Аккумуляторная батарея википедия – Аккумуляторная батарея — Энциклопедия журнала «За рулем»

Содержание

Автомобильный аккумулятор - это... Что такое Автомобильный аккумулятор?

Автомобильный аккумулятор 12В

Автомобильный аккумулятор (для краткости может именоваться АКБ) — тип электрического аккумулятора, применяемый на автомобильном или мототранспорте. Энергия аккумулятора используется в первую очередь для работы стартера, инжектора, светового оборудования и блока управления двигателем (ECU).

На электротранспорте является не вспомогательным источником энергии, а основным. Такие аккумуляторы принято называть тяговыми.

Основные характеристики

  • Напряжение:
    • 6 В — до конца 40-х годов практически все автомобили имели шестивольтовое электрооборудование. В настоящее время аккумуляторы на напряжение 6 В применяются только на мототехнике.
    • 12 В — в данный момент на всех легковых автомобилях используются аккумуляторы только с таким значением напряжения.
    • 24 В — используются на тяжёлых грузовиках, троллейбусах, трамваях, и армейском автотранспорте. На лёгких грузовиках могут использоваться аккумуляторы как на 12 вольт, так и на 24.
Напряжение без нагрузки (напряжение при снятых клеммах) аккумулятора можно связать с примерным уровнем заряда. Если аккумулятор находится на транспортном средстве, «напряжение без нагрузки» измеряется, когда двигатель остановлен, а нагрузка полностью отключена (сняты клеммы).

Оценить заряженность аккумулятора по напряжению возможно не менее чем через сутки после отключения его от источников питания (отключения от зарядного устройства, поездки на автомобиле).

 Напряжение без нагрузки 
при T = 26,7 °C
 Примерный 
заряд
 Плотность электролита 
при T = 26,7 °C
12 В 6 В
12,65 В 6,32 В 100% 1,265 г/см3
12,35 В 6,22 В 75% 1,225 г/см3
12,10 В 6,12 В 50% 1,190 г/см3
11,95 В 6,03 В 25% 1,155 г/см3
11,70 В 6,00 В 0% 1,120 г/см3
Напряжение без нагрузки также зависит от температуры и от плотности электролита при полном заряде. Следует заметить, что плотность электролита при одном и том же уровне заряда в свою очередь также зависит от температуры (обратная зависимость).
  • Ёмкость аккумулятора, измеряющаяся в ампер-часах. На автомобилях с бóльшим количеством электропотребителей ёмкость аккумулятора должна быть выше.
  • Пусковой ток. Или ток холодной прокрутки (cold cranking amps CCA) Максимальный ток, который способен отдавать аккумулятор без посадки напряжения на клеммах ниже 9В в течение 30 секунд при −18oC по ГОСТ 53165-2008.

Типы АКБ

Тип батареи

В основном используется свинцово-кислотный тип. Обычный электролит представляет собой смесь дистиллированной воды и серной кислоты, но сейчас появились АКБ построенные на базе технологии AGM (Absorbent Glass Mat), электролит в которых абсорбирован в стеклянном волокне, а также т. н. гелевые аккумуляторы, где электролит загущается до гелеобразного состояния силикагелем (технология носит название GEL).

Габариты

Существует несколько формфакторов батарей. Аккумуляторы для японского и европейских рынков имеют разные размеры.

Полярность

Обратная или прямая. Определяет расположение электродов на корпусе АКБ. Для автомобилей отечественного выпуска характерна прямая полярность, при которой плюсовая клемма находится слева, а минусовая — справа, при положении аккумулятора "клеммы ближе к вам".

Диаметр контактных клемм

В типе Euro — type 1 — 19,5 мм плюсовая клемма и 17,9 мм минусовая клемма. Тип Asia — Type 3 — 12,7 мм у плюсовой клеммы, — и 11,1 мм у клеммы «минус».[1]

Тип крепления

В конкретном транспортном средстве может быть реализован один из типов крепления АКБ — верхнее или нижнее. В ряде автомобилей конструкции для закрепления батареи может быть не предусмотрено. Обозначения типов нижнего крепления следующие: B00, B01, B03, B13.

Необходимость обслуживания

По этому принципу АКБ делятся на два типа: обслуживаемые (и как их подкатегория — малообслуживаемые) и необслуживаемые (в тексте ГОСТа обозначенные как безуходные).

Стандарты в Российской Федерации

Существует ГОСТ 53165-2008 Введен в действие 01.07.2009 Дата издания 30.06.2009, в котором автомобильные аккумуляторы именуются «стартерными батареями».

Интересные факты

  • Следует знать, что различные типы аккумуляторов обладают разными особенностями, которые не позволяют однозначно назвать "лучший" тип аккумулятора.

Можно говорить только о лучшей применимости различных типов аккумуляторов в разных условиях. Так, например, современные "кальциевые" аккумуляторы обладают низким саморазрядом, не требуют никакого обслуживания, однако не терпят глубоких разрядов, например, при коротких поездках в зимние морозы, или длительной стоянке автомобиля. Напротив, для "обслуживаемых" (практически не производятся) и "малообслуживаемых" аккумуляторов глубокий разряд не столь губителен, но такие типы аккумуляторов требуют доливки дистиллированной воды (при исправном электрооборудовании и среднем пробеге - примерно 1 раз в 4-7 месяцев). Дистиллированную воду можно купить в аптеке или на автозаправочных станциях.

  • С понижением температуры падает и способность аккумулятора "принимать заряд". Поэтому короткие поездки в зимние морозы, особенно с фарами, могут довольно быстро привести к полному разряду даже абсолютно исправного аккумулятора. Это приводит не только к невозможности запуска мотора, но и к сокращению срока службы аккумулятора, особенно "кальциевого".

Зимой аккумулятор рекомендуется периодически снимать с автомобиля и заряжать зарядным устройством после согревания на воздухе до положительной температуры. Согревать холодный аккумулятор в горячей воде нежелательно по причине возможного частичного осыпания активной массы пластин из-за быстрых температурных деформаций.

  • При крайне низких температурах, рекомендуется сперва (перед попыткой завести двигатель) включить на несколько минут дальний свет фар: это способствует лучшей работе аккумулятора.
    • На автомобильных форумах неоднократно отмечалось, что данная рекомендация «прогреть» аккумулятор кратковременной подачей нагрузки носит спорный характер, поскольку расчётный нагрев, согласно закону Джоуля-Ленца, не превышает долей градуса, что несложно проверить[2]; но обоснованность данной рекомендации подтверждается одними специалистами[3] и опровергается другими[4].

А проведённые испытания демонстрируют даже обратный эффект: при разряде токами небольшой величины происходит охлаждение батареи, благодаря эндотермической реакции восстановления диоксида свинца на положительном электроде при разряде

[5].

  • Крайне нежелательно заменять аккумулятор при работающем двигателе, поскольку связанные с отключением и подключением аккумулятора скачки напряжения могут вывести из строя электрооборудование автомобиля. При необходимости замены аккумулятора при работающем двигателе, для минимизации скачка напряжения необходимо перед отключением аккумулятора включить в автомобиле максимальное количество электроприборов (фары, мотор "печки", магнитолу, обогрев заднего стекла и т.д.). Подключение каждой клеммы должно производиться быстро, без многократного касания клеммой вывода аккумулятора. Обороты двигателя не должны превышать холостых.
  • При севшем аккумуляторе, т. н. «прикуривание» от другой автомашины необходимо осуществлять с тщательным соблюдением определенного набора правил, определяемых производителем автомобиля. Нарушение этих правил может оказаться причиной выхода из строя оборудования или даже взрыва АКБ.
Автомобильный аккумулятор после взрыва

См. также

Примечания

Ссылки

dic.academic.ru

Автомобильный аккумулятор — Википедия

Автомобильный аккумулятор Номинальной ёмкостью 40 Ач, электрическое напряжение 12 В, "обратной" или "L" полярности, стандартные клеммы.

Автомоби́льный аккумуля́тор (точнее — автомобильная аккумуляторная кислотная батарея [сокр. автомобильная АКБ] ) — тип электрического аккумулятора, применяемый на автомобильном или мототранспорте. Используется в качестве вспомогательного источника электроэнергии в бортовой сети при неработающем двигателе и для запуска двигателя.

На электротранспорте является не вспомогательным источником энергии, а основным. Такие аккумуляторы принято называть тяговыми.

Основные характеристики

Далее по тексту рассмотрен исключительно данный вид батарей, поскольку, если аккумулятор не тяговый, то как «автомобильный (стартёрный) аккумулятор», он будет свинцово-кислотным. Замена пользователем на иной тип (к примеру, на литиевый блок) обычно невозможна, даже при подходящем напряжении, в силу совершенно разных характеристик: прежде всего, свинцовые АКБ обладают уникальным свойством автоматической остановки заряда и резком росте напряжения, как и резком падении зарядного тока, при полном заряде.

На малотоннажных грузовиках, микроавтобусах и легковых автомобилях с дизельными двигателями используются аккумуляторы с электрическим напряжением 12 вольт.

Напряжение без нагрузки (напряжение при снятых клеммах) аккумулятора можно связать с примерным уровнем заряда. Если аккумулятор находится на транспортном средстве, «напряжение без нагрузки» измеряется, когда двигатель остановлен, а нагрузка полностью отключена (сняты клеммы).

Степень заряженности оценивают на отключенном от нагрузки аккумуляторе, не менее, чем через 6 часов покоя, и при комнатной температуре. В случае температуры, отличной от комнатной, вносится температурная поправка. В среднем считается, что падение температуры на 1 °C от комнатной снижает ёмкость примерно на 1 %, таким образом при −30 °C ёмкость автомобильной АКБ будет равна примерно половине от ёмкости при +20 °C.

Напряжение без нагрузки
при T = 26,7 °C
Примерный
заряд
Плотность электролита
при T = 26,7 °C
12 В 6 В
12,65 В 6,32 В 100 % 1,265 г/см³
12,35 В 6,22 В 75 % 1,225 г/см³
12,10 В 6,12 В 50 % 1,190 г/см³
11,95 В 6,03 В 25 % 1,155 г/см³
11,70 В 6,00 В 0 % 1,120 г/см³
Напряжение без нагрузки также зависит от температуры и от плотности электролита при полном заряде. Следует заметить, что плотность электролита при одном и том же уровне заряда в свою очередь также зависит от температуры (обратная зависимость).
  • Ёмкость аккумулятора, измеряющаяся в ампер-часах. Применительно к маркировке аккумулятора, значение ёмкости показывает, каким током будет равномерно разряжаться автомобильная АКБ до конечного напряжения при 20-часовом цикле разряда. Например, обозначение 6СТ-60 означает, что батарея в течение 20 часов будет отдавать ток 3 А, при этом в конце напряжение на клеммах не упадет до 10,5 В. Однако, это вовсе не означает линейную зависимость времени разряда от разрядного тока. Целый час стабильно отдавать 60 А наша батарея не сможет.

Особенностью аккумуляторов является уменьшение времени разряда с повышением разрядных токов. Зависимость времени разряда от тока разряда близка к степенной. Распространена, в частности, формула немецкого ученого Пейкерта (англ.), который установил, что: Cp=Ikt,{\displaystyle C_{p}=I^{k}t,}. Здесь Cp{\displaystyle C_{p}} — ёмкость аккумулятора, а k{\displaystyle k} — число Пейкерта — показатель степени, постоянный для данного аккумулятора или типа аккумуляторов. Для свинцовых кислотных аккумуляторов число Пейкерта обычно изменяется от 1,15 до 1,35. Величину константы в левой части уравнения можно определить по номинальной ёмкости аккумулятора. Тогда, после нескольких преобразований, получим формулу для реальной ёмкости аккумулятора E{\displaystyle E} при произвольном токе разряда I{\displaystyle I}:

E=En(InI)p−1{\displaystyle E=E_{n}\left({\frac {I_{n}}{I}}\right)^{p-1}}.

Здесь En{\displaystyle E_{n}} — номинальная ёмкость аккумулятора, а In{\displaystyle I_{n}} — номинальный ток разряда, при котором задана номинальная ёмкость (обычно ток 20-часового или 10-часового цикла разряда).

Ёмкость аккумулятора, как правило, выбирается исходя из рабочего объёма двигателя (больший объём — бо́льшая мощность стартёра — бо́льшая ёмкость АКБ), его типа (для дизельных ёмкость автомобильной АКБ должна быть больше, чем для бензиновых при равном объёме цилиндров) и условий эксплуатации (для районов с холодным климатом ёмкость увеличивают, по причине снижения ёмкости АКБ при отрицательных температурах и затруднения пуска двигателя стартёром из-за загустения масла).

  • Резервная ёмкость. В отличие от номинальной ёмкости, которая определяется разрядом относительно малым током, резервная ёмкость показывает, сколько времени способен проехать автомобиль зимней ночью при неисправности генератора. Ток разряда принимается равным 25 А, поскольку зимней ночью очень много энергии уходит на освещение и обогрев салона. При этом нельзя просто разделить номинальную ёмкость автомобильной АКБ на 25 А. При таком токе резервная ёмкость составит примерно 2/3 от номинальной. Как правило, значение резервной ёмкости указывается на маркировке автомобильной АКБ в минутах.
  • Пусковой ток. Или ток холодной прокрутки (cold cranking amps CCA). Максимальный ток, который способен отдавать аккумулятор без посадки напряжения на клеммах ниже 9В в течение 30 секунд при −18 °C по ГОСТ 53165-2008.

Цикл заряд/разряд

Аккумулятор автомобиля не хранит энергию, а содержит химические вещества, которые при взаимодействии производят электрический ток. Два разнородных металла помещаются в кислотную среду, которая называется электролитом. Возникает поток электронов и электроны из одной группы пластин переходят в другую.

Батарея заряжена

Полностью заряженная батарея содержит отрицательную пластину губчатого свинца (Pb) - катод, положительную пластину диоксида свинца (PbO2) – анод, и электролит из раствора серной кислоты (H2SO4) и воды (H2O).

Батарея разряжается

Когда аккумулятор разряжается, диоксид свинца на катоде восстанавливается, на аноде свинец окисляется. Металлы обоих пластин вступают в реакцию с SO4, в результате образуется сульфат свинца (PbSO4). Водород (H2) из серной кислоты вступает в реакцию с кислородом (O2) из положительной пластины и образуется вода (H2O). При этом расходуется серная кислота и образуется вода. Правильная зарядка во многом определяет ресурс службы батареи.[1]

Батарея разряжена

В полностью разряженном аккумуляторе обе пластины покрыты сульфатом свинца (PbSO4), а электролит разбавлен до большей степени водой (H2O).

Батарея заряжается Процесс противоположен разрядке. Сульфат (SO4) покидает пластины и объединяется с водородом (H2), превращаясь в серную кислоту (H2SO4). Свободный кислород (O2) объединяется со свинцом (Pb) на положительной пластине с образованием диоксида свинца (PbO2). Когда батарея приближается к полной зарядке, а водород образуется на отрицательных пластинах, а кислород - на положительном, происходит газообразование.

Типы автомобильной АКБ

Тип батареи

В основном используется свинцово-кислотный тип. Собственно батарея состоит из 6 аккумуляторов (банок), каждая номинальным напряжением около 2,2 вольта, соединённых последовательно в батарею. Обычный электролит представляет собой смесь дистиллированной воды и серной кислоты с плотностью в пределах 1,23-1,31 г/см³ (чем больше плотность электролита, тем более морозостойкая батарея), но сейчас появились автомобильные АКБ построенные на базе технологии AGM (Absorbent Glass Mat), электролит в которых абсорбирован в стеклянном волокне, а также т. н. гелевые аккумуляторы, где электролит загущается до гелеобразного состояния силикагелем (технология носит название GEL).

Размеры

Так сложилось, что при разработке нового типа или даже марки автотехники нередко приходилось разрабатывать под неё новую автомобильную АКБ. В дальнейшем производители разработали большую номенклатуру различных аккумуляторов, существенно различающихся типоразмерами и электрическими характеристиками. Для тяжёлых грузовиков и спецмашин, имеющих бортовую сеть 24 вольта, применяются две одинаковые 12-вольтовые батареи, соединённые последовательно или одна 24-вольтовая батарея (редко).

В настоящее время существует несколько форм-факторов батарей. Аккумуляторы для японского и европейских рынков могут иметь разные размеры.

Автомобильные аккумуляторы с азиатским и европейским расположением полюсов.
Полярность

«Обратная» или «прямая». Определяет расположение электродов на корпусе автомобильной АКБ. Для автомобилей отечественного выпуска характерна прямая полярность, при которой плюсовая клемма находится слева, а минусовая — справа, при положении аккумулятора «клеммы ближе к вам». Установить чужую батарею, например «европейскую» на японский автомобиль, зачастую бывает невозможно. Может потребоваться удлинение проводов.

Диаметр контактных клемм

В типе Euro — type 1 — 19,5 мм «плюсовая» клемма и 17,9 мм «минусовая» клемма. Тип Asia — Type 3 — 12,7 мм у «плюсовой» клеммы, — и 11,1 мм у клеммы «минус»[2]. Выпускаются «колпачки» — переходники с тонких клемм на толстые.

Тип крепления

В конкретном транспортном средстве может быть реализован один из типов крепления автомобильной АКБ — верхнее или нижнее. В ряде автомобилей конструкции для закрепления батареи может быть не предусмотрено. Обозначения типов нижнего крепления следующие: B00, B01, B03, B13.

Необходимость обслуживания

По этому принципу автомобильные АКБ классифицируют на два типа: обслуживаемые (и как их подкатегория — малообслуживаемые) и необслуживаемые (в тексте ГОСТа обозначенные как безуходные). В простых по конструкции аккумуляторах необходим регулярный контроль состояния электролита и регулярная подзарядка по специальной технологии с помощью стационарного зарядного устройства. На промышленных предприятиях для ухода за автомобильными аккумуляторами есть специально обученные люди (аккумуляторщики) а также зарядные станции.

Однако «необслуживаемые» автомобильные АКБ — это не значит, что за такой батареей совсем не нужен уход. Как правило, необслуживаемая батарея имеет встроенный индикатор-ареометр, по цвету которого определяется плотность электролита — зелёный поясок при нормальной плотности, красный или белый - при низкой (батарея подлежит замене). Также необходимо периодически контролировать уровень электролита по меткам на корпусе. На всех автомобильных АКБ во избежание повреждения аккумуляторного отсека кислотой необходимо контролировать герметичность корпуса, заливных пробок и чистоту дренажных отверстий, а при появлении признаков электролита устранить течь и тщательно промыть корпус и отсек автомобильной АКБ нейтрализующим щелочным составом. Также необходимо периодически тщательно очищать и смазывать клеммы литиевой смазкой, во избежание их электрокорозийного разрушения.

Стандарты в Российской Федерации

Существует ГОСТ 53165-2008, введён в действие 01.07.2009, дата издания 30.06.2009, в котором автомобильные аккумуляторы именуются «стартерными батареями».

Интересные факты

  • Различные типы аккумуляторов обладают разными особенностями, которые не позволяют однозначно назвать «лучший» тип аккумулятора. Можно говорить только о лучшей применимости различных типов аккумуляторов в разных условиях. Так, например, современные «кальциевые» аккумуляторы обладают низким саморазрядом, не требуют обслуживания, однако не терпят глубоких разрядов, например, при коротких поездках в зимние морозы, или длительной стоянке автомобиля. В то же время, для «обслуживаемых» (практически не производятся) и «малообслуживаемых» аккумуляторов глубокий разряд не столь губителен, зато такие типы аккумуляторов требуют доливки дистиллированной воды (при исправном электрооборудовании и среднем пробеге — примерно 1 раз в 4—7 месяцев).
  • С понижением температуры падает способность аккумулятора «принимать заряд». Поэтому короткие поездки в зимние морозы, особенно с включёнными фарами, могут довольно быстро привести к полному разряду даже абсолютно исправного аккумулятора. Это приводит не только к невозможности запуска мотора, но и к сокращению срока службы аккумулятора, особенно «кальциевого».
  • При температуре окружающего воздуха –10 °C зарядные характеристики аккумулятора, не имеющего обогрева, из-за охлаждения ухудшаются, а при температуре ниже –30 °C заряд от штатного генератора автомобиля практически отсутствует[3]. Температура электролита в аккумуляторе, установленном на автомобиле, на 5—7 °C выше температуры окружающей среды и изменяется вслед за ней с запаздыванием на 4—5 часа. В режиме длительного движения за 10—12 часов температура электролита в не обогреваемых аккумуляторных батареях повышается на 2—3 °C, а при наличии обогреваемого отсека для аккумуляторных батарей на 5—7 °C. Поэтому, для надёжной эксплуатации в условиях низких температур применяются конструкции аккумулятора с внутренним электроподогревом[4][5].
  • Зимой аккумулятор рекомендуется периодически снимать с автомобиля и заряжать зарядным устройством после согревания на воздухе до положительной температуры. Согревать холодный аккумулятор в горячей воде нежелательно по причине возможного частичного осыпания активной массы пластин из-за быстрых температурных деформаций.
  • Существует мнение[где?] о недопустимости установки на автомобиль аккумулятора с повышенной ёмкостью, так как при большей ёмкости автомобильная АКБ якобы не будет успевать заряжаться. Однако, энергия, потраченная на пуск двигателя, не зависит от ёмкости, поэтому при исправном генераторе будет восполнена в автомобильной АКБ за одно и то же время. Также опасение у некоторых вызывает возможность сгорания стартера, однако потреблённый стартером ток зависит не от ёмкости автомобильной АКБ, а только от его внутреннего сопротивления и условий пуска. Для районов с суровыми зимами рекомендуется установка автомобильной АКБ повышенной ёмкости. При этом аккумулятор способен будет отдать больший ток при пуске, увеличивается количество попыток пуска, уменьшается относительный разряд батареи, что увеличивает надёжность и продлевает срок службы[6]. Однако, у менее ёмкого аккумулятора скорее всего просадка напряжения в момент пуска двигателя больше, чем у более ёмкого, а значит и возможный максимальный ток тоже меньше, чем у более ёмкого, так что, возможно, доля правды в этом мифе всё-таки присутствует. Однако, следует иметь в виду, что аккумулятор большей ёмкости (нежели штатный) требует и большего времени для полной зарядки, если он сильно разряжен. А это случается зимой довольно часто, так как такой аккумулятор позволяет долго крутить стартер. Также, чем больше ёмкость, тем желательнее больший зарядный ток. Особенностью свинцово-кислотных аккумуляторов является то, что они сильно снижают свой ресурс, если заряжены не на 100 %, вследствие возникающей необратимой сульфатации. Поэтому, если в зимнее время аккумулятор с большей ёмкостью будет всё-таки сильно разряжен долгими попытками пуска, то вероятность выхода его из строя будет выше из-за нехватки времени на полный восстановительный заряд, что в ряде случаев усугубится также недостаточно сильным током, выдаваемым штатным генератором, особенно в режиме холостого хода. Следовательно, для продления ресурса аккумулятора большей ёмкости зимой следует его периодически снимать, отогревать и заряжать. Иначе, постоянно недозаряженный аккумулятор прослужит недолго, и единственным плюсом его применения будет увеличенное время прокрутки мотора и величина стартового тока, которые начнут неуклонно уменьшаться вследствие сульфатации, вплоть до полной непригодности аккумулятора. Также следует учитывать, что аккумулятор существенно бо́льшей ёмкости будет иметь бо́льшие габаритные размеры и может не поместиться в отсеке для аккумуляторной батареи. В интернете можно встретить утверждение, что в условиях низких температур зимой процесс сульфатации пластин происходит крайне медленно в силу особенностей прохождения химической реакции, однако следует критически относиться к этому утверждению, так как в процессе работы аккумулятор нагревается, и, следовательно, сульфатация всё же имеет место.
  • Крайне нежелательно заменять аккумулятор при работающем двигателе, поскольку связанные с отключением и подключением аккумулятора скачки напряжения могут вывести из строя электрооборудование автомобиля. При необходимости замены аккумулятора при работающем двигателе, для минимизации скачка напряжения необходимо перед отключением аккумулятора включить в автомобиле максимальное количество электроприборов (фары, мотор «печки», магнитолу, обогрев заднего стекла и т. д.). Подключение каждой клеммы должно производиться быстро, без многократного касания клеммой вывода аккумулятора. Обороты двигателя не должны превышать холостых. В идеале отключаемый/подключаемый аккумуляторы и клеммы автомобиля необходимо временно соединить параллельно проводами, после чего отсоединить все провода от отключаемого аккумулятора, установить подключаемый, надеть на него клеммы, и в самом конце отсоединить временные провода от клемм автомобиля и от подключённого аккумулятора. Таким образом достигается заведомо постоянное соединение какого-либо из аккумуляторов, и практически нивелируются нежелательные скачки напряжения.
  • При севшем аккумуляторе, т. н. «прикуривание» от другой автомашины необходимо осуществлять с тщательным соблюдением определённого набора правил, определяемых производителем автомобиля. Нарушение этих правил может оказаться причиной выхода из строя оборудования или даже взрыва автомобильной АКБ.
Автомобильный аккумулятор после взрыва

См. также

Примечания

Ссылки

Литература

  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — С. 21—23, 176. — 148 с.

wikipedia.green

Аккумуляторная батарея Википедия

Зарядное устройство «Duracell», для заряжания как аккумуляторов типоразмеров AA и AAA (видны пружинные прижимы для них), так и аккумуляторные батареи типа «Крона». Во время зарядки горят индикаторы

Электри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.

Значение и употребление слова

Термин «аккумулятор» используется для обозначения отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка. Но, разговорной речи на бытовом уровне может также применяться в отношении нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока) друг с другом, то есть для обозначения аккумуляторной батареи.

История

Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба оно само начинало вести себя как источник электричества[1].

Принцип действия

Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединённых в одну электрическую цепь, составляют аккумуля́торную батаре́ю.

Свинцово-кислотный аккумулятор

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в растворе серной кислоты.

Химическая реакция (слева направо — разряд, справа налево — заряд):

Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}
PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Литий-ионный аккумулятор

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).

Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[2][3].

Характеристики

Ёмкость аккумулятора

За ёмкость аккумулятора чаще всего принимают количество электричества равное 1 Кл, при силе тока 1 А в течение 1 с, (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, т. к. в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (кило Кулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минут. Как видно 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 1030 дней]

Плотность энергии

Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора (см. ст. Плотность энергии).

Саморазряд

Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.

Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет только в течение нескольких месяцев.

В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20°С, 15 % — при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40 % всего за 4-5 месяцев.

Температурный режим

Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.

Не следует использовать аккумуляторы при температурах выше +50°С и ниже −25°С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.

Тип аккумулятора

Тип аккумулятора определяется используемыми материалами. Различают следующие:

  • Cn-Po — Графен-полимерный аккумулятор.
  • La-Ft — лантан-фторидный аккумулятор
  • Li-Ion — литий-ионный аккумулятор (3,2-4,2 V), общее обозначение для всех литиевых аккумуляторов
    • Li-Co — литий-кобальтовый аккумулятор, (3,6 V), на базе LiCoO2, технология в процессе освоения
    • Li-Po — литий-полимерный аккумулятор (3,7 V), полимер в качестве электролита
    • Li-Ft — литий-фторный аккумулятор
    • Li-Mn — литий-марганцевый аккумулятор (3,6 V) на базе LiMn2O4
    • LiFeS — литий-железно-сульфидный аккумулятор (1,35 V)[источник не указан 629 дней]
    • LiFeP или LFP — Литий-железно-фосфатный аккумулятор (3,3 V) на базе LiFePO4
      • LiFeYPO4 — литий-железо-иттрий-фосфатный (Добавка иттрия для улучшения свойств)
    • Li-Ti — литий-титанатный аккумулятор (3,2 V) на базе Li4Ti5О12
    • Li-Cl — литий-хлорный аккумулятор (3,99 V)
    • Li-S — литий-серный аккумулятор (2,2 V)
    • LMPo — литий-металл-полимерный аккумулятор
  • Fe-air — железо-воздушный аккумулятор
  • Na/NiCl — никель-солевой аккумулятор (2,58 V)
  • Na-S — натрий-серный аккумулятор, (2 V), высокотемпературный аккумулятор
  • Ni-Cd — никель-кадмиевый аккумулятор (1,2 V)
  • Ni-Fe — железо-никелевый аккумулятор (1,2-1,9 V)
  • Ni-H2 — никель-водородный аккумулятор (1,5 V)
  • Ni-MH — никель-металл-гидридный аккумулятор (1,2 V)
  • Ni-Zn — никель-цинковый аккумулятор (1,65 V)
  • Pb — свинцово-кислотный аккумулятор (2 V)
  • Pb-H — свинцово-водородный аккумулятор
  • Ag-Zn — серебряно-цинковый аккумулятор (1,85 V)
  • Ag-Cd — серебряно-кадмиевый аккумулятор (1,6 V)
  • Zn-Br — цинк-бромный аккумулятор (1,8 V)
  • Zn-air — цинк-воздушный аккумулятор
  • Zn-Cl — цинк-хлорный аккумулятор
  • RAM (Rechargeable Alkaline Manganese) — перезаряжаемая разновидность марганцево-цинкового щелочного гальванического элемента (1,5 V)[источник не указан 957 дней]
  • Ванадиевый аккумулятор (1,41 V)[источник не указан 957 дней]
  • Алюминиево-графитный аккумулятор (2 V)[источник не указан 957 дней]
  • Алюминиево-ионный аккумулятор (2 V)[4]

Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

Тип ЭДС (В) Область применения
свинцово-кислотные

Pb

2,1 троллейбусы, трамваи, воздушные суда, автомобили, мотоциклы, электропогрузчики, штабелеры, электротягачи, аварийное электроснабжение, источники бесперебойного питания
никель-кадмиевые

Ni-Cd

1,2 замена стандартного гальванического элемента, строительные электроинструменты, троллейбусы, воздушные суда
никель-металл-гидридные

Ni-MH

1,2 замена стандартного гальванического элемента, электромобили
литий-ионные

Li‑ion

3,7 мобильные устройства, строительные электроинструменты, электромобили
литий-полимерные

Li‑pol

3,7 мобильные устройства, электромобили
никель-цинковые

Ni-Zn

1,6 замена стандартного гальванического элемента

Форм-факторы

Литий-ионный аккумулятор форм-фактора 18650
Внешний аккумулятор

Внешний аккумулятор (аккумуляторная батарея) (англ. power bank) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).

Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[5][6]. Типичный вес таких устройств — от нескольких сотен грамм, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[7]. С их помощью можно зарядить телефон 2-3 раза. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодный фонарик.

Применение

В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство. В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания (батареек). В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы.

Если в первом случае обычно есть возможность выбирать между бюджетным устройством «стандартного» заряда и зарядным устройством с контролем заряда (капельный заряд, импульсный заряд, ускоренный заряд с контролем напряжения и т. д.), то во втором случае изделие комплектуется, как правило, с трансформаторным источником питания для зарядки постоянным током, что при несоблюдении технических условий эксплуатации аккумулятора снижает срок его службы.

Зарядка аккумуляторов

По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).

Однако, основываясь на техническом описании, распространяемом изготовителями широко применяемых электрических аккумуляторов (NiMH, NiCd), можно сделать предположение о том, что данный режим заряда, обычно именуемый стандартным, рассчитывается исходя из продолжительности восьмичасового рабочего дня, когда разряженный в конце рабочего дня аккумулятор подключается к сетевому зарядному устройству до начала нового рабочего дня. Применение такого режима заряда для этих типов аккумуляторов при систематическом использовании позволяет соблюсти качественно-стоимостной баланс эксплуатации изделия. Таким образом, с подачи изготовителя данный режим можно применять только для никель-кадмиевых и никель-металл-гидридных аккумуляторов.

Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например NiMH-аккумуляторы чувствительны к перезаряду, литиевые — к переразряду, напряжению и температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.

Методы заряда аккумуляторов

Для заряда аккумуляторов применяется несколько методов; как правило, метод заряда зависит от типа аккумулятора[8].

Медленный заряд постоянным током

Заряд постоянным током, пропорциональным 0,1-0,2 условной номинальной ёмкости Q в течение примерно 15-7 часов соответственно.

Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.

Быстрый заряд

Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.

Ускоренный или «дельта-V» заряд

Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.

Реверсивный заряд

Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен т. н. «эффект памяти».

См. также

Примечания

Литература

wikiredia.ru

Аккумуляторные батареи. Виды и устройство. Применение

АКБ или аккумуляторные батареи – это оборудование, которое состоит из нескольких аккумуляторов. Оно может накапливать, хранить и расходовать энергию. Благодаря обратимости химических процессов, происходящих внутри аккумулятора, такие устройства могут заряжаться и разряжаться многократно.

Сфера применения аккумуляторов весьма обширна. Они применяются в автомобилях и различной бытовой технике, например, в пультах ДУ и ноутбуках. Но также и в качестве резервных источников питания в медицинской сфере, производстве, космической отрасли, дата-центрах.

Виды и типы АКБ

Сегодня производят около 30 типов аккумуляторов. Такое большое количество обуславливается возможностью применять в качестве электродов и электролитов различные химические элементы. Именно от материала электрода и состава электролита зависят все характеристики аккумулятора.

Мы не будем приводить все типы, а лишь дадим небольшую таблицу с описанием наиболее распространенных:

Устройство

1 — Отрицательный электрод
2 — Разделительный слой
3 — Положительные электроды
4 — Отрицательный контакт
5 — Предохранительный клапан
6 — Положительные электроды
7 — Положительный контакт

Аккумуляторные батареи состоят из нескольких банок аккумуляторов, соединенных либо параллельно, либо последовательно. Последовательное соединение применяют в целях увеличения напряжения, а параллельное для увеличения силы тока.

Каждый из отдельно взятого аккумулятора в АКБ состоит из двух электродов и электролита, помещенных в корпус из специального материала.

Электрод с отрицательным зарядом – анод, с положительным зарядом – катод. Анод содержит восстановитель, катод – окислитель. Внутри корпуса аккумулятора стоит разделительная пластина, которая не позволяет электродам замыкаться.

Электролит – водный раствор, в который погружены оба электрода.

При разрядке аккумулятора восстановитель анода начинает окисляться и выделяются электроны. Электроны затем попадают в электролит и оттуда движутся к катоду, при этом создавая разрядный ток. Попадая в катод электроны восстанавливают его окислитель. Простыми словами можно описать процесс так: электроны идут от отрицательного электрода к положительному и создают разрядный ток.

При зарядке аккумулятора электроды меняются своим химическим составом и происходит обратная реакция. Электроны здесь двигаются от положительного анода к отрицательному катоду.

Особенности разных типов АКБ
Свинцово-кислотные аккумуляторы

Разработан Гастоном Планте в 19 веке. Эти аккумуляторные батареи сегодня наиболее актуальны благодаря дешевизне и универсальности. Сфера их применения обширна ввиду большого количества разновидностей этого типа. В качестве отрицательно заряженных электродов здесь используется оксид свинца. Положительные электроды выполняются из свинца. Электролит – серная кислота.

У свинцовых-кислотных батарей есть следующие разновидности:
  • LA – аккумуляторы с напряжением 6 или 12 Вольт. Традиционное устройство для осуществления запуска двигателей автомобилей. Требуют постоянного обслуживания и вентиляции.
  • VRLA – напряжением 2, 4, 6 или 12 Вольт. Клапанно-регулируемая свинцово-кислотная аккумуляторная батарея. Как видно из названия этот АКБ укомплектован разгрузочным клапаном. Его роль – минимизировать выделение газа и расход воды. Такие батареи можно устанавливать в жилых помещениях.
  • AGM VRLA – как и предыдущий тип оснащен клапаном, но имеет совсем другие свойства. В аккумуляторах, сделанных по технологии AGM роль сепаратора играет стекловолокно. Его микропоры пропитаны жидким электролитом. Такие АКБ не требуют обслуживания и устойчивы к вибрациям.
  • GEL VRLA – подвид свинцово-кислотных аккумуляторов с гелеобразным электролитом. Благодаря этому увеличен их ресурс заряда/разряда. Не требуют обслуживания.
  • OPzV – герметичные аккумуляторы используемые в области телекоммуникации и для аварийного освещения. Электролит, как и в предыдущем случае гелевый. В электродах содержится кальций, благодаря которому срок службы такого типа батарей – 20 лет.
  • OPzS – катод таких аккумуляторов имеет трубчатую структуру. Это существенно повышает циклический ресурс этого типа батарей. Служит также около 20 лет. Выпускается в виде АКБ с напряжением от 2 до 125 В.
 Литий-ионные аккумуляторы

Был впервые выпущен Sony в 1991 году и с тех пор активно применяется в бытовой технике, электронных устройствах. Практически все мобильные телефоны, ноутбуки, фотоаппараты и видеокамеры оснащены таким видом батарей. Роль катода здесь играет литий-ферро-фосфатная пластина. Отрицательный анод – каменноугольный кокс. Положительный ион лития переносит заряд в таких батареях. Он может проникать в кристаллическую решетку других материй и образовывать с ними химическую связь. Преимуществом этого типа является высокая энергоемкость, низкий саморазряд и отсутствие нужды в обслуживании.

Литий-ионные аккумуляторные батареи также, как и их свинцовые аналоги имеют большое количество подтипов. В данном случае подтипы отличаются между собой составом катода и анода. Напряжение литий-ионных аккумуляторов варьируется в пределах от 2,4 до 3,7 В.

Одним из самых известных подтипов является литий-полимерные аккумуляторные батареи. Они появились сравнительно недавно и быстро завоевал популярность. Она обусловлена тем, что в литий-полимерных батареях используется твердый полимерный электролит. Это позволяет создавать батареи любой формы. При этом стоимость этих батарей всего лишь на 15% выше обычных литий-ионных.

Похожие темы:

electrosam.ru

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Вольтов столб

Алессандро Джузеппе Антонио Анастасио Вольта

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

строение свинцово-кислотной батареи VRLA

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Standard Range AGM VRLA батареи EverExceed

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    SOLAR GEL GANGE VRLA аккумуляторы EverExceed

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.

    Схема аккумулятора OPzV аккумулятор EverExceed
    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    структура OPzS батарей голландского производства Victron Energy

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D.O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Victron Energy LiFePO4, LFP

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Victron Energy LiFePO4, LFP

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Данные свойств LiCoO2 аккумуляторов предоставлены компанией BCG

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Данные свойств LiMn2O4 аккумуляторов предоставлены компанией BCG

best-energy.com.ua

Аккумулятор Википедия

Зарядное устройство «Duracell», для заряжания как аккумуляторов типоразмеров AA и AAA (видны пружинные прижимы для них), так и аккумуляторные батареи типа «Крона». Во время зарядки горят индикаторы

Электри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.

Значение и употребление слова

Термин «аккумулятор» используется для обозначения отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка. Но, разговорной речи на бытовом уровне может также применяться в отношении нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока) друг с другом, то есть для обозначения аккумуляторной батареи.

История

Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба оно само начинало вести себя как источник электричества[1].

Принцип действия

Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединённых в одну электрическую цепь, составляют аккумуля́торную батаре́ю.

Свинцово-кислотный аккумулятор

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в растворе серной кислоты.

Химическая реакция (слева направо — разряд, справа налево — заряд):

Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}
PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Литий-ионный аккумулятор

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).

Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[2][3].

Характеристики

Ёмкость аккумулятора

За ёмкость аккумулятора чаще всего принимают количество электричества равное 1 Кл, при силе тока 1 А в течение 1 с, (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, т. к. в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (кило Кулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минут. Как видно 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 1030 дней]

Плотность энергии

Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора (см. ст. Плотность энергии).

Саморазряд

Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.

Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет только в течение нескольких месяцев.

В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20°С, 15 % — при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40 % всего за 4-5 месяцев.

Температурный режим

Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.

Не следует использовать аккумуляторы при температурах выше +50°С и ниже −25°С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.

Тип аккумулятора

Тип аккумулятора определяется используемыми материалами. Различают следующие:

  • Cn-Po — Графен-полимерный аккумулятор.
  • La-Ft — лантан-фторидный аккумулятор
  • Li-Ion — литий-ионный аккумулятор (3,2-4,2 V), общее обозначение для всех литиевых аккумуляторов
    • Li-Co — литий-кобальтовый аккумулятор, (3,6 V), на базе LiCoO2, технология в процессе освоения
    • Li-Po — литий-полимерный аккумулятор (3,7 V), полимер в качестве электролита
    • Li-Ft — литий-фторный аккумулятор
    • Li-Mn — литий-марганцевый аккумулятор (3,6 V) на базе LiMn2O4
    • LiFeS — литий-железно-сульфидный аккумулятор (1,35 V)[источник не указан 629 дней]
    • LiFeP или LFP — Литий-железно-фосфатный аккумулятор (3,3 V) на базе LiFePO4
      • LiFeYPO4 — литий-железо-иттрий-фосфатный (Добавка иттрия для улучшения свойств)
    • Li-Ti — литий-титанатный аккумулятор (3,2 V) на базе Li4Ti5О12
    • Li-Cl — литий-хлорный аккумулятор (3,99 V)
    • Li-S — литий-серный аккумулятор (2,2 V)
    • LMPo — литий-металл-полимерный аккумулятор
  • Fe-air — железо-воздушный аккумулятор
  • Na/NiCl — никель-солевой аккумулятор (2,58 V)
  • Na-S — натрий-серный аккумулятор, (2 V), высокотемпературный аккумулятор
  • Ni-Cd — никель-кадмиевый аккумулятор (1,2 V)
  • Ni-Fe — железо-никелевый аккумулятор (1,2-1,9 V)
  • Ni-H2 — никель-водородный аккумулятор (1,5 V)
  • Ni-MH — никель-металл-гидридный аккумулятор (1,2 V)
  • Ni-Zn — никель-цинковый аккумулятор (1,65 V)
  • Pb — свинцово-кислотный аккумулятор (2 V)
  • Pb-H — свинцово-водородный аккумулятор
  • Ag-Zn — серебряно-цинковый аккумулятор (1,85 V)
  • Ag-Cd — серебряно-кадмиевый аккумулятор (1,6 V)
  • Zn-Br — цинк-бромный аккумулятор (1,8 V)
  • Zn-air — цинк-воздушный аккумулятор
  • Zn-Cl — цинк-хлорный аккумулятор
  • RAM (Rechargeable Alkaline Manganese) — перезаряжаемая разновидность марганцево-цинкового щелочного гальванического элемента (1,5 V)[источник не указан 957 дней]
  • Ванадиевый аккумулятор (1,41 V)[источник не указан 957 дней]
  • Алюминиево-графитный аккумулятор (2 V)[источник не указан 957 дней]
  • Алюминиево-ионный аккумулятор (2 V)[4]

Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

Тип ЭДС (В) Область применения
свинцово-кислотные

Pb

2,1 троллейбусы, трамваи, воздушные суда, автомобили, мотоциклы, электропогрузчики, штабелеры, электротягачи, аварийное электроснабжение, источники бесперебойного питания
никель-кадмиевые

Ni-Cd

1,2 замена стандартного гальванического элемента, строительные электроинструменты, троллейбусы, воздушные суда
никель-металл-гидридные

Ni-MH

1,2 замена стандартного гальванического элемента, электромобили
литий-ионные

Li‑ion

3,7 мобильные устройства, строительные электроинструменты, электромобили
литий-полимерные

Li‑pol

3,7 мобильные устройства, электромобили
никель-цинковые

Ni-Zn

1,6 замена стандартного гальванического элемента

Форм-факторы

Литий-ионный аккумулятор форм-фактора 18650
Внешний аккумулятор

Внешний аккумулятор (аккумуляторная батарея) (англ. power bank) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).

Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[5][6]. Типичный вес таких устройств — от нескольких сотен грамм, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[7]. С их помощью можно зарядить телефон 2-3 раза. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодный фонарик.

Применение

В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство. В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания (батареек). В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы.

Если в первом случае обычно есть возможность выбирать между бюджетным устройством «стандартного» заряда и зарядным устройством с контролем заряда (капельный заряд, импульсный заряд, ускоренный заряд с контролем напряжения и т. д.), то во втором случае изделие комплектуется, как правило, с трансформаторным источником питания для зарядки постоянным током, что при несоблюдении технических условий эксплуатации аккумулятора снижает срок его службы.

Зарядка аккумуляторов

По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).

Однако, основываясь на техническом описании, распространяемом изготовителями широко применяемых электрических аккумуляторов (NiMH, NiCd), можно сделать предположение о том, что данный режим заряда, обычно именуемый стандартным, рассчитывается исходя из продолжительности восьмичасового рабочего дня, когда разряженный в конце рабочего дня аккумулятор подключается к сетевому зарядному устройству до начала нового рабочего дня. Применение такого режима заряда для этих типов аккумуляторов при систематическом использовании позволяет соблюсти качественно-стоимостной баланс эксплуатации изделия. Таким образом, с подачи изготовителя данный режим можно применять только для никель-кадмиевых и никель-металл-гидридных аккумуляторов.

Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например NiMH-аккумуляторы чувствительны к перезаряду, литиевые — к переразряду, напряжению и температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.

Методы заряда аккумуляторов

Для заряда аккумуляторов применяется несколько методов; как правило, метод заряда зависит от типа аккумулятора[8].

Медленный заряд постоянным током

Заряд постоянным током, пропорциональным 0,1-0,2 условной номинальной ёмкости Q в течение примерно 15-7 часов соответственно.

Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.

Быстрый заряд

Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.

Ускоренный или «дельта-V» заряд

Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.

Реверсивный заряд

Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен т. н. «эффект памяти».

См. также

Примечания

Литература

wikiredia.ru

Аккумуляторная батарея - это... Что такое Аккумуляторная батарея?


Аккумуляторная батарея
        электрическая, группа однотипных Аккумуляторов, соединённых электрически и конструктивно для получения напряжения, силы тока, электрического заряда (распространён термин «ёмкость») или мощности, которых один элемент дать не может. При параллельном соединении аккумуляторов напряжение А. б. равно напряжению каждого из элементов, а общий электрический заряд — сумме электрических зарядов отдельных аккумуляторов. При последовательном соединении суммируется эдс. Смешанное соединение осуществляют для повышения напряжения и электрического заряда А. б. по сравнению с напряжением и электрическим зарядом отдельного аккумулятора. Служит источником постоянного тока.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Аккумулятор давления
  • Аккумуляция

Смотреть что такое "Аккумуляторная батарея" в других словарях:

  • Аккумуляторная батарея — Аккумуляторная батарея  батарея аккумуляторов, соединенных между собой в одном изделии. Аккумуляторная батарея служит источником постоянного тока. В обиходе часто встречается сокращение «АКБ» или просто «Аккумулятор». Аккумуляторная батарея …   Википедия

  • аккумуляторная батарея — батарея Электрически соединенные между собой аккумуляторы, оснащенные выводами и заключенные, как правило, в одном корпусе. [ГОСТ 15596 82] аккумуляторная батарея батарея Два или более аккумуляторов, соединенных между собой и используемых в… …   Справочник технического переводчика

  • АККУМУЛЯТОРНАЯ БАТАРЕЯ — группа однотипных электрических аккумуляторов, соединенных электрически и конструктивно для получения необходимых значений тока и напряжения …   Большой Энциклопедический словарь

  • АККУМУЛЯТОРНАЯ БАТАРЕЯ — (Storage battery) ряд аккумуляторов, соединенных между собой последовательно или параллельно. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • аккумуляторная батарея — – ряд соединенных вместе аккумуляторов в едином корпусе. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • Аккумуляторная батарея — (secondary battery) два или более аккумуляторов (элементов), соединенных между собой и используемых в качестве источника электрической энергии... Источник: ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ СТАЦИОНАРНЫХ СВИНЦОВО КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ В… …   Официальная терминология

  • аккумуляторная батарея — 1.3.8. аккумуляторная батарея : Сборка из аккумуляторов, предназначенная для использования в качестве источника электрической энергии, характеризующаяся свойственными ей напряжением, размерами, расположением выводов, емкостью и другими данными.… …   Словарь-справочник терминов нормативно-технической документации

  • аккумуляторная батарея — akumuliatorių baterija statusas T sritis chemija apibrėžtis Nuosekliai arba lygiagrečiai sujungtų akumuliatorių grupė. atitikmenys: angl. accumulator battery; secondary battery; storage battery rus. аккумуляторная батарея; вторичная батарея …   Chemijos terminų aiškinamasis žodynas

  • аккумуляторная батарея — группа однотипных электрических аккумуляторов, соединённых электрически и конструктивно для получения необходимых значений тока и напряжения. * * * АККУМУЛЯТОРНАЯ БАТАРЕЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ, группа однотипных электрических аккумуляторов,… …   Энциклопедический словарь

  • аккумуляторная батарея — akumuliatorių baterija statusas T sritis automatika atitikmenys: angl. accumulator battery; storage battery vok. Akkumulatorbatterie, f; Akkumulatorenbatterie, f rus. аккумуляторная батарея, f pranc. batterie d accumulateurs, f …   Automatikos terminų žodynas

  • аккумуляторная батарея — akumuliatorių baterija statusas T sritis fizika atitikmenys: angl. accumulator battery vok. Akkumulatorenbatterie, f rus. аккумуляторная батарея, f pranc. batterie d’accumulateurs, f …   Fizikos terminų žodynas

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *