.
  • OPzS – катод таких аккумуляторов имеет трубчатую структуру. Это существенно повышает циклический ресурс этого типа батарей. Служит также около 20 лет. Выпускается в виде АКБ с напряжением от 2 до 125 В.
 Литий-ионные аккумуляторы

Был впервые выпущен Sony в 1991 году и с тех пор активно применяется в бытовой технике, электронных устройствах. Практически все мобильные телефоны, ноутбуки, фотоаппараты и видеокамеры оснащены таким видом батарей. Роль катода здесь играет литий-ферро-фосфатная пластина. Отрицательный анод – каменноугольный кокс. Положительный ион лития переносит заряд в таких батареях. Он может проникать в кристаллическую решетку других материй и образовывать с ними химическую связь. Преимуществом этого типа является высокая энергоемкость, низкий саморазряд и отсутствие нужды в обслуживании.

Литий-ионные аккумуляторные батареи также, как и их свинцовые аналоги имеют большое количество подтипов. В данном случае подтипы отличаются между собой составом катода и анода. Напряжение литий-ионных аккумуляторов варьируется в пределах от 2,4 до 3,7 В.

Одним из самых известных подтипов является литий-полимерные аккумуляторные батареи. Они появились сравнительно недавно и быстро завоевал популярность. Она обусловлена тем, что в литий-полимерных батареях используется твердый полимерный электролит. Это позволяет создавать батареи любой формы. При этом стоимость этих батарей всего лишь на 15% выше обычных литий-ионных.

Похожие темы:

Тяговый аккумулятор Trojan 27TMH 12В (115 Ач)

Аккумуляторная батарея Trojan 27TMH на 12В емкостью 115Ач относится к тяговым типам АКБ, широко применяется для электропитания различной техники работающей в режиме ежедневного заряда — разряда. Ресурс АКБ рассчитан на большое количество циклов (порядка 700 — 800) и позволяет разряжать аккумулятор на глубину до 80%. Благодаря этим техническим характеристикам их можно рекомендовать так же для использования в солнечных станциях различной мощности.

ОБЛАСТЬ ПРИМЕНЕНИЯ АККУМУЛЯТОРОВ TROJAN 27TMH:

  • Модель была разработана специально для применения в солнечных станциях различной мощности.

Данный тип аккумуляторов является обслуживаемым, то есть необходим контроль и своевременный долив дистиллированной воды, при этом лучше выделить для них отдельное проветриваемое помещение. Температуру в помещении рекомендуется поддерживать 25 — 27 °C, так как при значительном понижении температуры снижается его мощность и уменьшается ресурс. Характеристики аккумуляторной батареи позволяют доводить ее до глубокого разряда, но при этом категорически не рекомендуется оставлять его в таком состоянии, потому как приводит к необратимым химическим процессам (сульфатации) и соответственно к уменьшению емкости, количества циклов и уменьшению ресурса в целом. Такого рода ситуации не являются гарантийными случаями.

Технические характеристики

  • Емкость, при разряде постоянным током, при t=27°C:
  • Iпост. = 25А: 200 мин.
  • Iпост. = 75А: 51 мин.
  • Емкость в Ач, при разряде постоянным током, при t=27°C:
  • При 5 ч. разряде: 95 Ач.
  • При 20 ч. разряде: 115 Ач.
  • При 100 ч. разряде: 128 Ач.
  • Мощность при 100 ч. разряде: 1,54 кВт.

Рабочие характеристики

  • Рабочая температура: -20°C +45°C
  • При температуре ниже 0°C : поддерживать состояние
    заряда более, чем на 60%

  • Саморазряд: -5-15 % в месяц в зависимости
    от температуры хранения

Габариты (±1 мм)

  • Длина, мм: 324
  • Ширина, мм: 171
  • Высота, мм: 206
  • Полная высота, мм: 248
  • Вес (±3%), кг: 28

Тип клемм (терминалов)

Инструкция по заряду

Напряжение
системы


Дневной заряд


Холостого хода


Уравнительный

Графики разряда — заряда аккумулятора

Продолжительность работы аккумулятора

При правильном использовании аккумулятора один цикл заряда/разряда продолжается около 4-х дней. Так как батарея рассчитана на 750 циклов, продолжительность ее эксплуатации составляет 750 циклов по 4 дня = 3000 дней, то есть около 8 лет. Разумеется, это число предполагает идеальные условия использования, в реальности же АКБ Trojan 27TMH способна проработать до 6-7 лет.

Сколько энергии запасается в аккумуляторе? В новом, полностью заряженном аккумуляторе, запасаемая энергия (при 20-ти часовом разряде, это важно!) равна 115 * 12 = 1380 Вт часов. При этом мы должны понимать, что разрядить аккумулятор возможно только на 80% и у инвертора и у аккумулятора есть КПД, тогда из полностью заряженного аккумулятора емкостью 115 А*ч можно взять мощность: 115 * 12 * 0,75(КПД) = 1035 Вт часов. Это позволяет обеспечить работу электроприбора мощностью 100 Вт в течении 10,35 часов.

Фотографии монтажей с АКБ Trojan Battery в составе солнечных станций:

Спецификация на АКБ Trojan 27TMH (12В, 115 Ач) (specifikaciya_trojan_27TMH.pdf, 233 Kb) [Скачать]

Инструкция по эксплуатации АКБ Trojan (trojan_instrukciya.pdf, 490 Kb) [Скачать]

Обслуживание аккумуляторов Trojan (trojan_obsluzhivanie.pdf, 261 Kb) [Скачать]

Декларация о соответствии АКБ Trojan (trojan_declaraciya.pdf, 232 Kb) [Скачать]

Сравнение АКБ серии RE с обычными батареями глубокого цикла (trojan_re-series_vs_regular_dc.pdf, 134 Kb) [Скачать]

Описание T2 technology (trojan_t2-technology.pdf, 686 Kb) [Скачать]

Сообщения не найдены

Тяговые литий-ионные батареи Tesla, что внутри?

Тяговые литий-ионные батареи Tesla, что внутри?

 

   Тесла Моторс является создателем поистине революционных экомобилей — электромобилей, которые не только выпускаются серийно, но и обладают уникальными показателями, позволяющими их использование буквально ежедневно. Сегодня мы заглянем внутрь тяговой аккумуляторной батареи электромобиля Tesla Model S,  узнаем, как она устроена и раскроем магию успеха этой  аккумуляторной батареи.

 

   Поставка батарей клиентам осуществляется в таких вот ящиках из ОСБ.

   Самая крупная и дорогая запчасть для Tesla Model S – блок тяговой аккумуляторной батареи.

   Блок тяговой аккумуляторной батареи находится в днище автомобиля (по сути это пол электромобиля — машины), за счёт чего Tesla Model S имеет очень низкий центр тяжести и великолепную управляемость. Батарея крепится к силовой части кузова при помощи мощных кронштейнов (см. фото ниже) или выполняет роль силовой – несущей части кузова авто.

 

 

      По данным североамериканского Агентства по защите окружающей US Environmental Protection Agency (EPA) одного заряда тяговой литий-ионной аккумуляторной батареи Tesla с номинальным напряжением 400В DC, ёмкостью 85 кВт·ч хватает на 265 миль (426 км) пробега, что позволяет преодолевать наибольшую дистанцию среди подобных электромобилей. При этом от 0 до 100 км/ч подобная машина разгоняется всего за 4,4 секунды.

 

   Секрет успеха Tesla Model S – это высокоэффективные цилиндрические литий-ионные батареи высокой энергоёмкости, поставщик базовых элементов известная японская фирма Panasonic.  Вокруг этих батарей ходит немало слухов.

                                             Один из них – это не влезай, убьёт!

   Один из владельцев и энтузиастов Tesla Model S из США решил полностью разобрать использованную батарею для Tesla Model S энергоёмкостью 85 кВт·ч, чтобы детально изучить её конструкцию. Кстати, её стоимость, как запчасти, в США составляет 12 000 USD.

   Сверху блок батареи размещено тепло и звука изоляционное покрытие, которое закрывается толстой полиэтиленовой плёнкой. Снимаем это покрытие, в виде ковра и готовимся к разборке. Для работы с батареей необходимо иметь изолированный инструмент и пользоваться резиновой обувью, и резиновыми защитными перчатками.

 

                                                                     

                                            Батарея Tesla. Разбираем!

    Тяговая аккумуляторная батарея Tesla (блок тяговой аккумуляторной батареи) состоит 16 батарейных модулей, каждый  номинальным напряжением 25В (исполнение батарейного блока — IP56). Шестнадцать батарейных модулей соединены последовательно в батарею с номинальным напряжением 400В. Каждый батарейный модуль состоит из 444 элементов (аккумуляторов) 18650 Panasonic (вес одного аккумулятора 46 г), которые соединены по схеме 6s74p (6 элементов последовательно и 74 таких групп параллельно). Всего в тяговой аккумуляторной батарее Tesla – 7104 таких элементов (аккумуляторов). Батарея защищена от окружающей среды посредством использования металлического корпуса с алюминиевой крышкой. На внутренней стороне общей алюминиевой крышки имеются пластиковые накладки, в виде плёнки. Общая алюминиевая крышка крепится винтами с металлическими, и резиновыми прокладками, которые герметизируются, дополнительно силиконовым герметиком.  Блок тяговой аккумуляторной батареи разделен на 14 отсеков, в каждом отсеке размещен батарейный модуль. В каждом отсеке сверху и снизу батарейных модулей размещены листы прессованной слюды. Листы слюды обеспечивают хорошую изоляцию батареи электрическую, и тепловую от корпуса электромобиля. Отдельно спереди батареи под своей крышкой размещены два таких же батарейных модуля. В каждом из 16 батарейных модулей имеется встроенный блок BMU, который соединён с общей системой BMS, которая управляет работой, следит за параметрами, а так же обеспечивает защиту всей аккумуляторной батареи. Общие выводные клеммы (терминал) находится в задней части блока тяговой батареи.

  

 

   До того, как полностью её разобрать, было замерено электрическое напряжение (оно составили около 313,8В), что говорит о том, что батарея разряжена, но находится в рабочем состоянии.

   Батарейные модули отличается высокой плотностью элементов (аккумуляторов) 18650 Panasonic, которые там размещены и точностью подгонки деталей. Весь процесс сборки на заводе Tesla проходит в полностью стерильном помещении, с использованием роботов, выдерживается даже определенная температура и влажность.

   Каждый батарейный модуль  состоит из 444 элементов (аккумуляторов), которые по виду крайне схожих с простыми пальчиковыми батарейками  — это литий-ионные цилиндрические аккумуляторы 18650, производства компании Panasonic. Энергоемкость каждого батарейного модуля из таких элементов составляет 5,3 кВт·ч.

   В аккумуляторах 18650 Panasonic положительный электрод — графит, а отрицательный электрод — никель, кобальт и оксид алюминия.

   Тяговая аккумуляторная батарея Tesla весит 540 кг, а её размеры равны 210 см в длину, 150 см в ширину, и 15 см в толщину. Количество энергии (5,3 кВт·ч), вырабатываемой всего одним блоком (из 16 батарейных модулей), равно количеству, производимому сотней аккумуляторов от 100 портативных компьютеров. К минусу каждого элемента (аккумулятора) в качестве соединителя припаяна проволочка (внешний токовый ограничитель), который при превышении тока (или при коротком замыкании) сгорает и защищает цепь, при этом не работает только группа (из 6 аккумуляторов), в которой был этот элемент, все остальные аккумуляторы продолжают работать.

   Тяговая аккумуляторная батарея Tesla охлаждается и подогревается с помощью жидкостной системы на основе антифриза.

   При сборке своих батарей Тесла применяет элементы (аккумуляторы), произведенные компанией Panasonic в различных странах, таких, как Индия, КНР и Мексика. Финальная доработка и размещение в корпус батарейного отсека, производятся в Соединенных Штатах. Компания Tesla предоставляет гарантийной обслуживание своей продукции (в том числе и  аккумуляторной батареи) на срок до 8 лет.

  На фото (сверху) элементы — аккумуляторы 18650 Panasonic (завальцовка у элементов со стороны плюса «+»).

  Таким образом, мы узнали, из чего состоит тяговая аккумуляторная батарея Tesla Model S.

Благодарим за внимание!

Литий-ионные аккумуляторные батареи – Особенности интерфейса и менеджмента ЛИАБ – ПАО Сатурн

Обеспечение надежности и безопасности ЛИАБ

Защита от перезаряда и переразряда внешне обеспечивается электронным устройством, абсолютно надежным в управлении.

Внутреннее КЗ предотвращается конструктивно: обертыванием (пакетированием) электродов сепараторами и тем, что при этом между электродами находится трехслойный сепаратор, который при достижении критической температуры теряет пористость (заплавляется) и останавливает электрохимический процесс.

Исключение из цепи отказавших или аномально деградировавших аккумуляторов выполняется применением байпасных переключателей.

Основные требования, которые предъявляются к байпасному переключателю для литий-ионной аккумуляторной батареи для космического аппарата, это надежность, минимальные энергетические потери, минимальная масса, сохранение неразрывности цепи ЛИАБ при переключении и механическая и радиационная стойкость.

Схема подключения байпасного переключателя и временная диаграмма работы переключателя обеспечивает сохранение неразрывности при переключении цепи соединения аккумуляторов в аккумуляторной батарее.

Таким образом, отказ любого элемента не приводит к отказу ЛИАБ. Надежность ЛИАБ обеспечивается также всеобъемлющей квалификацией (в том числе ресурсными испытаниями) и тщательным контролем при изготовлении.

Создан «вечный» аккумулятор, который можно заряжать раз в неделю

| Поделиться Батареи нового типа, в которых используются отрицательные ионы фтора, можно заряжать раз в неделю, а при экономичном использовании гаджетов – еще реже.

Литий больше не нужен

Группа ученых из Калифорнийского технологического университета под руководством лауреата Нобелевской премии 2005 г. по химии Роберта Граббса (Robert Grabbs) разработали новый вид аккумуляторных батарей, в которых в качестве основного вещества используется не литий, а фторид (химическое соединение фтора с другими элементами). По словам ученых, использование этого материала в мобильных аккумуляторах позволит заряжать смартфоны в восемь раз реже, чем сейчас. Результаты своих исследований они отразили в статье, опубликованной в журнале Science.

В современных литий-ионных АКБ, применяемых в портативной электронике, в качестве так называемого «химического поршня» для проведения электрического заряда через контур используются положительно заряженные катионы лития Li2+. Когда аккумулятор полностью заряжен, катионы находятся в аноде и при подключении нагрузки (при включении смартфона, к примеру) начинают перетекать в анод, тем самым генерируя электрический ток. Это классический принцип работы элементов питания на литии, но Роберт Граббс с командой ученых пошли совсем другим путем.

Новые старые технологии

Химик Граббс в своей работе использовал достижения ученых, еще в 1970-х годах доказавших, что «химический поршень» может работать в обратном направлении – нужно лишь использовать отрицательно заряженные ионы, в том числе ионы фтора (F-). Но на тот момент этот процесс происходил только при нагреве аккумуляторных батарей до 150 градусов Цельсия, что делало технологию неприменимой в потребительской электронике.

В будущем этот до боли знакомый символ мы будем видеть очень редко

Роберт Граббс нашел способ обхода этого ограничения: он разработал вещество, растворяющее электролит и позволяющее анионам (отрицательно заряженным ионам) фтора смешиваться с электронами при комнатной температуре.

Технология за авторством Граббса и его коллег пока находится на ранней стадии разработки, и о серийном производстве аккумуляторов нового типа речь не идет. Тем не менее, ученые подчеркивают высокую степень значимости их работы для дальнейшего развития элементов питания мобильных устройств. К основным преимуществам АКБ на основе фторида ученые отнесли, помимо длительного удержания заряда, еще долговечность и надежность, что указывает на замедленные процессы деградации по сравнению с литий-ионными батареями и на низкую вероятность воспламенения при деформации или механическом воздействии. Для элементов питания мобильных устройств это очень важно – напомним, что всего два года назад компания Samsung выпустила смартфон Galaxy Note 7, ставший самым опасным за всю историю мобильных средств связи – его литиевый аккумулятор содержал заводской дефект, приводивший к спонтанным возгораниям или даже взрывам. Существуют официально зафиксированные случаи получения травм и материального ущерба от сгоревшего Note 7.

Альтернатива фторидным аккумуляторам

Роберт Граббс – не единственный, кто стремится сделать аккумуляторы надежнее и долговечнее. В этом направлении работают многие крупные компании: к примеру, Microsoft в 2015 г. разработала прототип программно-конфигурируемой системы аккумуляторов, в состав которой входили несколько небольших АКБ, каждая из которых по своим химическим свойствам лучше подходит для решения той или иной задачи. Годом ранее ученые из США усовершенствовали традиционные литиевые батареи за счет своего рода защитного кожуха, окутывающего анод и представляющего собой сетку толщиной 20 нм из углеродных куполов. Решение позволило повысить надежность аккумуляторов и увеличить их емкость.

Как оптимизировать затраты на команду и систему управления тестированием

Бизнес

Но дальше всех зашли китайцы – пока весь остальной мир разрабатывает технологии, они уже перешли непосредственно к производству элементов питания нового типа. Cтартап Qing Tao начал выпуск твердотельных аккумуляторов, по всем основным параметрам превосходящих литиевые. Они легче, у них более высокая плотность энергии, и они не так зависят от изменения температуры воздуха. В производство твердотельных АКБ китайцы уже вложили €126 млн.



Что внутри батареи

Главная »Что внутри батареи?

Что внутри батареи?

Обычной батарее для выработки электричества необходимы 3 части:

  • Анод — минус АКБ
  • Катод — плюс батареи
  • Электролит — химическая паста, которая разделяет анод и катод и преобразует химическую энергию в электрическую.

Внутри каждой батареи есть восстанавливаемые ресурсы, независимо от ее типа

Возьмем, к примеру, одноразовую щелочную батарею.Это неперезаряжаемые батареи, которые бывают AAA, AA, C, D, 9 вольт и различных размеров кнопочных элементов.

В среднем батарея на 25% состоит из стали (корпуса). Знаете ли вы, что сталь можно перерабатывать бесконечно? Наш механический процесс позволяет восстановить 100% стали в каждой батарее для повторного использования.

Аккумулятор на 60% состоит из таких материалов, как цинк (анод), марганец (катод) и калий. Все эти материалы — элементы земли. Эта комбинация материала на 100% восстанавливается и повторно используется в качестве питательного микроэлемента при производстве удобрений для выращивания кукурузы.

Остальные 15% по весу составляют бумага и пластик (этикетка и защитная крышка). Эти материалы отправляются на предприятие по переработке отходов для производства электроэнергии.

Утилизируя щелочные батареи в Raw Materials Company, вы можете быть уверены, что 100% каждой батареи используется повторно и никакие материалы не будут отправлены на свалку.

Вы живете в Онтарио, Канада?

Если да, то вы можете найти ближайший к вам магазин по переработке батарей.Просто введите свой почтовый индекс или название города в наш инструмент поиска. Если вы живете за пределами Онтарио, обратитесь в местный муниципалитет, чтобы найти ближайший пункт переработки.


Спасибо

Мы получили ваше сообщение и вскоре ответим вам.

Быстрые ссылки

Для вашего удобства здесь приведены важные ссылки, связанные с этой страницей.


Знаете ли вы?

Raw Materials Company использует механический процесс, который разделяет все компоненты первичной батареи, чтобы их можно было должным образом переработать.Восстановленные материалы используются для производства новых продуктов, экономя ограниченные ресурсы нашей земли и энергию, необходимую для их добычи из руды.

Узнайте больше о нашей технологии и о том, как вместе мы превращаем отходы в ценный ресурс.

Из чего сделаны литиевые батареи и каковы их плюсы и минусы?

Литиевые батареи, впервые предложенные в 1970-х годах и производимые Sony в 1991 году, сейчас используются в мобильных телефонах, самолетах и ​​автомобилях.Несмотря на ряд преимуществ, которые привели их к все большему успеху в энергетической отрасли, литий-ионные аккумуляторы имеют некоторые недостатки и являются предметом многочисленных дискуссий.

А что такое литиевые батареи и как они работают?

Из чего сделаны литиевые батареи?

Литиевая батарея состоит из четырех основных компонентов. Он имеет катод, который определяет емкость и напряжение батареи и является источником ионов лития.Анод позволяет электрическому току проходить через внешнюю цепь, и когда батарея заряжена, ионы лития накапливаются в аноде.

Электролит состоит из солей, растворителей и добавок и служит проводником для ионов лития между катодом и анодом.Наконец, есть разделитель, физический барьер, разделяющий катод и анод.

Плюсы и минусы литиевых батарей Литиевые батареи

имеют гораздо более высокую плотность энергии, чем другие батареи. У них может быть до 150 ватт-часов (Втч) энергии на килограмм (кг), по сравнению с никель-металлогидридными батареями при 60-70Втч / кг и свинцово-кислотными батареями при 25Втч / кг.

У них также более низкая скорость разряда, чем у других, они теряют около 5% своего заряда за месяц по сравнению с никель-кадмиевыми (NiMH) батареями, которые теряют 20% за месяц.

Однако литиевые батареи также содержат горючий электролит, который может вызвать небольшие возгорания батарей. Именно это привело к печально известному возгоранию смартфонов Samsung Note 7, что вынудило Samsung свернуть производство и потерять 26 миллиардов долларов в рыночной стоимости. Следует отметить, что этого не произошло с крупномасштабными литиевыми батареями.

Литий-ионные батареи также дороже в производстве, поскольку их производство может стоить почти на 40% дороже, чем никель-кадмиевые батареи.

Конкуренты Литий-ионный аккумулятор

сталкивается с конкуренцией со стороны ряда альтернативных аккумуляторных технологий, большинство из которых находятся в стадии разработки.Одна из таких альтернатив — аккумуляторы, работающие на морской воде.

Разрабатываемые Aquion Energy, они состоят из соленой воды, оксида марганца и хлопка для создания чего-то, что производится с использованием «обильных, нетоксичных материалов и современных недорогих производственных технологий». По этой причине они являются единственными батареями в мире. сертифицированы по принципу «от колыбели до колыбели».

Подобно технологии Aquion, «Blue Battery» AquaBattery использует смесь соли и пресной воды, протекающей через мембраны для хранения энергии.Другие возможные типы батарей включают аккумуляторы Bristol Robotics Laboratory с питанием от мочи и литий-ионные аккумуляторы Калифорнийского университета в Риверсайде, в которых в качестве анода используется песок, а не графит, что приводит к созданию аккумулятора, который в три раза мощнее промышленного стандарта.

Связанные компании

Depsys

Решения для активного управления сетью Smart Grid

28 августа 2020

Mecair

Компоненты фильтра пылесборника

28 августа 2020

Аккумуляторные реакции и химия | HowStuffWorks

Многое происходит внутри батареи, когда вы вставляете ее в фонарик, пульт дистанционного управления или другое беспроводное устройство.Хотя процессы, с помощью которых они производят электричество, немного отличаются от батареи к батарее, основная идея остается той же.

Когда нагрузка замыкает цепь между двумя выводами, батарея вырабатывает электричество посредством серии электромагнитных реакций между анодом, катодом и электролитом. Анод подвергается реакции окисления , в которой два или более ионов (электрически заряженные атомы или молекулы) из электролита объединяются с анодом, образуя соединение и высвобождая один или несколько электронов.В то же время катод проходит через реакцию восстановления , в которой катодное вещество, ионы и свободные электроны также объединяются с образованием соединений. Хотя это действие может показаться сложным, на самом деле это очень просто: реакция на аноде создает электроны, а реакция на катоде их поглощает. Чистый продукт — электричество. Батарея будет продолжать вырабатывать электричество до тех пор, пока на одном или обоих электродах не закончится вещество, необходимое для протекания реакций.

В современных батареях для стимуляции реакций используются различные химические вещества. Обычный химический состав батарей включает:

  • Цинк-угольные батареи : Цинк-углеродная химия характерна для многих недорогих батарей типа AAA, AA, C и D с сухими элементами. Анод — цинк, катод — диоксид марганца, а электролит — хлорид аммония или хлорид цинка.
  • Щелочная батарея : Этот химический состав также характерен для сухих батарей AA, C и D.Катод состоит из смеси диоксида марганца, а анод — из цинкового порошка. Он получил свое название от электролита гидроксида калия, который является щелочным веществом.
  • Литий-ионный аккумулятор (перезаряжаемый) : Литиевая химия часто используется в высокопроизводительных устройствах, таких как сотовые телефоны, цифровые камеры и даже электромобили. В литиевых батареях используются различные вещества, но наиболее распространенной комбинацией является катод из оксида лития-кобальта и угольный анод.
  • Свинцово-кислотный аккумулятор (перезаряжаемый) : это химический состав, используемый в типичном автомобильном аккумуляторе. Электроды обычно изготавливаются из диоксида свинца и металлического свинца, а электролит — это раствор серной кислоты.

Лучший способ понять эти реакции — увидеть их собственными глазами. Перейдите на следующую страницу, чтобы узнать о некоторых практических экспериментах с аккумулятором.

Твердотельная батарея — обзор

Твердые электролиты

Одним из ключевых компонентов, обеспечивающих возможность перезаряжаемой технологии ASSB, является твердый электролит.Твердые электролиты, подробно описанные в разделе 4, должны удовлетворять таким технологическим требованиям, как высокая ионная проводимость в сочетании с незначительной электронной проводимостью, широким диапазоном напряжений, химической совместимостью с материалами катода и анода, а также относительно простое производство в больших масштабах с низкой стоимостью. (Manthiram et al., 2017). Как правило, твердые литиевые или натрий-ионные проводники подразделяются на три класса, которые могут дополнять друг друга для удовлетворения этих требований: (1) неорганические стеклообразные или керамические соединения; (2) органические полимеры и (3) композитные или гибридные электролиты, состоящие из комбинации первых двух классов материалов (Manthiram et al., 2017; Hou et al., 2018a; Zheng et al., 2018).

Перенос ионов в твердых неорганических электролитах определяется концентрацией подвижных ионов и вакансий, относительными размерами связанных проводящих путей в кристаллических структурах с точечными дефектами Шоттки и Френкеля, а также свойствами диффузии ионов на границах зерен (Hou et al. , 2018а, б; Zheng et al., 2018). Перспективные твердые неорганические литий-ионные электролиты включают аморфный оксинитрид фосфора лития (LiPON) и с проводимостью при комнатной температуре до нескольких мСм см — 1 стеклокерамика на основе сульфида лития, фосфат типа NASICON [Li 1 + x Al x Ti 2 — x (PO 4 ) 3 (LATP)] и оксид типа граната [Li 7 La 3 Zr 2 O 12 (LLZO)] керамические электролиты.Типичные твердые неорганические электролиты для Na (-ион) ASSB, также обладающие относительно высокой ионной проводимостью при комнатной температуре более 1 мСм см — 1 , включают Na-β ″ -оксид алюминия, суперионные проводники Na [NASICON, т.е. Na 3,1 Zr 1,95 Mg 0,05 Si 2 PO 12 (Song et al., 2016)], сульфиды (например, Na 3 PS 4, Na 10,8 Sn 1,9 PS 11,8 ) и комплексные гидриды (например, боргидрид натрия) (Yu et al., 2018b; Hou et al., 2018a, b).

Твердые полимерные электролиты, как правило, имеют значительно более низкую ионную проводимость, чем керамические электролиты, но демонстрируют механическую гибкость, малый вес, удобство процесса изготовления и возможность изменения объема электродов во время заряда / разряда. В твердых полимерных электролитах соли Li или Na сольватированы полимерными цепями, например, в полимерах на основе полиэтиленоксида (PEO) или полисилоксана, и ионы Li или Na перемещаются через связанные полимерные цепи.Ионная проводимость твердого полимерного электролита связана с количеством подвижных ионов и сегментарными движениями полимерных цепей. Перенос ионов в связанных полимерных цепях может быть заблокирован сегментами кристаллической цепи, которые образуются ниже температуры стеклования ( T г ). T г можно снизить, например, добавив наноразмерные наполнители. Однако относительно низкая ионная проводимость при комнатной температуре по-прежнему представляет собой главный недостаток полимерных электролитов (Zheng et al., 2018; Hou et al., 2018a, b).

Композитные или гибридные электролиты, сочетающие в себе преимущества (стеклокерамических) и полимерных ионных проводников, обеспечивают улучшенную ионную проводимость с высокой гибкостью для снижения межфазного сопротивления между твердыми электролитами и электродами (Zheng et al., 2018; Hou et al. , 2018а, б).

Аккумуляторы для гибридных и подзарядных электромобилей

В большинстве подключаемых к электросети гибридов и полностью электрических транспортных средств используются подобные литий-ионные батареи.

Системы накопления энергии, обычно аккумуляторы, необходимы для гибридных электромобилей (HEV), гибридных электромобилей (PHEV) и полностью электрических транспортных средств (EV).

Типы систем хранения энергии

В HEV, PHEV и электромобилях используются следующие системы хранения энергии.

Литий-ионные батареи

Литий-ионные батареи в настоящее время используются в большинстве портативных бытовых электронных устройств, таких как сотовые телефоны и ноутбуки, из-за их высокой энергии на единицу массы по сравнению с другими системами хранения электроэнергии.Они также обладают высоким удельным весом, высокой энергоэффективностью, хорошими высокотемпературными характеристиками и низким саморазрядом. Большинство компонентов литий-ионных аккумуляторов можно переработать, но стоимость рекуперации материалов остается проблемой для отрасли. Министерство энергетики США также поддерживает премию за переработку литий-ионных аккумуляторов, чтобы найти решения для сбора, сортировки, хранения и транспортировки использованных и выброшенных литий-ионных аккумуляторов для последующей переработки и восстановления материалов.В большинстве современных PHEV и электромобилей используются литий-ионные батареи, хотя точный химический состав часто отличается от химического состава батарей для бытовой электроники. Продолжаются исследования и разработки для снижения их относительно высокой стоимости, увеличения срока их полезного использования и решения проблем безопасности в отношении перегрева.

Никель-металлогидридные батареи

Никель-металлогидридные батареи, обычно используемые в компьютерном и медицинском оборудовании, предлагают разумную удельную энергию и удельные мощности.Никель-металлогидридные батареи имеют гораздо более длительный срок службы, чем свинцово-кислотные, и безопасны и устойчивы к неправильному обращению. Эти батареи широко используются в HEV. Основными проблемами никель-металлгидридных батарей являются их высокая стоимость, высокий саморазряд и тепловыделение при высоких температурах, а также необходимость контролировать потери водорода.

Свинцово-кислотные батареи

Свинцово-кислотные аккумуляторы

могут быть разработаны с учетом высокой мощности, при этом они недороги, безопасны и надежны. Однако низкая удельная энергия, плохие характеристики при низких температурах, а также короткий календарный и циклический срок службы препятствуют их использованию.В настоящее время разрабатываются современные высокомощные свинцово-кислотные батареи, но эти батареи используются только в коммерчески доступных транспортных средствах с электрическим приводом для вспомогательных нагрузок.

Суперконденсаторы

Ультраконденсаторы хранят энергию в поляризованной жидкости между электродом и электролитом. Емкость накопления энергии увеличивается с увеличением площади поверхности жидкости. Ультраконденсаторы могут обеспечить транспортным средствам дополнительную мощность во время разгона и подъема на холм, а также помочь восстановить энергию торможения.Они также могут быть полезны в качестве вторичных накопителей энергии в транспортных средствах с электрическим приводом, поскольку помогают электрохимическим аккумуляторам выравнивать мощность нагрузки.

Утилизация аккумуляторов

Транспортные средства с электрическим приводом являются относительно новыми для автомобильного рынка США, поэтому лишь небольшое количество из них подошло к концу своего срока службы. В результате доступно небольшое количество бывших в употреблении аккумуляторов для электромобилей, что ограничивает масштабы инфраструктуры по переработке аккумуляторов. Поскольку электромобили становятся все более распространенными, рынок утилизации аккумуляторов может расшириться.

Широко распространенная переработка аккумуляторов предотвратит попадание опасных материалов в поток отходов как в конце срока службы аккумулятора, так и во время его производства. В настоящее время ведется работа по разработке процессов утилизации аккумуляторов, которые минимизируют воздействие на жизненный цикл литий-ионных и других типов аккумуляторов в транспортных средствах. Но не все процессы переработки одинаковы:

  • Плавка : В процессе плавки восстанавливаются основные элементы или соли. Эти процессы в настоящее время используются в больших масштабах и могут работать с различными типами аккумуляторов, включая литий-ионные и никель-металлгидридные.Плавка происходит при высоких температурах, и органические материалы, включая электролит и угольные аноды, сжигаются в качестве топлива или восстановителя. Ценные металлы извлекаются и отправляются на аффинаж, чтобы продукт был пригоден для любого использования. Остальные материалы, в том числе литий, содержатся в шлаке, который теперь используется в качестве добавки в бетон.
  • Прямое восстановление : С другой стороны, некоторые процессы переработки напрямую восстанавливают материалы, пригодные для аккумуляторов. Компоненты разделяются различными физическими и химическими процессами, и все активные материалы и металлы могут быть восстановлены.Прямое восстановление — это низкотемпературный процесс с минимальными энергозатратами.
  • Промежуточные процессы : Третий тип процесса находится между двумя крайностями. В таких процессах можно использовать несколько типов батарей, в отличие от прямого восстановления, но извлекать материалы дальше по производственной цепочке, чем при плавке.

Разделение различных материалов аккумуляторных батарей часто является камнем преткновения при извлечении ценных материалов. Таким образом, конструкция аккумуляторной батареи, учитывающая разборку и переработку, важна для успеха электромобилей с точки зрения устойчивости.Стандартизация батарей, материалов и конструкции элементов также упростит переработку и сделает ее более рентабельной.

См. Отчет: «Технико-экономическая целесообразность использования отработанных аккумуляторов электромобилей в стационарных установках».

Дополнительная информация

Узнайте больше о исследованиях и разработках аккумуляторов на страницах Национальной лаборатории возобновляемых источников энергии, посвященных хранению энергии, и на странице Управления автомобильных технологий Министерства энергетики США.

Структурирующие материалы для литий-ионных аккумуляторов: достижения в области структуры, состава наноматериалов и определенной сборки в отношении характеристик элементов

Структурирующие материалы для литий-ионных аккумуляторов: достижения в области структуры, состава наноматериалов и определенной сборки для характеристик элементов

В этом обзоре описаны разработки в области управления структурой, составом, размером и формой многих важных и появляющихся материалов литий-ионных аккумуляторов во многих масштабах длины, а также подробно описаны недавние исследования того, как сборка и программируемый порядок в материалах для аккумулирования энергии не помогли. только повлияли и значительно улучшили характеристики некоторых литий-ионных аккумуляторов, но предложили новые пути к повышению плотности мощности.В этом обзоре также описываются и обсуждаются материальные аспекты гибридных и многофазных материалов, включая кремний, германий, широкий спектр оксидов металлов, сплавов и кристаллических структур, углеродов и других важных материалов. Также выделены методы, в том числе инженерная пористость, обеспечивающая плотность энергии литий-ионных аккумуляторов и плотность мощности псевдоконденсаторов. Последние разработки в области аналитических методов, электрохимического отклика, а также структуры, состава, размера, формы и определенного набора активных материалов для широкого диапазона литий-ионных катодов и анодов сравниваются и оцениваются с точки зрения рабочих характеристик элементов.Также обозначены перспективы будущего развития материалов для хранения энергии на основе структуры, а также химии.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова?

BATT — Усиление литиевых и аккумуляторных технологий ETF

Инвестирование сопряжено с риском, включая возможную потерю основной суммы долга.Акции любого ETF покупаются и продаются по рыночной цене (не NAV), могут торговаться с дисконтом или премией к NAV и не выкупаются индивидуально из Фонда. Фонд активно не управляется. Фонд инвестирует в ценные бумаги, включенные в его Индекс, независимо от их инвестиционной ценности. Узконаправленные инвестиции обычно демонстрируют более высокую волатильность. Портфель, сосредоточенный в одной отрасли, такой как технология литиевых батарей, делает его уязвимым для факторов, влияющих на компании.

Фонд может столкнуться с большим количеством рисков, чем если бы он был широко диверсифицирован по многочисленным отраслям или секторам.Фонд стал более восприимчивым к потенциальным операционным рискам из-за нарушений кибербезопасности. Фонд инвестирует в ценные бумаги, которые выпущены компаниями и / или компаниями, занимающимися в основном металлургической и горнодобывающей промышленностью. Инвестиции в металлургические и горнодобывающие компании могут быть спекулятивными и подвержены большей волатильности цен, чем инвестиции в другие типы компаний. Разведка и разработка металлов связана со значительными финансовыми рисками в течение значительного периода времени, которые не могут устранить даже сочетание тщательной оценки, опыта и знаний.Редкоземельные металлы имеют более специализированное применение, и их зачастую труднее извлечь. Повышенный спрос на эти металлы ограничил предложение, что может отрицательно сказаться на компаниях в портфеле Фонда. Некоторые компании, в которые Фонд будет инвестировать, занимаются другими видами деятельности, не связанными с добычей, переработкой и / или производством металлов, и эти направления деятельности могут отрицательно повлиять на результаты их деятельности.

Активы Фонда сконцентрированы в секторе материалов, а это означает, что на Фонд в большей степени повлияет деятельность сектора материалов, чем на более диверсифицированный фонд.В настоящее время у Фонда меньше активов, чем у более крупных фондов, и, как и другие относительно новые фонды, крупные притоки и оттоки могут повлиять на рыночные позиции Фонда в течение ограниченных периодов времени. Фонд будет инвестировать в ценные бумаги неамериканских компаний. Инвестиции в эмитентов на развивающихся рынках подвержены большему риску потерь, чем вложения в эмитентов, расположенных или работающих на более развитых рынках. На добычу, очистку и / или производство металлов могут существенно повлиять регулирующие меры и изменения в правительстве.Компании с малой и / или средней капитализацией могут быть более уязвимы к неблагоприятным рыночным или экономическим изменениям в целом. Технология электромобилей относительно нова и подвержена рискам, связанным с развивающейся отраслью.

Индекс EQM Lithium & Battery Technology Index (BATTIDX) призван предоставить информацию о глобальных компаниях, связанных с разработкой и производством технологии литиевых батарей и / или решений для хранения аккумуляторов; разведка, производство, разработка, переработка и / или переработка материалов и металлов, используемых в химии литиевых батарей, таких как литий, кобальт, никель, марганец, ванадий и / или графит; и / или разработка и производство электромобилей.

Добавить комментарий

Ваш адрес email не будет опубликован.