Бензин это смесь: Бензин — горючая смесь — Газойл Центр

Содержание

Бензин – его качество, состав и свойства

Самое распространенное горючее для автомобилей и не только – бензин – топливная смесь, получаемая из нефти, имеет сложный состав, различается по множеству категорий и применяется с начала ХХ века. В настоящее время качество бензина в десятки раз улучшено в сравнении с первыми видами топлив, а производственные нормы, требования к составу регулируются условиями сразу нескольких ГОСТ и пересматриваются в соответствии с усилением экологической безопасности по спецификациям Европейского парламента и Совета. Тем не менее, автовладельцам по сей день приходится иметь дело с бензинами недостаточного качества. В обзоре обсуждаем, в чем опасность таких топливных смесей и как избежать нежелательных последствий заправки низкосортным бензином на сомнительных АЗС.

1. Состав и марки бензина
2. Как получают бензин
3. Требования к качеству бензина
4. Какие марки бензина продают на АЗС

5. Присадки в бензин
6. Всегда ли нужны присадки для повышения октанового числа
7. Где покупать качественный бензин


Состав и марки бензина

У такого вида горючего всегда сложный, многокомпонентный состав – несколько тяжёлых и лёгких фракций нефти, кислосодержащие соединения, также отличаются пропорции углеводородов, примесей. Для определения качества бензинов применяется оценка их физико-химических свойств, но в любом виде бензин производят исключительно из нефти. К слову, происхождение нефти, расположение скважины, отчасти тоже влияет на производство конечного продукта. Например, практически любой состав отечественных месторождения «грешит» увеличенной концентрацией серы. Такая особенность сырья требует дополнительной очистки фракций: присутствие серы в готовом бензине, согласно международным эко-стандартам,  должно быть сведено к мизерным показателям.   

Производство бензина

Получение топлива из сырой нефти – это многоступенчатый сложный технологический цикл. Пропуская непосредственно добычу и транспортировку сырья на предприятие, началом изготовления бензина, как конечного продукта, можно считать снятие проб с нефти. 

Этот этап важен именно для получения информации об элементном и групповом составе, плотности нефти – присутствие в сырье различных соединений всегда непостоянно и обусловлено расположением скважин. После определения концентрации элементов, соединений, нефть направляется в производственный многоэтапный процесс очистки, перегонки, крекинга при высоких температурах, риформинга. Бензин с одним из октановых чисел получают после обработки смеси в газофракционирующей установке, где производится регулировка содержания изобутана, пропан-бутана в топливной смеси. 

Требования к качеству бензина

Поскольку применение высокотоксичных, с присутствием тетраэтилсвинца этилированных бензинов запрещено в России и в большинстве стран мира, параметры качества выдвигаются и оцениваются только в отношении неэтилированных марок горючего.  Характеристики химического и фракционного состава бензина, полученного в процессе многоступенчатой переработки, указаны в трех ГОСТах и одном ТУ (№0251-001-12150839-2015). К параметрам качества автомобильных, мотоциклетных бензинов выдвигаются требования с учётом октанового числа топлива:

  • ГОСТ 2084-77 – межгосударственный документ для стран СНГ, на территории РФ его действие распространяется только на бензин АИ-76;

  • ГОСТ Р 51105-97 – для марок бензина Нормаль-80 и Регуляр-92, более знакомых под обозначениями АИ-80 и АИ-92, стандарт на основе европейского EN 228-1993;

  • ГОСТ Р 51866-2002 – для бензинов с октановым числом 95 и 98, Премиум Евро-95 и Супер Евро-98, включая их виды, документ адаптирован по EN 228-2004. 

Общие технические требования и разбивка по классам для всех составов бензинов определены в ГОСТ 32513-2013. Этим регламентом можно пользоваться при оценке новых марок бензина, например, ЭКТО-100 (Pulsar 100, Ultimate 100 или АИ-100), а также спортивных разработок 100+ с октановым числом, не менее 102 (С-102) и 105. Топливо двух последних видов рекомендуется для гоночных авто, суперкаров, гибридных моторов, такие бензины в повседневном применении пока не популярны

.  

Подробнее о составе бензинов с разным октановым числом, об эффективности топлива и параметрах качества относительно разных конструкций двигателей и КПП:

Какие марки бензина продают на АЗС

Самая известная и распространенная система категоризации топлива – по октановому числу. Параметр указывает на сопротивляемость бензина к детонации при определенной степени сжатия в камере сгорания. Чем выше бензин имеет октановое число, тем выше и степень сжатия, а значит, и двигатель должен работать плавнее, равномерно сжигая топливно-воздушную смесь. 

Октановое число для любых бензинов определяется лабораторно, исследовательским и моторным методом, с помощью профессиональных установок, позволяющих имитировать режим поездки «город» (исследовательский метод, при небольших оборотах мотора), а также при максимальной нагрузке на двигатель (моторный метод).  

В уже перечисленных ГОСТах указаны все официальные марки для бензинов с разным октановым числом. Начиная с апреля 2003 года, на российских АЗС автовладельцам доступны бензины 4 марок (согласно №34-ФЗ от 22.03.2003): 

  • АИ-80 – он же А-76, Н-80 или бензин Нормаль-80 в тексте ГОСТ Р 51105-97;

  • АИ-92 – в документе указан, как Регуляр-92;

  • АИ-95 – в ГОСТ Р 51866-2002 этот бензин именуется, как Премиум-95, Премиум-Евро-95;

  • АИ-98 – согласно тому же ГОСТ это Супер-98 или Супер-Евро-98. 

Кроме того, в наименовании бензинов указывается класс экологической безопасности – чем больше цифра, тем благоприятнее для окружающей среды состав продуктов отработки топливно-воздушной смеси. Полностью обозначение бензина выглядит и расшифровывается так: 

Экологические классы бензинов К1, К2 и К3 в России или запрещены, К4 не производится или практически выведено из обращения, а о том, какое топливо лучше, единого мнения не существует. Но всё же решение такого непростого для мотора и финансов вопроса стоит доверить производителю. На современных авто информация от минимальном октановом числе в рекомендуемом бензине размещена на внутренней стороне люка бензобака. 

Не для всех моторов самое высокое октановое число бензина будет означать наилучшую работу клапанов. Бензин рекомендуется выбирать по конструкции и мощности двигателя: высокооктановый АИ-95 не улучшит параметры ДВС со средними характеристиками, литражом, оборотами. И напротив: турбированным версиям двигателей, гибридным моделям рекомендуются виды бензинов с октановым числом от 98, включая спортивный состав топлива или искусственное увеличение параметра с помощью присадок – октан-корректоров.    

Подробно о самых распространённых заблуждениях в вопросе подхода к выбору бензина:

Присадки в бензин

Спорить о том, вредны или полезны специальные добавки к бензину, совершенно необязательно, список разрешенных, а значит безопасных для автомобиля добавок можно найти в регламенте таможенного союза ТР ТС 013/2011. Согласно информации в документе, бензин уже на этапе производства не может содержать такие соединения, как железо, свинец и марганец. Это же условие разумно применить и к выбору присадок для заливки к бензину непосредственно в баке автомобиля самостоятельно. 

Настороженно стоит отнестись к присутствию монометиланилинов (N-метиланилин), несмотря на то, что именно это химическое соединение является самым популярным для повышения антидетонационных свойств бензина. Октановое число такой присадки составляет 280 (по исследовательскому методу), но оптимизм автовладельцев заметно угасает при изучении негативного влияния N-метиланилина на состав бензинов. Недостаточно равномерное растворение любой такой присадки в бензине со временем приводит к образованию смолистых соединений и повышенной нагрузке, износу узлов и деталей двигателя. 

Как более дружелюбные по отношению к бензинам и мотору ТР ТС 013/2011 заявляет присадки на основе трет-бутилметиловых эфиров – МТБЭ. Соединения показывают октановое число в 115-135 по исследовательскому методу, и не является токсичным, способствуя в то же время равномерности сгорания топлива, уменьшению риска коррозии. 

Промышленное производство бензинов допускает ввод присадок, но смешивание разных фракций должно осуществляться контролируемо, на специальных установках, которые и позволяют добиться равномерной консистенции конечного продукта.   

Всегда ли нужны присадки для повышения октанового числа

КПД и мощность мотора не улучшатся, если на АЗС покупается та марка бензина, которая соответствует характеристикам двигателя и рекомендациям производителя авто. В этом случае октан-корректоры не нужны. Их безосновательное применение может ухудшить экономичность ДВС. Вместо октаноповышающих соединений можно обратить внимание на катализаторы горения. 

Если на авто установлен двигатель, работающий под АИ-95 или АИ-98, а по стечению обстоятельств залить любой из этих бензинов возможности нет, октаноповышающая присадка нужна. Без корректора нарушается работа датчика детонации, срабатывая на опережение зажигания. Это может привести в лучшем случае к снижению мощности мотора, а при неблагоприятном прогнозе к прогоранию поршней, детонации и выходу двигателя из строя. 

Стоит учесть, что на рынке автомобильного топлива присутствуют нечистоплотные продавцы бензина, расценивающие предупреждения на применение нежелательных присадок, как безграничное разрешение подобных манипуляций. В итоге автовладельцы, не догадываясь о том, что заправляют бак бензином, разбавленным сторонними смесями, замечают неполадки в работе двигателя. 

Где покупать качественный бензин

Рекомендуется заливать бензин только на АЗС официальных производителей, имеющих достойную репутацию и крупные сети по всей стране. Такие станции всегда готовы предоставить паспорт качества и сертификаты на любую партию топлива. Найти ближайшую проверенную заправку, даже находясь в незнакомом городе, можно на карте АЗС, участвующих в программе организации сети надёжных компаний нефтегазовой сферы: производителей, поставщиков и ритейлеров ГСМ.

Автомобильные бензины

Требования предъявляемые к бензинам

Автомобильные бензины, являющиеся топливом для бензиновых двигателей, должны удовлетворять определенным требованиям, основными из которых являются:

  • быстрое образование топливно-воздушной (горючей) смеси необходимого состава
  • сгорание рабочей смеси с нормальной скоростью (без детонации)
  • минимальное коррозирующее воздействие на детали системы питания двигателя
  • небольшие отложения смолистых веществ в системе питания двигателя
  • минимальное отравляющее воздействие на организм человека и окружающую среду
  • сохранность первоначальных свойств в течение длительного времени

Детонационная стойкость. Октановое число и методы его определения

Основным свойством бензина является детонационная стойкость, характеризующая его способность сгорать в цилиндрах двигателя без детонации.

Детонация — это сгорание рабочей смеси в цилиндрах двигателя со скоростью, превышающей скорость звука. В рабочей смеси образуются углеводородные перекиси, которые самовоспламеняются и сгорают со сверхзвуковой скоростью 1500…2500 м/с (при нормальном сгорании – 10…35 м/с). Это явление сопровождается резкими металлическими стуками, перегревом и падением мощности двигателя. При детонации в двигателе возникают ударные нагрузки, которые могут стать причиной его разрушения. Показателем, определяющим детонационную стойкость бензина, является октановое число; чем оно выше, тем меньше возможность появления детонации.

Кроме октанового числа на возникновение детонации при работе двигателя влияют эксплуатационные факторы:

  • перегрев двигателя
  • большая нагрузка при малой частоте вращения коленчатого вала
  • ранняя установка зажигания

Из конструктивных факторов, влияющих на возникновение детонации, следует отметить такие, как форма камеры сгорания, расположение свечи зажигания, диаметр цилиндра, а также важнейший конструктивный параметр двигателя – степень сжатия.

Для каждого типа бензинового двигателя допускается применение бензина со строго определенным октановым числом, которое обусловливается степенью сжатия двигателя: чем выше степень сжатия, тем большее октановое число должен иметь бензин. Октановое число определяют моторным и исследовательским методами, суть которых заключается в сравнении работы одноцилиндрового двигателя на испытуемом бензине и эталонном топливе. В качестве эталонного топлива используют смесь двух углеводородов – изооктана и нормального гептана. Октановое число первого принимают равным 100 единицам, второго – нулю. Если составлять смесь из этих углеводородов в определенном процентном соотношении, то оно и будет характеризовать октановое число. Так, смесь из 76 % изооктана и 24 % гептана будет равноценна бензину с октановым числом 76.

Испытание бензина моторным методом проводят следующим образом: вначале запускают двигатель на испытуемом бензине и доводят его при повышении нагрузки до возникновения детонации, которая фиксируется по шкале указателя детонации; затем переводят питание двигателя на эталонную смесь, имеющую октановое число, примерно на две единицы большее, чем у бензина. Если в фиксированном режиме нагрузки детонация не появится, двигатель переводят на другую смесь (с октановым числом, меньшим на две единицы) и вновь наблюдают за возникновением детонации. При ее появлении подсчитывают октановое число как среднее арифметическое октановых чисел двух взятых эталонных смесей. С целью большей достоверности указанное испытание проводят три раза.

Исследовательский метод испытания бензина по схеме проведения не отличается от моторного, различие заключается лишь в режиме нагрузки на двигатель в момент испытания: нагрузка устанавливается несколько меньшая, чем при моторном методе. В результате детонация возникает при использовании эталонных смесей с большим содержанием изооктана, поэтому октановое число, получаемое исследовательским методом, будет на несколько единиц выше. Например, октановое число бензина А-76, определенное по моторному методу, соответствует бензину АИ-80.

Если испытание проводят исследовательским методом, то при маркировке бензина А после буквы А; означающей, что бензин является автомобильным, следует буква И (отсутствие этой буквы указывает на моторный метод проведения испытания).

Для повышения октанового числа в некоторые бензины добавляют специальные присадки. Чаще всего это этиловая жидкость с антидетонатором ТЭС (тетраэтилсвинец). Бензин с антидетонационной присадкой называется этилированным и в отличие от обычных бензинов окрашивается.

Вследствие повышенной токсичности этилированных бензинов, проявляющей в накоплении тетраэтилсвинца в живых организмах и растительности, применение их в абсолютном большинстве стран мира запрещено.

Марки бензинов

В настоящее время в соответствии с ТУ 38.001165-2003 «Бензи­ны автомобильные. Технические условия» выпускаются бензины следующих марок:

  • А-80 (АИ-80)
  • А-92 (АИ-92)
  • А-96 (АИ-96)

В зависимости от испаряемости бензины могут быть летними, зимними или всесезонными. В обозначении бензинов с улучшенными экологическими свойствами и присадками содержится аббревиатура Экп (например, АИ-95 Экп).

Маркировка бензина состоит из буквы «А» и цифры, соот­ветствующей минимальному значению октанового числа по исследо­вательскому методу для экспортных бензинов. Буквы «АИ» и цифры указывают, что бензин автомобильный с минимальным октановым числом, определенным исследовательским методом, поставляемых на внутренний рынок.

Летние бензины рекомендуются к эксплуатации в период с 1 апреля по 1 октября. Зимние бензины — с 1 октября по 1 апреля. Бензины А-80, А-92 и А-96 различаются только следующими свойствами: плотность их при 15 °С соответственно равна 759, 774 и 780 кг/м3; де­тонационная стойкость по моторному методу не менее 76,0, 83,0 и 85,0.

В целях повышения конкурентоспособности бензинов и доведения их качества до европейских стандартов введен ГОСТ 31077-2002 «Топлива для двигателей внутреннего сгорания. Неэтилированный бензин», который предусматривает выпуск бензинов Нормаль-80, Регуляр-91, Регуляр-92, Премиум-95 и Супер-98. Данный стандарт подготовлен на основе ГОСТ Р51105-97 Российской Федера­ции и является межгосударственным стандартом для Содружества Не­зависимых Государств.

Бензин «Нормаль-80» предназначен для использования наряду с бензином А-76. Неэтилированный бензин «Регулятор-91» можно применять вместо этилированного бензина А-93. Бензины «Премиум-95» и «Супер-98» отвечают европейским стандартам и предназначены для современных импортных автомобилей.

В маркировке число указывает детонационную стойкость по ис­следовательскому методу.

В Западной Европе широко применяются бензины Benzin bleifrei, Super bleifrei и Super Plus с о.ч. соответственно 91, 95 и 98 единиц по исследовательскому методу.

Бедная и богатая смесь бензина — воздуха в двигателе авто

Расскажем простыми словами, что такое бедная или богатая смесь бензина и воздуха в двигателе автомобиля. Какие пропорции оптимальны для работы мотора.

Смесеобразование в двигателях

В двигателях внутреннего сгорания горючая смесь требуемого состава приготавливается из топлива и воздуха в специальном устройстве (карбюратор, система впрыска), а затем подается в нужном количестве внутрь мотора. Смесь, в которой на 1 кг бензина приходится 15 кг воздуха (со стандартным содержанием кислорода), принято называть нормальной. Если быть точным, смесь бензина и воздуха в соотношении 1:14,7 называют стехиометрической. Это основные пропорции для любого двигателя, но бывают варианты. Уменьшим поступление воздуха до 12,5 — 13 кг. Смесь обогатится (бензином) — станет мощностной, потому что, сгорая в цилиндрах наиболее быстро, создает максимальное давление на поршни, а значит высокую мощность. Правда, экономичность ухудшается на 15-20%. Если при сгорании на 1 кг бензина затрачивается от 13 до 15 кг воздуха смесь называют обогащенной, если менее 13 кг воздуха — богатой.

Дальнейшее обогащение 5-6 кг воздуха на 1 кг топлива приводит к тому, что способность смеси к воспламенению ухудшается настолько, что двигатель может остановиться. Если соотношение бензина и воздуха станет 1:5, то смесь не воспламеняется.

Если стремиться к экономичности, воздуха к смеси следует немного добавить — до 15-17 кг на 1 кг бензина. Такую смесь называют обедненной. Расход бензина становится минимальным, правда потеря мощности до 8-10% в сравнении с «мощностной». Если воздуха свыше 17 кг — смесь такого состава называют бедной. Смесь при соотношении бензина и воздуха 1:21 и более не воспламеняется.

Нельзя обеднять смесь беспредельно: когда воздуха больше 20 кг на 1 кг бензина, воспламенение от искры станет ненадежным и может прекратиться. Пока он работает на бедной смеси, нечего ждать достаточной мощности и, как ни странно, экономичности. Ведь тяговые характеристики машины ухудшаются настолько, что водитель вынужден ее «подхлестывать», переходя на пониженную передачу там, где легко ехал на высшей.На слишком богатой смеси, мощность мотора существенно снижается, а расход бензина увеличивается. Значит, богатая или, хуже, переобогащенная смесь — это избыток бензина или недостаток воздуха.

Для чего обедняют смесь

Смесь обеднять нужно в любом случае — это экономичность и токсичность при одинаковой мощности. Топливовоздушная смесь воспламеняется от искры в некотором диапазоне концентраций. Направленным движением воздуха в цилиндре и факелом впрыскиваемого топлива можно достичь локальной «богатой» смеси в районе свечи зажигания на всех режимах работы, что позволит ей надёжно воспламеняться. При этом суммарно смесь в цилиндре будет «бедной». На некоторых режимах (х.х., низкая нагрузка) нет необходимости в большой дозе топлива. Соответственно, нет необходимости и в большом количестве воздуха. Для таких режимов могут уменьшить количество воздуха, например, не открывая один из двух впускных клапанов или сильно искажая фазы их открытия/закрытия, создавая дополнительное сопротивление на выпуске.

На режимах больших нагрузок открывается все, что можно и врыскиваемое топливо закруживается воздухом в цилиндре так, что смесь у свечи будет локально богатой и, главное, будет обеспечено «плавное» воспламенение и сгорание порций топлива в этом вихре. Т.е. смесь предельно обедняется, но лишь вихри воздуха помогают её нормально сжигать.

Бензин

Бензин

Бензин – это самая легкая из жидких фракций нефти. Эту фракцию получают   в числе других в процессе возгонки нефти с целью получения различных нефтепродуктов. Обычный углеводородный состав бензина – молекулы длиной от C 5 до C 10 . Но бензины отличаются друг от друга, как по составу, так и по свойствам, ведь их получают не только как продукт первичной возгонки нефти. Бензин получают из попутного газа (газовый бензин) и из тяжелых фракций нефти (крекинг-бензин).

Бензин газовый представляет собой продукт переработки попутного нефтяного газа, содержащий предельные углеводороды с числом атомов углерода не менее трех. Различают стабильный (БГС) и нестабильный (БГН ) варианты газового бензина. БГС бывает двух марок – легкий (БЛ) и тяжелый (БТ). Применяется в качестве сырья в нефтехимии, на заводах органического синтеза, а также для компаундирования   автомобильного бензина (получения бензина с заданными свойствами путем его смешивания с другими бензинами).

Крекинг-бензин представляет собой продукт дополнительной переработки нефти. Обычная перегонка нефти дает всего 10–20% бензина. Для увеличения его количества более тяжелые или высококипящие фракции нагревают с целью разрыва больших молекул до размеров молекул, входящих в состав бензина. Это и называют крекингом. Крекинг мазута проводят при температуре 450–550°С.   Благодаря крекингу можно получать из нефти до 70% бензина.

Пиролиз – это крекинг при температурах 700–800°С. Крекинг и пиролиз позволяют довести суммарный выход бензина до 85%. Необходимо отметить, что первооткрывателем крекинга и создателем проекта промышленной установки в 1891 году был русский инженер В.Г.Шухов.

Бензины помимо автомобильной классификации по октановому числу имеют и другие свои разновидности и классификации, применяемые не только для производства моторного топлива, но и в промышленности, и даже в быту. Помимо уже перечисленных видов к ним относят: ББЦ (бензин для бытовых целей), абсорбент, олигомеризат, бензин вторичных процессов производства, БПЦ (бензин для промышленных целей) и некоторые другие.

Как получают бензин заданной марки ? Бензин различных марок — А-76, Н-80, Аи-92, Аи-95 и Аи-98 нефтеперерабатывающие заводы получают смешиванием компонентов, полученных в результате различных технологических процессов производства. Процесс компаудирования (смешивания) должен быть четко регламентирован, а продукт соответствовать ГОСТ, тогда на выходе получается бензин со стабильным и точным октановым числом.

Октановое число – показатель детонационных свойств моторного топлива. Бензин при этом сравнивается со смесью изооктана (условно принятого за 100 единиц) и нормального гептана (принятого за 0). Если октановое число бензина равно 95, то это означает, что он детонирует как смесь 95% изооктана и 5% гептана. Октановое число бензина после первичной перегонки нефти обычно не превышает 70. Для повышения качества низкосортных бензинов помимо компаудирования используют антидетонаторы (до 0,3%). К сожалению, до сих пор наиболее распространенной добавкой является тетраэтилсвинец Рb(C 2 H 5 ) 4 в смеси с C 2 H 5 Вr. Но при их горении образуется летучий бромид свинца, выбрасываемый в атмосферу. Для снижения выбросов свинца и, как следствие, воздействия на здоровье человека и среду, сегодня все чаще применяют другие антидетонаторы. Наиболее известный из них — эфир метил-трет-бутиловый (МТБЭ), который имеет массу преимуществ и лишен главного недостатка – огромной токсичности, свойственной свинцу.

Как определить октановое число? Методов определения реального октанового числа несколько:

  • Моторный метод . Придуман фирмой UNOCAL-76, которая является пионером производства Аи-76. Суть метода – определение детонации на однопоршневом двигателе при имитации довольно напряженной езды. Именно поэтому октановое число при таком определении может получиться слегка заниженным.
  • Исследовательский метод . Также проводится на однопоршневом двигателе, но без имитации напряженной езды. Октановое число при этом иногда получается чуть завышенным.
  • Хроматографический метод . Обычно используется в дополнение к другим методам для выявления содержания регламентированных примесей (например, бензола).

Сегодня всё чаще применяются портативные приборы измерения октанового числа размером с книжку. И это вполне оправдано для контроля качества продукции на местах их потребления, ведь подделки и некачественная продукция сегодня не редкость. При отступлении от нормального технологического процесса (например, при значительном повышении октанового числа только за счет присадок) бензин довольно часто становится нестабильным, т.е. изменяет со временем свое октановое число. Это особенно важно для машин, использующих бензин с октановым числом 95 или 98, т.к. снижение октанового числа со скоростью 0,5 за день может сильно навредить автомобилю. Поэтому заправляться желательно там, где контроль и гарантии качества продукции находятся на соответствующем уровне.

Бензин – его производство, маркировка, октановое число

Бензин – сложно вспомнить что-то более привычное для автомобилиста. Ежедневно автомобили сжигают сотни тысяч литров этого топлива, однако мало кто из автовладельцев всерьез задумывался над тем, как его производят, об особенностях состава топлива и других аспектах.

Немного терминологии

Как сообщают справочники, бензином именуется смесь лёгких углеводородов разных типов:

  1. Ароматические;
  2. Олефиновые;
  3. Парафиновые и прочие.

Эти углеводороды обладают горючими свойствами. Температура кипения смеси варьируется от 33 до 250 °С, что зависит от применяемых присадок.

Из чего делают бензин

Схема производства бензина

Горючее выпускается на мощностях нефтеперерабатывающих заводов. Сам производственный процесс очень сложен и делится на несколько циклов.

Сначала сырая нефть поступает на предприятие по трубопроводам, закачивается в огромные резервуары, после чего отстаивается. Далее начинается промывка нефти – в нее добавляется вода, а потом пропускается электрический ток. В итоге соли оседают на дно и стенки резервуаров.

Во время последующей атмосферно-вакуумной перегонки происходит подогрев нефти и ее деление на несколько типов. Осуществляются 2 этапа обработки:

  1. Вакуумная;
  2. Термическая.

По завершении процесса первичной переработки начинается каталитический риформинг, во время которого происходит очередное очищение бензина и извлечение фракций 92-го, 95-го и 98-го бензина.


Фото: aif.ru

Это процесс, который еще называют вторичной переработкой, включает 2 основных этапа:

  1. Крекинг – очистка нефти от примесей серы;
  2. Риформинг – наделение субстанции октановым числом.
Видео: Как делают бензин из нефти. Просто о сложном

По окончании данных этапов проходит контроль качества горючего, который занимает несколько часов.

Примечательно, что отечественные заводы (в большинстве) из 1 тонны нефти получают 240 литров бензина. Остальное приходится на газ, дизтопливо, мазут и авиационное горючее.

Что такое октановое число

Эта фраза известна очень многим, однако далеко не все знают, что именно означает данный термин и почему он так важен.

Октановое число – это способность топлива (в том числе и бензина) противостоять самопроизвольному возгоранию под давлением. Иначе говоря – его детонационная стойкость.

В процессе работы двигателя поршень сжимает топливно-воздушную смесь (такт сжатия). В этот момент, когда готовая смесь находится под давлением, может произойти ее самопроизвольное воспламенение еще до того, как свеча зажигания дала искру. В народе это явления называется одним словом – «детонация». Характерным признаком детонации являются шумы в двигателе – металлический звон.

Следовательно, чем выше октановое число, тем выше способность горючего сопротивляться детонации.

Маркировка бензина

На АЗС можно встретить самые разные наименования, не исключая и наиболее привычные для большинства автомобилистов. Обычно бензин маркируется литерами «А» и «АИ». Их расшифровка:

  1. «А» – это обозначение свидетельствует, что бензин автомобильный;
  2. «АИ» – буква «И» означает метод, которым было определено октановое число.

Существует 2 способа определения октанового числа – исследовательский (АИ) и моторный (АМ).

Исследовательский метод – он определяется путем тестирования топлива на одноцилиндровой силовой установке, при условии переменной степени сжатия, частоте вращения коленвала в 600 об/мин, угле опережения зажигания в 13° и температуре воздуха (всасываемого) в 52 °С. Эти условия аналогичны небольшим и средним нагрузкам.

Моторный метод – его определение осуществляется на аналогичной установке, однако прочие условия другие. Температура воздуха (всасываемого) составляет 149 °С, частота вращения коленвала равна 900 об/мин, а угол опережения зажигания переменный. Такой режим аналогичен высоким нагрузкам – езда в гору, работа мотора под нагрузкой и т. д.

Следовательно, число АМ всегда ниже, нежели АИ, а разница в показаниях свидетельствует о чувствительности горючего к работе силового агрегата в разных режимах. Примечательно, что в некоторых государствах на Западе октановое число определяется как среднее между значениями «АМ» и «АИ». В РФ же обозначается только более высокое значение «АИ», что и можно увидеть на всех АЗС.

Марки бензина

Чаще всего на отечественных заправочных станциях встречаются следующие обозначения:

  • Бензин АИ-98.  Отличается высоким октановым числом. В отличие от АИ-95, который производится в соответствии с ГОСТом, 98-й выпускается согласно ТУ 38.401-58-122-95, а также ТУ 38.401-58-127-95. В производстве этой марки бензина запрещено применение алкилсвинцовых антидетонаторов. Выпуск данного высокооктанового бензина осуществляется с использованием ряда компонентов – толуола, изопентана, изооктана и алкилбензина.
  • Экстра АИ-95 – бензин повышенного качества, что достигается путем применения присадок антидетонационного типа. Производится из дистиллятного сырья, бензина каталитического крекинга, с добавлением изопарафиновых элементов (ароматических) и газового бензина. В составе нет свинца, что обеспечивает высокое качество бензина.
  • АИ-95 – основное отличие от Экстра АИ-95 в концентрации свинца, которая выше на 30%;
  • АИ-93 – делится на 2 категории: этилированный и неэтилированный. Этилированное топливо выпускается на основе бензина каталитического риформинга (мягкий режим) с добавлением в его состав толуола и алкилбензина, а также бутан-бутиленовой фракции. Неэтилированный выпускается из того же бензина каталитического риформинга (жесткий режим), с добавлением бутан-бутиленовой фракции, алкилбензина и изопентана;
  • АИ-92 – наиболее распространенный на рынке бензин среднего качества, с содержанием присадок антидетонационного типа. Максимальная плотность – 0,77г/смА-923. Может быть как этилированным, так и неэтилированным;
  • АИ-91 – отличается содержанием присадок антидетонационного типа. Это неэтилированный бензин с ненормированной плотностью и определенным процентом свинца в составе;
  • А-80 – состав этого бензина аналогичен таковому у АИ-92. Максимальная плотность – 0,755г/смА-803;
  • А-76 – обычно применяется в сельском хозяйстве. Выпускается этилированный и неэтилированный А-76 с ненормируемой плотностью. В его составе содержатся присадки разных типов (антиокислительные и антидетонационные), прямогонный бензин, а также итоговые продукты коксования, пиролиза и крекинга (термического и каталитического).
Видео: Аи-92 или Аи-95? Разгон до 100км и расход топлива на Mazda Demio (Ford Festiva Mini Wagon)

Какой бензин заливать?

Многие ищут ответ на этот вопрос, чтобы ненароком не навредить двигателю. В данном случае все просто – требования к топливу указаны в инструкции по эксплуатации конкретного автомобиля, а также продублированы на обратной стороне лючка бензобака. Если производитель в качестве рекомендуемого топлива указал АИ-95, то заливать нужно именно его, а заправляться 92-м можно только на свой страх и риск. Однако стоит помнить, что в мануале и на этикетке может быть указано как октановое число, так и марка топлива.

Также в мануале могут быть записаны разные типы бензина. Например:

  1. АИ-92 – допустимый;
  2. АИ-95 – рекомендуемый;
  3. АИ-98 – для улучшения характеристик.

Как видно, заливать в бак необходимо только рекомендуемое производителем авто топливо. Впрочем, использование бензина с более высоким октановым числом никакого вреда двигателю не нанесет. Ведь чем выше октановое число, тем медленнее скорость горения и больше КПД топлива, что благотворно сказывается на отдаче двигателя, экономичности и других моментах. Как правило, прибавка в мощности и экономичности достигает 7%. Кроме того, современные машины комплектуются ЭБУ, которые учитывают качество горючего и его октановое число, корректируя настройки.

Это значит, что в бак современного автомобиля с атмосферным мотором необходимо заливать АИ-95 на качественной АЗС. В крайнем случае, допускается АИ-92. Также можно ориентироваться на степень сжатия – если она ниже 10 ед., можно заливать АИ-92. Если выше – только 95-й.

Что касается турбированных двигателей, то для них рекомендуемое топливо – АИ-98 или Экстра АИ-95, но  не АИ-92.

Можно ли смешивать бензин?

Этим вопросом задаются многие. В целом от смешивания горючего с разным октановым числом ничего катастрофического не произойдет, но только если смешивать рекомендуемый бензин с более высоким (по октановом числу). К примеру, рекомендуемый для машины 92-й смешать с 95-м. Однако понижать не нужно. Также стоит помнить, что плотность у бензина с разным октановым числом различается, так что его смешивания может вообще не произойти – горючее с более высоким октановым числом просто окажется вверху бака, а с низким внизу.

В целом, чтобы сохранить двигатель, рекомендуется не экономить, заправляться только на сертифицированных станциях крупных сетей (не франшиза) и лить в бак бензин с октановым числом, рекомендованным изготовителем (но не ниже).

Параметры качества бензинов – petrolcards.ru

Бензины как наиболее распространенное у нас в стране автомобильное топливо, должно удовлетворять ряду требований. Это различные нормы, предъявляемые со стороны автопроизводителей, нефтеперерабатывающих компаний, государственных контролирующих органов, экологических объединений. Использование топлива с высокими показателями качества – залог долгой службы автомобиля, его двигателя и систем, а также гарантия надежности и хороших ходовых характеристик.

Зачем нужны различные требования к топливу

Бензин характеризуют самые разные показатели, как химические, так и физические. Например, одно из самых важных – это октановое число. Эта характеристика в бензинах в первую очередь определяет их стоимость, что немаловажно для потребителя.

Производители двигателей внутреннего сгорания (ДВС) создают их под определенное топливо. И здесь одним из важнейших показателей является октановое число в бензине. Длительное и регулярное применение топлива с повышенным или пониженным содержанием изооктана существенно снижает срок службы двигателя и может в любой момент стать причиной его поломки.

Еще один немаловажный аспект качества бензинов – их безопасность. Ведь именно октановое число – показатель детонационной безопасности бензинов. Поэтому строгое соблюдение установленных производственных норм со стороны нефтеперерабатывающих предприятий – необходимое условие безопасной транспортировки, хранения, эксплуатации топлива.

Свои нормативы к качеству бензина предъявляют и различные природоохранные организации (как отечественные, так и международные). Эти требования устанавливают содержание опасных примесей и соединений в выхлопе. Количество этих продуктов сгорания напрямую зависит от химического и фракционного состава бензинов, наличия присадок и примесей.

Таким образом, показатели качества бензинов важны многим сторонам: государству, производителям, продавцам, потребителям. Ведь в конечном итоге качество топлива сказывается практически на всех сферах нашей жизни – от финансовой до экологической.

Основные качества бензинов

Как любая жидкая смесь с разнородным физико-химическим составом, бензиновое топливо может оцениваться по самым разным параметрам. Их определяют требования ГОСТов и другой нормативной документации, действующей на территории РФ и стран Таможенного союза. Согласно им, существуют пять основных критериев качества бензинов:

  • Фракционный состав топлива определенной марки.
  • Стабильность физико-химического состава бензинов.
  • Испаряемость и связанные с ней вязкость и температура замерзания.
  • Детонационная стойкость (октановое число).
  • Склонность к образованию нагара, определяющая наличие примесей присадок. 

Следует отметить, что практически все эти характеристики (а также множество дополнительных) тесно взаимосвязаны. Остановимся на этих параметрах, имеющих самое непосредственное отношение к качеству бензина, подробнее.

Фракционный состав

Нефть – это смесь самых разных углеводородов и множества других примесей. Бензин, как продукт перегонки нефти, также состоит из разных по плотности и химическому составу фракций. Их качественно-количественные характеристики определяют поведение бензинов в различных условиях окружающей среды и функциональные показатели двигателя при работе. Чем больше легких фракций в составе, тем при более низких температурах может использоваться топливо без какого-либо ущерба для ДВС и автомобиля. Поэтому, например, летние и зимние марки бензина имеют различный состав. Также содержание той или иной фракции в горючем влияет на время прогрева двигателя, стабильность его работы, износ поршневой группы.

Химическая стабильность

Всем бензинам присуще свойство окисления под влиянием различных условий окружающей среды. Это происходит как при их хранении, так и в процессе работы двигателя. Чем дольше бензин может сохранять свои первоначальные характеристики (вне зависимости от условий окружающей среды), тем лучше. Быстрое же окисление топлива и снижение его октанового числа говорит о наличии дешевых присадок и примесей, нестабильности бензина. Он не только неспособен долго храниться (даже при соблюдении требований производителя), но и склонен к образованию нагара на внутренних поверхностях двигателя, в топливной и выхлопной системах. Химическая стабильность рассчитывается с учетом содержания смол и других легко окисляемых элементов в составе топлива. 

Испаряемость

Этим параметром определяется способность топлива к фазовому переходу из жидкости в газ. Ведь именно бензиновые пары в смеси с воздухом образуют топливную смесь, которая сгорает при работе двигателя. Чем больше легких фракций содержит бензин, тем выше его испаряемость и ниже температура запустевания (замерзания). Дополнительно для определения испаряемости используется такая характеристика, как давление насыщенных паров (ДНП).

Детонационная безопасность

Это еще одна значимая характеристика качества бензинов, определяемая способностью топлива не взрываться при сжатии. Это происходит из-за слишком быстрого воспламенения топлива. Нормальная скорость распространения пламени в воздушно-бензиновой смеси не должна превышать 20-30 м/с. Если она выше в десятки и сотни раз, то происходит реактивное сгорание с образованием детонационной волны. Это приводит к повышенной нагрузке на элементы поршневой группы и перегрев двигателя, чреватый его выходом из строя.

Образование нагара

Обычно это говорит о том, что топливная смесь сгорает не полностью, а значит, бензин содержит различные примеси, присадки, загрязнения. Все это отрицательно сказывается на функциональности и работоспособности двигателя. Кроме того, такой бензин имеет повышенный расход. Образование нагара приводит к падению мощности, снижению срока службы движущихся элементов поршневой группы и может привести к серьезным поломкам.

Экологические качества

Существует также классификация бензинов по экологическим показателям. Чем выше характеристики топлива, тем полнее оно сгорает и, соответственно, меньше вредных веществ попадает в атмосферу. Наиболее опасны в этом плане сернистые и ароматические соединения, которые может содержать бензин. Их агрессивное воздействие сказывается также на состоянии топливной и выхлопной систем автомобиля.

Выбирая бензин для заправки, следует максимально внимательно относиться к его характеристикам, от них зависит срок службы двигателя и авто. Ведь незначительная экономия на топливе более низкого качества может обернуться серьезными поломками, требующими капитального ремонта.

Лучшие умы уже ищут более экономичные заменители бензина

Цены на топливном рынке растут стремительно, и лучшие умы ищут более экономичные заменители бензина. Особенно пристальное внимание привлекают новые технологии на основе этанола.

США и Бразилия с 1970-х производят заменители бензина на этаноле, получаемом после переработки растительного сырья.  Европа тестирует топливные спирты с начала 2000-х, и в наши дни дешевые заменители значительно потеснили бензин во всех странах ЕС, особенно в Швеции, Испании, Германии.

В России тоже велись вялые разработки в этом направлении, но пока нефть была дешевой, не было и стимулов к открытиям. Бешеный рост цен на бензин в последние годы стал таким стимулом, и недавно специалисты Всероссийского НИИ переработки нефти объявили о создании нового вида топлива, дешевого, способного полностью заменить бензин. Это смесь на основе биоэтанола (до 40%) и продуктов нефтепереработки.

Один из авторов проекта Михаил Ершов, руководитель отдела автомобильных и авиационных бензинов НИИ переработки нефти, рассказал, что их топливо не так агрессивно и губительно для топливной системы автомобиля, как зарубежные аналоги, благодаря низкому содержанию смол и серы. Еще один фактор чистоты – «кислородосодержащее соединение способствует тому, что в отработавших газах будет меньше несгоревших углеводородов».

Смесь на основе этилового спирта может значительно удешевить эксплуатацию автомобилей со стандартным мотором. Особенно он может пригодиться в тех российских регионах, где размещено производство спирта, среди них лидеры – Татарстан, Чувашия, Северная Осетия и центральная Россия. Единственный подвох ожидается со стороны акцизов на топливный спирт.

Кроме того, что он реально дешевле бензина, этанол еще и намного экологичнее. Если брать весь цикл существования, от этапа производства до выброса в атмосферу через выхлопную трубу, бензин значительно опаснее этанола в плане накопления в атмосфере парниковых газов. Как показывает полувековой опыт США и Бразилии, этанол меньше загрязняет окружающую среду, воздух становится чище как минимум на 20%.

бензин | Определение, использование и факты

Бензин , также обозначается как бензин , также обозначается как газ или бензин , смесь летучих, легковоспламеняющихся жидких углеводородов, полученных из нефти и используемых в качестве топлива для двигателей внутреннего сгорания. Он также используется в качестве растворителя масел и жиров. Первоначально побочный продукт нефтяной промышленности (керосин был основным продуктом), бензин стал предпочтительным автомобильным топливом из-за его высокой энергии сгорания и способности легко смешиваться с воздухом в карбюраторе.

Подробнее по этой теме

переработка нефти: Бензин

Автомобильный бензин или бензин должен соответствовать трем основным требованиям. Он должен обеспечивать равномерный режим горения, легко запускаться в холодную погоду, …

Бензин сначала производился путем дистилляции, когда просто отделялись летучие, более ценные фракции сырой нефти. Более поздние процессы, предназначенные для увеличения выхода бензина из сырой нефти, расщепляли большие молекулы на более мелкие с помощью процессов, известных как крекинг.Термический крекинг с использованием тепла и высокого давления был введен в 1913 году, но после 1937 года был заменен каталитическим крекингом, применением катализаторов, которые облегчают химические реакции с образованием большего количества бензина. Другие методы, используемые для улучшения качества бензина и увеличения его поставок, включают полимеризацию, преобразование газообразных олефинов, таких как пропилен и бутилен, в более крупные молекулы в диапазоне бензина; алкилирование, процесс объединения олефина и парафина, такого как изобутан; изомеризация, превращение углеводородов с прямой цепью в углеводороды с разветвленной цепью; и риформинг с использованием тепла или катализатора для перестройки молекулярной структуры.

Бензин — это сложная смесь сотен различных углеводородов. Большинство из них насыщены и содержат от 4 до 12 атомов углерода на молекулу. Бензин, используемый в автомобилях, в основном кипит от 30 ° до 200 ° C (от 85 ° до 390 ° F), смесь регулируется в зависимости от высоты и времени года. Авиационный бензин содержит меньшие доли как менее летучих, так и более летучих компонентов, чем автомобильный бензин.

Антидетонационные характеристики бензина — его способность противостоять детонации, которая указывает на то, что сгорание паров топлива в цилиндре происходит слишком быстро для повышения эффективности — выражаются в октановом числе.Добавление тетраэтилсвинца для замедления горения было начато в 1930-х годах, но было прекращено в 1980-х годах из-за токсичности соединений свинца, выделяемых с продуктами сгорания. Другие добавки к бензину часто включают детергенты для уменьшения образования отложений в двигателе, противообледенительные агенты для предотвращения остановки двигателя из-за обледенения карбюратора и антиоксиданты (ингибиторы окисления), используемые для уменьшения образования «смол».

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

В конце 20 века рост цен на нефть (и, следовательно, на бензин) во многих странах привел к увеличению использования бензина, который представляет собой смесь 90 процентов неэтилированного бензина и 10 процентов этанола (этилового спирта). Бензохол хорошо горит в бензиновых двигателях и является желательным альтернативным топливом для определенных применений из-за возобновляемости этанола, который можно производить из зерна, картофеля и некоторых других растительных веществ. См. Также нефть.

3.8: Бензин — более глубокий взгляд

Нефть, которую выкачивают из-под земли, представляет собой сложную смесь нескольких тысяч органических соединений, включая алканы с прямой цепью, циклоалканы, алкены и ароматические углеводороды с четырьмя или несколькими сотнями атомов углерода. Идентичность и относительное количество компонентов различаются в зависимости от источника — сырая нефть Техаса несколько отличается от сырой нефти Саудовской Аравии. Фактически, анализ нефти из разных месторождений может дать «отпечаток пальца» каждого, что полезно для отслеживания источников разлитой сырой нефти.Например, сырая нефть Техаса «сладкая», что означает, что она содержит небольшое количество серосодержащих молекул, тогда как сырая нефть Саудовской Аравии является «кислой», что означает, что она содержит относительно большое количество серосодержащих молекул.

Бензин

Нефть превращается в полезные продукты, такие как бензин, в три этапа: дистилляция, крекинг и риформинг. Вспомните из главы 1 «Введение в химию», что дистилляция разделяет соединения на основе их относительной летучести, которая обычно обратно пропорциональна их температурам кипения.Часть (а) на рисунке 3.8.1 показывает разрез колонны, используемой в нефтяной промышленности для разделения компонентов сырой нефти. Нефть нагревается примерно до 400 ° C (750 ° F) и становится смесью жидкости и пара. Эта смесь, называемая сырьем, вводится в рафинировочную башню. Наиболее летучие компоненты (с самыми низкими температурами кипения) конденсируются в верхней части колонны, где она более холодная, в то время как менее летучие компоненты конденсируются ближе к ее дну. Некоторые материалы настолько нелетучие, что собираются на дне, совсем не испаряясь.Таким образом, состав конденсирующейся жидкости на каждом уровне разный. Эти разные фракции, каждая из которых обычно состоит из смеси соединений с одинаковым числом атомов углерода, отбираются отдельно. В части (b) на рисунке 3.8.1 показаны типичные фракции, собранные на нефтеперерабатывающих заводах, количество содержащихся в них атомов углерода, их точки кипения и их конечное использование. Эти продукты варьируются от газов, используемых в природном газе и газе в баллонах, до жидкостей, используемых в горюче-смазочных материалах, до липких твердых веществ, используемых в качестве смолы на дорогах и крышах.

Рисунок 3.8.1: Перегонка нефти. (а) Это схема дистилляционной колонны, используемой для разделения нефтяных фракций. (б) Нефтяные фракции конденсируются при разных температурах, в зависимости от количества атомов углерода в молекулах, и выводятся из колонны. Наиболее летучие компоненты (с самыми низкими точками кипения) конденсируются в верхней части колонны, а наименее летучие (с самыми высокими температурами кипения) конденсируются в нижней части.

Экономика нефтепереработки сложна. Например, рыночный спрос на керосин и смазочные материалы намного ниже, чем спрос на бензин, но все три фракции получают из ректификационной колонны в сопоставимых количествах. Кроме того, большинство бензинов и реактивного топлива представляют собой смеси с тщательно контролируемым составом, который не может изменяться, как их исходное сырье. Чтобы сделать нефтепереработку более прибыльной, менее летучие фракции с более низкой стоимостью превращаются в более летучие смеси с более высокой стоимостью, состав которых тщательно контролируется.Первым процессом, используемым для осуществления этого преобразования, является крекинг, при котором более крупные и тяжелые углеводороды в керосине и фракциях с более высокой точкой кипения нагреваются до температур до 900 ° C. Высокотемпературные реакции вызывают разрыв углерод-углеродных связей, в результате чего соединения превращаются в более легкие молекулы, аналогичные молекулам бензиновой фракции. Таким образом, при крекинге алкан с прямой цепью с числом атомов углерода, соответствующим керосиновой фракции, превращается в смесь углеводородов с числом атомов углерода, соответствующим более легкой бензиновой фракции.Второй процесс увеличения количества ценных продуктов называется риформингом; это химическое превращение алканов с прямой цепью либо в алканы с разветвленной цепью, либо в смеси ароматических углеводородов. Использование металлов, таких как платина, вызывает необходимые химические реакции. Смеси продуктов крекинга и риформинга разделяют фракционной перегонкой.

Октановое число

Качество топлива определяется его октановым числом, которое является мерой его способности гореть в двигателе внутреннего сгорания без детонации или звона.Детонация и звон сигнализируют о преждевременном сгорании (рисунок 3.8.2), которое может быть вызвано либо неисправностью двигателя, либо слишком быстро сгорающим топливом. В любом случае смесь бензина с воздухом детонирует в неправильной точке цикла двигателя, что снижает выходную мощность и может повредить клапаны, поршни, подшипники и другие компоненты двигателя. Различные составы бензина разработаны для обеспечения смеси углеводородов, которая с наименьшей вероятностью вызовет детонацию или звон в двигателе данного типа, работающем на определенном уровне.

Рисунок 3.8.2 : Сжигание бензина в двигателе внутреннего сгорания. (а) Обычно топливо воспламеняется свечой зажигания, и горение равномерно распространяется наружу. (b) Бензин с октановым числом, слишком низким для двигателя, может преждевременно воспламениться, что приведет к неравномерному горению, вызывающему стук и звон.

Октановая шкала была установлена ​​в 1927 году с использованием стандартного испытательного двигателя и двух чистых соединений: н-гептана и изооктана (2,2,4-триметилпентана).н-Гептан, вызывающий сильное детонационное сгорание, получил октановое число 0, тогда как изооктану, очень плавному горючему топливу, было присвоено октановое число 100. Химики присваивают октановое число разным смесям бензина сжигание образца каждого из них в испытательном двигателе и сравнение наблюдаемой детонации с количеством детонации, вызванной конкретными смесями н-гептана и изооктана. Например, октановое число смеси, состоящей из 89% изооктана и 11% н-гептана, является просто средним октановым числом компонентов, взвешенных по относительным количествам каждого из них в смеси.Переводя проценты в десятичные дроби, получаем октановое число смеси:

\ [0.89 (100) + 0.11 (0) = 89 \ tag {3.8.1} \]

Как показано на рис. 3.8.3, многие соединения, которые сейчас доступны, имеют октановое число выше 100, что означает, что они являются лучшим топливом, чем чистый изооктан. Кроме того, были разработаны антидетонационные агенты, также называемые усилителями октанового числа. Одним из наиболее широко используемых в течение многих лет был тетраэтилсвинец [(C 2 H 5 ) 4 Pb], который при концентрации примерно 3 г / галлон дает увеличение октанового числа на 10–15 пунктов.Однако с 1975 года соединения свинца были прекращены в качестве добавок к бензину, поскольку они очень токсичны. Вместо них были разработаны другие усилители, такие как метил-трет-бутиловый эфир (МТБЭ). Они сочетают в себе высокое октановое число с минимальной коррозией деталей двигателя и топливной системы. К сожалению, утечка бензина, содержащего МТБЭ, из подземных резервуаров для хранения приводит к загрязнению грунтовых вод в некоторых местах, что приводит к ограничениям или прямому запрету на использование МТБЭ в определенных областях.В результате увеличивается использование альтернативных усилителей октанового числа, таких как этанол, которые можно получить из возобновляемых источников, таких как кукуруза, сахарный тростник и, в конечном итоге, стебли кукурузы и травы.

Рисунок 3.8.3 : Октановые числа некоторых углеводородов и обычных добавок

3.8: Бензин — более внимательный взгляд

Нефть, которую выкачивают из-под земли в различных местах по всему миру, представляет собой сложную смесь нескольких тысяч органических соединений, в том числе алканов с прямой цепью, циклоалканов, алкенов и ароматических углеводородов от четырех до четырех. несколько сотен атомов углерода.Идентичность и относительное содержание компонентов различаются в зависимости от источника. Таким образом, сырая нефть Техаса несколько отличается от сырой нефти Саудовской Аравии. Фактически, анализ нефти из разных месторождений может дать «отпечаток пальца» каждого, что полезно для отслеживания источников разлитой сырой нефти. Например, сырая нефть Техаса «сладкая», что означает, что она содержит небольшое количество серосодержащих молекул, тогда как сырая нефть Саудовской Аравии является «кислой», что означает, что она содержит относительно большое количество серосодержащих молекул.

Бензин

Нефть превращается в полезные продукты, такие как бензин, в три этапа: дистилляция, крекинг и риформинг. Вспомните из главы 1 «Введение в химию», что дистилляция разделяет соединения на основе их относительной летучести, которая обычно обратно пропорциональна их температурам кипения. Часть (а) на рисунке 3.8.1 показывает разрез колонны, используемой в нефтяной промышленности для разделения компонентов сырой нефти. Нефть нагревается примерно до 400 ° C (750 ° F), при этой температуре он становится смесью жидкости и пара.Эта смесь, называемая сырьем, вводится в рафинировочную башню. Наиболее летучие компоненты (с самыми низкими температурами кипения) конденсируются в верхней части колонны, где она более холодная, в то время как менее летучие компоненты конденсируются ближе к ее дну. Некоторые материалы настолько нелетучие, что собираются на дне, совсем не испаряясь. Таким образом, состав конденсирующейся жидкости на каждом уровне разный. Эти разные фракции, каждая из которых обычно состоит из смеси соединений с одинаковым числом атомов углерода, отбираются отдельно.В части (b) на рисунке 3.8.1 показаны типичные фракции, собранные на нефтеперерабатывающих заводах, количество содержащихся в них атомов углерода, их точки кипения и их конечное использование. Эти продукты варьируются от газов, используемых в природном газе и газе в баллонах, до жидкостей, используемых в горюче-смазочных материалах, до липких твердых веществ, используемых в качестве смолы на дорогах и крышах.

Рисунок 3.8.1: Перегонка нефти. (а) Это схема дистилляционной колонны, используемой для разделения нефтяных фракций.(б) Нефтяные фракции конденсируются при разных температурах, в зависимости от количества атомов углерода в молекулах, и выводятся из колонны. Наиболее летучие компоненты (с самыми низкими точками кипения) конденсируются в верхней части колонны, а наименее летучие (с самыми высокими температурами кипения) конденсируются в нижней части.

Экономика нефтепереработки сложна. Например, рыночный спрос на керосин и смазочные материалы намного ниже, чем спрос на бензин, но все три фракции получают из ректификационной колонны в сопоставимых количествах.Кроме того, большинство бензинов и реактивного топлива представляют собой смеси с тщательно контролируемым составом, который не может изменяться, как их исходное сырье. Чтобы сделать переработку нефти более прибыльной, менее летучие фракции с более низкой стоимостью должны быть преобразованы в более летучие смеси с более высокой стоимостью, состав которых тщательно контролируется. Первым процессом, используемым для осуществления этого преобразования, является крекинг, при котором более крупные и тяжелые углеводороды в керосине и фракциях с более высокой точкой кипения нагреваются до температур до 900 ° C.Высокотемпературные реакции вызывают разрыв углерод-углеродных связей, в результате чего соединения превращаются в более легкие молекулы, аналогичные молекулам бензиновой фракции. Таким образом, при крекинге алкан с прямой цепью с числом атомов углерода, соответствующим керосиновой фракции, превращается в смесь углеводородов с числом атомов углерода, соответствующим более легкой бензиновой фракции. Второй процесс увеличения количества ценных продуктов называется риформингом; это химическое превращение алканов с прямой цепью либо в алканы с разветвленной цепью, либо в смеси ароматических углеводородов.Использование металлов, таких как платина, вызывает необходимые химические реакции. Смеси продуктов крекинга и риформинга разделяют фракционной перегонкой.

Октановое число

Качество топлива определяется его октановым числом, которое является мерой его способности гореть в двигателе внутреннего сгорания без детонации или звона. Детонация и звон сигнализируют о преждевременном сгорании (рисунок 3.8.2), которое может быть вызвано либо неисправностью двигателя, либо слишком быстро сгорающим топливом.В любом случае смесь бензина с воздухом детонирует в неправильной точке цикла двигателя, что снижает выходную мощность и может повредить клапаны, поршни, подшипники и другие компоненты двигателя. Различные составы бензина разработаны для обеспечения смеси углеводородов, которая с наименьшей вероятностью вызовет детонацию или звон в двигателе данного типа, работающем на определенном уровне.

Рисунок 3.8.2 : Сжигание бензина в двигателе внутреннего сгорания.(а) Обычно топливо воспламеняется свечой зажигания, и горение равномерно распространяется наружу. (b) Бензин с октановым числом, слишком низким для двигателя, может преждевременно воспламениться, что приведет к неравномерному горению, вызывающему стук и звон.

Октановая шкала была установлена ​​в 1927 году с использованием стандартного испытательного двигателя и двух чистых соединений: н-гептана и изооктана (2,2,4-триметилпентана). н-Гептану, который вызывает сильное детонирование при горении, было присвоено октановое число 0, тогда как изооктану, очень плавному горючему топливу, было присвоено октановое число 100.Химики присваивают октановое число различным смесям бензина, сжигая образец каждой из них в испытательном двигателе и сравнивая наблюдаемую детонацию с количеством детонации, вызванной конкретными смесями н-гептана и изооктана. Например, октановое число смеси, состоящей из 89% изооктана и 11% н-гептана, является просто средним октановым числом компонентов, взвешенных по относительным количествам каждого из них в смеси. Переводя проценты в десятичные дроби, получаем октановое число смеси:

\ [0.89 (100) + 0.11 (0) = 89 \ tag {3.8.1} \]

Как показано на рис. 3.8.3, многие соединения, которые сейчас доступны, имеют октановое число выше 100, что означает, что они являются лучшим топливом, чем чистый изооктан. Кроме того, были разработаны антидетонационные агенты, также называемые усилителями октанового числа. Одним из наиболее широко используемых в течение многих лет был тетраэтилсвинец [(C 2 H 5 ) 4 Pb], который при концентрации примерно 3 г / галлон дает увеличение октанового числа на 10–15 пунктов. Однако с 1975 года соединения свинца были прекращены в качестве добавок к бензину, поскольку они очень токсичны.Вместо них были разработаны другие усилители, такие как метил-трет-бутиловый эфир (МТБЭ). Они сочетают в себе высокое октановое число с минимальной коррозией деталей двигателя и топливной системы. К сожалению, утечка бензина, содержащего МТБЭ, из подземных резервуаров для хранения приводит к загрязнению грунтовых вод в некоторых местах, что приводит к ограничениям или прямому запрету на использование МТБЭ в определенных областях. В результате увеличивается использование альтернативных усилителей октанового числа, таких как этанол, которые можно получить из возобновляемых источников, таких как кукуруза, сахарный тростник и, в конечном итоге, стебли кукурузы и травы.

Рисунок 3.8.3 : Октановые числа некоторых углеводородов и обычных добавок

Бензин


2

Рецепт, готовый к использованию по превращению отходов завода в бензин

24 сентября 2018 г. — Инженеры Bioscience уже знали, как производить бензин в лаборатории из растительных отходов, таких как опилки. Теперь исследователи разработали как бы дорожную карту для промышленной целлюлозы…


Исследователи передовые технологии топливных элементов

8 июня 2020 г. — Исследователи сделали важный шаг вперед в области твердооксидных топливных элементов (ТОТЭ), которые могут сделать высокоэффективные и экологически чистые технологии более жизнеспособной альтернативой бензиновым двигателям внутреннего сгорания …


Чистые топливные элементы могут быть достаточно дешевыми, чтобы заменить бензиновые двигатели в транспортных средствах

8 мая 2019 г. — Развитие топливных элементов с нулевым уровнем выбросов может сделать технологию достаточно дешевой, чтобы заменить традиционные бензиновые двигатели…


Усовершенствованный свет показывает, как ведут себя разные виды биотоплива

12 января 2021 г. — Транспортные средства стали более эффективными и сложными, но их топливо не обязательно изменилось вместе с ними. Исследователи полны решимости определить более чистое горение и возобновляемые источники энергии …


Исследователи сделали важный шаг вперед в производстве важного биотоплива

27 апреля 2020 г. — Международное исследовательское сотрудничество сделало важный шаг на пути к коммерчески жизнеспособному производству биобутанола, спирта, имеющего большой потенциал в качестве топлива для бензиновых двигателей…


Инженеры разрабатывают концепцию гибридных тяжелых грузовиков

8 апреля 2019 г. — Исследователи разработали новый способ питания тяжелых грузовиков, который может значительно снизить загрязнение окружающей среды, повысить эффективность и снизить или даже полностью устранить выбросы парниковых газов …


Доказано, что новое топливо на основе соли совместимо с двухрежимными ракетными двигателями

9 сентября 2019 г. — Чтобы двухрежимные ракетные двигатели работали успешно, топливо должно работать как в системах сгорания, так и в электрических силовых установках.Исследователи теперь использовали пропеллент на основе соли, который уже был …


Новый катализатор превращает аммиак в инновационное чистое топливо

27 апреля 2018 г. — Аммиак (Nh4) в последние годы привлек внимание как безуглеродное топливо, которое не выделяет углекислый газ. Для использования в качестве топлива он должен иметь более низкую температуру сгорания и производить только …


Квантовые двигатели с запутыванием в качестве топлива?

19 октября 2020 г. — Это все еще больше научная фантастика, чем научный факт, но идеальная энергоэффективность может быть на шаг ближе благодаря новым исследованиям…


Собаки могут обнаруживать следы бензина вплоть до одной миллиардной чайной ложки

12 мая 2020 г. — Согласно новому исследованию химиков, дрессированные собаки могут обнаруживать ускорители возгорания, такие как бензин, в количествах, составляющих всего одну миллиардную чайной ложки. Исследование дает самую низкую оценку …


Что такое бензин и как бензин производится из сырой нефти

«Что такое бензин?» это вопрос с очень коротким ответом: углеводороды.«Какие углеводороды содержатся в бензине?» это вопрос, на который требуется значительно более длинный ответ.

Углеводороды составляют большую часть вещества ископаемого топлива и биотоплива. Что еще более важно, углеводороды — это компоненты — вещества, которые делают ископаемое топливо и биотопливо ценными. Углеводороды являются источником энергии в бензине, ископаемом топливе и биотопливе, которые воспламеняются, сгорают и горят: окисляются.

Бензин — это смесь углеводородов, выделяющих энергию при окислении.Поскольку углеводороды выделяют энергию при насыщении кислородом, углеводороды являются самым ценным источником энергии на планете, по крайней мере, в настоящее время. Из всех ископаемых видов топлива бензин, безусловно, является наиболее широко потребляемым.

Типы ископаемого топлива, определяемые смесями различных углеводородов

Помимо углеводородов, являющихся источником энергии из ископаемого топлива, углеводороды также являются причиной существования различных видов ископаемого топлива. Так же, как существуют разные виды ископаемого топлива и биотоплива, существуют разные типы углеводородов.Качество каждой категории, класса и конкретного углеводорода определяет типы ископаемого топлива. Бензин, дизельное топливо, пропан, метан, реактивное топливо, бункерное топливо, мазут, этанол и биодизель — все они имеют различную комбинацию углеводородов.

Но хотя существуют разные категории, классы и определенные углеводороды, каждый углеводород состоит только из двух типов атомов.

Как следует из названия, углеводороды состоят из связей между атомами водорода и углерода. Связи между углеродом и водородом определяют категорию, класс и тип углеводородов.То же самое и с количеством связей атомов углерода и водорода в молекуле или цепочке молекул.

Подобно тому, как разные комбинации углеводородов определяют тип топлива, разные комбинации углеродных и водородных связей определяют типы углеводородов.

Тип ископаемого топлива, определяемый размером углеводородов и отношением углерода к водороду

Категория, класс и сочетание углеводородов определяют тип ископаемого топлива. Тип ископаемого топлива является мерой двух определителей: веса топлива и плотности топлива.Вес и плотность топлива — это разные измерения качества топлива, а вес и плотность топлива являются следствием одной переменной с двумя переменными.

Во-первых, вес и плотность топлива зависят от размера молекулы углеводорода. В расширении структура углеводородной молекулы цепи играет роль в весе и плотности. Размер, длина и структура углеводородов определяют вес и плотность ископаемого топлива.

Во-вторых, вес топлива и плотность энергии являются следствием отношения углерода к водороду в молекулах углеводородов в ископаемом топливе.Чем больше количество атомов углерода по отношению к атомам водорода, тем больше вес и плотность углеводорода.

Размер и длина углеводородов, масса ископаемого топлива и плотность энергии

Чем крупнее и длиннее молекулы углеводородов в ископаемом топливе, тем тяжелее ископаемое топливо. Чем меньше и короче, тем легче ископаемое топливо. Как и следовало ожидать, ископаемое топливо в газовом состоянии, такое как метан и пропан, имеет небольшие короткие молекулы и молекулярные цепочки.Тяжелые ископаемые виды топлива, такие как дизельное и бункерное топливо, содержат большие длинноцепочечные молекулы углеводородов. Бензин — это средний вид ископаемого топлива.

Кроме того, количество атомов водорода, присоединенных к молекулам углерода в основной цепи углеводорода, также играет роль в весе и плотности энергии. Молекулы углерода тяжелее молекул водорода — каждый элемент периодической таблицы тяжелее водорода. Таким образом, чем больше количество атомов углерода по отношению к атомам водорода в углеводороде, тем тяжелее углеводород.

Итак, самые тяжелые и богатые энергией углеводороды — это те, которые имеют размер и плотность. Самые большие и длинные цепи углеводородных молекул имеют наибольший вес и плотность. И те, у которых есть самое высокое соотношение углерода к водороду, имеют наибольший вес и плотность.

Молекулярная структура бензина

Бензин имеет больший вес и плотность, чем ископаемое топливо в газообразном состоянии, такое как природный газ — метан — и пропан. Ископаемые виды топлива, такие как дизельное топливо и керосин, имеют больший вес и плотность, чем бензин.Основная часть бензина состоит из углеводородов с «от 4 до 12 атомов углерода на молекулу (обычно обозначаемых как C4-C12)».

Что касается размера и длины цепи молекул, а также отношения углерода к водороду, бензин находится где-то в середине спектра ископаемых видов топлива.

Две категории углеводородов в бензине

В бензине содержатся сотни углеводородов. Но каждый тип углеводородов попадает в одну из двух категорий: насыщенные и ненасыщенные.

Насыщенные углеводороды являются наиболее стабильными. Насыщенные углеводороды — это углеводороды с углеродной основой, в которых нет места, чтобы принять больше атомов водорода или углерода. Есть три типа насыщенных углеводородов. Они могут быть линейными, разветвленными или петлевыми. Разветвленные насыщенные углеводороды, которые замкнуты в петлю, имеют название , циклоалканы .

Подобно насыщенным углеводородам, ненасыщенные углеводороды могут быть линейными, разветвленными или петлевыми. Но ненасыщенные углеводороды легко могут взять на себя дополнительные атомы водорода.В результате ненасыщенные углеводороды нестабильны.

Благодаря своей стабильности, насыщенные углеводороды горят чистым пламенем. Ненасыщенные углеводороды горят дымным пламенем и могут быть токсичными.

Типы насыщенных углеводородов

В бензине есть три типа предельных углеводородов: алканы, изосодержащие углеводороды и циклические углеводороды. Алканы — это насыщенные углеводороды с непрерывной линейной цепочкой атомов углерода, которая не разветвляется. К каждому атому углерода может присоединяться до трех атомов водорода.

Изоуглеводороды — это насыщенные углеводородные цепи с разветвлениями. Вдоль линейной цепи атомов углерода в углеводороде до трех атомов углерода могут присоединяться к каждому атому углерода в цепи. А к атомам углерода, присоединенным к атомам углерода в цепи, могут присоединяться атомы водорода.

Третий вид предельных углеводородов в бензине — циклические. Циклический насыщенный углеводород — это такой углеводород, в котором два последних атома углерода на концах углеводородной цепи образуют петлю.Например, циклогексан представляет собой замкнутую насыщенную углеводородную цепь, содержащую шесть атомов углерода.

Классы насыщенных и ненасыщенных углеводородов в бензине

Две категории углеводородов — насыщенные и ненасыщенные — состоят из двух классов каждая. «Парафины и нафтены классифицируются как насыщенные углеводороды, потому что к ним нельзя добавлять водород без разрушения углеродной основы. Ароматические соединения и олефины классифицируются как непредельные углеводороды.Они содержат двойные связи углерод-углерод или ароматические связи, которые можно преобразовать в одинарные, добавив атомы водорода к соседним атомам углерода ».

Наиболее распространенные углеводороды в бензине

В каждом ископаемом топливе содержится от 500 до 1000 видов углеводородов. «Бензин — это сложная смесь из более чем 500 углеводородов, которая может содержать от 5 до 12 атомов углерода. Соединения типа алканов, как с прямой, так и с разветвленной цепью, присутствуют в наибольших количествах. Также присутствуют меньшие количества циклических и ароматических соединений алканов.«В любом ископаемом топливе есть разное количество разных углеводородов. Отношение одного типа углеводородов к другому определяет тип ископаемого топлива.

Проще говоря, «бензин содержит в основном алканы (парафины), алкены (олефины) и ароматические углеводороды», согласно Advanced Motor Fuels.

Алканы (парафины) в бензине

Алканы — углеводороды, наиболее распространенные в бензине, представляют собой насыщенные углеводороды с большими запасами энергии. «Алканы — это химические соединения, состоящие только из элементов углерода (C) и водорода (H), связанных исключительно одинарными связями.Каждый атом углерода образует 4 связи (связи C-H или C-C). Каждый атом водорода связан с одним атомом углерода связью Н-С ».

Список парафинов в бензине включает:

  1. н-бутан
  2. N-пентан
  3. N-гексан
  4. N-гептан
  5. 2-метилбутан
  6. 2,2-диметилпропан
  7. 2,2-диметилбутан
  8. 2,2-диметилпентен
  9. 2,2,3-триметилбутан
  10. 2,2,4-триметилпентан (изооктан)

Опять же, алканы чрезвычайно стабильны, потому что в них нет места для добавления дополнительных атомов углерода или водорода.Все цепи молекул алканов имеют одинаковую базовую структуру. Алканы представляют собой цепочки углеводородных молекул, в которых связи атома углерода находятся между одним или двумя другими атомами углерода и между двумя или тремя атомами водорода.

Атомы углерода в конце алкановой цепи имеют три водородные связи и одну углеродную связь. Атомы углерода в середине цепи молекулы алкана имеют две связи атома углерода и две связи атома водорода. У некоторых алкановых углеводородов есть разветвления или петли. Но каждый атом углерода во всех алканах имеет четыре связи.Каждый атом углерода имеет либо одну углеродную связь и три водородные связи, либо две углеродные связи и две водородные связи.

Разница между углеродными связями между алканами и алкенами

Итак, единственная разница между разными алканами — это количество углерод-углеродных связей. Н-бутан, например, имеет четыре атома углерода. Два атома углерода в н-бутане — эти два на каждом конце — имеют одну углеродную связь и три водородные связи. Два атома углерода в середине имеют две углеродные связи и две водородные связи.

Алканы составляют примерно 55 процентов углеводородов в бензине. И около 17 процентов алканов в бензине составляют н-алканы. Около 32 процентов алканов в бензине — это алканы с разветвленной цепью. И около 5 процентов алканов в бензине — это циклоалканы.

Вторая по величине сумма углеводородов в бензине — ароматические углеводороды.

Ароматические углеводороды (алкины), присутствующие в бензине

Ароматические углеводороды — это непредельные углеводороды. Это означает, что у ароматических углеводородов есть место для накопления большего количества атомов углерода и большего количества атомов водорода.Таким образом, ароматические углеводороды легко превращаются из одного типа углеводородной молекулы в другой. Таким образом, ароматические углеводороды очень летучие.

Их гораздо больше, но наиболее распространенные ароматические углеводороды в бензине:

  1. Бензол
  2. Толуол или метилбензол
  3. м-ксилол или 1,3-диметилбензол
  4. Этилбензол
  5. Пропилбензол
  6. Изопропилбензол

Ароматические углеводороды имеют более низкую энергетическую ценность, чем алканы. Хотя более низкое энергосодержание является отрицательным, ароматические углеводороды обычно имеют более высокое октановое число, чем алканы.Чем выше октановое число ароматических углеводородов в бензине, тем выше октановое число бензина. В результате, чем выше октановое число бензина, тем меньше вероятность детонации в двигателе.

Детонация — детонация — возникает, когда разные части топливовоздушной смеси воспламеняются в разное время. Высокооктановое топливо равномерно детонирует в цилиндре двигателя. Раньше свинец был компонентом бензина, предотвращающим детонацию. Точно так же добавление свинца в бензин увеличивает его октановое число.Но в 1997 году добавление свинца в бензин для увеличения октанового числа стало незаконным. Свинец — высокотоксичный элемент, наносящий вред атмосфере, а также людям, флоре и фауне.

Чтобы производить высокооктановое топливо без добавления свинца, производители нефти начали увеличивать процентное содержание ароматических углеводородов в бензине. Итак, ароматические углеводороды являются важным компонентом бензина. Но у ароматических соединений есть свои недостатки. Ароматические углеводороды образуют остатки сгорания и токсичные выбросы. Хотя ароматические углеводороды не так токсичны, как свинец, они гораздо более токсичны, чем алканы.

«Ароматические углеводороды в бензине — новый лидер», — сказала Кэрол Вернер, исполнительный директор Института экологических и энергетических исследований, вашингтонской группы, которая продвигает политические решения для чистой и устойчивой энергетики. «Это то, что не дает мне уснуть по ночам».

Помимо алканов и ароматических углеводородов, бензин содержит третий класс углеводородов — алкены.

Алкены (олефины) в бензине

Алкены, как и ароматические соединения, представляют собой ненасыщенные углеводороды.Это означает, что они нестабильны и — и из-за отсутствия более описательного термина — грязны. Алкены, как правило, имеют даже более высокое октановое число, чем ароматические углеводороды. А алкены потенциально даже более токсичны.

«Ароматические углеводороды [и олефины] в бензине имеют высокое октановое число. Однако ароматические углеводороды и олефины могут ухудшить чистоту двигателя, а также увеличить отложения в двигателе, что является важным фактором для новых сложных двигателей и устройств последующей обработки. Ароматические углеводороды могут приводить к образованию канцерогенных соединений в выхлопных газах, таких как бензол и полиароматические соединения.Олефины в бензине могут привести к увеличению концентрации реакционноспособных олефинов в выхлопных газах, некоторые из которых являются канцерогенными, токсичными или могут увеличивать озонообразовательный потенциал ».

На вопрос «что в бензине?» углеводороды. Однако «какие углеводороды содержатся в бензине?» несет ответственность несколькими способами. Наиболее специфичны алканы, ароматические соединения и алкены. Но этот ответ вызывает вопросы: «Какие углеводороды в бензине наиболее ценны?»

Алканы. Алканы — это углеводороды в бензине, которые имеют наибольший вес и плотность и являются наиболее стабильными.Другими словами, алканы производят больше всего энергии, а алканы наиболее чисто окисляются. Итак, вопрос: «Какой бензин самый лучший в мире?» отвечает, определяя, в каких регионах добывается больше всего сырой нефти с наибольшим количеством алканов.

Бензин

Какое октановое число?

Требования к октановому числу топлива для бензиновых двигателей различаются в зависимости от степень сжатия двигателя. Степень сжатия двигателя составляет относительный объем цилиндра от самого нижнего положения хода поршня до самого верхнего положения поршня Инсульт.Чем выше степень сжатия двигателя, тем больше количество тепла, выделяемого в цилиндре во время сжатия Инсульт.

Если октановое число топлива слишком низкое для данной степени сжатия, топливо преждевременно и самопроизвольно воспламеняется слишком рано и заправка топлива ВЗРЫВАЕТСЯ, а не ГОРЯЕТ, что приводит к неполному горение. Чистый эффект — потеря мощности, возможно, двигатель повреждение и слышимый «стук» или «пинг», называется детонацией.

Октановое число бензина является мерой его устойчивость к ударам. Октановое число определяется путем сравнения характеристики бензина к изооктану (2,2,4-триметилпентан) и гептан. Изооктану присвоено октановое число 100. представляет собой сильно разветвленное соединение, которое горит плавно, с небольшими стучать. С другой стороны, гептан, прямая цепь, неразветвленная. молекуле присваивается нулевое октановое число из-за ее плохой детонационные свойства.

Бензин прямогонный (непосредственно с НПЗ). столбец) имеет октановое число около 70. Другими словами, прямогонный бензин имеет такие же детонационные свойства, что и смесь 70% изооктан и 30% гептан. Многие из этих соединений прямые цепные алканы. Крекинг, изомеризация и другие процессы рафинирования может использоваться для увеличения октанового числа бензина примерно до 90. Могут быть добавлены антидетонационные агенты для дальнейшего повышения октанового числа. рейтинг.

Нефть

Сырая нефть , также называемая нефтью, представляет собой сложную смесь углерода и водорода (углеводородов), которые существуют в виде жидкости в земной коре. У сырой нефти много составы, одни черные, густые и смолистые, другие неочищенные масла светлее и тоньше. Углерод и водород в сырой нефти, как полагают, произошли от останков микроскопических морских организмов, отложившихся на дне морей и океанов и преобразился при высокой температуре и давление в сырую нефть и природный газ.

Эта нефть и газ мигрируют вверх через пористую породу, поскольку он менее плотный, чем вода, заполняющая поры. В нефть и газ задерживаются слоем непроницаемой породы через которые они не могут течь. Несколько разных видов нефти и газа «ловушки» существуют; общий купол, образованный складчатыми осадочными горные породы. Нефть добывается путем бурения скважины в пласте. камень (песчаник, известняк и т. д.) и откачивание.

Нефтепереработка — это процесс разделения многие соединения присутствуют в сырой нефти. Этот процесс называется фракционная перегонка, при которой сырая нефть нагревается; различные составов кипятят при разных температурах и переходят в газы; и позже снова конденсируются в жидкости. Ископаемое Топливо

Используемый принцип заключается в том, что чем длиннее углерод цепи, тем выше температура, при которой соединения будут кипятить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *