Оптимальная плотность электролита! | Статьи компании ООО «KRONVUZ» г Москва
Мы часто сталкиваемся с вопросом об эксплуатации автомобильных аккумуляторов, число автовладельцев возрастает, и, конечно, весь круг автолюбителей знает, что аккумулятор не работает без электролита. Плотность данного вещества зависит от многих факторов, но принято считать, что оптимальная плотность электролита составляет 1,26 г/см3.
По плотности электролита можно установить, в каком состоянии находится батарея. В том случае, когда АКБ плохо держит заряд, нужно проверить концентрацию жидкости внутри нее. Когда батарея находится в рабочем состоянии, вода постепенно испаряется, что способствует большей концентрации электролита, а это оказывает отрицательное влияние на состояние аккумуляторной батареи.
Отрицательно влияет на АКБ как повышенная, так и пониженная плотность электролита. Излишняя плотность активирует химические процессы, протекающие в батарее постоянно. Из этого следует быстрое разрушение пластин и снижение срока службы аккумулятора.
Единой рекомендации оптимальной плотности электролита не существует, потому что его плотность зависит от критических значений температуры в определенных регионах, для каждого из которых есть свое собственное значение.
- В условиях Крайнего Севера плотность электролита должна составлять не менее 1,29 г/см3;
- Для большей части территории РФ приемлем показатель 1,26– 1,27 г/см3;
- В теплых районах нормальная плотность составляет 1,23–1,25 г/см3;
- Минимальным значением является показатель 1,23 г/см3.
Опираясь на эту статистику, можно расценивать показатель 1,26 г/см3 как оптимальный. При заливке электролита готовить раствор рекомендуется, опираясь на минимальный показатель данных диапазонов, а для щелочного аккумулятора плотность содержимого должна составлять около 1,2 г/см3.
Прибор для измерения плотности электролита называется денсиметр. Выполнить проверку плотности можно и с помощью вольтметра.
К каждой АКБ прилагается инструкция по эксплуатации, в которой описаны материалы АКБ, технология изготовления АКБ, а также, к какой категории относится данная АКБ.
Аккумуляторные батареи бывают обслуживаемыми, малообслуживаемыми (на протяжении длительного времени не требующие доливки воды) и необслуживаемые.
К сожалению, не всегда удается уследить за состоянием акб и вовремя его обслуживать. Если жидкость в аккумуляторе поменяла цвет, это значит, что упала плотность и необходимо слить и заменить электролит.
Более подробно узнать информацию об электролите и его замене можно в статье «Замена электролита в аккумуляторе».
Наша компания производит целый ряд устройств для обслуживания аккумуляторных батарей и контроля электролита. Вся продукция производства предприятия «KRONVUZ» выполнена по высоким технологиям, что способствует бесперебойной эксплуатации длительное время.
Рекомендуем ознакомиться со следующими материалами:
Плотность электролита в аккумуляторе: какая должна быть, как проверить, как поднять
Бортовая сеть автотранспортного средства объединяет в себе источники и потребители электроэнергии. АКБ и генератор выступают энергоисточниками, тогда как вторая группа включает в себя целый комплекс устройств и агрегатов. Среди них первостепенное значение имеют система зажигания и запуска, контрольно-измерительные приборы, сигнализация, лампы в фарах и габаритных огнях.
В электросети автомобиля также присутствует множество дополнительных приспособлений, обеспечивающих комфорт и безопасность водителя и пассажиров. К ним относятся подогрев стёкол и сидений, акустическая система, прикуриватель, GPS-навигатор, видеорегистратор и т.д.
В случае аварийного выхода из строя генератора или реле контроля напряжения именно аккумулятор берёт на себя поддержание работоспособности всех электропотребителей, сохраняя возможность безопасного передвижения автотранспорта до ближайшей станции техобслуживания. Также он стабилизирует напряжение в системе, когда двигатель длительное время работает на низких оборотах или холостом ходу, как это часто бывает при передвижении в городской черте.
На современном рынке автотоваров наибольшим потребительским спросом пользуется свинцово-кислотный АКБ, который нашёл самое широкое применение в транспортных средствах из-за своей надёжности, функциональности и высокой удельной мощности. Главными конструктивными элементами такого устройства являются шесть секций или попросту «банок», внутри которых находится блок свинцовых пластин.
Активной массой положительного электрода является диоксид свинца, а отрицательного – чистый свинец. Между ними расположены сепараторы, основное назначение которых заключается в разделении полублоков разной полярности и препятствии возникновению самозамыканий. Все электрохимические реакции протекают в водном растворе серной кислоты – электролите. Когда батарея разряжается, его плотность снижается из-за активного расхода кислотного агента и выделения молекул воды. При заряде происходит обратный процесс.
Когда следует проверять плотность электролита в АКБ?
Эксплуатация стартерной батареи должна сопровождаться систематическим мониторингом её состояния даже при безотказном и уверенном функционировании. Это связано с тем, что снижение резервного уровня электролита из-за утечки раствора или испарения воды приводит к увеличению кислотной концентрации. Данный фактор негативно сказывается на работоспособности и продолжительности эксплуатации АКБ.
Опытные автомеханики рекомендуют проверять техническое состояние аккумулятора каждые 15-20 тыс. км пробега. Также диагностику целесообразно провести, если он постоянно недозаряжается, плохо держит заряд или туго крутит стартер. Для этого необходимо:
- визуально осмотреть корпус на наличие трещин и подтёков;
- оценить уровень электролитической жидкости в банках, который должен возвышаться над верхним краем пластин на 1.2-1.4 см;
- измерить её плотность с помощью контрольно-измерительного прибора.
Нередко сниженный заряд может быть следствием ослабления ремня привода генератора. Поэтому автомобилисту нужно периодически проверять его натяжение и при необходимости производить регулировку, следуя инструкции по эксплуатации ТС.
Оптимальные показатели электролитической среды
Физико-химическое состояние электролита находится в прямой зависимости от двух параметров – это температура окружающей среды и степень заряженности АКБ. При повышении температурного порога возрастает удельный вес кислоты, а при понижении — падает. Поэтому перед проведением контрольно-измерительных мероприятий аккумулятор рекомендуется выдержать в течение нескольких часов при температуре +20-25 ℃.
Типовые климатические условия региона также оказывают непосредственное влияние на плотность электролитического раствора. Так, в районах с умеренным климатом ρ= 1.27-1.28 г/см3 соответствует 100% заряда, величина 1.21 г/см3 говорит о его снижении до 60%, а 1.18 г/см3 сигнализирует о необходимости подзарядки. Измерения производятся при нормальном уровне реагента над пластинами.
В северных регионах оптимальной считается плотность электролита, равная 1.29-1.30 г/см3, а в субтропическом поясе – 1.23-1.25 г/см3. Измерение данного параметра с целью определения необходимости корректировки производится только у полностью заряженного устройства, иначе полученные результаты будут некорректными.
Алгоритм проверки плотностного состояния электролита
Определение плотности электролита осуществляется при помощи такого приспособления, как ареометр. Перед началом измерительных процедур автовладельцу следует проверить уровень спецжидкости в каждой секции АКБ и при необходимости произвести его корректировку деминерализованной водой. После этого аккумулятор необходимо полностью зарядить и по прошествии 2-3 часов приступать к тесту. Алгоритм его проведения состоит из следующих шагов:
- установить устройство на ровную поверхность;
- вывернуть пробку заливного отверстия на его крышке;
- погрузить в раствор ареометр и втянуть жидкость резиновым наконечником на его противоположном конце;
- набрать количество реагента, достаточное для свободного перемещения поплавка;
- определить уровень плотности в соответствии с информацией на шкале;
- записать результат и повторить манипуляции с оставшимися банками;
- сопоставить полученные данные с нормированными значениями.
Значение плотности должно быть одинаковым во всех элементах, допускается отклонение на ±0.01. Если проведённый замер показал понижение плотности в одной из ячеек на 0.10-0.15, то это говорит о наличии дефекта или короткого замыкания между пластинами. Одинаково низкая плотность во всех блоках связана с глубоким разрядом аккумулятора, его сульфатацией или сильным износом, что влечёт за собой падение напряжения в сети и затруднённый пуск ДВС.
У необслуживаемых стартерных батарей есть особый встроенный индикатор. Если он показывает зелёный цвет, то это говорит о 100%-ном заряде АКБ, а чёрный – о необходимости его подзарядки. Бело-жёлтый или красный оттенок обычно соответствуют очень низкому уровню электролита.
Плотность электролита и зимние холода
Данная величина носит относительный характер, поэтому при смене времён года она не должна подвергаться каким-либо изменениям. Автомобилисту нужно лишь следить за тем, чтобы она не отклонялась от рекомендуемого значения, а также производить стабилизацию при обнаружении отклонений.
Производители стартерного оборудования считают недопустимым использование в зимний период устройств с 25%-ной потерей заряда, т.е. плотность электролитической среды которых составляет 1.24 г/см3. Данный факт обусловлен предотвращением возможности обледенения ячеек аккумулятора и снижением вредоносного воздействия глубокого разряда, вызванного саморазрушением активной массы пластин.
Продолжительная эксплуатация аккумулятора с пониженной плотностью в морозы приводит к снижению электродвижущей силы, затруднённому пуску двигателя, образованию льда и разрушению свинцовых пластин. Доливать деминерализованную воду с целью восстановления уровня реагента над блоками следует прямо перед выездом на улицу, либо при стационарной подзарядке батареи. Это исключает вероятность замерзания долитой воды до того, как она успеет перемешаться с холодным электролитом.
Как поднять плотность электролита?
Каждый водитель может своими силами повысить плотность электролита в АКБ автомобиля, не обращаясь к мастерам сервисного центра. Первым делом нужно подготовить необходимые расходные материалы, среди которых деминерализованная вода, аккумуляторная кислота или уже готовый электролитический раствор, а также средства индивидуальной защиты для глаз и кожного покрова. Кроме того, следует обзавестись следующим оборудованием для работы: ареометром, спринцовкой, стеклянной ёмкостью, мерным стаканом и воронкой.
Снятый с автомобиля аккумулятор помещается на устойчивую поверхность, а пробки его заливных отверстий аккуратно откручиваются. Далее максимальный объём реагента выкачивается из банок и сливается в заранее подготовленный резервуар. Набирать нужно как можно больше вещества, измеряя его объём мерным стаканом, чтобы затем долить идентичное количество нового.
Лучше использовать самостоятельно разведённый раствор с плотностью немного выше расчётной для текущего климатического режима. При его приготовлении кислота добавляется в воду, обратный порядок смешения может вызвать серьёзные термические повреждения.
Сперва свежий электролит заполняет только ½ объёма, что был откачан. Затем АКБ нужно слегка встряхнуть из стороны в сторону, чтобы оставшаяся жидкость и новая перемешались. Если после замера плотностное значение не отвечает норме, добавляем ещё половину от оставшегося в ячейке объёма. Действия повторяются до полной стабилизации плотности, остаток доливается деминерализованной водой по уровню.
Как можно заметить из приведённой выше информации, работать с электролитом не представляет особой сложности, если выполнять все манипуляции по инструкции и соблюдать установленные меры предосторожности.
Как проверить АКБ автомобиля, как проверить автомобильный аккумулятор на работоспособность
Проверка аккумулятора автомобиля – необходимость, с которой часто сталкиваются автовладельцы. Это можно сделать в автосервисах, доверив диагностику специалистам, и самостоятельно специальными приборами или подручными средствами.
Этапы диагностики
Алгоритм как проверить аккумулятор автомобиля на работоспособность :
- визуальная диагностика;
- контроль уровня электролита;
- контроль напряжения;
- исследование с помощью нагрузочной вилки;
- определение плотности электролита в банках;
- проверка объема АКБ.
Визуальный осмотр
Специалисты рекомендуют проводить внешний осмотр аккумулятора при каждом открытии капота. Корпус должен быть целым, а крепление клемм надежным.
В процессе эксплуатации на поверхности прибора скапливаются грязь, влага, подтеки от кипящего электролита. Клеммы должны быть чистыми — их окисление в совокупности с внешними загрязнениями приводит к росту риска глубокого разряда, который сокращает срок службы прибора.
Как проверить аккумулятор на наличие саморазряда: подключите вольтметр к клемме, другим проведите по поверхности аккумулятора. Если был разряд, проведите чистку — уберите остатки электролита раствором пищевой соды. Зачистите клеммы наждачной бумаги.
Проверка уровня электролита
Для диагностики аккумулятора используется стеклянная уровневая трубка с делениями. Нормальный уровень электролита – 10-12 мм выше пластин.
Состояние аккумулятора проверяется так:
- трубку вводят в заливное отверстие;
- аккуратно продвигают до соприкосновения с сеткой сепаратора;
- затыкают отверстие пальцем;
- вытаскивают трубку.
Уровень жидкости в трубке соответствует уровню электролита в аккумуляторе.
Из-за снижения уровня электролита открываются свинцовые пластины и окисляются, что сокращает срок службы прибора. Восстанавливают уровень дистиллированной водой.
Также обращайте внимание на прозрачность жидкости. Если цвет электролита темный, значит он с примесями окислов. Это снижает способность держать зарядку.
Измерение напряжения
Измерение напряжения – важный этап в диагностике АКБ . Проверять его нужно мультиметром. Это недорогой прибор, который в электронной версии стоит приобрести каждому автовладельцу.
Как проверить заряд аккумулятора автомобиля мультиметром:
- перевести прибор в режим измерения постоянного напряжения;
- установить диапазон выше стандартных максимальных значений;
- черный щуп мультиметра подключить на минус АКБ;
- красный щуп подключить на плюс;
- зафиксировать показания.
Стандартный уровень напряжения аккумулятора – 12,6 вольт. Если оно ниже, требуется зарядка аккумулятора.
С помощью мультиметра также моно проверить АКБ на замыкание. Для этого подсоедините щупы к выходам полностью заряженной батареи. Если показания меньше 10,7 вольт, одна из банок вышла из строя.
Проверка нагрузочной вилкой
Проверка с помощью нагрузочной вилки (прибора, создающего нагрузку аналогичную, возникающую при работающем двигателе) позволяет выявить работоспособность аккумулятора и оценить его состояние.
Этапы диагностики:
- подключите клеммы контрольного прибора к выходам АКБ;
- если показания ниже 12,6 -1 2,9 вольт, зарядите аккумулятор;
- подайте нагрузку на 5 секунд;
- зафиксируйте показания.
Нормальное напряжение – свыше 10,2 вольт. Показания около 9 вольт говорят, что батарея изношена. Если напряжение ниже 9 вольт, требуется замена аккумулятора.
Проверка плотности электролита
Проверка плотности проводится ареометром. Для этого трубку помещают в заливное отверстие и откачивают часть жидкости. Электролит нужно проверять в каждой банке. Рекомендуем проводить проверку при температуре 20-30 °C., тогда стандартными показателями будут 1.27 – 1.29. При повышенной плотности долейте дистиллированную воду. Если плотность снижена, добавьте раствор электролита (можно добавить жидкость из банки с нормальной либо повышенной плотностью).
Низкая плотность электролита зимнее время можем привести к замерзанию жидкости и, как следствие, деформации корпуса или трещинам.
Повышенная плотность станет причиной преждевременной коррозии элементов аккумулятора, и выведет батарею из строя.
Проверка емкости АКБ
Емкость автомобильного аккумулятора всегда указывается в сопроводительных документах. В процессе эксплуатации показатель уменьшается, что приводит к потере мощностью и снижению эксплуатационных характеристик.
Проверить реальную емкость автомобильного аккумулятора можно контрольным разрядом: АКБ полностью заряжают, разряжают, замеряют время до окончания заряда и по формуле высчитывают емкость:
Е [А*час]=I[А]*T[час] .
Если реальная емкость отличается от номинальной на 70% и больше, АКБ нужно срочно заменить.
Общие советы:
- Поверхность батареи должна быть чистой, своевременно удаляйте следы масла, подтеки электролита, механические загрязнения
- Регулярно заряжайте батарею
- Проверяйте уровень электролита, особенно в летнее время
- Контролируйте и корректируйте плотность электролита в банках аккумулятора
Эти простые меры позволят вам продлить срок эксплуатации прибора и избежать возникновения нештатных ситуаций.
Хотите обновить машины? Посмотрите онлайн каталог новых и б/у авто в салоне «FAVORIT MOTRS». Мы показываем полную информацию о машине с пробегом до осмотра и тест-драйва в личном кабинете. Забронируйте бесплатно до 3 машин и приезжайте на осмотр в наши автосалоны в Москве. Бронь доступна для всех жителей России.
Оцените наш сервис и подберите себе хорошую машину по доступной цене!
Page not found — автомануал заказ автокниг с доставкой в любую точку мира
НАШИ ПАРТНЕРЫ:
Любой современный легковой или грузовой автомобиль можно обслуживать и ремонтировать самостоятельно, в обычном гараже. Все что для этого потребуется – набор инструмента и заводское руководство по ремонту с подробным (пошаговым) описанием выполнения операций. Такое руководство должно содержать типы применяемых эксплуатационных жидкостей, масел и смазок, а самое главное – моменты затяжки всех резьбовых соединений деталей узлов и агрегатов автомобиля. Итальянские автомобили – Fiat (Фиат) Alfa Romeo (Альфа Ромео) Lancia (Лянча) Ferrari (Феррари) Mazerati (Мазерати) имеют свои конструктивные особенности. Также в особую группу можно выделить все французские машины – Peugout (Пежо), Renault (Рено) и Citroen (Ситроен). Немецкие машины сложные. Особенно это относится к Mercedes Benz (Мерседес Бенц), BMW (БМВ), Audi (Ауди) и Porsche (Порш), в чуть меньшей — к Volkswagen (Фольксваген) и Opel (Опель). Следующую большую группу, обособленную по конструктивным признакам составляют американские производители- Chrysler, Jeep, Plymouth, Dodge, Eagle, Chevrolet, GMC, Cadillac, Pontiac, Oldsmobile, Ford, Mercury, Lincoln. Из Корейских фирм следует отметить Hyundai/Kia, GM-DAT (Daewoo), SsangYong.
Совсем недавно японские машины отличались относительно низкой первоначальной стоимостью и доступными ценами на запасные части, но в последнее время они догнали по этим показателям престижные европейские марки. Причем это относится практически в одинаковой степени ко всем маркам автомобилей из страны восходящего солнца – Toyota (Тойота), Mitsubishi (Мицубиси), Subaru (Субару), Isuzu (Исудзу), Honda (Хонда), Mazda (Мазда или как говорили раньше Мацуда), Suzuki (Сузуки), Daihatsu (Дайхатсу), Nissan (Ниссан). Ну, а машины, выпущенные под японо-американскими брендами Lexus (Лексус), Scion (Сцион), Infinity (Инфинити), Acura (Акура) с самого начала были недешевыми.
Отечественные автомобили также сильно изменились с введением норм евро-3. лада калина, лада приора и даже лада нива 4х4 теперь значительно сложнее в обслуживании и ремонте.
что делать если машина не заводится, как зарядить аккумулятор, как завести машину в мороз. ответы на эти вопросы можно найти на страницах сайта и книг. представленных здесь же
Автомануал — от англ. manual — руководство. Пособие по ремонту автомобиля или мотоцикла. различают заводские руководства и книги , выпущенные специализированными автомобильными издательствами.
Cайт Автомануал не несет никакой ответственности за возможные повреждения техники или несчастные случаи, связанные с использованием размещенной информации.
Как проверить плотность электролита в аккумуляторе авто?
У кислотных аккумуляторов есть весомое преимущество по сравнению с более современными батареями, что обусловлено возможностью реанимировать их. Благодаря возможности обслуживать такие АКБ, можно восстановить плотность электролита и вернуть батарее ее свойства. Поэтому, обслуживая аккумулятор, плотность электролита в обязательном порядке требуется замерять, потому что от этого параметра зависит корректная работа АКБ. Не стоит избегать решения этой задачи, так как рано или поздно данная проблема даст о себе знать.
Рекомендуется обратиться в автосервис, если руки не доходят до самостоятельного обслуживания батареи. Его особенность заключается в том, что измерить плотность электролита аккумуляторе можно самостоятельно, имея под рукой ареометр и зная, каким параметрам она должна соответствовать. Параллельно с этим замером выявляется уровень электролита, затем данные сравниваются с выходным напряжением батареи. Это дает общую картину о состоянии АКБ, что необходимо для правильного выполнения восстановительных работ.
Для тех кто не знает, как измерить плотность аккумулятора, сразу оговоримся, что это необходимо делать в каждой банке со свинцовыми пластинами, так как они не зависят друг от друга. Поэтому плотность и уровень электролита, а также выходное напряжение у них будет отличаться. Рассмотрим детально, как измерить плотность электролита с учетом всех технических нюансов, которые необходимо знать.
Когда должна выполняться проверка плотности автомобильного аккумулятора
Кроме того, что плотность электролита автомобильного аккумулятора проверяется при каждом плановом обслуживании машины, существует ряд признаков, указывающих на снижение этого параметра.
Самый распространенный заключается в уменьшении периодичности заряд/разряд. Это значит, что АКБ стал хуже держать заряд, а так происходит в результате снижения уровня электролита или его свойств. Это повод проверить плотность автомобильного аккумулятора, не дожидаясь планового техосмотра.
Также следует выполнить эту работу, если в последнее время батарея систематически перезаряжалась. Это способствует выкипанию электролита и снижению его уровня. В зимнее время эту задачу приходится выполнять чаще, так как плотность АКБ при отрицательной температуре быстрее снижается.
Как проверить плотность автомобильного аккумулятора
Если вы знаете, как проверить плотность АКБ и уже сделали это, значит вы понимаете, что нужно быть готовым к необходимости восстановления этого параметра, если он не будет соответствовать требованиям. Поэтому необходимо подготовить следующее:
ареометр;
мерный стакан;
грушу-клизму;
емкость, чтобы развести новый электролит;
кислоту или корректирующий электролит.
Посредством ареометра сначала нужно проверить плотность автомобильного аккумулятора. Это выполняется с помощью груши, изготовленной из мягкой резины, в которую вставлена трубка из стекла с ареометром внутри. Для выполнения замера необходимо набрать немного жидкости из банки, сжав грушу. Затем нужно следить, чтобы ареометр не касался стенок трубки. Вся полученная информация записывается, потому что данная задача выполняется в каждой банке, но перед этим необходимо полностью зарядить батарею. Дальнейшие действия зависят от того, повышена плотность или понижена. В последнем случае необходимо сделать следующее:
отобрать немного жидкости из банки, и в таком же объеме залить корректирующий электролит;
поставить АКБ на 30 минут заряжаться;
снять с зарядки и дать батарее остыть в течение 2 часов;
повторно замерить плотность.
Если вы знаете, как проверить плотность аккумулятора автомобиля, значит понимаете зачем это делать. С добавлением коррекционного электролита повышается плотность жидкости. Чтобы замеры ареометром были точны, необходимо смешать жидкости, что происходит во время зарядки батареи. Остывать ей нужно потому, что максимальная точность замера ареометром возможна только при холодной батарее.
Если проверка плотности электролита автомобильного аккумулятора покажет увеличение данного показателя, необходимо выполнить все также, как в вышеуказанной последовательности, но вместо коррекционного электролита добавить дистиллированную воду. За счет этого плотность снизится. Если после первого раза электролит не достигнет нужного состояния, необходимо повторить процедуру еще раз. И так до тех пор, пока не нормализуется электролит, плотность при этом должна соответствовать нужному значению.
Что значит, если плотность аккумулятора автомобиля не соответствует заводским значениям
Если замеры покажут, что плотность электролита АКБ не соответствует параметрам в банках, значит батарея уже выработала свой ресурс и пластины подвергались сульфатации. Придется заменить АКБ, потому что восстановлению он не подлежит.
Сульфатация – это необратимый процесс, который настигает каждую батарею, отработавшую свой ресурс, заявленный производителем. Если плотность электролита аккумулятора напротив, выше нормы, это тоже плохо для батареи. Скорее всего он закипел, и повышение его плотности необходимо скорректировать способом, описанным выше. Рекомендуется в будущем не допускать повторного закипания, потому что это может окончательно вывести устройство из эксплуатации.
Если проверка плотности электролита в аккумуляторе показывает, что она низкая в одной из банок, значит между электродами произошло замыкание. В такой ситуации тоже требуется замена батареи, так как содержимое банок не подлежит восстановлению.
Какой должна быть плотность аккумулятора авто
Тот кто знает, как проверить плотность электролита в АКБ, должен понимать, как зависит это значение от параметров аккумулятора. На него влияет и такие технические характеристики, как емкость батареи и сила выходного тока. Поэтому не следует ориентироваться общепринятыми стандартами, лучше изучить этикетку изделия, чтобы выяснить, какая необходима плотность. Также стоит оговориться, что проверка плотности электролита в АКБ должна определяться с учетом температуры окружающей среды. Для определения погрешности, зависящей от температуры, необходимо пользоваться специальной таблицей. Найти данную информацию можно в техническом паспорте автомобиля или руководстве производителя, прилагаемом к аккумуляторной батарее. Зная, как проверить плотность электролита в аккумуляторе, не стоит торопиться делать этого без оценки цвета жидкости.
То, какой она имеет оттенок, поможет предварительно определить состояние батареи. Коричневый цвет предупреждает о скором выходе из строя аккумулятора, а если это происходит еще и в канун зимы, первые морозы он может и не пережить. Если оттенок темный, значит активная масса осыпалась с электродов в раствор, что затрудняет протекание электрохимических реакций. В этом случае замена батареи неизбежна, так как восстановить плотность электролита в автомобильном аккумуляторе не получится. Учитывая то, что активная масса осыпается после длительного срока эксплуатации, это вполне оправдывает затраты на покупку нового устройства.
Как говорилось выше, проверка плотности АКБ выполняется во всех банках, и в каждой из них это значение должно быть одинаковым. Допускается погрешность, но не более 1 г/см3. Критический показатель плотности аккумулятора – менее 1:18 г/см3. Но и в такой ситуации возможна реанимация, если цвет не обрел коричневый или темный оттенок. Только в данной ситуации те, кто знает, какая плотность электролита должна быть в аккумуляторе, используют не коррекционный электролит, а серную кислоту 1:18 г/см3. Чтобы работать с данным веществом, необходим опыт, так как можно добавить его слишком много, сделав плотность больше, чем требуется. В результате неумелое обращение с веществом потребует много времени на решение данной задачи. Даже тем, кто может проверить плотность аккумулятора автомобиля, понимая как ее вернуть, нелегко добиться одинаковой плотности в каждой из банок, используя кислоту. Поэтому рекомендуется обращаться в автосервисы Oiler, чтобы выполнить обслуживание аккумуляторной батареи.
Чем поможет автосервис?
В условиях любого СТО нашей компании имеются все необходимые устройства и опытные специалисты, которые сумеют проверить плотность электролита и скорректировать ее в день обращения. Особенность наших услуг заключается в том, что мы решаем технические задачи в день обращения. Кроме того, услуги предлагаются по фиксированной цене, что позволяет предварительно рассчитать бюджет на обслуживание и ремонт своего автомобиля.
Мы рассмотрели, как проверить электролит в АКБ, и что делать, если его плотность отклонилась от нормы. Детально узнать о состоянии аккумуляторной батареи вы сможете, посетив автосервис Oiler в Киеве, предварительно записавшись на прием на нашем сайте.
плотность электролита — это… Что такое плотность электролита?
- плотность электролита
- electrolyte density
Большой англо-русский и русско-английский словарь. 2001.
- плотность шихты
- плотность элементов
Смотреть что такое «плотность электролита» в других словарях:
плотность электролита — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN density of acid … Справочник технического переводчика
плотность тока — [current density, specific current] величина тока I, приходящаяся на единицу поверхности S электрода поверхность плотности тока jпов = I/S, А • м 2 или на единицу объема V электролита объемная плотность тока j0 = I/V, А • м 3. В зависимости от… … Энциклопедический словарь по металлургии
Электролиты индирования (температура электролита 18-25°С) — Компоненты электролита (г/л) и режим электролиза Тип электролита сернокислый борфтористоводородный тартратный сульфаматный Индий сернокислый … Химический справочник
Проверка плотности температуры электролита. — 3. Проверка плотности температуры электролита. Плотность и температура электролита каждого элемента в конце заряда и разряда батареи должны соответствовать данным завода изготовителя. Температура электролита при заряде должна быть не выше +40 °С … Словарь-справочник терминов нормативно-технической документации
Химический анализ электролита. — 4. Химический анализ электролита. Электролит для заливки кислотных аккумуляторных батарей должен готовиться из серной аккумуляторной кислоты сорта А по ГОСТ 667 73* и дистиллированной воды по ГОСТ 6709 72. Содержание примесей и нелетучего остатка … Словарь-справочник терминов нормативно-технической документации
Свинцово-кислотный аккумулятор — Автомобильный свинцово кислотный аккумулятор См. также: Автомобильный аккумулятор Свинцово кислотный аккумулятор наиболее распространенный на сегодняшний день тип … Википедия
Автомобильный аккумулятор — 12В Автомобильный аккумулятор (для краткости может именоваться АКБ) тип электрического аккумулятора, применяемый на автомобильном или мототранспорте. Энергия аккумулятора используется в первую очере … Википедия
Электролит (аккумуляторный) — смесь серной кислоты с дистиллированной водой для заливки в свинцово кислотную аккумуляторную батарею. Электролит для заливки в свинцово кислотную аккумуляторную батарею готовят из серной кислоты (ГОСТ 667 73) и дистиллированной воды (ГОСТ 6709… … Википедия
саморазряд химического источника тока — саморазряд Потеря энергии химическим источником тока, обусловленная протеканием в нем самопроизвольных процессов. [ГОСТ 15596 82] саморазряд Потеря химической энергии, обусловленная самопроизвольными реакциями внутри батареи, когда она не… … Справочник технического переводчика
Свинцовый аккумулятор — Автомобильный свинцово кислотный аккумулятор Аккумулятор электромобиля Свинцово кислотный аккумулятор наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области… … Википедия
Аккумуляторы электрической энергии — АККУМУЛЯТОРЫ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГІИ, обратимые гальваническіе элементы, способные возобновлять запасы своей энергіи отъ посторонняго источника. Существуетъ много различныхъ системъ электр. А въ, но въ техникѣ военно морского дѣла получилъ… … Военная энциклопедия
Все способы как проверить плотность электролита в аккумуляторе
Автор Акум Эксперт На чтение 7 мин. Просмотров 5k. Опубликовано
Аккумуляторная батарея постоянно работает в режиме разряда-заряда. Чтобы продлить время её эксплуатации, следует поддерживать её заряд на максимальном уровне. А для этого время от времени необходимо проверять уровень заряда АКБ. Сделать это можно разными способами, но самый надёжный — измерить плотность электролита. Поэтому многие водители задаются вопросом, как проверить плотность аккумулятора.
Что такое плотность и на что она влияет
Обязательным элементом свинцово-кислотной батареи является электролит. Это серная кислота, разбавленная дистиллированной водой. Плотность воды составляет 1 грамм на миллилитр (г/мл). У серной кислоты она выше, чем у воды, и составляет 1,84 г/мл. Концентрированная кислота способна растворить многие металлы, в том числе и свинец, поэтому её следует разбавлять водой. Разбавленная водой кислота называется электролитом. Разбавляют её до пропорции, при которой она неспособна растворить свинец, но позволяет протекать химическому процессу, называемому электролитической диссоциацией (разновидность электролиза).
Чем выше плотность, тем сильнее электролиз, но тем быстрее идёт разрушение свинца. Наиболее оптимальная плотность для аккумуляторов 1,27 г/мл для районов умеренного климата со средней температурой от -20 до +30°С. Такую плотность имеет полностью (100 %) заряженный новый аккумулятор. Для северных регионов это значение составляет 1,29 г/мл, для южного жаркого климата — 1,25 г/мл.
Таблица с рекомендуемыми значениями плотности электролита для полностью заряженной батареиВ продажу поступает серная кислота уже в виде электролита плотностью 1,3 г/мл. С учётом условий эксплуатации аккумулятора её доводят до нужных параметров.
Как уже отмечалось выше, чем больше плотность электролита, тем сильнее электролиз и тем выше потенциал на выводах батареи. Новая АКБ имеет плотность 1,27 г/мл и напряжение на клеммах 12,8 В. За время эксплуатации батареи при регулярном недозаряде на её свинцовых пластинах образуется нерастворимый сульфат свинца, соединение серной кислоты со свинцом. Называется это сульфатацией пластин. При заряде батареи уже не вся кислота высвобождается, и плотность электролита снижается. А следовательно, снижается и интенсивность электролиза. Напряжение на клеммах будет уже меньше 12,8 В. А попытка зарядить батарею до начального значения напряжения лишь приводит к кипению электролита — активному выделению пузырьков водорода и кислорода. Это процесс разложения воды. Потеря воды приводит к повышению плотности.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопросСлишком высокая или низкая плотность одинаково недопустимы и значительно снижают срок эксплуатации АКБ.
В условиях эксплуатации автомобиля с частыми пусками двигателя и коротким пробегом происходит ускоренная сульфатация пластин и снижение плотности электролита. При эксплуатации машин в дальних рейсах с длительной работой двигателя происходит перезаряд батареи и разложение воды на газы, а плотность электролита повышается. Напряжение на клеммах уже не отражает степень заряженности батареи. И чтобы точно узнать состояние аккумулятора, нужно произвести измерение плотности электролита. Для этого используют ареометр.
Наиболее популярный тип ареометраАреометр — прибор для измерения плотности жидкостей и твёрдых тел, принцип работы которого основан на Законе Архимеда.
Как пользоваться ареометром — подробная инструкция
Ареометр представляет собой стеклянную колбу (пипетку) с помещённым внутрь измерительным грузом-поплавком (ареометром), на котором нанесены деления с указанием величин от 1,1 в верхней точке поплавка до 1,3 и даже 1,32 г/мл внизу шкалы. Нижняя часть колбы имеет тонкую трубку, которую легко можно опустить через отверстие аккумулятора в его банку для забора электролита. На верхнюю часть колбы надевается резиновая груша, которая применяется для всасывания раствора в колбу.
Устройство ареометраУ некоторых ареометров несколько поплавков разного веса, которые всплывают при заполнении колбы. Плотность будет соответствовать поплавку, всплывшему частично или не всплывшему первому после всплывших. Встречаются дешёвые пластиковые изделия иной формы, но принцип их действия такой же.
Другие разновидности ареометраИзмерение ареометром производят при температуре электролита +20 … +30°C. Если температура иная, то необходимо применять корректировочные поправки к показанию ареометра.
Поправки к показаниям ареометра при измерении электролита разной температурыПользование ареометром настолько простое, что даже можно проверить плотность электролита в домашних условиях. Чтобы проверить плотность аккумулятора, необходимо выполнить следующие действия:
- Подготовить ареометр, собрать прибор, если он находится в разобранном виде в футляре.
- Подготовить аккумулятор, выкрутить пробки из отверстий в крышках банок, либо снять общую планку с пробками на ней.
- Подготовить стеклянную банку или пластиковый сосуд с дистиллированной водой для промывки и продувки ареометра между замерами.
- Опустить носик прибора в банку аккумулятора до касания с пластинами сепаратора.
- Сжать грушу для выдавливания воздуха из колбы.
- Освободить грушу для принятия начальной формы и забора электролита из банки батареи в колбу.
- Наполнить колбу жидкостью так, чтобы поплавок всплыл.
- Отметить визуально уровень шкалы поплавка на границе поверхности электролита в колбе. Указанное на шкале значение соответствует плотности электролита.
- Выдавить жидкость обратно в банку батареи.
- Ареометр опустить в сосуд с дистиллированной водой и пару раз промыть остатки электролита в колбе путём нажатия и отпускания груши.
Следует добавить, что при помощи ареометра можно корректировать плотность электролита, добавляя дистиллированную воду или электролит плотностью 1,3 г/мл. по необходимости в банки и произведя измерения. Только для выравнивания плотности в банке требуется время после каждой добавки, а такую корректировку проводят на полностью заряженном аккумуляторе с температурой электролита около +25 °C.
Можно ли измерить без ареометра
Измерить плотность без ареометра не получится. Но можно изготовить ареометр самому, самым важным элементом которого является измерительный поплавок-грузик. Изготовить можно из полой пластиковой трубки, например соломинки для напитков, в которую помещается груз. Точность измерения будет зависеть от точности нанесения шкалы на грузик и известной плотности измеряемых эталонов жидкости. Сначала поплавок помещается в дистиллированную воду и отмечается линия окружности поверхности воды на поплавке. Эта линия соответствует 1,0 г/мл. Затем поплавок помещается в электролит, купленный в магазине с удельным весом, например, 1,3 г/мл. Линия поверхности электролита на поплавке будет соответствовать плотности 1,3 г/мл. Расстояние между двумя полученными значениями измеряется в мм и делится на разницу значений — 30. Теперь на поплавок можно нанести шкалу с любым шагом, но лучше для значений 1,27; 1,25; 1,23; 1,2; 1,15; 1,1.
Отбор электролита можно произвести обычной резиновой грушей в стеклянный стакан, куда помещается изготовленный поплавок-грузик.
Самодельный ареометр из пластиковой трубки для соковМожно ли проверить плотность в необслуживаемом аккумуляторе
У необслуживаемых аккумуляторов нет откручиваемых пробок на банках. Однако при изготовлении батареи отверстия присутствуют. После заполнения электролитом эти отверстия закрываются одноразовыми пробками, иногда расположенными на общей планке, и запаиваются или заклеиваются. При необходимости можно аккуратно эти пробки снять, и аккумулятор превратится в обслуживаемую батарею. В некоторых случаях отверстия в месте расположения пробок выполняют при помощи сверла, что также позволяет произвести забор электролита и его корректировку.
Сверлятся отверстия 12 мм под резиновые пробки для аптечных пузырьковВажно в ходе таких действий заранее понимать, как после окончания обслуживания эти отверстия вновь надёжно закрыть. Это можно сделать с применением того же пластика, из которого изготовлен корпус батареи, или подобного. Пластик легко клеится, плавится и спаивается.
Если вскрыть необслуживаемую батарею удалось, то проверить плотность электролита в аккумуляторе можно так же, как описывалось выше.
Аккумулятор превратился в обслуживаемыйЭлектролит — обзор | ScienceDirect Topics
6.10.3 Численное моделирование расслоения электролита с использованием двумерного моделирования
В предыдущих разделах мы изучили одномерное моделирование свинцово-кислотных аккумуляторов. Хотя одномерная модель очень точна и можно получить много полезной информации, в некоторых случаях следует выполнять по крайней мере двухмерное моделирование. Примером таких случаев является моделирование расслоения электролита. В этом явлении происходит естественная конвекция внутри аккумуляторного элемента из-за градиента концентрации электролита.Поскольку во время заряда или разряда происходит концентрация электролита (как обсуждалось на рис. 6.12B), более концентрированный электролит становится тяжелее и опускается, тогда как менее концентрированный электролит поднимается из-за силы тяжести, создавая естественное конвекционное движение. Вызванная естественная конвекция вызывает расслоение электролита, что, в свою очередь, приводит к неравномерному использованию электродов.
Чтобы численно отразить это явление, уравнения Навье – Стокса должны быть объединены с управляющей системой электрохимических уравнений.В этом случае следует моделировать по крайней мере двумерное пространство, потому что движение электролита не имеет смысла в одном измерении.
Движение электролита происходит по следующим причинам:
- 1.
В портативных устройствах, таких как автомобили, корпус аккумулятора перемещается, а вместе с ним перемещается и электролит.
- 2.
Выделяющиеся газы внутри батареи вызывают движение электролита.
- 3.
Как упоминалось ранее, концентрация электролита является основным источником движения электролита.
- 4.
Температурный градиент в батарее может быть движущей силой для движения электролита.
Независимо от механизма, ответственного за движение электролита, уравнения Навье – Стокса должны быть объединены с уравнениями, определяющими батарею, для моделирования движения электролита. В свинцово-кислотных аккумуляторах электролит перемещается в пористых средах, таких как электроды и сепараторы. Обычно пористость участков оказывает большое влияние на электролит и вызывает движение кислоты; однако в области ребер сепараторов у электролита достаточно места для циркуляции и естественной конвекции.
Поскольку стратификация происходит в пористой среде, уравнения Навье – Стокса должны быть записаны в такой форме, чтобы в уравнения было включено влияние пористости. Собственная форма дается в формуле. (6.14).
Изучено расслоение электролита в процессе разряда при постоянной температуре. В этом случае побочные реакции исключаются из основной системы уравнений, и к системе добавляются уравнения Навье – Стокса. Упрощенная система уравнений выглядит следующим образом:
(6.92) ∇⋅ (σeff∇ϕs) −Aj = 0,
(6.93) ∇⋅ (keff∇ϕl) + ∇⋅ (kDeff∇ (lnc)) + Aj = 0,
(6.94) ∂ ( εc) ∂t + v → ⋅∇c = ∇⋅ (Deff∇c) + a2Aj2F,
(6.95) ∂ρv → ∂t + v → ⋅∇ (ρv →) = — ∇p + v → ⋅ (μ ∇v →) + ρg [1 + β (c − c∘)] + μK (εv →),
(6,96) ∂ρ∂t + ∇⋅ (ρv →) = 0.
Существование уравнений Навье – Стокса и уравнения неразрывности требует особого внимания при численном решении. Патанкар [45] был одним из пионеров FVM и дал подходящий алгоритм под названием SIMPLE для решения таких систем. Подробности метода приведены в Приложении E, а больше можно найти в учебниках CFD, таких как [45,68].
Чтобы продемонстрировать численное моделирование кислотной стратификации, мы выбрали ячейку IV из приложения A. Все необходимые параметры, такие как геометрические размеры и электрохимические характеристики, приведены в том же приложении. Alavyoon et al. [50] был первым, кто использовал эту ячейку для исследования эффекта стратификации электролита. Они использовали метод голографической лазерной интерферометрии для измерения концентрации электролита и лазерную доплеровскую велосиметрию (LDV) для измерения поля потока.
Ячейка состоит из трех областей: положительного электрода, свободного пространства для электролита и отрицательного электрода. Электроды и свободное пространство имеют толщину 2 мм, а зарядный ток очень низкий, около 9,434 мА · см-3. Поскольку зарядный ток низкий, температура элемента не слишком сильно меняется во время испытания, и мы можем предположить изотермическую модель при T = 25∘C.
Alavyoon et al. [50] предложила систему уравнений для моделирования расслоения электролита, в которой вместо решения полных уравнений Навье – Стокса они использовали ползущий поток и уменьшили уравнение количества движения.Более того, они сделали много упрощающих предположений:
- 1.
Кинетические скорости реакций считались постоянными в направлении толщины ячейки.
- 2.
Диффузия электролита считалась постоянной. В действительности коэффициент диффузии зависит как от концентрации, так и от пористости электрода.
- 3.
Также предполагалось, что пористость электродов постоянна, что не является точным предположением.
Они решили получившуюся систему уравнений с помощью FDM и сравнили свои результаты с экспериментальным тестом. Приятно отметить, что перед тестированием аккумуляторной батареи Alavyoon et al. выполнил процедуру подготовки:
- 1.
После подготовки установки ячейка была заполнена 5 M серной кислотой, и ячейка была разряжена с I = 9,34 мА · см-2, пока ячейка не достигнет напряжения отключения. Vcut = 1,5 В.
- 2.
Затем ячейку наполнили 2 М серной кислотой и выдержали в течение 48 часов, чтобы электролит стал однородным по всей ячейке.
С другой стороны, Gu et al. [37] исследовали эту проблему еще раз, используя полные уравнения Навье – Стокса. В этом случае модель, предложенная Гу, оказалась более точной, чем модель Алавюна. Единственное, что не было учтено при их моделировании, — это процесс подготовки. Они не моделировали процесс подготовки, и, как мы увидим, процесс вносит изменения в начальные условия. Мы показываем, что процесс подготовки можно смоделировать с помощью одномерной модели, и, как мы увидим, это влияет на результаты.
Здесь процесс подготовки моделируется с использованием одномерной модели, а результаты передаются в двухмерную модель. Рис. 6.15 и 6.16 показаны результаты одномерного моделирования. На рис. 6.15A показано изменение напряжения элемента. Это показывает, что для полной разрядки элемента требуется около 5,5 часов. Доли плотности тока в твердой фазе и электролите показаны на рис. 6.15B. На том же графике также нанесены суммы обеих плотностей тока. Совершенно очевидно, что сумма обеих плотностей тока постоянна и равна I = −9.34В, что является результатом электронейтральности.
Рисунок 6.15. Моделирование фазы разряда процесса подготовки Cell-IV. (A) Потенциал элемента во время разряда. (B) Доля плотности тока. (C) Концентрация электролита. (D) Изменение пористости. (E) Распределение активного материала. (F) Распространение SoC.
Рисунок 6.16. Моделирование фазы разряда процесса подготовки Cell-IV. (A) Потенциал элемента во время разряда. (B) Доля плотности тока. (C) Концентрация электролита.(D) Изменение пористости. (E) Распределение активного материала. (F) Распространение SoC.
Изменение концентрации электролита показано на рис. 6.15C, и, как можно видеть в этой ячейке, концентрация электролита достигает нуля почти во всех областях, кроме примерно 0,4M в отрицательном электроде, что незначительно. На рис. 6.15C показано изменение пористости во время разряда. Как видно, процесс приготовления приводит к неравномерному распределению пористости. Этот результат также можно увидеть в распределении активного материала, показанном на рис.6.15E и состояние заряда на рис. 6.15F.
На рис. 6.16 показаны те же результаты для остального процесса, когда ячейка находится в состоянии покоя на 48 часов. Напряжение ячейки остается постоянным (рис. 6.16A), и, как видно на рис. 6.16B, плотности тока твердого тела и электролита равны нулю. Единственный параметр, который изменяется во время отдыха, — это концентрация электролита, поскольку ячейка заполнена 2 М серной кислотой, и из рис. 6.16C видно, что для того, чтобы электролит стал однородным, требуется 48 часов.Из фиг. 6.16D — 6.16F, мы можем видеть, что пористость, активная площадь и SoC не меняются в течение периода покоя. Поэтому исходные значения для моделирования стратификации следует брать из этих рисунков.
Поток жидкости моделируется с использованием ПРОСТОГО алгоритма, приведенного в Приложении E. Моделируемая область показана на рисунке 6.17A, а числовая сетка показана на рисунке 6.17B. Как видно, для моделирования используется неоднородная сетка. Также обратите внимание, что для обеспечения правильной визуализации оси x и y масштабируются независимо.Результаты моделирования показаны на рис. 6.18 и 6.19 для уровней времени t = 15 и t = 30 мин соответственно. Рис. 6.18A и 6.19A показаны векторы скорости в области электролита. Ясно, что электролит имеет тенденцию двигаться вниз около электродов, потому что во время процесса зарядки внутри электродов образуется кислота в соответствии с электрохимической реакцией электродов. Но очевидно, что электролит около положительного электрода более плотный, чем отрицательный из-за стехиометрических коэффициентов основных свинцово-кислотных реакций.
Рисунок 6.17. Модель Cell-IV и числовая сетка. (A) Модель клетки. (B) Числовая сетка.
Рисунок 6.18. Результаты моделирования при т = 15мин. (A) Векторы скорости. (B) Поле скорости. (C) Контуры электролита.
Рисунок 6.19. Результаты моделирования при т = 30мин. (A) Векторы скорости. (B) Поле скорости. (C) Контуры электролита.
Фиг. 6.18B и 6.19B показывают естественную конвекцию, которая имеет место внутри области электролита. Некоторые вихри видны в верхней части ячейки из-за движения электролита.Результат движения электролита преобразуется в расслоение электролита, как показано на рис. 6.18C и 6.19C. Движение электролита заставляет более плотный электролит опускаться, а более легкий — подниматься. Таким образом, вдоль вертикальных сечений клетки мы видим градиент кислоты, также известный как кислотная стратификация.
Если мы не свяжем уравнение Навье – Стокса с другими определяющими уравнениями, то расслоение электролита не может быть зафиксировано. Чтобы показать этот аргумент, мы рисуем те же результаты на рис.6.19 при отсутствии движения электролита на рис. 6.20. Как можно видеть, поскольку у нас нет поля скорости (сравнивая рис. 6.20A и 6.20B), электролит не показывает никакого градиента в вертикальном направлении. Вертикальные контурные линии на рис. 6.20C подтверждают этот аргумент.
Рисунок 6.20. Результаты моделирования при т = 30 мин без потока жидкости. (A) Векторы скорости. (B) Поле скорости. (C) Контуры электролита.
На рис. 6.21 показан градиент концентрации электролита в средней части поперечного сечения аккумуляторного элемента.Рисунок показывает, что учет движения электролита и его игнорирование существенно влияют на конечные результаты. Следовательно, если в батарее существует свободный электролит, то имитация движения электролита имеет решающее значение, даже если движение электролита медленное и жуткое. Вертикальная составляющая поля скорости, изображенная на рис. 6.22 на той же высоте, подтверждает этот аргумент. Максимальная скорость достигает примерно 0,1 мм / с, что является медленным движением.
Рисунок 6.21. Сравнение концентрации электролита с движением электролита и без него в секции A — A .
Рисунок 6.22. Сравнение вертикальной составляющей скорости на сечении A — A .
Наконец, градиенты концентрации электролита в вертикальном направлении в центре области электролита на различных временных уровнях показаны на рис. 6.23. Понятно, что со временем градиент становится более значительным.
Рисунок 6.23. Сравнение вертикальной составляющей скорости на сечении A — A .
Влияние количества электролита на литий-ионные элементы
В производственной цепочке литий-ионных аккумуляторных элементов процесс заполнения имеет первостепенное значение для качества конечного продукта и затрат.Заполнение состоит из нескольких этапов дозирования жидкого электролита в ячейку и последующего (промежуточного) смачивания компонентов ячейки. Количество залитого электролита не только влияет на скорость смачивания электродов и сепаратора, но также ограничивает емкость ячейки и влияет на срок службы батареи. Однако слишком много электролита является мертвым грузом, приводит к более низкой плотности энергии и излишне увеличивает стоимость батареи. Для обеспечения низких затрат на производство и в то же время высокого качества ячеек в данной статье исследуется оптимальное количество электролита.На основе экспериментальных данных спектроскопии электрохимического импеданса, процесса заполнения, процесса формирования, а также испытания на срок службы представлены взаимозависимости между количеством электролита, скоростью смачивания, емкостью, плотностью энергии и сроком службы для крупноформатных ячеек.
Литий-ионные батареи (LIB) в качестве электрохимических систем хранения энергии являются ключевой технологией для замены ископаемого топлива и позволяют хранить возобновляемые ресурсы благодаря их малому весу, высокой плотности энергии и длительному сроку службы. 1 Эти батареи за последние три десятилетия заняли доминирующее положение в бытовой электронике и послужили толчком к успеху мобильных устройств, таких как сотовые телефоны и портативные компьютеры. Таким образом, ожидается, что рынок электротранспорта и стационарного хранения энергии будет активно стимулироваться LIB. 2 Цель более высокой плотности энергии в автомобильных приложениях может быть достигнута за счет уменьшения процентного содержания неактивных материалов, таких как фольга токосъемника, компоненты корпуса или разделители на элемент.Это способствует тенденции к увеличению размеров ячеек 3 , а также к более толстым электродам. 4 Ячейки большого формата, однако, создают проблемы для производственных процессов, таких как заполнение жидкими электролитами. Для обеспечения надежной работы и высокой производительности все полости и поры электродов и сепаратора должны быть увлажнены перед началом цикла пласта. 5 В противном случае существует опасность образования неоднородной межфазной фазы твердого электролита (SEI), которая является продуктом реакции компонентов растворителя электролита и лития на поверхности анода. 6 В то время как SEI на аноде создается во время этих начальных циклов зарядки и разрядки, межфазная фаза катодного электролита (CEI) является результатом старения при повышенных температурах или циклического воздействия высоких напряжений. 7 Преждевременная зарядка до полного смачивания может привести к сильным локальным колебаниям толщины слоя, которые могут вызвать частичное отрывание слоя. 8 Тогда, в отличие от реальной функции SEI, возможен перенос электронов от электрода к электролиту (восстановление электролита) и блокирование ионов, что отрицательно сказывается на емкости и сроке службы элемента. . 9
Увеличение количества слоев, толщины электрода и площади поверхности на ячейку еще больше снижает трудоемкое смачивание компонентов ячейки электролитом. 10 Небольшие поверхности в монетных элементах не представляют проблемы для смачивания, так как электролит может достичь всех полостей за короткое время. Однако при промышленном производстве ячеек большого формата выполняется несколько периодических циклов смачивания и формирования, в результате чего общая продолжительность составляет до 3 недель. 11 Это подразумевает значительные расходы, так как десятки тысяч циклов, а также складские помещения необходимы для управления требуемой пропускной способностью. 11
Один из способов снизить стоимость LIB — ускорить процесс смачивания. 12 Weydanz et al. 13 показали, что наполнение под вакуумом до 100 мбар значительно ускоряет этот производственный этап. Habedank et al. 14 даже достиг в 12 раз более быстрого смачивания за счет лазерного структурирования электродов, что дополнительно улучшает поведение C-rate. 15 Состояние смачивания определяется как смоченные и насыщенные поверхности и полости электродов и сепаратора по сравнению с общими поверхностями и полостями узла ячейки. Заполнение полостей, которые представляют собой внутренние поверхности среды, можно описать как микроскопическое смачивание. А смачивание (макроскопических) поверхностей можно рассматривать как поверхностное смачивание. Первые можно измерить с помощью спектроскопии электрохимического импеданса (EIS). 16,17 Последнее можно визуализировать с помощью нейтронной радиографии. 18 Еще один способ снизить затраты на киловатт-час — это снизить материальные затраты, например, за счет минимизации количества электролита на элемент. 12 В лабораторных условиях дозируется непропорционально большое количество электролита по сравнению с поверхностями компонентов в однослойных ячейках. Напротив, при производстве промышленных ячеек в ячейках большого формата не хватает пустого пространства для содержания электролита в таком же соотношении к поверхности активного материала и сепаратора. 19 Кроме того, поскольку электролит является неактивным материалом, слишком много и, следовательно, ненужного электролита является мертвым грузом, что снижает плотность энергии и увеличивает стоимость батареи. 10
Чтобы точно определить влияние количества производимого электролита, были построены большие ячейки, заполненные разным количеством электролита. Эти ячейки были измерены во время смачивания с помощью импедансной спектроскопии, затем подверглись процедуре формирования и были циклически проверены в испытании на срок службы.
Cell-Assembly
Ячейки-пакеты, состоящие из 13 анодных листов и 12 катодных листов, были собраны в Техническом университете Мюнхена на полуавтоматических машинах в сухом помещении с точкой росы ниже -55 ° C. Катодные листы состояли из двустороннего покрытия LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM111) на алюминиевой фольге коллектора, а для анода в качестве активного материала использовался графит. с обеих сторон покрыт медным коллектором.Точные характеристики имеющихся в продаже электродов с покрытием показаны в Таблице I. Электродные листы были разделены в процессе удаленной лазерной резки, как описано в Ref. 20 к формату 101 мм × 73 мм (катод) и 104 мм × 76 мм (анод). Коммерческий сепаратор (Celgard 2325) был зажат между электродами в z-образной форме, чтобы обеспечить электрическую изоляцию, и обернут вокруг пакета ячеек для обеспечения механической стабильности, удерживая электроды в их точном положении. Язычки и фольга токосъемника были соединены с помощью ультразвуковой сварки, и готовый пакет ячеек был упакован в гибкий пакет с углубленным карманом.С трех сторон пакет из фольги запечатывали импульсными запаивающими планками, оставляя одну сторону открытой для заполнения электролитом. Чтобы предотвратить нежелательные побочные реакции с остаточной влажностью, как указано в Ref. 21, они были высушены в вакуумной печи при 60 ° C и 20 мбар перед последующим заполнением в течение ночи. Подробности процедуры заполнения будут объяснены в следующем разделе. До и после каждого этапа производства ячейки взвешивались, чтобы отобразить влияние каждого этапа процесса на плотность энергии продукта посредством сборки ячеек, как показано на рисунке 1.
Таблица I. Технические характеристики используемых электродов.
шт. | катод | анод | |
---|---|---|---|
активный материал | мас.% | 93,0 (NCM111) | 92,5 (графит) |
проводящий углерод | мас.% | 3,0 | 0,5 |
связующее | мас.% | 4.0 | 7,0 |
загрузка емкости | мАч см -2 | 2,748 | 3,606 |
пористость | % | 32,1 | 32,2 |
толщина электрода | мкм | 118 | 130 |
толщина фольги подложки | мкм | 20 (Al) | 10 (Cu) |
Увеличить Уменьшить Сбросить размер изображения
Рисунок 1. Изменение доли NMC на этапах процесса сборки электролизера после изготовления электродов в качестве индикатора влияния сборки электролизера на удельную энергию продукта. Объемный коэффициент vf описывает количество дозированного электролита и приведен в таблице II.
Filling-Process
1 М раствор LiPF 6 в смеси этиленкарбоната (EC) и этилметилкарбоната (EMC; массовое соотношение EC: EMC 3: 7) с 2 мас.% Виниленкарбоната (VC ) от BASF служил электролитом.Как правило, для крупноформатных ячеек требуется несколько итераций дозирования после поглощения жидкости узлом ячеек из-за небольшого количества пустого пространства в ячейке и высокого сопротивления потоку пористых структур. 22 Для данной экспериментальной схемы из-за небольшого количества электролита по сравнению с объемом пустот между гибкой фольгой пакета и стопкой, одной стадии дозирования было достаточно. В результате наполнение состояло из шести этапов: промывка инертным газом, вакуумирование, дозирование, герметизация, удаление воздуха и смачивание.Электролит дозировали в вакуумную камеру при абсолютном давлении 80 мбар. Количество варьировалось по объемному коэффициенту.
от 0,6 до 1,8 объема пор компонентов ячейки (сепаратора и электродов). Средний объем пор ячеек составил 8,85 мл. Точность дозирования и полученные объемы электролита сведены в Таблицу II. Давление закрытия герметизирующих стержней было установлено на 3 бара в течение 3 секунд при температуре герметизации 195 ° C.
Таблица II. Точность дозирования, итоговое количество дозированного электролита и емкость ячеек после формирования, которые соответствуют токам при испытании на срок службы.
объемный коэффициент | – | 0,6 | 0,8 | 1,0 | 1,2 | 1,4 | 1,6 | 1,8 |
количество электролита | мл | 5.35 | 7,11 | 8,77 | 10,98 | 12,54 | 14,26 | 15,82 |
стандартное отклонение | мл | 0,08 | 0,04 | 0,17 | 0,04 | 0,13 | 0,16 | 0,19 |
количество электролита | мл Ач -1 теор | 1,10 | 1,46 | 1,81 | 2.26 | 2,58 | 2,93 | 3,26 |
емкость ячейки | Ач изм. | 2,68 | 3,23 | 3,33 | 3,16 | 3,28 | 3,41 | 3,44 |
стандартное отклонение | Ач изм. | 0,12 | 0,07 | 0,04 | 0,07 | 0,11 | 0,01 | 0.02 |
количество ячеек | – | 3 | 5 | 6 | 3 | 4 | 3 | 4 |
После вентиляции камеры ячейки выдерживались под давлением окружающей среды в течение 180 минут перед первой загрузкой. Во время этого смачивания электрохимические измерения проводились с помощью потенциостата Interface 5000E от Gamry Instruments. Последовательность состояла из измерений потенциала открытого тока (OCV) и EIS и была запрограммирована на повторение в течение не менее 90 минут.Сначала измеряли OCV в течение 15 секунд с периодом выборки 0,5 секунды. Впоследствии потенциостатический EIS был запущен с начальной частотой 100 кГц и был изменен на 1 Гц с 10 точками на декаду и амплитудой 10 среднеквадратичных мВ в качестве сигнала возбуждения переменного тока, подаваемого на ячейку. Постоянное потенциальное смещение, которое может применяться к ячейке во время сбора данных, было установлено равным нулю по сравнению с OCV ячейки. Напряжение переменного тока суммировалось с напряжением постоянного тока.
Кривые EIS были проанализированы с акцентом на высокочастотное сопротивление (HFR).HFR ячейки — это значение импеданса, при котором мнимая часть равна нулю. Он интерпретируется как внутреннее сопротивление ячейки и изменяется во время смачивания компонентов ячейки жидким электролитом. 17
Процесс формирования и испытание на срок службы
Формирование проводилось с использованием системы тестирования ячеек BaSyTec, подключенной к ячейкам в температурной камере при 25 ° C. Процесс состоял из 2 циклов при скорости C 0,1 ° C (что соответствует 4,86 Ач теор ).Ячейки заряжались в режиме постоянного тока при постоянном напряжении (CCCV) с ограничением тока, соответствующим C / 20, в то время как разряд выполнялся в режиме постоянного тока (CC). Верхнее напряжение отсечки было установлено на 4,2 В, а нижнее напряжение отсечки было установлено на 2,5 В.
Перед началом испытания на срок службы элементы были дегазированы, удаляя газ, который образовывался во время первых циклов зарядки и разрядки в результате химических реакций между ними. электроды и электролит, а также активация электродов.Сначала клетки были измерены с помощью EIS, используя ту же процедуру, что и в последнем разделе. Из-за временной стабильности EIS только трех циклов измерения было достаточно, чтобы зафиксировать поведение импеданса ячейки после цикла. Затем клетки помещали в вакуумную камеру. Камера промывалась инертным газом и откачивалась до 100 мбар, что было немного выше, чем уровень давления для дозирования электролита в последней секции. Ячейки открыли для удаления газа и снова запечатали. После вентиляции камеры мешок с избыточным газом упаковки был вырезан, и клетки снова были измерены с помощью EIS и взвешены.
Обратимые емкости клеток определяли по второму циклу формирования. Вернувшись в температурную камеру, циклирование выполнялось при 1 C (Ah rev ) и 25 ° C в режиме CCCV для зарядки с ограничением тока, соответствующем C / 20, и в режиме CC для разряда. Перед каждой серией из 50 циклов при 1 ° C выполняли один цикл при 0,1 ° C, а затем один цикл при 0,5 ° C. После завершения испытания на срок службы клетки были измерены с помощью EIS в четвертый раз.
Для каждого варианта были протестированы не менее трех независимых ячеек, и данные на рисунках всегда представляют собой среднее значение этих ячеек. Планки погрешностей на рисунках представляют собой стандартное отклонение измерений.
На рис. 1 показана массовая доля NMC в общей массе промежуточного продукта через процессы сборки ячеек. Поскольку (без электролита) активный материал катода является единственным резервуаром лития в элементе, содержание NMC является показателем плотности энергии элемента.Начальная доля катода в 76% уменьшается за счет таких этапов сборки, как z-образное складывание, при котором добавляются сепаратор и аноды. Затем удельный вес дополнительно увеличивается за счет приваренных ультразвуком язычков и алюминиевой фольги упаковки. График разделен на различные количества электролита для секции, представляющей процесс заполнения. С увеличением количества электролита весовая доля NMC еще больше уменьшается. От vf 0,6 до 1,8 наблюдается разница почти в 10% в доле NMC.Окончательное увеличение доли NMC связано с удалением фольги мешка для отходов после дегазации.
Измерения EIS после дозирования электролита показаны на Рисунке 2a для смачивания ячеек. Результирующая HFR изменяется с течением времени и сходится к окончательному значению, как описано в Ref. 17. Эта точка схождения зависит от количества жидкого электролита. Большие дозированные количества приводят к более низким значениям HFR клеток после смачивания. Кроме того, HFR уменьшается и сходится для величин, больших или равных vf 1, тогда как он снова увеличивается для меньших величин перед сходимостью.Относительно скорости смачивания
(со степенью смачивания) влияние на скорость смачивания также становится заметным на Рисунке 2b. Скорость смачивания клеток с vf 0,6 и 0,8 пересекает нулевую линию в отрицательный диапазон и медленно приближается к нулю. В отличие от ячеек с большим количеством электролита, эти ячейки еще не завершили смачивание за время измерения 150 мин. Увеличение HFR и связанное с этим более длительное смачивание элементов является результатом недостаточного количества электролита в элементе.На этом этапе можно провести различие между двумя фазами микроскопического смачивания. Во время первой фазы смачивания HFR элементов уменьшается, как и в элементах с большим количеством электролита. Причина этого может заключаться в том, что электролит сначала проникает через участки поверхности компонентов ячейки, которые находятся в прямом контакте с жидкостью, и начинает сжимать или замещать остаточный газ в порах. Эта фаза смачивания заканчивается минимальной HFR (рис. 2a) или переходом через нуль скорости смачивания (рис. 2b).Минимум получается из-за локального избытка электролита, который замыкает электрическую цепь параллельно несмачиваемым участкам во время измерения EIS. На втором этапе жидкость электролита перераспределяется в оставшиеся поры, которые еще не заполнены электролитом в такой же степени. Капиллярные силы, действующие во время проникновения, зависят от радиуса пор. 23 Следовательно, объемная доля жидкого электролита в малых порах увеличивается за счет более крупных пор с тем же углом смачивания, если присутствует недостаточно электролита.Вторая фаза завершается, когда между порами всех компонентов ячейки достигается равновесие сил (например, капиллярных сил, сжатия газа, силы тяжести и т. Д.). Макроскопически теперь наблюдается однородное распределение жидкого электролита. HFR остается постоянным с течением времени, а скорость смачивания приближается к нулю.
Увеличить Уменьшить Сбросить размер изображения
Рисунок 2. а) HFR ячеек при смачивании жидким электролитом; б) Скорость смачивания как функция времени после дозирования жидкого электролита.
Помимо недонасыщения жидким электролитом, подробное картирование скорости смачивания показывает, что зависимость от количества электролита незначительна (для исследованных количеств и формата ячейки). Влияние гидростатического давления столба жидкости на пакет ячеек приводит к разнице 0,06 мОм в первые 10 минут и снижается до менее 0,01 мОм через 20 минут. Можно предположить, что гидростатическое давление не оказывает большого влияния, поскольку даже максимальный дозируемый объем составляет 16.01 мл остается небольшим по сравнению с смачиваемыми поверхностями.
Влияние количества электролита на обратимую емкость и плотность энергии ячеек после образования показано на Рисунке 3 как функция от коэффициента C. Объемный коэффициент 1 соответствует дозированному количеству электролита, равному величине всех полостей электродов и сепаратора. Однако никакие границы раздела или объемы между сепаратором и электродами не принимаются во внимание. Следовательно, для достижения максимально возможной производительности за счет смачивания всех пустотных объемов необходим коэффициент, превышающий vf 1.Емкость при 0,1 ° C увеличивается с vf 0,6 до 1,2, а затем остается постоянной, поскольку vf продолжает увеличиваться. При 0,5 и 1 ° C он не меняется до vf 1,4. Превосходное электрическое поведение ячеек с vf 1 или меньшим 1 C может быть объяснено диффузией носителей заряда: во время этих более длительных фаз заряда / разряда носители заряда имеют достаточно времени, чтобы не обходить (достаточно ) смоченные участки ячеек. Максимальная плотность энергии достигается при 0,1 C и vf 0,8. Чем больше электролита дозируется в ячейки, тем ниже становится плотность энергии после этого пика.Причина такого поведения — уменьшение веса активного материала, которое имеет большее влияние, чем увеличение емкости. Также можно показать, что плотность энергии при 1 ° C не уменьшается так быстро, как при более низких уровнях C.
Увеличить Уменьшить Сбросить размер изображения
Рисунок 3. Обратимая удельная емкость (столбцы слева) и удельная энергия (столбцы справа) ячеек в зависимости от количества электролита в течение первых трех циклов (0.1 C, 0,5 C, 1 C) срока службы.
На рисунке 4 показана удельная емкость ячеек во время испытания на срок службы в зависимости от объемного фактора, а также от коэффициента C. Емкость тем выше, чем ниже C-rate, и уменьшается с увеличением количества циклов. Поскольку после 50 циклов клетки циклируются с двумя более низкими скоростями C, на графике появляются небольшие скачки при 1 C, что свидетельствует о восстановлении клеток после низких скоростей. Ячейки с vf 0,6 уже испытывают резкое падение емкости в течение первых 50 циклов и теряют свою функциональность из-за недостаточного количества электролита внутри элементов.Ян и др. 24 различают линейное и нелинейное старение. В то время как рост SEI за счет электролита играет доминирующую роль в линейной фазе, нелинейное старение является индикатором литиевого покрытия, вызванного большими локальными градиентами электролита в аноде и на границе раздела с сепаратором. 24 Здесь после формирования кулоновская эффективность ячеек с vf 0,6 [vf 1] составляет 99% (± 1) [102,5% (± 1,1)] при 0,1 C. При 1 C она быстро падает до 78% ( ± 2) [95.8% (± 0,5)], а затем требуется около 30 циклов [1 цикл] для достижения эффективности 97% (± 1) [99,9% (± 0)]. Предполагается, что емкость, которую не удалось восстановить во время разряда, на которую указывает эффективность, будет размещена в позднем здании ГЭИ. В дополнение к восстановлению SEI из-за растрескивания во время работы, 9 дополнительный SEI формируется несмаченными участками, вытягивающими электролит из уже увлажненных участков из-за изменения преобладающего равновесия сил. Низкая максимальная эффективность 97% при 1 ° C для vf 0.6 является результатом местных плохо или даже не увлажненных участков, которые имеют более высокое сопротивление и, следовательно, способствуют нанесению литиевого покрытия по сравнению с другими участками. 25 При дальнейшем истощении электролита ионная проводимость через поры сепаратора уменьшается, прекращая функциональность элементов. По этой причине предполагается, что истощение электролита и последующее литиевое покрытие является механизмом разрушения элементов.
Увеличить Уменьшить Сбросить размер изображения
Рисунок 4. Характеристики ячеек во время испытания на срок службы после формирования. Тест состоял из 20 [0,1 C, 0,5 C, 50 [1 C]] циклов в режиме CCCV для зарядки и в режиме CC для разряда.
По мере увеличения количества электролита до vf 1,4 характеристики ячеек улучшаются, так что потери емкости в течение их срока службы уменьшаются. Однако для больших количеств (vf 1,6–1,8) большая потеря емкости может наблюдаться в увеличенном виде первых 200 циклов при 1 ° C на Рисунке 4.Ячейки могут до некоторой степени компенсировать эту потерю: даже несмотря на то, что емкость при 0,5 ° C после 650 циклов снова выше, чем для vf 1,2, элементы остаются ниже производительности этих элементов с vf 1,4 даже при более высоких циклах. Этот нежелательный эффект потери емкости во время первых циклов можно объяснить избытком VC. Добавка, не израсходованная во время формирования, создает CEI во время цикла до тех пор, пока не будет исчерпана. Таким образом он связывает литий, который впоследствии больше не может участвовать в перезарядке. 26
Два различных эффекта, потеря лития и истощение электролита, также можно наблюдать на рис. 5, представляющем напряжение разряда в зависимости от емкости элементов. Во время первого цикла преобладает недостаток электролита. Чем больше электролита присутствует в элементах, тем выше напряжение во время разряда и тем выше емкость, при которой напряжение падает до напряжения отсечки. Это эквивалентно уменьшению перенапряжения при увеличении количества электролита и, следовательно, увеличению разрядной емкости элемента.После 100 циклов ячейка с vf 0,6 уже разрушилась. Поскольку применялись высокие скорости зарядки при относительно низких температурах, возможными причинами являются либо нанесение литиевого покрытия уже в первых циклах, 27, или недоступные области электродов. Ячейки с vf 1,6 и vf 1,8 остаются при более высоких напряжениях примерно до 2,5 А · ч, но затем падают, так что емкость ячеек соответствует емкости ячеек с vf 0,8. Эта потеря емкости связана с недоступным количеством лития, который лигирован в CEI.Ячейки с vf 1,2 и 1,4 по-прежнему генерируют высокое напряжение во всем диапазоне емкости, а также высокую конечную емкость. Однако после 500 циклов эти элементы (vf 1.2 и 1.4) страдают от потери напряжения в начале фазы разряда, что, как предполагается, является результатом литиевого покрытия в сочетании с повышенным SEI. Хотя ячейки, заполненные vf 1.4, все еще достигают максимальной емкости, напряжение vf 1.6 и 1.8 выше при одновременной более низкой емкости. Как правило, напряжение в начале процесса разряда падает из-за того, что в элементах присутствует меньше электролита.Однако потеря лития в элементах (из-за чрезмерного наращивания CEI) указывается преждевременным падением напряжения с высокого уровня по сравнению с элементами без чрезмерного CEI.
Увеличить Уменьшить Сбросить размер изображения
Рисунок 5. Напряжение разряда выше емкости характеристической ячейки как функция количества электролита для 1 st , 100 th и 500 th цикл при 1 C срока службы.
CV-доля определяется как емкость, заряженная в режиме CV, по отношению к общей заряженной емкости Q в режимах CC и CV:
и показан на рисунке 6. Процент заряда может служить индикатором возможности быстрой зарядки ячеек и зависит от C-rate: с увеличением SOC потенциал катода увеличивается, а потенциал графита приближается. 0 В по сравнению с Li + / Li . Разница между двумя потенциалами определяет напряжение ячейки.Таким образом, в режиме CC напряжение зарядки повышается, чтобы обеспечить определенный ток. Анод должен интеркалировать атомы лития за заданное время (определяемое скоростью C). Если скорость интеркаляции на аноде ниже, чем скорость переноса Li + в электролите, вызванная током заряда, литий накапливается на поверхности анода. Потенциал графита падает ниже 0 В по сравнению с Li + / Li , и металлическое покрытие литием происходит поверх анода.Следовательно, высокие концентрации углерода способствуют нанесению литиевого покрытия. 28 Кроме того, гальваническое покрытие может быть вызвано несмачиваемыми участками анода или сепаратора из-за результирующего неоднородного распределения плотности тока. 29 Отрицательный потенциал анода (по сравнению с литием) приводит к тому, что напряжение ячейки превышает потенциал катода, так что верхнее напряжение отсечки и, следовательно, фаза CV достигается раньше. 30 На верхнем уровне напряжения отсечки напряжение поддерживается постоянным в режиме CV, и элемент будет заряжаться до тех пор, пока ток не упадет до состояния отсечки.Таким образом, небольшая доля CV является синонимом высокой скорости интеркаляции анода и полностью увлажненного сепаратора, как показано на рисунке 6: чем больше электролита дозируется в ячейки, тем ниже доля CV. С увеличением количества циклов и C-rate доля CV увеличивается. Следовательно, элементы не только должны заряжаться в течение более длительного времени, но они также должны подвергаться более длительному воздействию более высоких напряжений, что представляет собой нагрузку на компоненты элементов. 31
Увеличить Уменьшить Сбросить размер изображения
Рисунок 6. CV-доля клеток в течение жизненного цикла после образования. CV-доля определяется как емкость, заряженная в режиме CV, по отношению к общей заряженной емкости в режимах CC и CV. Испытание на срок службы состояло из 20 [0,1 C, 0,5 C, 50 [1 C]] циклов в режиме CCCV для зарядки и в режиме CC для разряда.
HFR всех ячеек после смачивания, формирования, дегазации и испытания на срок службы показано на рисунке 7. Предполагалось, что SOC всех ячеек равняется 0%, поскольку они либо никогда не заряжались (просто смачивались), либо разряжались до напряжения 2.5 В. HFR после дегазации немного выше, чем после образования. Причина этого может заключаться в том, что небольшое количество жидкого электролита вытягивается из пор во время дегазации и должно повторно занимать это пространство. Для ячеек с vf от 0,6 до 1,2 оба значения HFR после образования и дегазации выше, чем HFR после смачивания. От vf 1,4 до 1,8 HFR после образования и после дегазации ниже, чем после смачивания. В сочетании с электрохимическими характеристиками во время испытания на срок службы измерения показывают, что количество электролита не менее vf 1.4 требуется, чтобы позволить SEI полностью сформироваться во время формирования и обеспечить оптимальную ионную проводимость через сепаратор, необходимую для перезарядки. Перенос заряда между электролитом и анодом даже улучшается за счет образования SEI с достаточным количеством электролита, как показывают значения HFR. Однако в течение срока службы внутреннее сопротивление элемента увеличивается из-за расхода электролита, нежелательных реакций и образования дополнительных SEI и CEI. Стандартное отклонение измерений не позволяет делать какие-либо существенные выводы, но существует тенденция к тому, что HFR увеличивается в меньшей степени в течение срока службы с большими количествами электролита, чем с элементами с небольшими количествами электролита.
Увеличить Уменьшить Сбросить размер изображения
Рис. 7. HFR ячеек после смачивания, формирования, дегазации и испытания на срок службы (1040 циклов без образования) для различных количеств электролита при SOC 0.
Исследование, на котором основана эта статья, показало, что плотность энергии, а также емкость литий-ионных батарей зависят от количества электролита. Слишком мало электролита приводит к потере емкости и срока службы, тогда как слишком большое количество электролита снижает плотность энергии.Для оптимального смачивания компонентов ячейки электролитом было определено минимальное количество электролита, соответствующее объему пор. Кроме того, избыток ВК сравнивали с недостатком электролита в течение срока службы элементов. Оба механизма отказа можно распознать по разному напряжению разряда в зависимости от емкости. При недостатке электролита напряжение резко падает уже в начале процесса разряда, а превышение VC приводит к более позднему, но более сильному падению напряжения в конце фазы разряда.Доля CV при циклировании увеличивается с уменьшением количества электролита и без влияния чрезмерных количеств VC. Следовательно, предполагается, что без чрезмерной добавки VC и с увеличением количества электролита производительность увеличивается в течение срока службы, особенно при более высоких скоростях C. Также было показано, что HFR уменьшается с увеличением количества электролита. При слишком низком количестве электролита можно использовать EIS для обнаружения перераспределения электролита в порах.Таким образом, EIS не может использоваться только для измерения распределения электролита после завершения смачивания компонентов ячейки, но также помогает выяснить, было ли дозировано достаточное количество электролита для данной пористой структуры. Этапы производства после заполнения и цикла влияют на внутреннее сопротивление ячейки в зависимости от дозированного объема электролита, который также можно измерить с помощью EIS и наблюдать с помощью HFR.
Становится очевидной не только необходимость адаптации состава электролита к активным материалам и количества электролита на поверхность активного материала, но также необходимость адаптации количества электролита к желаемому заказчику применению.
Авторы выражают признательность Федеральному министерству образования и исследований Германии (BMBF) за финансирование их исследований в рамках проекта Cell-Fi (номер гранта 03XP0069C). Авторы благодарят Таню Цюнд за ее критический отзыв об электрохимической интерпретации, Яна Бернд Хабеданка и Ходу Мохсени за техническую поддержку в лазерной резке и ультразвуковой сварке, а также Gamry Instruments за предоставление потенциостата.
Florian J. Günter 0000-0002-5967-6801
Простое производство обработанных на растворе твердых электролитов для твердотельных батарей с высокой плотностью энергии за счет улучшенного межфазного контакта
Хотя слоистый оксид переходного металла LiCoO 2 имеет высокую ионную проводимость Li + и теоретическую удельную емкость 272 мА ч г -1 19 , катоды на его основе показали низкую практическую емкость ~ 140 мА ч г -1 , в основном из-за изменений в его структуре во время циклов заряда и разряда.В качестве альтернативы LiCoO 2 мы использовали коммерческие катоды NCM622, состоящие из совместно легированной системы LiCoO 2 с Co и Mn, чтобы обеспечить более высокую емкость и стабильную работу во время циклирования. Коммерческий NCM622 (активные материалы) смешивали с растворителем NMP с полимерными связующими PVDF и углеродной сажей, чтобы одновременно получить хорошие проводники как для ионов, так и для электронов. Композитный катодный слой, то есть обычные LIB-электроды, показанные на рис. 1а, был сформирован путем заливки влажной суспензии на токосъемник (алюминиевая фольга) с последующим термическим отжигом при 100 ° C для удаления остаточного растворителя NMP.Для недорогого и крупномасштабного изготовления композитных катодов NCM622 с пропиткой SE используется раствор LPSCl SE сульфидного типа (42,8: 41,4: 15,8 мас.% Li 2 S / P 2 S 5 / LiCl ) был получен мокрым химическим синтезом с использованием прекурсоров SE, таких как Li 2 S, P 2 S 5 и LiCl, в растворителе EtOH (раствор LPSCl + EtOH на рис. 1а). На рисунке 1b показан процесс инфильтрации раствора LPSCl SE в стандартные электроды LIB. Электроды LIB погружали в свежеприготовленный раствор LPSCl, а затем образцы сушили в печи с последующей термообработкой при 180 ° C в вакууме для отверждения пленок SE, а также для полного удаления остаточного растворителя.Изготовление электродов NCM622 с пропиткой SE было завершено прессованием образцов под нагрузкой 700 МПа, чтобы вызвать тесный контакт между активными материалами и SE и улучшить соединение за счет увеличения плотности пленок (низкая пористость). LIB-электроды, пропитанные LPSCl, обычно имеют желтый цвет из-за наличия SE сульфидного типа, что можно увидеть на вставке на рис. 1b. Примечательно, что этот основанный на растворах процесс SE-инфильтрации может быть дополнительно модифицирован путем использования различных методов печати с рулона на рулон и / или крупномасштабной графической печати, таких как распыление, глубокая печать и трафаретная печать, для крупномасштабной рентабельной печати. изготовление АБП 20 .
Рисунок 1( a ) Схема процесса инфильтрации твердого электролита (LPSCl в EtOH) на основе раствора в обычные электроды LIB (композитный катод на основе NCM622), ( b ) и этапы изготовления : погружение в раствор электролита, сушка на плитке, термический отжиг в условиях вакуума и холодное прессование для сборки электродных компонентов полностью твердотельных батарей.
Электрохимические характеристики композитных электродов на основе NCM622, пропитанных LPSCl SE (ниже см. SE-NCM), проводили с использованием полностью твердотельных полуэлементов SE-NCM / Li-In.На рисунке 2 показаны профили напряжения во время начальных циклов заряда и разряда при 0,05 C. Для исследования эффективности процесса пропитки раствора в SE-NCM были приготовлены два образца путем погружения в раствор SE при различных температурах раствора. Очевидно, что загрузочная концентрация раствора LPSCl SE увеличилась с 13,4 до 15,3 мг / см 2 , когда электроды SE-NCM были пропитаны при 25 ° C и 45 ° C, соответственно. При комнатной температуре элементы SE-NCM / Li-In показали очень низкую обратимую емкость 40 мА ч г -1 .С другой стороны, когда температура раствора была увеличена до 45 ° C, чтобы вызвать более эффективное проникновение SE в композитные электроды, мы получили более высокую обратимую емкость 72 мА ч г -1 по сравнению с электродами, пропитанными при 25 ° C. ° C. Хотя емкость полностью твердотельных элементов была значительно ниже, чем у элементов LE, значение нагрузки композитных электродов SE-NCM увеличивалось при более высокой температуре из-за лучшей инфильтрации раствора SE, так что ячейки показывали более высокие значения. емкость при повышенной температуре.
Рисунок 2Электрохимические характеристики твердотельных полуэлементов NCM622 / Li-In после инфильтрации LPSCl SE в катод при различных температурах приготовления. Профили напряжения заряда и разряда первого цикла электрода SE-NCM ( a ) при значении нагрузки 13,4 мг / см 2 пропитано при комнатной температуре (25 ° C) и ( b ) при значении нагрузки ~ 15,3 мг / см 2 инфильтрирован при повышенной температуре (45 ° C).
На рис. 3a, b показаны изображения FESEM в поперечном сечении и соответствующие им элементные карты, полученные с помощью энергодисперсионной рентгеновской спектроскопии (EDXS) для электродов SE-NCM, полученных при 25 ° C и 45 ° C, соответственно.После резки и полировки поперечных сечений электродов с помощью фрезерования FIB были получены карты пространственного распределения путем измерения элементов, присутствующих в активных материалах NCM622, таких как Co (красный цвет) и Ni (синий цвет), которые показали однородное распределение во всех образцы. Чтобы подтвердить инфильтрацию SE, репрезентативные элементы S (желтый цвет) и P (зеленый цвет) из LPSCl были проанализированы с использованием того же метода EDXS. Примечательно, что электроды SE-NCM, полученные путем пропитки раствора SE при 45 ° C, показали очень равномерное распределение этих элементов даже глубоко внутри композитных электродов, в то время как электроды, изготовленные при комнатной температуре, имели высокую концентрацию элементов S и P наверху. поверхность электродов.Это показывает, что раствор LPSCl SE может эффективно проникать более глубоко в электроды LIB при более высокой температуре обработки. Эта более высокая эффективность проникновения была в основном достигнута за счет более высокого коэффициента диффузии ионов при более высокой температуре и свидетельствует о превосходной деформируемости ПЭ LPSCl. Более того, этот процесс раствор / влажный может обеспечить образование плотных ионных контактов между электродами и электролитами, а также уплотнить катоды для достижения твердотельных LIB с высокой удельной емкостью.
Рис. 3Изображения поперечного сечения FE-SEM композитных электродов на основе NCM622, пропитанных LPSCl, и соответствующие им элементные карты EDXS. Катоды были приготовлены методом пропитки твердым электролитом (SE) при различных температурах: ( a ) при комнатной температуре и ( b ) при повышенной температуре (45 ° C). Величина нагрузки электродов составляла ~ 17,92 мг / см 2 . После разрезания поперечного сечения электрода с использованием FIB было проанализировано пространственное распределение элементов SE (типично ионы S), и было подтверждено равномерное распределение SE внутри электродов при обработке при 45 ° C.
Для кристаллографического анализа материалов LPSCl SE были получены рентгенограммы для свежеприготовленного LPSCl (красная линия) и для образцов, сформированных после заливки раствора и термообработки при 180 ° C в вакууме (черная линия), как показано на Рис. 4. Как исходные, так и термически обработанные СЭ LPSCl имели сходные пики в одних и тех же положениях. Эти характерные дифракционные пики соответствуют положениям пиков, относящихся к кристаллизованному аргиродиту Li 6 PS 5 Cl-фаза 21 , которые могут спонтанно образовываться на этапах подготовки (высокоэнергетическая шаровая мельница и термическая обработка) 22 .Также сообщается, что аргиродитовая фаза Li 7 PS 6 легко образуется при температуре от 80 до 150 ° C во время нагрева стеклокерамической фазы LPSCl SE, измельченной в шаровой мельнице. В условиях более высокой температуры термообработки Cl был включен в состав Li 7 PS 6 , так что образовался кристаллический Li 7 − x PS 6 − x Cl x фаза 23 . Кроме того, на рентгенограммах отсутствовали примесные пики, что подтверждало образование чистой кристаллизованной фазы Li 6 PS 5 Cl.Это говорит о том, что во время затвердевания раствора LPSCl SE не было влияния на присутствие других компонентов композитных электродов, и активные материалы (NCM622) также остались нетронутыми в контакте с растворами EtOH, растворенных в SE.
Рис. 4Кристаллографические характеристики твердого электролита LPSCl. Картины XRD для исходного LPSCl (красная линия) и LPSCl после испарения растворителя на горячей пластине с последующей термообработкой при 180 ° C в условиях вакуума (черная линия).
Электрохимические характеристики ASSB, подвергнутых влажной обработке, напрямую зависят от содержания SE, проникшего в электроды LIB. Хотя было подтверждено, что вышеупомянутый раствор LPSCl SE более эффективно проникает в композитные электроды на основе NCM622 при 45 ° C, емкость все еще была низкой по сравнению с обычными LIB на основе LE (~ 154 мА ч г -1 ). Чтобы добиться более высокого содержания SE за счет более эффективного проникновения элементов SE, мы дополнительно повысили температуру.На рис. 5a, b показаны схематические изображения процесса инфильтрации SE при различных температурах ванны от 45 до 90 ° C и соответствующие количества LPSCl SE в катодах и результирующая обратимая емкость полностью твердотельных LIB соответственно. После погружения электродов NCM622 в раствор SE температура горячей плиты медленно повышалась до 90 ° C. Поскольку EtOH в растворе SE имеет относительно низкую точку кипения при 78,3 ° C, температура ограничена около точки кипения растворителей.При повышении температуры процесса содержание SE также увеличивалось с 6,4 до 14%. Поскольку мы контролировали значение нагрузки обычных электродов LIB на уровне ~ 18 мг / см 2 , более высокая концентрация SE просто приводит к более высокой плотности электродов за счет заполнения пор. Начальная разрядная емкость полупроводниковых полуэлементов LIB заметно улучшилась с 72 до 136 мА ч г -1 при повышении температуры с 45 до 90 ° C соответственно. Удельная емкость сильно зависит от степени проникновения SE.В основном это было связано с тем, что ионные элементы SE могли становиться более активными при более высокой температуре из-за увеличения динамического молекулярного движения и обеспечивать дальнейшую инфильтрацию глубже в композитные электроды. Кроме того, когда температура раствора SE повышается выше точки кипения растворителя при 90 ° C, испарение растворителя может играть важную роль для эффективного проникновения SE за счет значительного увеличения молекулярного движения ионных элементов в конвективном потоке Решение SE.По мере испарения растворителя EtOH воздушные зазоры, присутствующие в электродах LIB, могут высвобождаться, так что SE может заполнять эти пространства. Таким образом, мы достигли высокой емкости полностью твердотельных LIB на основе полуэлементов SE-NCM и Li-In около 177 мА ч г −1 со значением нагрузки 5,5 мг / см 2 (см. Рис. 5в). Эта емкость выше, чем у коммерческих LIB с LE, приближается к теоретической емкости катодных ASSB NCM622 24 . Следовательно, наши катоды SE-NCM, прошедшие влажную обработку при температуре выше температуры испарения растворителя (90 ° C), превзошли те же электроды, которые были изготовлены при более низкой температуре.Также стоит отметить, что они по-прежнему показали хорошую емкость 136 мА ч г −1 , даже со значениями нагрузки в три раза выше при ~ 17 мг / см 2 по сравнению с низкой нагрузкой 5,5 мг / см 2 (см. Рис. 5г). Кроме того, емкость и эффективность первых циклов заряда выше, чем у вторых циклов разряда из-за реакции литий-ионных оксидов металлов и сульфидных твердых электролитов во время начального процесса заряда. Следовательно, литий используется для формирования поверхностного слоя во время начального цикла зарядки, что приводит к необратимой реакции 25 .
Рис. 5Влияние испарения растворителя на процесс инфильтрации LPSCl SE в катодах полностью твердотельных батарей. ( a ) Схема процесса инфильтрации раствора SE при различных температурах от 45 до 90 ° C на нагревательной плите с регулируемой температурой и ( b ) соответствующее содержание LPSCl и начальная пропускная способность SE-NCM / Li-In полуклетки. Учитывая, что температура кипения растворителя EtOH составляет 78,3 ° C (пунктирная линия), эффект испарения начинает вносить свой вклад около этой точки, так что конвективный поток вызывает равномерное распределение SE в электродах.Профили напряжения заряда и разряда первого цикла одних и тех же полуэлементов с использованием катодов, пропитанных SE, обработанных выше точки кипения EtOH (при 90 ° C) со значением нагрузки ( c ) ~ 5,5 мг / см 2 и ( d ) ~ 17 мг / см 2 .
Длительность циклического испытания требуется для проверки надежности композитных электродов, пропитанных SE, в ячейке ASSB. Мы получили электрохимические характеристики в течение 20 циклов зарядно-разрядных процессов, которые показали относительно надежные и воспроизводимые результаты.На рис. S1a в вспомогательной информации показаны профили напряжения заряда и разряда, а также их емкости ASSB с композитными катодами на основе NCM622, пропитанными SE, при рабочей температуре 55 ° C, скорости C 0,05 C и величине нагрузки 2,3 мг. / см 2 . Мы получили высокие емкости 238,09 и 172,58 мА ч г −1 во время начальных процессов зарядки и разрядки соответственно. Отмечено, что начальная емкость существенно не изменилась после 20 циклов. Когда мы измеряем кулоновскую эффективность тех же ячеек, она сохраняет эффективность 97% после завершения 20 циклов (см.рис.S3). Кроме того, на рис. S1b показано сопротивление переносу заряда композитных электродов на основе NCM622, пропитанных SE, до и после испытания на длительность. Можно сделать вывод, что катод, пропитанный СЭ, успешно переносил ионы даже после 20 циклов заряда-разряда, так как не происходит значительного изменения внутреннего сопротивления элемента. Кроме того, были также проведены изображения поперечного сечения FE-SEM и их анализ элементарного картирования EDXS, чтобы исследовать распределение SE и возможность образования вторичной фазы после циклических испытаний.На рис. S2 показано пространственное распределение элементов P, S, Co и Ni, причем SE LPSCl имеют равномерное покрытие, и не было никаких доказательств образования вторичных фаз на катодах после 20 циклических испытаний.
Для эффективного проникновения жидкофазных SE в композитные электроды размер частиц активных материалов также может быть важным параметром для определения электрохимических характеристик ASSB. Как показано на рис. 6, размерные эффекты активных материалов были исследованы с использованием малых (диаметр ~ 4 мкм) и крупных (диаметр ~ 10 мкм) частиц NCM622.Ожидается, что обычные LIB-электроды листового типа с крупными частицами имеют большие воздушные зазоры; следовательно, раствор SE сможет легче проникать в эти пористые композитные пленки. Однако электрохимические характеристики активных материалов большого размера были плохими, с небольшой разрядной емкостью ~ 70 мА ч г -1 при величине нагрузки 17,5 мг / см 2 , как показано на рис. 7. Хотя при температурах композитные электроды размером мкм содержали большое количество ПЭ, их низкая плотность отрицательно сказывалась на характеристиках электродов.Это объясняется большим межфазным сопротивлением и несовершенством ионных контактов и путей перколяции. Активные материалы большого размера в катодах SE-NCM могут вызвать серьезную потерю контакта в точках контакта между активными материалами и токосъемником, а также с LPSCl SE. Более того, более значительные изменения абсолютного объема в частицах NCM622 большого размера ухудшают характеристики во время циклов заряда (делитиации) и разряда (литиирования) блоков ASSB. Напротив, электроды SE-NCM, которые были изготовлены с использованием активных материалов небольшого размера (4 мкм), имеют более низкую пористость и более высокую плотность электродов, чем электроды, изготовленные из активных материалов размером всего 10 мкм.Однако малый размер частиц может замедлить проникновение SE из-за их высокого сопротивления воздуху в микропорах, что приводит к тому, что многие изолированные поры остаются пустыми, тем самым снижая скорость инфильтрации растворов SE. На рис. 7 профили напряжения заряда и разряда в начальном цикле только для активных материалов размером 4 мкм демонстрируют относительно высокую емкость около 105 мА ч г -1 в диапазоне 2,5–3,5 В по сравнению с Li / Li + ; на их высокую электродную плотность отрицательно влияет неэффективная и медленная инфильтрация растворов SE в малогабаритные активные материалы в композитных электродах на основе NCM622.
Рисунок 6Сравнение распределения LPSCl внутри электродов с использованием различных размеров активных материалов: либо маленькие (всего 4 мкм), либо большие (всего 10 мкм) частицы, либо смесь двух частиц разного размера. ( a ) Схемы влияния различных размеров активных материалов на процесс инфильтрации LPSCl на основе раствора с одинаковым значением нагрузки ~ 17,5 мг / см 2 . ( b ) Изображения FE-SEM композитных электродов на основе NCM622 с различными размерами активного материала (слева) только частицы 4 мкм, (в центре) только частицы 10 мкм и (справа) смесь частиц 4 и 10 мкм.
Рисунок 7Профили напряжения заряда и разряда в начальном цикле полностью твердотельных батарей с использованием композитных электродов на основе NCM622, где эти полуэлементы были изготовлены с использованием катодов, пропитанных LPSCl SE, при значении нагрузки ~ 17,50 мг / см 2 с использованием различных размеров активных материалов: только частицы 4 мкм (черная линия), смесь частиц 4 и 10 мкм (красная линия) и только частицы 10 мкм (желтая линия).
Одновременное улучшение электрохимических характеристик и эффективного процесса SE-инфильтрации было продемонстрировано путем включения смеси активных материалов большого размера (диаметр 10 мкм) и малого размера (диаметр 4 мкм) в композитные электроды LIB.На рис. 6а схематическая диаграмма и соответствующее ей изображение FE-SEM демонстрируют значительно улучшенную эффективность проникновения SE с различными размерами активных материалов. Было замечено, что смесь активных частиц 4 мкм и 10 мкм уменьшала количество нежелательных пространств внутри электродов по сравнению с электродами, изготовленными только с активными материалами размером 10 мкм. Эта стратегия также способствовала увеличению скорости инфильтрации раствора SE внутри пористых электродов за счет капиллярных явлений, а также помогла получить плотный контакт между электродами и электролитами во время циклов заряда и разряда за счет смешивания частиц активного материала большого и малого размера. .На рис. 7 начальный профиль напряжения цикла зарядки / разрядки блоков ASSB с использованием электродов SE-NCM, которые были приготовлены из активных материалов разного размера, показал наилучшие электрохимические характеристики с емкостью до 108,6 мА ч г -1 дюймов диапазон 2,5–3,7 В относительно Li / Li + , особенно при высоком значении нагрузки ~ 17,50 мг / см 2 .
На основании упомянутых выше исследований, смешанные размеры активного материала и эффект испарения растворителя были использованы для изготовления полностью твердотельных LIB-ячеек с использованием электродов SE-NCM посредством эффективных процессов инфильтрации на влажной основе.На рисунке 8 показаны электрохимические характеристики твердотельных элементов Li 0,5 In / LPSCl-пропитанный-NCM622 при значении нагрузки ~ 4,6 мг / см 2 , испытанных в нормальных рабочих условиях при 30 ° C. Примечательно, что до этого исследования характеристики ячейки ASSB не были доступны для соотношений Li-In менее 1: 4. Мы обнаружили, что сплав Li 0,5 In значительно улучшает характеристики заряда и разряда при использовании в качестве противоэлектрода. Li и In имеют молекулярную массу 6.94 г / моль и 114,81 г / моль соответственно. Таким образом, в качестве оптимальной концентрации использовали весовое соотношение Li 0,5 In 1:33 вес.%. Когда были измерены первый и третий профили напряжения заряда и разряда полностью твердотельных LIB на основе Li 0,5 In / LPSCl SE-пропитанного NCM622 (значение нагрузки 4,6 мг / см 2 ), данные показали: высокая начальная разрядная емкость 140 мА ч г −1 при 0,1 C при 30 ° C в диапазоне напряжений 2,0–3,6 В vs Li / Li + . Более того, этот полностью твердотельный LIB, использующий катод SE-NCM, показал стабильную производительность при циклировании, в которой мы измерили сохранение емкости до 84% при 0.1 С после 30 циклов (рис. 8б). На рис. 8с показаны обратимые емкости при различных текущих скоростях тока от 0,1 до 2 С. Обнадеживает, что эти значения приближаются к значениям практических LIB с LE. Поэтому ожидается, что наш процесс инфильтрации SE на основе решений будет широко использоваться для высокоэффективного и масштабируемого производства ASSB высокой плотности и большой емкости с использованием SE сульфидного типа. Что касается общего веса электродов и SE, мы получили плотность энергии 74,13 Втч / кг , ячейка с использованием толстых электродов.Когда мы уменьшаем количество SE в качестве мембраны, это значение может еще больше увеличиться до 209,03 Втч / кг , элемент . Кроме того, плотность энергии может быть заметно увеличена до 429,59 Втч / кг элемента за счет уменьшения толщины анодного слоя, что аналогично количеству анода промышленного LIB. Эта ячейка имеет высокую плотность энергии по сравнению с обычными ячейками LIB 200–300 Втч / кг ячейка . Примечательно, что высокая плотность энергии достижима, потому что она имеет высокое значение нагрузки и содержит более низкий процент SE по сравнению с прямым смешением SE в обычных ASSB.Мы считаем, что наш процесс инфильтрации SE с обработкой раствора будет влиять и обеспечивать более высокую плотность энергии за счет оптимизации SE и их процессов, чтобы они решали критические проблемы SE и межфазного сопротивления внутри катода.
Рис. 8Электрохимические характеристики полупроводниковых полуэлементов SE-NCM / Li-In с использованием технологии инфильтрации LPSCl, обработанной раствором. ( a ) Первый и третий циклы профилей напряжения заряда-разряда при 0.1 C, ( b ) циклические характеристики заряда и разряда при 0,1 C и ( c ) характеристики C-rate при различных скоростях 0,1 C, 0,2 C, 1 C и 2 C для полностью твердотельных батареи с пропитанными LPSCl NCM622 и электродами Li 0,5 In при величине нагрузки 4,6 мг / см 2 .
Влияние обедненного электролита на срок службы перезаряжаемых литий-металлических батарей (Журнальная статья)
Нагпуре, Шрикант К., Tanim, Tanvir R., Dufek, Eric J., Viswanathan, Vilayanur V., Crawford, Alasdair J., Wood, Sean M., Xiao, Jie, Dickerson, Charles C., and Liaw, Boryann. Влияние обедненного электролита на срок службы литий-металлических аккумуляторных батарей . США: Н. П., 2018.
Интернет. DOI: 10.1016 / j.jpowsour.2018.10.060.
Нагпуре, Шрикант К., Таним, Танвир Р., Дуфек, Эрик Дж., Viswanathan, Vilayanur V., Crawford, Alasdair J., Wood, Sean M., Xiao, Jie, Dickerson, Charles C., & Liaw, Boryann. Влияние обедненного электролита на срок службы литий-металлических аккумуляторных батарей . Соединенные Штаты. https://doi.org/10.1016/j.jpowsour.2018.10.060
Нагпуре, Шрикант К., Таним, Танвир Р., Дуфек, Эрик Дж., Вишванатан, Вилаянур В., Кроуфорд, Аласдер Дж., Вуд, Шон М., Сяо, Цзе, Дикерсон, Чарльз К. и Лиав, Борян. Вт.
«Влияние обедненного электролита на срок службы литий-металлических аккумуляторных батарей». Соединенные Штаты. https://doi.org/10.1016/j.jpowsour.2018.10.060. https://www.osti.gov/servlets/purl/1498783.
@article {osti_1498783,
title = {Влияние обедненного электролита на срок службы литий-металлических аккумуляторных батарей},
author = {Нагпуре, Шрикант К.и Таним, Танвир Р. и Дуфек, Эрик Дж. и Вишванатан, Вилаянур В. и Кроуфорд, Аласдер Дж. и Вуд, Шон М. и Сяо, Джи и Дикерсон, Чарльз К. и Лиав, Борян},
abstractNote = {Перезаряжаемые литиевые батареи обещают значительно увеличить удельную энергию по сравнению с нынешними уровнями развития литий-ионных батарей. Одним из ключевых ограничений металлических систем Li является общий срок службы. В этой работе описываются попытки лучше понять связь между сроком службы и оценкой современных материалов батарей в условиях, которые более точно соответствуют конструкциям высокоэнергетических элементов.Комбинируя модель одной частицы для разработки ячеек, которые достижимы для достижения 300 Вт · ч кг-1, с электрохимической оценкой плоских ячеек с уменьшенными объемами электролита, было обнаружено, что существует значительный пробел при сравнении производительности для условий обедненного электролита и условий затопления. Уменьшение количества электролита с 37 г Ач-1 до 6 г Ач-1 с использованием хорошо работающего электролита для металлического Li сократило срок службы более чем в 7 раз, а также изменило общий режим отказа.В совокупности эти результаты предполагают, что необходимо уделять больше внимания оценке электролитов и материалов для ячеек с высокой удельной энергией.},
doi = {10.1016 / j.jpowsour.2018.10.060},
url = {https://www.osti.gov/biblio/1498783},
journal = {Journal of Power Sources},
issn = {0378-7753},
число = C,
объем = 407,
place = {United States},
год = {2018},
месяц = {10}
}
Воздействие давления на сульфидные электролиты для всех твердотельных батарей
Все твердотельные батареи считаются более безопасными, чем их жидкие аналоги, благодаря использованию негорючих твердых электролитов.Тем не менее, в отличие от батарей с жидким электролитом, во время цикла требуется давление батареи, чтобы избежать потерь при контакте между электродами и твердым электролитом. Хотя недавние исследования показали, что давление пакета влияет на использование емкости легирующих анодов, исследование влияния давления пакета на циклируемость твердотельных батарей до сих пор не проводилось. В этой работе было проанализировано влияние как начального производственного давления, так и рабочего давления в дымовой трубе на ионную проводимость электролита и характеристики батареи; результаты показывают, что начальное производственное давление напрямую влияет на пористость электролита и, следовательно, на общую производительность элемента.Низкое рабочее давление в батарее снижает кажущуюся ионную проводимость из-за плохого контакта между электролитом и токосъемниками, но не влияет отрицательно на циклируемость твердотельных батарей. Эти результаты могут объяснить несоответствия в литературе и предоставить рекомендации в отношении стандартизированных условий тестирования твердотельных аккумуляторов и надлежащих отчетов по тестам производительности твердотельных аккумуляторов.
У вас есть доступ к этой статье
Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз?Влияние структуры пор электродов и раствора
% PDF-1.7 % 1 0 obj > эндобдж 2 0 obj > поток 2019-09-06T11: 25: 20-07: 002019-09-06T11: 25: 20-07: 002019-09-06T11: 25: 20-07: 00Appligent AppendPDF Pro 5.5uuid: 21dc163f-ac69-11b2-0a00-782dad000000uuid: 21dc4e04-ac69-11b2-0a00-80efcefffe7fapplication / pdf
Пленки из твердого электролита с высокими эксплуатационными характеристиками для печати
ВВЕДЕНИЕ
Потребность в более безопасных перезаряжаемых батареях, в которых не используется горючий жидкий органический электролит, побудила к разработке твердотельных электролитов (SSE) ( 1 — 3 ), такие как оксинитрид фосфора лития (LiPON) ( 4 , 5 ) и керамические соединения на основе граната ( 5 — 7 ).Пленки SSE (<10 мкм) с высокой ионной проводимостью> 10 -4 См / см обычно необходимы для достижения высоких плотностей энергии и мощности. Однако современные методы производства таких SSE-пленок имеют серьезные проблемы. Например, процесс радиочастотного (RF) распыления в вакууме, используемый для нанесения LiPON на батареи, является непомерно дорогостоящим ( 8 — 10 ), что ограничивает его широкое применение. Аналогичным образом, другие методы на основе вакуума, используемые для изготовления различных керамических пленок SSE, такие как осаждение атомных слоев (ALD) ( 11 — 13 ), импульсное осаждение слоев (PLD) ( 14 , 15 ) и химическое осаждение из паровой фазы (CVD) ( 16 , 17 ) более трудоемко и менее масштабируемо по сравнению с процессом с рулона на рулон.Кроме того, керамические SSE, полученные этими методами, обычно демонстрируют низкую ионную проводимость от ~ 10 -8 до 10 -4 См / см ( 17 — 19 ) из-за осажденной аморфной структуры или высокой потери летучих ионов. (например, Ли и На).
Для устранения этих ограничений были разработаны более экономичные и масштабируемые методы на основе решений для синтеза керамических пленок SSE (например, граната), но с ограниченным успехом из-за огромных проблем при спекании пленок электролита ( 11 , 20 , 21 ).В этих процессах SSE необходимо спекать при высоких температурах (от 600 до 1100 ° C) в течение нескольких часов, чтобы получить кристаллическую структуру, необходимую для высокой ионной проводимости. Однако длительное спекание также вызывает серьезные потери Li и Na и соответствующую низкую ионную проводимость из-за летучести этих легких элементов при высокой температуре ( 22 — 25 ). В результате керамические пленки SSE обычно демонстрируют либо плохую кристалличность, либо заметные потери лития с максимальной зарегистрированной ионной проводимостью ~ 10 -6 См / см ( 26 , 27 ).Снижение температуры обработки для предотвращения серьезных потерь Li ( 2 ) или добавление избыточного Li для компенсации ( 11 ) было обычной стратегией в традиционных методах осаждения керамической пленки. Однако это приводит к плохому контролю состава и потенциально пористой структуре. Кроме того, эти низкотемпературные спеченные SSE имеют аморфную структуру, что приводит к ограниченному улучшению проводимости до 2,9 × 10 −5 См / см ( 2 ), что далеко от объемного значения (~ 10 −3 См / см) ( 28 ).Хотя твердотельные пленочные батареи с низкой плотностью тока от 50 до 800 мкА / см 2 были успешно коммерциализированы в электронике ( 17 , 29 ), этот успех невозможно перенести на крупномасштабные приложения ( например, электромобили), для которых требуется плотность тока от 3 до 10 мА / см 2 ( 30 ). В результате существует постоянная потребность в масштабируемом методе синтеза керамических SSE с отличным контролем состава и кристалличностью для достижения необходимой высокой ионной проводимости.
В этой работе мы разработали нелогичный подход к синтезу керамических пленок SSE непосредственно из прекурсоров, в котором мы значительно увеличиваем температуру спекания (до 1500 ° C), но только на короткий период времени (~ 3 с). Такой быстрый нагрев позволяет формировать плотную поликристаллическую пленочную структуру, но с незначительными потерями летучих элементов из-за короткого времени спекания. Мы называем этот метод «печатью и радиационным нагревом» (PRH), основанный на растворе и пригодный для печати метод синтеза керамических SSE-пленок.В типичном процессе пленка-предшественник печатается на подложке с толщиной, точно настроенной путем контроля концентрации чернил и толщины во влажном состоянии. Затем высушенная на воздухе пленка прекурсора помещается в тесный контакт с полосой радиационного нагрева (обычно ~ 1500 ° C) для быстрого спекания в непосредственной близости (рис. 1A). Эта нагретая Джоуля полоса проходит через исходную пленку с зазором ~ 0,5 мм и общей продолжительностью нагрева несколько секунд для завершения процесса спекания, что потенциально позволяет производить обработку рулонов.Рисунок 1B и фиг. S1 представляет собой типичную керамическую SSE-пленку из сплава Li 6,5 La 3 Zr 1,5 Ta 0,5 O 12 (LLZTO) на монокристаллической подложке MgO, которая имеет полупрозрачную и плотную структуру. шероховатость поверхности <1 мкм (рис. 1С). Этот метод также не зависит от материала и позволяет спекать целый ряд высокоэффективных твердотельных пленок.
Рис. 1 PRH процесс синтеза пленки.( A ) Схема методики печати на пленке, в которой используются чернила-предшественник керамики и процесс быстрого спекания, при котором материал нагревается до высокой температуры (1500 ° C) в течение ~ 3 секунд.( B ) Спеченная пленка граната LLZTO на монокристаллической подложке MgO. ( C ) Соответствующая профилометрическая кривая спеченной пленки. Фото: Вэйвэй Пинг, Мэрилендский университет, Колледж-Парк.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Для демонстрации метода PRH мы синтезировали керамическую пленку LLZTO SSE (подробности см. В дополнительных материалах). Вкратце, мы смешали порошок прекурсора (Li 2 CO 3 , La 2 O 3 , ZrO 2 и Ta 2 O 5 ) с помощью шаровой мельницы с последующим диспергированием в этаноле. путем обработки ультразвуком для приготовления чернил-прекурсоров (рис.2А). Чернила-предшественник LLZTO демонстрируют хорошую текучесть и смачиваемость на различных подложках (рис. 2B), таких как стекло, металлическая фольга и керамика, что позволяет создавать многофункциональные устройства. Кроме того, концентрация и вязкость чернил-предшественников могут быть изменены для адаптации к различным методам печати, таким как нанесение покрытия распылением и метод ракельного ножа. Мы использовали распылительное покрытие для нанесения краски-прекурсора, чтобы (i) достичь широкого диапазона толщин спеченных пленок LLZTO (от 1 до 100 мкм) и (ii) создать узорчатые пленки с использованием теневой маски, которая позволяет генерировать различные электролиты и электродные конструкции для изготовления будущих устройств (рис.2C и рис. S2). Для более толстых пленок без рисунка мы применили метод ракельного ножа для нанесения суспензии прекурсора на металлическую фольгу (30 см на 10 см) в окружающей среде (рис. 2D), создавая гладкую и однородную пленку (рис. 2Е и рис. S3).
Рис. 2 Оптимизация условий печати и спекания керамической пленки.( A ) Чернила-предшественник SSE, полученные диспергированием предшественников смешанных оксидов (Li 2 CO 3 , La 2 O 3 , ZrO 2 и Ta 2 O 5 ) в этаноле.( B ) Чернила SSE обладают хорошей текучестью. ( C ) Печать чернил-предшественников граната путем нанесения покрытия распылением через маску. ( D ) Печать чернил-предшественников SSE методом ракельного ножа. ( E ) Пленка SSE с печатью масштабируема и гибка. ( F до H ) Схематическое изображение и морфология поперечного сечения пленок граната LLZTO, спеченных при различных температурах и времени, при которых необходима адекватная температура спекания с соответствующим временем спекания для получения плотной пленки граната с ограниченными потерями Li и однородными гранулометрический состав.Рентгенограммы пленок LLZTO, спеченных при температурах от ( I ) 800 ° до 1300 ° C и времени выдержки от 1 до 180 с и при ( J ) от 1400 ° до 1700 ° C и времени выдержки от 1 до 10 с. а.е., условные единицы. Фото: Вэйвэй Пинг, Мэрилендский университет, Колледж-Парк.
В типичном процессе PRH мы быстро спекали напечатанную пленку-предшественник в атмосфере аргона, перемещая нагретую Джоуля углеродную полосу по образцу в течение ~ 3 с (рис. S4).Чтобы продемонстрировать большую пленку на металлических подложках, мы изготовили гибкую композитную пленку LLZTO / LiBO 2 на фольге из нержавеющей стали размером 5 см на 2 см (рис. S5, A и B). LiBO 2 [30 мас.% (Мас.%)] Был добавлен для снижения температуры спекания композитной пленки SSE, чтобы подложка из нержавеющей стали не плавилась. Поверхность пленки LLZTO / LiBO 2 оставалась конформной и плоской без каких-либо явных трещин или точечных отверстий при спекании, что демонстрирует превосходную однородность полученной большой пленки SSE (рис.S5, от C до E). Мы исследовали влияние температуры и времени спекания на полученные пленки LLZTO с помощью сканирующей электронной микроскопии (SEM) и дифракции рентгеновских лучей (XRD). При более низкой температуре спекания (~ 1000 ° C) полученная пленка имеет чистую фазу граната (рис. S6), но с пористой структурой даже при более продолжительном времени спекания, составляющем 10 с (рис. 2F). При более высокой температуре спекания (~ 1700 ° C) спеченная пленка показывает аномальный рост зерен (рис. 2H), значительную потерю Li (рис. S6) и побочную реакцию с подложкой (рис.S7), даже если время спекания ограничено всего 1 с. Однако мы обнаружили, что оптимизированное сочетание высокой температуры и короткого времени обработки (1500 ° C, 3 с) позволило получить плотную структуру граната с минимальными потерями Li и побочными реакциями (рис. 2G и рис. S6).
Чтобы лучше понять эволюцию пленки-предшественника LLZTO во время спекания PRH, мы спекали пленки при температурах от ~ 800 ° до 1700 ° C и временах от 1 до 180 с. Мы измерили дифрактограммы спеченных пленок, чтобы охарактеризовать потенциальные фазовые изменения, связанные с потерей лития (рис.2I). Согласно рентгенограммам, прекурсоры начинают реагировать и образовывать кубическую гранатовую фазу при низких температурах от 800 ° до 1000 ° C через ~ 30 с. Однако мы наблюдали, что низкотемпературные спеченные пленки оставались непрозрачно-белыми, что указывало на пористую структуру, что мы также подтвердили с помощью SEM (рис. S8). Пористая структура граната сохранялась даже при повышении температуры до ~ 1200 ° C и времени спекания до 180 с, где также наблюдалась небольшая потеря Li из-за появления небольшого количества La 2 Zr 2 O 7 пик (рис.2I). Однако при повышении температуры до 1300-1500 ° C напечатанные пленки-предшественники стали прозрачными, что указывает на плотную структуру. При дальнейшем повышении температуры скорость испарения Li также быстро увеличивалась, о чем свидетельствует заметный фазовый переход на La 2 Zr 2 O 7 из-за значительных потерь Li (рис. 2, I и J). .
На основе дополнительных экспериментов по спеканию и рентгеноструктурных исследований мы построили диаграмму квази-время-температура-превращение (TTT), чтобы определить оптимальные условия спекания, которые будут определять будущий синтез (рис.S9). На квази-TTT-диаграмме есть четыре основных участка, указывающих на различные плотности и фазы спеченных пленок LLZTO. Согласно диаграмме квази-ТТТ, спекание от 3 до 10 с при температуре от 1300 до 1500 ° C является предпочтительным для получения прочной пленки с минимальными потерями Li и плотной структурой. Когда температура спекания ниже 1200 ° C, требуется длительное время спекания для достижения плотной структуры пленки. Однако повышенные потери лития во время такого длительного спекания приведут к образованию фазы La 2 Zr 2 O 7 , особенно для пленок граната, из-за низкого исходного содержания Li и более коротких расстояний диффузии.Следовательно, температура и время спекания должны быть хорошо оптимизированы для получения плотной пленки SSE с чистой фазой граната и минимальными потерями Li.
Как показано на СЭМ-изображении поперечного сечения (рис. 3A), высокая температура 1500 ° C может обеспечить достаточно энергии для спекания пленки LLZTO и привести к однородной структуре без явных пор (рис. S10, A и B). . Даже при толщине всего ~ 1,5 мкм пленка все еще имеет плотную структуру без явных точечных отверстий на изломанной поверхности (рис. S10C). Рентгенограмма пленки LLZTO также соответствует стандартной кубической фазе граната (PDF № 01-080-4947; рис.S10D), что указывает на минимальные потери Li. Кроме того, в традиционных методах спекания Al 2 O 3 может легко легироваться в SSE на основе граната в процессе спекания ( 31 , 32 ), что может влиять на ионную проводимость и химическую стабильность SSE. Картирование поперечного сечения энергодисперсионной рентгеновской спектроскопии (EDS) PRH-спеченного LLZTO (рис. 3B) показывает четкую границу раздела с подложкой Al 2 O 3 , что подтверждает отсутствие очевидного кроссоверного легирования между LLZTO. пленка и подложка.Отсутствие перекрестного легирования дополнительно демонстрирует преимущество сочетания высокой температуры и короткого времени спекания, которое стало возможным благодаря технологии PRH. Кроме того, быстрый процесс спекания предотвращает аномальный рост зерен при высокой температуре, что демонстрируется равномерным распределением зерен по размерам (~ 1,6 ± 0,7 мкм) на изображениях СЭМ вида сверху (рис. 3, C и D).
Рис. 3 Характеристики пленки LLZTO, спеченной методом PRH.( A ) СЭМ-изображение поперечного сечения и ( B ) EDS-отображение спеченной пленки LLZTO на подложке из Al 2 O 3 .( C ) Морфология поверхности спеченной пленки LLZTO на подложке Al 2 O 3 . ( D ) Статистика гранулометрического состава спеченной пленки LLZTO. ( E ) Энергия активации пленки LLZTO, спеченной методом PRH, соответствует соотношению Аррениуса. ( F ) Профили напряжения и тока симметричной ячейки Li / LLZTO / Li с плоскими Li-электродами для испытания критической плотности тока. ( G ) Сравнение потерь Li в пленках, спеченных PRH и традиционными методами.( H ) Сравнение ионной проводимости при комнатной температуре пленок SSE, синтезированных методом PRH и другими известными методами ( 2 , 8 , 9 , 11 , 35 — 41 ) .
Мы оценили ионную проводимость пленок граната LLZTO, спеченных методом PRH, с помощью спектроскопии электрохимического импеданса (EIS) в диапазоне температур от 30 ° до 140 ° C (рис. S11) с использованием плоских Li-электродов (рис. S12). Энергия активации переноса лития, соответствующая аррениусовскому поведению литий-ионной проводимости, составляла 0.34 эВ (рис. 3E), аналогично массивному гранату, в то время как ионная проводимость при комнатной температуре достигала ~ 1.0 × 10 −3 См / см, что сравнимо с проводимостью массивного граната ( 23 , 33 ). Мы также оценили критическую плотность тока пленки LLZTO, проводя осаждение / зачистку Li в плоскости пленки Li / LLZTO / симметричной ячейки Li. Симметричная ячейка подвергалась циклическому циклу при плотностях тока от 0,2 до 5 мА / см 2 с продолжительностью 10 мин (рис. 3F). Пленка LLZTO, спеченная с помощью PRH, показала плотность критического тока 5 мА / см 2 (рис.3F и рис. S12), что является одним из самых высоких заявленных значений даже для массивных гранатовых SSE ( 28 , 34 ). Чтобы лучше охарактеризовать устойчивость к циклированию пленки LLZTO, спеченной методом PRH, для симметричной ячейки Li / LLZTO пленка / Li также было проведено испытание на длительное циклирование (фиг. S13 и S14). Пленка Li / LLZTO / симметричная ячейка Li может успешно работать в цикле более 140 часов при плотностях тока от 0,2 до 3 мА / см 2 , что свидетельствует о превосходной стабильности при циклировании спеченной с помощью PRH пленки LLZTO.
Мы приписываем отличные электрохимические свойства пленок LLZTO, спеченных методом PRH, благодаря строгому контролю содержания Li, плотной морфологии и высокой кристалличности, которые достигаются во время чрезвычайно высокотемпературного и сверхбыстрого процесса спекания. Напротив, обычные процессы спекания обычно занимают часы при температуре> 1000 ° C, что приводит к значительным потерям Li. Это особенно верно для пленок (например, толщиной ~ 1 мкм) по сравнению с обычными толстыми гранулами (например, ~ 1000 мкм), поскольку количество Li намного ниже, а удельная площадь поверхности намного выше, что приводит к большим потерям Li. в обычных процессах спекания (рис.3G). Однако высокая скорость метода PRH ограничивает потери Li в таких пленочных структурах, что позволяет нам получить пленку граната LLZTO, которая демонстрирует самую высокую ионную проводимость среди тонкопленочных SSE (рис. 3H) ( 2 , 8 , 9 , 11 , 35 — 41 ).
Метод спекания PRH основан на радиационном нагреве, который не зависит от материала и может применяться для спекания широкого диапазона составов. Чтобы продемонстрировать универсальность этой методики, мы успешно изготовили Li 0.3 La 0,567 TiO 3 (LLTO), Li 1,3 Al 0,3 Ti 1,7 (PO 4 ) 3 (LATP) и β-Al 2 O 3 пленки из растворов чернил-предшественников (рис. 4A), все из которых содержат летучие компоненты. LLTO, LATP и β-Al 2 O 3 — это высокоэффективные литий-ионные и Na-ионные проводники, пленки которых также сталкиваются с проблемой контроля потерь Li / Na во время синтеза ( 19 , 42 , 43 ).В нашем методе мы напечатали краски LLTO, LATP и β-Al 2 O 3 на подложке Al 2 O 3 путем напыления с последующим высокотемпературным (1500 ° C) спеканием. в течение ~ 3–5 с, в результате чего получались однородные и плотные пленки толщиной от 5 до 10 мкм (рис. 4Б). Пленки LATP и LLTO были спечены на воздухе, чтобы предотвратить возможное восстановление Ti 4+ . Как и в случае с пленкой LLZTO, в соответствии с картированием EDS не наблюдалось явного перекрестного легирования или побочных реакций между слоем SSE и подложкой (рис.4Б). Границы зерен спеченных пленок также хорошо сливались из-за эффекта плавления при высокой температуре спекания. Кроме того, из-за быстрого процесса спекания в течение 3 с потери Li / Na в SSE LATP, LLTO и β-Al 2 O 3 были минимизированы, что мы подтвердили с помощью чистых фаз на рентгенограммах ( рис. S15 — S17).
Рис. 4 Другие пленки SSE, спеченные на PRH.( A ) Печатные краски на основе прекурсоров LLTO, LATP, β-Al 2 O 3 и LiBO 2 -LLZTO.( B ) Слева: морфология поперечного сечения и результаты элементарного картирования пленок LLTO, LATP, β-Al 2 O 3 , спеченных с помощью PRH. Справа: Схема сравнения потерь летучих элементов между PRH и традиционными методами спекания. ( C ) Слева: морфология поперечного сечения и результаты картирования пленки LiBO 2 -LLZTO, спеченной методом PRH. Справа: Схема сравнения контроля побочной реакции между PRH и традиционными методами. Фото: Вэйвэй Пинг, Мэрилендский университет, Колледж-Парк.
Помимо однокомпонентных пленок, нашу технологию PRH можно также использовать для быстрого спекания композитных пленок, поскольку короткое время спекания может эффективно предотвратить побочные реакции между материалами. Чтобы продемонстрировать эту способность, мы спекали композитную SSE-пленку LiBO 2 -LLZTO (рис. 4, A и C). Полученный материал содержал LiBO 2 , равномерно распределенный между зернами LLZTO с конформными поверхностями раздела и без явного совместного легирования, вероятно, из-за короткого времени спекания, составляющего 3 секунды, даже при высокой температуре спекания 1200 ° C.Напротив, когда мы спекали те же материалы в обычной печи в течение 1 часа, мы получили пористую структуру с крупными прореагировавшими зернами, а не плотный композит (рис. S18). Часовое спекание в обычной печи приводит к заметной перекрестной диффузии и побочным реакциям между компонентами, в то время как метод PRH позволяет избежать таких побочных реакций с образованием композитных структур (рис. 4C, справа). Эта способность производить широкий спектр как однокомпонентных, так и многокомпонентных компаундов указывает на универсальность нашего быстрого процесса печати и спекания для производства высококачественных керамических пленок.
Технология PRH также может применяться для изготовления твердотельных батарей со слоистой структурой посредством послойной печати и спекания. Раствор предшественника LiCoO 2 (рис. S19) был напечатан на тонкой, быстро спеченной таблетке LLZTO с последующим спеканием PRH при ~ 800 ° C (из-за низкой температуры реакции) в течение ~ 3 с для синтеза LiCoO in situ. 2 катод. Затем мы покрыли металлический литий анод с другой стороны таблетки, чтобы сформировать твердотельную батарею LiCoO 2 / LLZTO / Li для езды на велосипеде (рис.5А). Изображение поперечного сечения SEM и картирование EDS (рис. 5, B и C) показывают, что катод LiCoO 2 был равномерно спечен на поверхности LLZTO с конформной и четкой границей раздела. LiCoO 2 , синтезированный с помощью PRH, также показывает пики XRD, хорошо соответствующие стандартной фазе LiCoO 2 без большого количества вторичной фазы, что указывает на успешный синтез в течение 3-секундного времени спекания (рис. S20). Из-за высокой температуры и короткого времени спекания спеченный LiCoO 2 имеет нанопористую структуру с размером зерна ~ 200 нм (рис.S21) и четко определенный конформный интерфейс без явного перекрестного легирования с гранатом LLZTO (рис. 5C). Чтобы облегчить перенос Li в пористом слое LiCoO 2 и избежать снижения емкости из-за изменения объема катода во время циклирования, мы использовали LiBO 2 в качестве твердотельного связующего, смешанного с катодом LiCoO 2 ( 44 ). Поскольку LiBO 2 может плавиться при ~ 850 ° C, мы непосредственно напечатали и спекали прекурсор LiBO 2 в течение 3 с в пористом слое LiCoO 2 с использованием метода PRH, что привело к однородной структуре композита (рис.5, Г и Д). Затем мы охарактеризовали электрохимические характеристики полученной послойно напечатанной и спеченной твердотельной батареи LiBO 2 -LiCoO 2 / LLZTO / Li.
Рис. 5 Полностью твердотельный аккумулятор LiBO 2 -LiCoO 2 / LLZTO / Li, спеченный методом PRH.( A ) Процесс печати и спекания твердотельной батареи, изготовленной с помощью PRH. ( B ) SEM-изображение поперечного сечения и ( C ) EDS-отображение спеченного с помощью PRH катода LiCoO 2 на поверхности LLZTO.( D ) Поперечное сечение и ( E ) увеличенные SEM-изображения интерфейса LiBO 2 -LiCoO 2 / LLZTO. ( F ) Спектры ЭИС полностью твердотельной батареи (LiBO 2 -LiCoO 2 / LLZTO / Li) до цикла и после цикла 450 th . ( G ) Профили напряжения полностью твердотельной батареи, изготовленной на месте, при различных плотностях тока. ( H ) Циклические характеристики и кулоновская эффективность LiBO 2 -LiCoO 2 / LLZTO / Li полностью твердотельный аккумулятор при 60 ° C.
Из-за конформных интерфейсов межфазное сопротивление этой PRH-спеченной батареи было всего лишь ~ 100 Ом · см 2 при 60 ° C (рис. 5F), что значительно меньше, чем у других спеченных совместно спеченных элементов. твердотельные батареи ( 44 — 46 ). Профили напряжения напечатанной батареи демонстрируют типичные плато катода LiCoO 2 (рис. 5G), что дополнительно демонстрирует успешный синтез LiCoO 2 с помощью метода быстрого PRH.Кроме того, емкость аккумулятора и его характеристики при циклическом использовании демонстрируют хорошее сохранение емкости и отличную стабильность при циклическом использовании в течение ~ 450 циклов (рис. 5H). В частности, начальная удельная емкость составляла ~ 87 мА · час / г при плотности тока 30 мА / г, что лучше, чем в большинстве предыдущих отчетов с использованием совместно спеченного LiCoO 2 и граната ( 37 , 43 , 44 ). Емкость немного уменьшается с увеличением плотности тока, но мало изменяется за циклы при каждой плотности тока (рис.5H). После ~ 450 циклов межфазное сопротивление немного увеличилось до ~ 170 Ом · см 2 (рис. 5F), что дополнительно демонстрирует превосходную стабильность спеченного катода in situ и поверхности раздела, синтезированных методом PRH.