Что такое турбонаддув — ДРАЙВ
Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.
Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.
Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.
Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.
Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?
Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.
Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов.
Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.
Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.
В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.
Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.
А вот так выглядит интеркулер.
Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.
У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.
Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.
Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.
По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.
Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться.
Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.
На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах
Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.
Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких
Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше.
А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.Турбина с изменяемой геометрией.
Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».
Информация о газовых турбинах | Kawasaki Heavy Industries
Принцип работы газовой турбины
Как и дизельный или бензиновый двигатель, газовая турбина — это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.
Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.
Особенности газовых турбин
Типы газовых турбин по конструкции и назначению
Самый основной тип газовой турбины — создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.
У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.
Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например — как привод генератора.
В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т. п.
Что такое газовая турбина серии GREEN?
Принцип, которому Kawasaki следует в газотурбинном бизнесе, начиная с разработки в 1972 году нашей первой ГТУ, позволил нам предлагать клиентам все более совершенное оборудование, т.е., более энергоэффективное и экологичное. Идеи, заложенные в наших продуктах, получили высокую оценку мирового рынка и позволили нам накопить референции на более, чем 10 000 турбин (на конец марта 2014 года) в составе резервных генераторов и когенерационных систем.
Газовые турбины Kawasaki всегда имели большой успех, и мы, показывая еще большую нашу приверженность этому принципу, дали им новое название «Газовые турбины GREEN».
Проект K: Создание газовой турбины с самым высоким КПД в мире
Внутри К: Подразделение газовых турбин, Акаси / завод Seishin
Контакты
Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.
КонтактыЧто такое автомобильный турбокомпрессор — устройство и как работает
Многие слышали слово «турбо», но толком не представляют — что это такое. Это обозначение скрывает наличие турбокомпрессора двигателя под капотом машины. Расскажем что такое автомобильный турбокомпрессор, как работает (устройство) и для чего нужен.
Как работает
Турбокомпрессор — это устройство для увеличения мощности мотора за счет большего подаваемого воздуха в цилиндры. Принцип работы турбокомпрессора в следующем: в мотор попадает топливовоздушная смесь, которая сгорая уходит в выхлопную трубу. На входе выпускного коллектора стоит крыльчатка, которая жестко соединена с другой крыльчаткой, находящейся на впускном коллекторе.Когда, выхлопные газы выходят из мотора, они раскручивают крыльчатку, которая находится во выпускном коллекторе. Та в свою очередь раскручивает крыльчатку в впускном коллекторе.
В двигатель поступает больше воздуха, а соответственно и топлива. Чем больше сгорает топлива, тем больше мощность. И, чтобы сжечь больше топлива, нужно больше количества воздуха. Турбокомпрессор мотора поставляет больше воздуха, в результате получаем существенную прибавку в мощности машины.
Что такое интеркулер? Он нужен для охлаждения подаваемого воздуха в авто. Нельзя бесконечно много подавать воздуха, т.к повышается его плотность при нагреве. Для охлаждения используют интеркулер — дополнительный радиатор.
Что такое турбояма
Следует отметить, что крыльчатка может развивать до 200 000 оборотов в минуту. Вследствие этого, у турбокомпрессора имеется большая инерционность, которая получила в народе название «турбояма».Суть турбоямы в следующем. При резком нажатии на педаль газа, крыльчатка очень медленно набирает обороты и оттого приходиться ждать несколько секунд, когда начнет поступать воздух в двигатель. Благо, производители в той или иной степени избавились от данного эффекта, а именно стали устанавливать два перепускных клапана или ставить турбины с изменяемой геометрией.
Первый перепускной клапан предназначен для отработавших газов, а второй, чтобы перепускать излишний воздух из впускного коллектора в трубопровод до турбокомпрессора двигателя.Что получается? При сбросе газа обороты крыльчатки турбо уменьшаются очень медленно. А если будет резко нажата педаль газа, то воздух в двигатель поступит в полном объеме. Эффект турбоямы равен времени открытия перепускного клапана.
Также применяется механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. На низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.
Что такое перепускной клапан турбины
Его цель — пустить часть выпускного газа в обход турбины, таким образом ограничив скорость вращения крыльчатки и соответственно и давление на впускном коллекторе. Они бывают двух видов: внутренние и внешние. На большинстве автомобильных турбокомпрессоров используются внутренние. Внешние перепускные клапана, устанавливаются отдельно от турбины и ставятся на гоночные машины. Они более надежны, но их размер часто не способствует удачному расположению под капотом гражданской машины. Одно из преимуществ внешнего клапана — возможность регулировки механизма.Битурбо или твинтурбо
В первом случае, это означают наличие двух турбокомпрессоров двигателя авто, установленных параллельно, а втором — наличие трех турбокомпрессоров. Часто «битурбо» или «твинтурбо» используют лишь на спортивных автомобилях, а также на гражданских машинах со спортивными параметрами. Применение нескольких турбокомпрессоров выгодно, т.к. они отличаются размерами. Один будет обладать большей инерцией, а другой — меньшей. В итоге первый турбокомпрессор автомобиля будет работать при малых и средних оборотах двигателя, а второй при оборотах близких к максимальным.Турботаймер
Для сохранения ресурса после работы на повышенных оборотах турбина должна «отдохнуть» 1-2 минуты на холостом ходу. Это нужно, чтобы при остановке разгоряченной оборотами турбины, масло на подшипниках не вскипело, поэтому она крутится на холостых оборотах постепенно снижая температуру. Поработав несколько минут, турбина остывает, и двигатель можно заглушить.Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно. Производители штатно не ставят турботаймер из-за норм экологии — чтобы не загрязнять окружающую среду при холостой работе мотора.
Устройство и принцип работы турбины
Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.
Что такое турбина и для чего она нужна?
Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…
Принцип работы турбокомпрессора
Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.
Устройство турбины
Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.
В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.
Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.
Система охлаждения турбин
Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.
Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:
- Более простая конструкция
- Меньшая стоимость изготовления самой турбины
Недостатки:
- Меньшая эффективность охлаждения по сравнению с комплексной системой
- Более требовательна к качеству масла и к его более частой смене
- Более требовательна к контролю за температурным режимом масла
Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.
Комплексное охлаждение маслом и антифризом
Преимущества:
- Большая эффективность охлаждения
Недостатки:
- Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость
При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.
При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.
Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.
Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.
Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.
Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.
Такая систем турбонаддува используется в автомобилях BMW biturbo.
Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.
При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.
Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.
Турбокомпрессор — неисправности и ремонт — журнал За рулем
Изучаем основные неисправности турбокомпрессоров и технологии их восстановления.
Многие автомобилисты с опаской относятся к ремонту турбокомпрессоров. И не без оснований. При этом производители разрешают ремонтировать некоторые турбины и даже выпускают оригинальные комплектующие, а иные и вовсе занимаются промышленным восстановлением агрегатов. Причиной же невысокого ресурса перебранных турбин зачастую является пресловутый человеческий фактор.
Презумпция невиновности
Турбокомпрессор (ТК) работает на перекрестке нескольких систем двигателя, и его здоровье зависит от исправности других узлов. Поэтому при появлении любых нареканий по поводу работы ТК важно провести вдумчивую диагностику узла в составе мотора. Диагностика необходима и в случае выхода турбины из строя — она послужит гарантией, что новая или отремонтированная турбина не преставится через пару тысяч километров.
Даже ветошь, забытая во впускной системе при обслуживании машины, может повредить крыльчатку вала, не говоря уже о потерянных болтиках или шайбах. Даже ветошь, забытая во впускной системе при обслуживании машины, может повредить крыльчатку вала, не говоря уже о потерянных болтиках или шайбах. | Один из примеров характерного разрушения компрессорного колеса при перекруте турбины. Опытный мастер может определить этот пагубный режим и по особенному износу лопаток и вала. Один из примеров характерного разрушения компрессорного колеса при перекруте турбины. Опытный мастер может определить этот пагубный режим и по особенному износу лопаток и вала. |
Полное закоксовывание подводящей масляной трубки характерно для бензиновых турбин из-за более высоких температур по сравнению с дизельными. Полное закоксовывание подводящей масляной трубки характерно для бензиновых турбин из-за более высоких температур по сравнению с дизельными. | Классика жанра — перегрев вала турбины из-за масляного голодания. Обработке или восстановлению он не подлежит. Классика жанра — перегрев вала турбины из-за масляного голодания. Обработке или восстановлению он не подлежит. |
Сначала с помощью компьютера проверяют систему управления двигателем в целом и отдельные датчики. Абсолютное большинство турбин оборудовано механизмом регулирования давления наддува; его сбой запросто может быть следствием банальной неисправности — например, неправильного сигнала от расходомера воздуха. Нередки случаи, когда из-за игнорирования такой диагностики в профильные компании по ремонту ТК привозят… исправные агрегаты.
Материалы по теме
Здоровье турбины зависит от герметичности систем впуска и выпуска двигателя и давления в них. Если, к примеру, забиты нейтрализатор и воздушный фильтр, манометры покажут повышенное разрежение на впуске и увеличенное противодавление на выпуске. Работа в таких условиях серьезно сокращает ресурс внутренних элементов ТК: подшипников, уплотнителей и самого вала. При больших перепадах давления турбина из-за конструктивных особенностей начинает сильнее гнать масло на впуск — патрубок и впускной трубопровод покрываются жирным налетом.
Негерметичность систем впуска и выпуска также вызывает опасные перепады давления. А банальная экономия на замене воздушного фильтра или несвоевременное устранение подсоса воздуха за его корпусом приводят к износу компрессорного колеса турбины. Его лопатки стачиваются попадающими внутрь частицами песка.
Распространенная причина выхода ТК из строя — попадание инородных предметов в крыльчатки. Порою это случается из-за разгильдяйства механика, который при обслуживании машины оставил во впуске ветошь или уронил внутрь шайбу. Или из-за непредвиденного разрушения деталей мотора, когда, например, отваливается электрод от свечи. Вал турбины вращается с огромной скоростью, и попадающие на крыльчатки инородные предметы значительно их деформируют, из-за чего турбину может даже заклинить. В итоге ротор ломается пополам от скручивания. В этом случае ремонтировать агрегат бессмысленно.
Более серьезные последствия проблем в системе смазки. Глубокие задиры на валу в местах посадки подшипников и даже в зоне газодинамического уплотнения. Более серьезные последствия проблем в системе смазки. Глубокие задиры на валу в местах посадки подшипников и даже в зоне газодинамического уплотнения. | Пошатали вал турбины рукой и не почувствовали никакого люфта? Не радуйтесь. Возможно, закоксовались масляные зазоры в опорных подшипниках — и дни узла сочтены. Пошатали вал турбины рукой и не почувствовали никакого люфта? Не радуйтесь. Возможно, закоксовались масляные зазоры в опорных подшипниках — и дни узла сочтены. |
Упорный подшипник вала турбины страдает из-за критического перепада давления на сторонах впуска и выпуска. Это приводит к увеличению осевого люфта ротора со всеми вытекающими. Упорный подшипник вала турбины страдает из-за критического перепада давления на сторонах впуска и выпуска. Это приводит к увеличению осевого люфта ротора со всеми вытекающими. | У турбин бензиновых двигателей на седлах байпасного клапана часто появляются трещины. Благо, опытные мастера освоили технологию их надежного заваривания. У турбин бензиновых двигателей на седлах байпасного клапана часто появляются трещины. Благо, опытные мастера освоили технологию их надежного заваривания. |
К характерным повреждениям крыльчаток и вала приводит так называемый перекрут турбины, то есть превышение допустимых оборотов. Речь не только о неграмотном чип-тюнинге — перекрут может быть спровоцирован и обидным стечением обстоятельств. Например, из-за ошибочных показаний датчика расхода воздуха с запаздыванием срабатывает механизм регулирования давления наддува. ТК работает в очень жестких условиях (взять хотя бы термическую нагрузку), и даже незначительное отклонение от допустимых режимов приводит к непоправимым последствиям.
Материалы по теме
Описанные причины отказов турбин встречаются не так часто, основная доля приходится на неисправности в системе смазки ТК. В зазорах между валом турбины и его подшипниками должен присутствовать масляный клин, иначе происходит перегрев и износ валов, подшипников и уплотнений — вследствие контактной работы элементов. Чаще всего смерть турбины наступает из-за банального масляного голодания и посторонних частиц в масле.
ТК очень чувствителен к чистоте и качеству масла — больше, чем мотор. Во многом потому, что этот узел работает в тяжелых температурных режимах. В частности, на бензиновых двигателях отработавшие газы разогреваются аж до 1000 °C. Поэтому увеличенные интервалы замены масла и экономия на фильтре первым делом сокращают ресурс ТК.
Масляное голодание турбины имеет массу причин, о которых мало кто задумывается. Одна из распространенных — закоксовывание подводящей трубки. Зачастую она забивается полностью — и ТК работает на сухую. Не менее важна исправность масляного насоса двигателя, а также системы вентиляции картера. Часто именно из-за нее турбина незаметно умирает. Масло в корпус подшипников ТК поступает под давлением около 4 бар, а сливается из него в поддон двигателя самотеком. И даже незначительное повышение давления картерных газов сильно ограничит расход смазки через турбину, снижая несущую способность ее пленки, и приведет к ее просачиванию через уплотнения. Нередко это происходит из-за неисправного клапана вентиляции.
Износ опорных подшипников как следствие работы на состарившемся масле и наличия посторонних частиц в системе смазки не только турбины, но и двигателя. Износ опорных подшипников как следствие работы на состарившемся масле и наличия посторонних частиц в системе смазки не только турбины, но и двигателя. | При серьезных повреждениях корпуса восстанавливать турбину экономически нецелесообразно. Скорее всего, внутри всё гораздо плачевнее. При серьезных повреждениях корпуса восстанавливать турбину экономически нецелесообразно. Скорее всего, внутри всё гораздо плачевнее. |
Многие ремонтники не учитывают все эти моменты, когда ставят турбину после диагностики или ремонта на двигатель. Как минимум, нужно исключить ее работу на сухую в первые секунды после пуска мотора. Для этого в корпус подшипников загодя заливают масло.
Если не обращать внимания на перечисленные нюансы, турбина долго не протянет. А ремонтники, естественно, обвинят в недобросовестной работе тех, кто восстанавливал узел. Вот и боятся люди ремонтировать турбины.
Восстановлению подлежит
Производители турбин основательно подходят к их ремонту на своих производственных мощностях. Дальше всех в этом деле продвинулась фирма Honeywell (бренд Garrett). При восстановлении специалисты меняют картридж турбины (центральный корпус в сборе с валом, подшипниками и крыльчатками) и механизм регулирования давления наддува. Старые неповрежденные корпусы (холодную и горячую улитки) очищают и устанавливают обратно. На выходе имеем практически новый компрессор с полноценной заводской гарантией. Но даже Garrett восстанавливает турбины далеко не всех моделей своей линейки.
Ремонтируя турбины в нашем автосервисе, Вы получаете несколько преимуществ:
Что такое турбокомпрессор и почему важно за ним ухаживать:Турбокомпрессор — это не только агрегат, позволяющий увеличить мощность вашего автомобиля, но это еще звено в цепи различных механизмов, в том числе двигателя автомобиля. Поломка турбокомпрессора или езда на автомобиле с полуживой турбиной может повлечь очень дорогостоящие последствия. Например, система смазки «завязана» на турбо, при разрушении картриджа турбина может «выгнать» весь объем масла в глушитель, что приведет к полной поломке двигателя.
Перечислим признаки поломки, при которых стоит обратиться в сервис:
Конечно, это могут быть предпосылки для ремонта другого агрегата, но это явно является поводом провести диагностику в хорошем сервисе.
Как происходит ремонт турбины в Санкт-Петербурге:Этап 1 — Диагностика турбины.Вы приезжаете к нам на диагностику. Мастер проверяет сканером наличие ошибок, далее проводиться визуальный осмотр турбокомпрессора, проверка люфтов ротора турбины, наличие масла внутри наддувочных патрубков, осмотр системы вентиляции картера, проверка работы системы регулировки наддува, эндоскопом проверяем состояние катализатора/сажевого фильтра.
Этап 2 — Согласования стоимости и ремонт турбины двигателя.По результатам диагностики, если турбина авто требует ремонта, то после согласования с клиентом стоимости ремонта, мы снимаем турбокомпрессор и приступаем к разборке и дефектовке. Агрегат проходит пескоструйную очистку и мойку, далее происходит сборка картриджа и балансировка на стенде CIMAT (если устанавливаем новый картридж на турбину, то он не будет требовать балансировки, она сделана на заводе изготовителя), сборка турбины и регулировка системы управления наддувом. Устанавливаем отремонтированный агрегат на авто с заменой всех прокладок и гаек, проверяем на отсутствие течей, делается тестовый заезд с измерением наддува и автомобиль снова готов покорять километры пути. А мы предоставим Вам гарантию 2 года на турбину, отремонтированную в нашем сервисе в Санкт-Петербурге.
Как продлить срок жизни турбины:Мы выполняем ремонт турбин по максимально низким ценам, но ведь вам все равно не хочется лишний раз платить за ремонт. Поэтому мы напомним о простых правилах, которые помогут продлить жизнь вашей турбине:
1 — Менять масло и не по километражу, а по моточасам. 2 — Масло должно быть синтетическим, желательно на ПАО основе. 3 — На непрогретом двигателе не давать полную нагрузку. 4 — Следить за системой охлаждения. 5 — Чистить от грязи кассету радиаторов. 6 — Плановая диагностика – никогда не будет лишним проверить, все ли в порядке. Диагностика стоит недорого, да и если пробег авто уже большой, то профилактически перебрать турбину будет очень кстати, чтоб поломка не застала в дальней дороге. |
Двигатель с турбиной – как за ним ухаживать и на что стоит обращать внимание
Двигатель с турбиной – как за ним ухаживать и на что стоит обращать вниманиеМногие пользователи автомобилей, о наличие турбины в автомобиле, отвечают: „Конечно, что мой двигатель имеет турбину! Это же дизель” или: „Я езжу на бензине, так что турбины у меня нет”. Нет ничего более далекого от истины, ведь все большее количество бензиновых двигателей, оборудованы турбиной.
Что такое турбина?
Турбина — это на самом деле турбокомпрессор, машина, в состав которой входит турбина и компрессор. Оба элементы посажены на общем валу. Задача турбины — наддув двигателя внутреннего сгорания, а, следовательно, – может быть использована как в дизельных, так и бензиновых устройствах. Турбина питается выхлопными газами из двигателя, а компрессор валом, который соединяет обе детали друг с другом. На практике применение турбокомпрессора повышает мощность двигателя. Происходит это путем введения в цилиндр большее количество воздуха. Еще до недавнего времени турбокомпрессор можно было найти только и исключительно в спортивных автомобилях. В первой фазе развития автомобильной промышленности, турбины были использованы в дизельных двигателях потому, что эти единицы имеют гораздо меньшую производительность, чем бензиновые двигатели. С развитием технологий, а, скорее, с введением в жизнь острых экологических ограничений, турбины, все чаще появлялись в бензиновых двигателях. В настоящее время стали очень популярны и устанавливаются даже в случае так называемых малых бензиновых устройств, объемом 1200 см3 или менее. Если сравнить два бензиновые двигатели двух одинаковых способностей, но других объемов, довольно быстро окажется, что блок имеет гораздо меньший спрос на топливо.
Можете ли вы позаботиться о турбине?
Ответ звучит однозначно – да! Турбина во время своей работы может достигать скорости вращения на уровне 220 тысяч оборотов в минуту при рабочей температуре в пределах 1000 градусов по Цельсию. Чтобы обеспечить турбины, как лучшие условия труда, следует использовать масла высокого качества, а также регулярно проверять их уровень. Это на самом деле ключ для долгосрочного сотрудничества между владельцем автомобиля и турбиной. Также ваш стиль вождения может существенно снизить срок его службы. Сразу после выстрела автомобиля, следует избегать высоких оборотов, так как в начальной стадии работы привода масло не доходит до всех уголков, как двигателя, так и турбины. Еще одним важным элементом является подождать, пока турбина „сойдет с оборота” перед остановкой транспортного средства. В большинстве случаев этот процесс занимает меньше времени, чем 10 секунд. В данном случае речь идет только и исключительно о снижении оборотов турбины, потому что только тогда ее работа находится в полной безопасности.
Дополнительные аксессуары
В случае дизельных двигателей покупка дополнительных аксессуаров для турбины , кажется необоснованной, но в случае бензиновых двигателей, особенно имеющих большую мощность –стоит рассмотреть такой выбор. Первым дополнением, над покупкой которого стоит задуматься, является турбо таймер. Это устройство отвечает за задержку выключения двигателя, а, следовательно, турбина за это время теряет свою скорость вращения. Еще стоит посмотреть гаджет blow-off, то есть так называемый перепускной клапан, отвечающий за поддержание постоянного давления воздуха во впускной системе. Благодаря этому, во время переключения передач, турбина не теряет оборотов. Турбокомпрессор — это очень полезный элемент в автомобиле. Его правильная эксплуатация может принести вам много удовольствия от вождения при относительно небольшом увеличении расхода топлива.
В нашем магазине Вы с легкостью подберете турбину, выберите машину из списка
Выбрать маркуВыбрать авто
Год выпуска20162015201420132012201120102009200820072006200520042003200220012000199919981997199619951994199319921991199019891988198719861985198419831982198119801979197819771976197519741973197219711970
Марка
Модель
Модификация
Turbine — Energy Education
Рис. 1. Турбины могут быть довольно большими, паровая турбина вверху масштабируется вместе с человеком. [1]Турбина — это устройство, которое использует кинетическую энергию некоторой жидкости, такой как вода, пар, воздух или газообразные продукты сгорания, и превращает ее во вращательное движение самого устройства. [2] Эти устройства обычно используются в производстве электроэнергии, двигателях и силовых установках и классифицируются как тип двигателя.Они классифицируются как таковые, потому что движки — это просто технологии, которые принимают входные данные и генерируют выходные данные. Простая турбина состоит из ряда лопаток — в настоящее время сталь является одним из наиболее распространенных используемых материалов — и позволяет жидкости попадать в турбину, толкая лопатки. Эти лопасти затем вращаются и выбрасывают жидкость, которая теперь имеет меньше энергии, чем когда она поступала в турбину. Часть энергии улавливается турбиной и используется. [2]
Турбины используются во многих различных областях, и каждый тип турбины имеет немного отличающуюся конструкцию для правильного выполнения своей работы.Турбины используются в ветроэнергетике, гидроэнергетике, в тепловых двигателях и для движения. Турбины чрезвычайно важны, потому что почти вся электроэнергия вырабатывается ими. [2]
Тепловые двигатели
- основная статья
Турбины обычно используются в тепловых двигателях из-за их высокого КПД при высокой мощности. Кроме того, турбины требуют довольно небольшого обслуживания.
Газовые турбины часто используются в тепловых двигателях, поскольку они являются одними из самых гибких типов турбин.Одно из конкретных применений этих газовых турбин — в реактивных двигателях. [2] В этих газовых турбинах сжатый воздух нагревается и смешивается с некоторым количеством топлива. Когда эта смесь воспламеняется, она быстро расширяется. Расширяющийся воздух проталкивается в турбину, заставляя ее вращаться. Поскольку они используют сжатый воздух, большие высоты не влияют на эффективность турбин, что делает их идеальными для использования в самолетах. [3] . Схема газовой турбины показана на рисунке 2 ниже.
Эти турбины используются не только в самолетах, но и для выработки электроэнергии на электростанциях, работающих на природном газе. Газы сгорания в этом случае образуются при сгорании природного газа. [3]
Производство электроэнергии
Гидроэлектроэнергия
- основная статья
В этом случае вода, находящаяся за плотиной, выпускается и попадает на турбину, генерируя электричество при подключении к генератору.Эти турбины необходимы в области гидроэнергетики — процесса получения энергии из воды.
В целом конструкция гидроэлектрических турбин такая же. К вращающемуся валу или пластине прикреплен ряд лопастей. Затем вода проходит через турбину над лопастями, заставляя внутренний вал вращаться. Затем это вращательное движение передается генератору, в котором вырабатывается электричество. Существует множество различных типов турбин, которые лучше всего использовать в разных ситуациях.Каждый тип турбины создан для обеспечения максимальной мощности в той ситуации, в которой он используется. Существует множество факторов, которые необходимо изучить, чтобы определить, какую турбину следует использовать. Эти факторы включают гидравлический напор, сброс гидроэлектростанции и стоимость. [6]
Обычно на этих объектах используются два типа турбин, и выбор того, какой из них использовать, зависит от того, на что похож гидроэлектростанция. Это реактивные и импульсные турбины. Для получения дополнительной информации о том, как работают эти турбины, и более подробной информации о других турбинах щелкните здесь.
Ветер
- основная статья
Ветровые турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. Эти турбины состоят из трех основных компонентов. Первым из них являются лопасти несущего винта, которые имеют форму крыльев самолета и предназначены для улавливания воздуха, заставляя лопасти вращаться. Второй компонент — гондола, набор шестерен и генератор, преобразующий вращение лопасти в электрическую энергию.Наконец, башня — это большая подставка, на которой установлены лопасти и гондола. [7]
Список литературы
Определение турбины Merriam-Webster
тур · бин | \ ˈTər-bən , -ˌBīn \: роторный двигатель, приводимый в действие реакцией, импульсом или обоими потоками текучей среды (такой как вода, пар или воздух), подверженной давлению, и обычно изготавливаемый с помощью ряда изогнутых лопаток на центральном вращающемся шпинделе.
турбина | Британника
Полная статья
турбина , любое из различных устройств, преобразующих энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему неподвижных каналов или лопастей, которые чередуются с каналами, состоящими из лопастей, похожих на ребра, прикрепленных к ротору. Путем организации потока на лопасти ротора действует касательная сила или крутящий момент, ротор вращается, и работа извлекается.
Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслужить отдельное описание.
Гидравлическая турбина использует потенциальную энергию, возникающую в результате разницы в высоте между верхним водным резервуаром и уровнем воды на выходе из турбины (отводом), чтобы преобразовать этот так называемый напор в работу. Водяные турбины — современные преемники простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.
Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрогенераторами.Турбины приводятся в действие паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в генераторе, работающем на атомной энергии. Энергия, которую можно извлечь из пара, удобно выражать через изменение энтальпии в турбине. Энтальпия отражает формы тепловой и механической энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем. Доступное изменение энтальпии через паровую турбину увеличивается с увеличением температуры и давления парогенератора и с уменьшением давления на выходе из турбины.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасДля газовых турбин энергия, извлекаемая из текучей среды, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры в турбине. В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включает, по крайней мере, компрессор, камеру сгорания и турбину. Обычно они монтируются как единое целое и работают как законченный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу.Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать устройство в целом, которое на самом деле является двигателем внутреннего сгорания, а не только турбиной. По этой причине газовые турбины рассматриваются в статье двигатель внутреннего сгорания.
Энергия ветра может быть извлечена ветряной турбиной для производства электроэнергии или для откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важным источником энергии с позднего средневековья до XIX века.
Fred LandisВодяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реактивные турбины, обычно используемые для напора ниже примерно 450 метров и среднего или высокого расхода. Эти два класса включают в себя основные типы, обычно используемые, а именно, импульсные турбины Пелтона и реактивные турбины типа Фрэнсиса, пропеллера, Каплана и Дериаза. Турбины могут быть оборудованы как горизонтальными, так и, чаще, вертикальными валами.Для каждого типа возможны широкие вариации конструкции для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии на гидроэлектростанциях.
Импульсные турбины
В импульсных турбинах потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию путем выпуска воды через сопло тщательно продуманной формы. Струя, выбрасываемая в воздух, направляется на изогнутые ведра, закрепленные на периферии бегунка, для извлечения энергии воды и преобразования ее в полезную работу.
Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная водная струя попадает в лопатки турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется, оставляя желоб с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше 450 метров при относительно низком расходе воды. Для максимальной эффективности скорость конца рабочего колеса должна составлять примерно половину скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.
Мощность одного колеса можно увеличить, используя более одной форсунки. Для горизонтальных валов характерны двухструйные устройства. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.
Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностями. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждую форсунку регулируется расположенным в центре наконечником или иглой аккуратной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.
Правильная конструкция иглы гарантирует, что скорость воды, выходящей из сопла, остается практически неизменной независимо от отверстия, обеспечивая почти постоянный КПД в большей части рабочего диапазона. Нецелесообразно внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидроудару) в подающем трубопроводе или напорном затворе. Таких скачков можно избежать, добавив временное сопло для разлива, которое открывается при закрытии основного сопла, или, что более часто, частично вставляя отражающую пластину между струей и колесом, отклоняя и рассеивая часть энергии при медленном закрытии иглы.
Другой тип импульсной турбины — турбина турго. Струя падает под косым углом на бегунок с одной стороны и продолжает двигаться по единственному пути, выходя на другую сторону бегунка. Этот тип турбины использовался в установках среднего размера с умеренно высоким напором.
Реакционные турбины
В реакционной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в роторном оросителе для газонов, где выходящая струя вращает ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций рабочих колес реактивные турбины могут использоваться в гораздо большем диапазоне напоров и расходов, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает регулирующие заслонки для регулирования потока воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Впоследствии энергия воды отбирается в роторе.
Как отмечалось выше, широко используются четыре основных типа реактивных турбин: турбины Каплана, Фрэнсиса, Дериаза и пропеллерные. В турбинах Каплана с фиксированными лопастями и турбинами с регулируемыми лопастями (названными в честь австрийского изобретателя Виктора Каплана) через машину, по существу, существует осевой поток. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя британского происхождения Джеймса Б. Фрэнсиса и швейцарского инженера Поля Дериаза, соответственно) используют «смешанный поток», когда вода поступает радиально внутрь и выпускается в осевом направлении. Рабочие лопасти на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопастей, в то время как в турбинах Каплана и Дериаза лопасти могут вращаться вокруг своей оси, которая находится под прямым углом к главному валу.
Как работают газотурбинные электростанции
Турбины внутреннего сгорания (газовые), устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном они состоят из трех основных частей:
- Компрессор , который втягивает воздух в двигатель, создает давление его и подает в камеру сгорания со скоростью сотни миль в час.
- Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом.Смесь сжигается при температуре более 2000 градусов по Фаренгейту. При сгорании образуется высокотемпературный газовый поток под высоким давлением, который входит и расширяется через турбинную секцию.
- Турбина представляет собой сложный набор чередующихся неподвижных и вращающихся лопастей с профилем крыла. Когда горячий газ сгорания расширяется через турбину, он раскручивает вращающиеся лопасти. Вращающиеся лопасти выполняют двойную функцию: они приводят в действие компрессор, чтобы втянуть больше сжатого воздуха в секцию сгорания, и вращают генератор для выработки электроэнергии.
Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и имеют тенденцию быть физически большими. Степень давления — это отношение давления нагнетания компрессора к давлению воздуха на входе. Двигатели на базе авиационных двигателей являются производными от реактивных двигателей, как следует из названия, и работают с очень высокими степенями сжатия (обычно превышающими 30). Двигатели на базе авиационных двигателей имеют тенденцию быть очень компактными и полезны там, где требуется меньшая выходная мощность.Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы таким образом, чтобы обеспечивать низкие выбросы загрязняющих веществ, таких как NOx.
Одним из ключевых факторов удельного расхода топлива турбины является температура, при которой она работает. Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной эксплуатации. Газ, протекающий через обычную турбину электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только от 1500 до 1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения основных компонентов турбины, что снижает конечный тепловой КПД.
Одним из главных достижений программы передовых турбин Министерства энергетики было преодоление прежних ограничений по температурам турбин с использованием комбинации инновационных технологий охлаждения и современных материалов. Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе турбины до 2600 градусов по Фаренгейту — почти на 300 градусов выше, чем в предыдущих турбинах, и достичь КПД до 60 процентов.
Еще один способ повышения эффективности — установка рекуператора или парогенератора с рекуперацией тепла (HRSG) для рекуперации энергии из выхлопных газов турбины. Рекуператор улавливает отходящее тепло в выхлопной системе турбины, чтобы предварительно нагреть воздух на выходе компрессора перед его поступлением в камеру сгорания. ПГРТ вырабатывает пар за счет улавливания тепла из выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, такая конфигурация называется комбинированным циклом.
Газовая турбина простого цикла может достигать КПД преобразования энергии в диапазоне от 20 до 35 процентов. С учетом более высоких температур, достигнутых в турбинной программе Министерства энергетики, будущие газотурбинные установки с комбинированным циклом, работающие на водороде и синтез-газе, вероятно, достигнут КПД 60 процентов или более. Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может приближаться к 80 процентам.
Двигатели
Что такое аэронавтика? | Динамика
полета | Самолеты | Двигатели
| История полета | Что
такое UEET?
Словарь | Веселье
и игры | Образовательные ссылки | Урок
ланы | Индекс сайта | Дом
Двигатели |
Как работает реактивный двигатель?
НОВИНКА! Мы считаем само собой разумеющимся, насколько легко самолет весом более половины
миллион фунтов отрывается от земли с такой легкостью. Как это бывает?
Ответ прост. Это двигатели. Позвольте Терезе Бенио из Исследовательского центра Гленна НАСА объяснить подробнее … Как показано на НАСА Пункт назначения завтра. |
Реактивные двигатели перемещают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.
Все реактивные двигатели, которые также называются газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор сделан с множеством лезвий, прикрепленных к валу. Лезвия вращаются на высокой скорости и сжимают или сжимают воздух. Сжатый затем воздух распыляется с топливом, и электрическая искра зажигает смесь. В горящие газы расширяются и выбрасываются через сопло в задней части двигателя.Когда струи газа летят назад, двигатель и самолет движутся вперед. Когда горячий воздух попадает в сопло, он проходит через другую группу лопастей. называется турбина. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины вызывает вращение компрессора.
На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит ядро двигателя, а также вокруг ядра.Это вызывает некоторую часть воздуха чтобы было очень жарко, а некоторым было прохладнее. Затем более холодный воздух смешивается с горячим воздух на выходе из двигателя.
Это изображение того, как воздух проходит через двигатель
Что такое тяга?
Тяга это передовая сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «каждому действию соответствует и противоположная реакция ». Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. В сила воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивает назад из двигателя.Это заставляет самолет двигаться вперед.
Детали реактивного двигателя
Поклонник — Вентилятор — это первый компонент в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий Вентиляторы изготовлены из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть продолжается через «ядро» или центр двигателя, где на него действуют другие компоненты двигателя.
Вторая часть «обходит» ядро двигателя. Проходит через воздуховод который окружает ядро к задней части двигателя, где он производит большую часть сила, которая толкает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.
Компрессор — Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает попадающий в него воздух в постепенно уменьшаются площади, что приводит к увеличению давления воздуха. Этот приводит к увеличению энергетического потенциала воздуха. Сдавленный воздух попадает в камеру сгорания.
Камера сгорания — В камере сгорания воздух перемешивается с топливом, а затем воспламеняется. Имеется до 20 форсунок для впрыска топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокий температура, высокоэнергетический воздушный поток. Топливо горит вместе с кислородом в сжатом состоянии. воздух, производящий горячие расширяющиеся газы. Внутри камеры сгорания часто делают из керамических материалов для создания термостойкой камеры. Жара может достигать 2700 °.
Турбина — Приближается высокоэнергетический воздушный поток из камеры сгорания попадает в турбину, в результате чего лопатки турбины вращаются. Турбины соединены валом для вращения лопаток в компрессоре и для вращения впускного вентилятора спереди.Это вращение забирает некоторую энергию из поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания движутся через турбину и раскручивают ее лопатки. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах между которыми установлено несколько комплектов шарикоподшипников.
Сопло — Форсунка — вытяжной канал двигатель. Это часть двигателя, которая на самом деле создает тягу для самолет.Поток воздуха с пониженным энергопотреблением, который проходил через турбину, в дополнение к более холодный воздух, проходящий мимо сердечника двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Комбинация горячего и холодного воздуха выбрасывается и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из сердечника двигателя, с более низкая температура воздуха, обводимого вентилятором.Миксер помогает сделать двигатель тише.
Первый реактивный двигатель — А Краткая история первых двигателейСэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло назад, самолет движется вперед.
Анри Жиффар построил дирижабль, который приводился в движение первым авиадвигателем — паровым двигателем мощностью три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.
В 1874 году Феликс де Темпл построил моноплан. который пролетел всего лишь короткий прыжок с холма с помощью угольного парового двигателя.
Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.
В 1894 году американец Хирам Максим пытался привести свой трехместный биплан в движение двумя угольными паровыми двигателями.Это только пролетел несколько секунд.
Первые паровые машины приводились в действие нагретым углем и, как правило, слишком тяжело для полета.
Американец Сэмюэл Лэнгли сделал модель самолетов которые приводились в действие паровыми двигателями. В 1896 году он успешно пилотировал беспилотный самолет с паровым двигателем, получивший название Aerodrome . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полную размерный самолет Aerodrome A, с газовым двигателем.В 1903 г. разбился сразу после спуска с плавучего дома.
В 1903 году братьев Райт летал, Flyer , с бензиновым двигателем мощностью 12 лошадиных сил. двигатель.
С 1903 года, года первого полета братьев Райт, до конца 1930-х гг. газовый поршневой двигатель внутреннего сгорания с воздушным винтом был единственное средство, используемое для приведения в движение самолетов.
Это был Фрэнк Уиттл, , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттла впервые успешно полетел в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему внутреннего сгорания. камера, одноступенчатая турбина и сопло.
В то время, когда Уиттл работал в Англии, Ганс фон Охайн работал над подобным дизайном в Германии. Первый самолет, который успешно использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. полет.
General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Опытный самолет ХР-59А впервые поднялся в воздух в октябре 1942 года.
Типы реактивных двигателей
Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается до 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания, чтобы повысить температуру жидкой смеси примерно до 1100-1300 ° F. Образующийся горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор эффективны, давление на выходе из турбины будет почти вдвое выше атмосферного давления, и это избыточное давление отправляется к соплу для создания высокоскоростного потока газа, создающего тягу.Существенного увеличения тяги можно добиться, используя форсаж. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера увеличивает температуру газа перед соплом. Результатом этого повышения температуры является повышение температуры примерно на 40 процентов. по тяге на взлете и гораздо больший процент на высоких скоростях, когда самолет в воздухе.
Турбореактивный двигатель является реактивным.В реактивном двигателе расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопной трубы, толкая самолет вперед.
Изображение турбореактивного двигателя
ТурбовинтовыеА турбовинтовой двигатель представляет собой реактивный двигатель, прикрепленный к пропеллеру.Турбина на спина поворачивается горячими газами, и это вращает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.
Турбореактивный двигатель, как и турбореактивный, состоит из компрессора, камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель имеет лучшую тяговую эффективность на скоростях полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены гребными винтами, которые иметь меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана со стреловидными передними кромками на концах лопастей. Двигатели с такими гребными винтами называются пропеллеры .
Изображение турбовинтового двигателя
Турбореактивные двухконтурные двигателиА турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздуха.Большая часть воздуха обтекает двигатель снаружи, что делает его тише. и дает больше тяги на низких скоростях. Большинство современных авиалайнеров оснащены двигателями турбовентиляторными двигателями. В турбореактивном двигателе весь воздух, поступающий во впускное отверстие, проходит через газогенератор, состоящий из компрессора, камеры сгорания и турбина. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остальное проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для получения «горячей» струи.Целью такой системы байпаса является увеличение тяга без увеличения расхода топлива. Это достигается за счет увеличения общий массовый расход воздуха и снижение скорости при той же общей подаче энергии.
Изображение турбовентиляторного двигателя
ТурбовалыЭто еще один вид газотурбинного двигателя, который работает как турбовинтовой. система.Он не управляет пропеллером. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель устроен так, чтобы скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора варьируется, чтобы регулировать количество производимой мощности.
Изображение турбовального двигателя
RamjetsПВРД — это Самый простой реактивный двигатель и не имеет движущихся частей.Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращающийся оборудование было опущено. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения. ПВРД не развивает статического электричества. тяга и тяга вообще очень маленькая ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например другого самолета. Он использовался в основном в ракетных комплексах.Космические аппараты используют это тип струи.
Изображение ПВРД
К началу
Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Что такое UEET?
Словарь | Веселье и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Дом
62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНА
62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНАИнженерное обучение
ЛИСТ НАЗНАЧЕНИЯ
БАЗОВЫЕ ДВИГАТЕЛИ С ГАЗОТУРБИНОЙ
Распределительный лист 60B-104
ВВЕДЕНИЕ
С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы газотурбинного завода.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.
ТЕМА УРОКА ЦЕЛИ ОБУЧЕНИЯ
Терминал Цель:
7.0 ОПИСАТЬ принципы, конструкцию, функции, компоненты, системы управления и контроля, а также работу газотурбинной двигательной установки и связанных вспомогательных систем поддержки. (JTI: A)
Обеспечивающие цели:
7.1 ОПИСАТЬ следующие применения газовых турбин и указать тип газовых турбин, связанных с каждым из них:
а.Двигательная установка
г. Электроэнергетика
7.2 Имея график, представляющий соотношение давления и объема идеального цикла Брайтона, НАМЕТЬТЕ пять фаз и объясните процесс преобразования энергии, происходящий в каждой.
а. Всасывание
г. Сжатие
г. Горение
г. Расширение
e. Выхлоп
7.3 ОПРЕДЕЛИТЬ следующее применительно к газотурбинным двигателям, включить в них преимущества и недостатки, если это применимо.
а. Двигатель с разъемным валом
г. Одновальный двигатель
г. Кольцевая камера сгорания
г. Канально-кольцевая камера сгорания
e. Осевой поток
ф. Коробка отбора мощности
7.4 ОПИСАТЬ и указать их функции:
а. Компрессор
г. Камера сгорания
г. Турбина высокого давления / турбина газогенератора
г. Турбина низкого давления / силовая турбина
e. Подшипник / рама газовой турбины в сборе
ф.Дополнительный привод в сборе
г. Входные направляющие лопатки
ч. Лопатки регулируемого статора компрессора
и. Коллектор для удаления воздуха из двигателя
Дж. Коллектор стравливающего воздуха заказчика
к. Быстроходная эластичная муфта
л. Впуск / выпуск
7.5 ОБСУДИТЕ источник и использование отбираемого клиентом воздуха.
7.6 СОСТОЯНИЕ Функция системы впуска и выпуска воздуха газовой турбины.
7.7 ОПИСАТЬ путь воздуха от влагоотделителей к эжекторам выхлопных газов.
7.8 ОПИСАТЬ влияние следующих факторов на газотурбинные двигатели и меры предосторожности, принимаемые с учетом окружающей среды, включая:
а. Солевой спрей
г. Льдообразование / температура наружного воздуха
г. Повреждение посторонним предметом
г. Чистота компрессора
e. Киоски / скачки
ф. Пуск / остановка
7.9 ОПИСАТЬ следующие системы двигателя:
а. Система обнаружения льда
г. Система обнаружения и пожаротушения
г.Система зажигания
г. Система промывки водой
7.10 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем
7.11 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем
7.12 НЕ НАЗНАЧЕН; зарезервировано для использования в будущем
НАЗНАЧЕНИЕ НА ИЗУЧЕНИЕ
- Прочтите информационный лист 60B-104.
- Краткий информационный лист 60B-104, используя вспомогательные цели урока 60B-104 в качестве руководства.
- Сценарии изучения ответов.
СЦЕНАРИИ ИЗУЧЕНИЯ:
Изучая для вас предстоящую плату SWO, вы изучаете другие типы морских силовых установок.Вы задаете себе несколько вопросов по газотурбинным двигателям.
1. Зная, что газотурбинный двигатель представляет собой открытый термодинамический цикл, как двигатель преобразует энергию, запасенную в топливе и воздухе, в полезную работу в виде вращающегося пропеллера?
После изучения вы явитесь на мостик для промежуточной стражи как JOOD. Здесь тихо, поэтому вы просматриваете доску чтения сообщений OOD. Вы видите, что в этом районе происходит несколько небольших песчаных бурь (в настоящее время вы находитесь в Персидском заливе), и что в сообщении всем судам с газотурбинными двигателями рекомендуется внимательно следить за состоянием своих воздушных фильтров / демистеров.
2. В чем важность этого компонента? Если не удается, не работает ли двигатель?
Просматривая трафик сообщений, вы замечаете, что одного из FFG в вашей боевой группе нет поблизости. Любопытно, что вы спрашиваете ООД, знает ли она, куда они пошли, и она говорит вам, что им пришлось выехать в Бахрейн для замены и двигателя из-за плохой камеры сгорания.
3. Почему замена камеры сгорания LM2500 настолько сложна, что требуется, чтобы судно зашло в порт?
ИНФОРМАЦИОННЫЙ ЛИСТ
ДВИГАТЕЛИ С БАЗОВОЙ ТУРБИНОЙ
Информационный лист 64B-104I
ВВЕДЕНИЕ
С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы завода по производству газовых турбин.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.
ССЫЛКИ
(а) Руководство по силовой установке ДД-963
(b) Морские газотурбинные операции (НАВЕДТРА-10097)
ИНФОРМАЦИЯ
- Обзор урока: Газотурбинный завод представляет собой инновационную концепцию судовых электростанций. Военно-морские суда США используют авиационные газотурбинные двигатели как для главных силовых установок, так и для служебной электроэнергии.Высокая степень автоматизации предприятия достигается за счет интегрированной системы пультов управления и мониторинга.
- Преимущества: Преимущества газотурбинной установки по сравнению с паровой установкой сопоставимой мощности включают:
- Снижение массы на 70%
- Простота (меньшее количество вспомогательных силовых установок)
- Уменьшение численности персонала за счет автоматизированного управления силовой установкой
- Более быстрое время отклика
- Более быстрое ускорение / замедление
- Принципы газовой турбины:
- Компоненты базового газотурбинного двигателя включают:
- Компрессор
- Камера сгорания
- Турбина
- Рабочий цикл: В газотурбинном двигателе сжатие, сгорание и расширение происходят непрерывно в разных камерах.Газотурбинные двигатели работают по циклу Брайтона (цикл открытого двигателя).
- Фаза всасывания: Наружный воздух втягивается в двигатель под действием компрессора. Давление, температура и объем остаются неизменными в течение фазы всасывания.
- Фаза сжатия: Всасываемый воздух сжимается механически. Давление и температура увеличиваются с соответствующим уменьшением объема. Механическая энергия, приводящая в движение компрессор, преобразуется в кинетическую энергию в виде сжатого воздуха.
- Фаза сгорания: Топливо распыляется в камеру сгорания и сжигается, преобразовывая химическую энергию в тепловую в виде горячего расширяющегося газа. Объем и температура значительно увеличиваются, в то время как давление в камере сгорания остается постоянным.
- Фаза расширения: Тепловая энергия преобразуется в механическую, когда горячие расширяющиеся газы из камеры сгорания вращают ротор турбины. Давление и температура уменьшаются, а объем увеличивается в фазе расширения.
- Выхлопная фаза: Горячие выхлопные газы проходят через судовые каналы и попадают в атмосферу. Давление, температура и объем остаются неизменными на всем протяжении фазы выпуска.
Рис.1: Цикл Брайтона
- Центробежный компрессор: В этом компрессоре используется вращающееся рабочее колесо для всасывания всасываемого воздуха и его ускорения наружу за счет центробежной силы в диффузор.Он используется в небольших газовых турбинах и лучше всего подходит для низких отношений давления, когда общий диаметр двигателя не важен.
- Осевой компрессор: Состоит из вращающихся лопаток и неподвижных лопаток. Воздух сжимается, поскольку он течет вдоль вала в осевом направлении. Это обеспечивает большую эффективность и более высокие отношения давления за счет многоступенчатой конструкции. Стадия сжатия состоит из одного ряда вращающихся лопаток, за которым следует ряд неподвижных лопаток.Это наиболее распространенный тип компрессора, используемый в судовых газотурбинных двигателях.
- Остановка компрессора: Остановка или помпаж определяется как прерывание потока воздуха через компрессор. Заглох на работающем двигателе может вызвать серьезное повреждение двигателя из-за чрезмерных вибраций и перегрева секции камеры сгорания. Чтобы предотвратить остановку компрессора, двигатели оснащены выпускными клапанами компрессора или лопатками компрессора с изменяемой геометрией.Выпускные клапаны выпускают воздух из компрессора во время запуска, а регулируемые лопатки компрессора регулируют воздушный поток, чтобы избежать турбулентности, что предотвращает остановку компрессора.
Рис. 2: Центробежный компрессор
Рис. 3: Компрессор с осевым потоком
- Банка: Отдельные баллончики горелок установлены по периферии двигателя. Каждая канистра представляет собой отдельную камеру сгорания и футеровку, получающую собственное топливо.
- Преимущество: простая замена
- Недостатки — неэффективность, более слабая конструкция
- Кольцевой: Одна большая камера сгорания в корпусе двигателя. Множественные топливные форсунки образуют сплошное «огненное кольцо». Этот тип используется на LM2500.
- Преимущества: Самая эффективная, самая прочная рама двигателя.
- Недостаток: для ремонта или замены требуется полная разборка двигателя.
- Кольцевой баллончик: В этом гибридном типе используется несколько отдельных баллонов с отдельными топливными форсунками, в которые воздух поступает из общего кольцевого корпуса (Allison 501-K17).
- Преимущества: Прочность, простота замены.
- Недостаток: менее эффективен, чем кольцевая камера сгорания.
Рис. 4: Камера сгорания консервного типа
Рис. 5: Кольцевая камера сгорания
Рис. 6: Банка с кольцевой камерой сгорания
- Энергия: Тепловая энергия горячих расширяющихся газов камеры сгорания преобразуется в механическую энергию путем вращения колеса турбины.
- Конструкция: Состоит из неподвижных лопаток (сопел) и вращающихся лопаток. Ступень турбины — это один ряд сопел и один ряд лопаток.
- Одновальный двигатель: Одновальный двигатель имеет один вал, который проходит по всему двигателю.На этом валу установлены все вращающиеся части двигателя. Продолжение того же вала, коробка отбора мощности, приводит в движение нагрузку. В основном этот тип двигателя используется там, где требуется постоянная скорость, например, для выработки электроэнергии. Для этого используется двигатель Allison 501-K17.
- Двигатель с разъемным валом: Двигатель разделен на две основные секции: газогенератор и секцию силовой турбины. Секция газогенератора состоит из компрессора, камеры сгорания и турбины высокого давления (ВД).Назначение газогенератора — производить горячий расширяющийся газ для использования в силовой турбине. Силовая турбина аэродинамически связана с газогенератором, но два вала механически не связаны. Силовая турбина преобразует тепловую энергию газогенератора в механическую энергию для привода нагрузки.
- Выходная скорость изменяется путем управления скоростью газогенератора, который определяет количество выхлопных газов, отправляемых в силовую турбину.
- Газотурбинные двигатели с разъемным валом, такие как LM2500, подходят для основных силовых установок.Преимущества в этом приложении:
- Газогенератор более чувствителен к требованиям нагрузки, поскольку работа компрессора не ограничена нагрузкой на силовую турбину.
- Секция газогенератора и секция силовой турбины работают почти со своими наиболее эффективными скоростями во всем диапазоне требований нагрузки.
Рис. 7: Ротор турбины
- Узел высокого давления:
- Конструкция: Наружная конструкция, которая поддерживает сепараторы влаги и вмещает дверцы для обдува .
- Влагоотделители (жалюзи и сетчатые экраны): Влагоотделители удаляют капли воды и грязь из всасываемого воздуха, чтобы предотвратить эрозию компонентов компрессора. Электрические ленточные нагреватели предотвращают образование льда на жалюзи.
- Двери продувки: Двери продувки установлены для предотвращения недостатка воздуха в двигателе при загрязнении влагоотделителей.
- Эти двери открываются автоматически при увеличении перепада давления воздуха на влагоотделителях.
- В открытом состоянии всасываемый воздух обходит забитые сепараторы влаги и подает нефильтрованный воздух в двигатель, чтобы предотвратить воздушное голодание двигателя.
- Впускной канал:
- Назначение: Впускной канал подает воздух для горения для двигателя и охлаждающий воздух для модуля.
- Система охлаждения модуля: Система охлаждения модуля направляет часть всасываемого воздуха в кожух двигателя для вентиляции модуля и внешнего охлаждения двигателя.Охлаждающий воздух модуля кружится вокруг двигателя, отводя тепло и вентилируя модуль, прежде чем выйти через небольшой воздушный зазор вокруг заднего конца силовой турбины. Выхлоп работающего двигателя вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в выхлопной канал.
- Коллектор для защиты от обледенения:
- Назначение: Коллектор для защиты от обледенения предназначен для нагнетания горячего отбираемого воздуха во впускной ствол под воздуховодом охлаждения модуля для предотвращения образования льда.
- Обледенение: Обледенение может возникнуть во впускном канале, когда температура наружного воздуха упадет до 38 o F. Сигнализация обледенения загорится при температуре 41 o F и влажности 70%, чтобы предупредить оператора об образовании льда. во впуске.
- Последствия: Обледенение на входе компрессора может ограничить воздушный поток, вызывая остановку двигателя, а также представляет опасность серьезного повреждения двигателя посторонними предметами (FOD).
- Датчики: Датчик обледенения, расположенный во впускной камере, выдает сигнал тревоги, предупреждающий оператора о возможности образования льда в воздухозаборнике.
- Контроль: Воздушная система защиты от обледенения активируется вручную с помощью часового стенда и контролируется для предотвращения образования льда.
- Глушители:
- Местоположение: Глушители на впуске расположены на полпути вниз по воздуховоду для снижения шума в воздухе.
- Конструкция: Глушители состоят из вертикальных лопаток из звукопоглощающего материала, заключенных в перфорированные листы из нержавеющей стали.
- Канал охлаждающего воздуха модуля: Канал охлаждающего воздуха модуля содержит один глушитель в форме пули, чтобы заглушить шум, создаваемый охлаждающим воздухом.
- Компенсатор : Компенсатор представляет собой резиновый чехол, соединяющий впускной канал с впускной камерой модуля. Это предотвращает передачу шума модуля на корпус корабля.
Рис. 8: Сборка High Hat
Рис.9: Воздуховод GTM
- Описание: Узел основного корпуса состоит из модуля корпуса (26 футов x 8 футов x 9 дюймов) на противоударном основании.
- Основание модуля: Основание представляет собой сварную стальную раму с двутавровой балкой с креплениями для крепления двигателя.
- Проникновения: Сервисные соединения проникают в основание для всех сервисов двигателя, таких как электричество, воздух, масло, топливо, CO 2 или Галон .
- Защита: Кожух термически и акустически изолирован, чтобы обеспечить двигателю контролируемую среду.
- Впускная камера: передняя часть модуля отделена от кожуха двигателя перегородкой. Впускная камера считается чистой секцией модуля.Экран FOD на входе газовой турбины устанавливается в этой области в передней части двигателя, чтобы предотвратить попадание крупных посторонних предметов в компрессор.
- Кожух двигателя: кожух содержит собственно двигатель и выпускной патрубок и принимает воздух из охлаждающего канала модуля. Доступ к двигателю осуществляется через боковую дверь и верхний люк.
- Система обнаружения и тушения пожара: Система обнаружения и тушения пожара обеспечивает автоматическую противопожарную защиту газотурбинного двигателя и модуля.
- Компоненты системы обнаружения пожара включают:
- Ультрафиолетовые датчики пламени, которые ищут пламя в зоне камеры сгорания.
- Датчики температуры, которые настроены на температуру 400 o F для обнаружения возгораний вне зоны обзора УФ-детекторов.
- Ручная кнопка «ПОЖАР» — может использоваться дежурным для активации пожарной системы.
- Компоненты системы пожаротушения включают:
- Банк первичного CO 2 баллона для быстрого затопления модуля.
- Банк вторичного CO 2 для поддержания инертной атмосферы в модуле, если это необходимо.
- A CO 2 Переключатель запрета отпускания, расположенный на пультах управления. Этот переключатель позволяет оператору остановить автоматический ввод первичного CO 2 в модуль в случае ложной тревоги или присутствия персонала в модуле.
- Электронный сигнал пожарной остановки, используемый для остановки двигателя при обнаружении пожара ультрафиолетовыми датчиками пламени, переключателями температуры или ручной кнопкой пожарной сигнализации.Этот сигнал активирует последовательность остановки огня. Остановка огня инициирует следующие действия:
- Пожарная сигнализация на пультах управления.
- Обеспечивает подачу топлива к двигателю.
- Останавливает вентилятор охлаждения модуля и закрывает вентиляционную заслонку.
- Выпускает CO 2 после 20-секундной задержки.
Рис. 10: Узел модуля GTM
Рис.11: Основание модуля в сборе
Примечание по безопасности: входя в модуль, убедитесь, что система пожаротушения отключена, а на модуле и пультах управления размещены знаки, предупреждающие о том, что в модуле находится персонал.
Примечание: FFG, оборудованные системами галона.
- Функция: Отводит выхлопные газы двигателя в атмосферу, снижая при этом тепло и шум выхлопа.
- Выхлопной коллектор: Выхлопной патрубок направляет выхлопные газы в воздухозаборник. Зазор между выпускным коленом и воздухозаборником корабля вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в воздухозаборник.
- Всасывающий воздуховод: Воздухозаборный воздуховод изолирован для контроля тепла и шума при выходе выхлопных газов в атмосферу.
- Глушитель: Глушитель пластинчатого типа расположен в центре воздуховода. Эти глушители такие же, как и во впускном воздуховоде, но стационарно установлены.
- Выхлопные патрубки: Вытяжные патрубки расположены на самом верхнем конце вытяжного канала. Выхлопные эжекторы охлаждают выхлопные газы, смешиваясь с холодным окружающим воздухом, чтобы уменьшить инфракрасную сигнатуру корабля.
- Система подавления инфракрасного излучения пограничным слоем (BLISS): Колпачки Bliss устанавливаются в верхней части каждой смесительной трубы для дальнейшего охлаждения отработанного воздуха путем смешивания его со слоями окружающего воздуха. Это достигается за счет использования нескольких жалюзи, расположенных под углом для создания эдукторного эффекта. Это позволяет холодному окружающему воздуху смешиваться с горячими выхлопными газами.
Рис.12: Выхлопная система GTM
- Назначение: Используется для удаления грязи и отложений соли с лопастей компрессора.
- Компоненты: Состоит из бака емкостью 40 галлонов и стационарного трубопровода для направления водного промывочного раствора на вход компрессора.
- Порядок действий: В соответствии с PMS компрессор необходимо промыть для поддержания эффективности и предотвращения остановок компрессора.
Рис.13: Система промывки водой
- Источники: Отборный воздух потребителя отбирается из последней ступени компрессора на газотурбинных генераторах (ГТГ) и магистрали газовой турбины (ГТМ)
- Пользователи отбираемого воздуха: (СПАМ):
- Запуск или приведение в действие других газовых турбин.
- Воздух прерий для маскировки шума гребного винта.
- Воздух для защиты от обледенения для предотвращения обледенения воздухозаборника.
- Маскирующий воздух для маскировки шума корпуса главной силовой установки.
Рис.14: Основные вращающиеся детали LM2500
- Компоненты газогенератора:
- Секция компрессора: LM2500 имеет 16-ступенчатый компрессор осевого потока, состоящий из следующих компонентов
- 35
- Ротор компрессора: 16 ступеней подвижных лопаток, приводимых в движение турбиной высокого давления.
- Статор компрессора: корпус компрессора, содержащий одну ступень входных направляющих лопаток (IGV), шесть ступеней регулируемых лопаток статора (VSV) и 10 ступеней неподвижных лопаток статора.
- IGV и лопатки статора 1-6 являются переменными, то есть имеют изменяемую геометрию. Угол атаки лопаток можно изменить, чтобы предотвратить остановку компрессора.
- Отборный воздух отбирается из компрессора для использования в судовой системе отбираемого воздуха и для внутреннего использования в двигателе.
- Камера сгорания:
- Камера сгорания кольцевого типа с 30 топливными форсунками и 2 искровыми воспламенителями.
- Около 30% воздуха из компрессора смешивается с топливом для поддержания горения. Остальные 70% используются для охлаждения и центрирования пламени внутри гильзы сгорания.
- Система зажигания создает искру высокой интенсивности для воспламенения топливно-воздушной смеси во время запуска. После запуска двигателя воспламенители больше не нужны и будут обесточены.
- Секция турбины высокого давления:
- Турбина высокого давления извлекает достаточно энергии из горячих расширяющихся газов для привода компрессора и вспомогательного привода.
- Турбина высокого давления представляет собой двухступенчатую турбину осевого типа, которая механически связана с ротором компрессора.
- Турбина высокого давления использует примерно 65% тепловой энергии камеры сгорания для привода компрессора и дополнительных устройств, установленных на двигателе.
- Дополнительный привод в сборе:
- Приводится через вал ротора компрессора через впускной редуктор, радиальный приводной вал и раздаточную коробку.
- Вспомогательная коробка передач обеспечивает монтаж топливного насоса, насоса смазочного масла, воздухо-масляного сепаратора и пневматического стартера.
- Конструкция: Силовая турбина представляет собой шестиступенчатую турбину осевого типа. Силовая турбина забирает оставшиеся 35% полезной энергии и использует ее для привода главного редуктора. Силовая турбина приводит в движение редуктор через высокоскоростной гибкий вал муфты и муфту в сборе.Гибкая высокоскоростная муфта компенсирует радиальное и осевое смещение между GTM и главным редуктором.
Рис. 15: Вид компонентов LM2500
Ветряная турбина — Музей науки и промышленности
Постройте ветряную турбину для выработки электроэнергии и исследуйте процесс преобразования энергии.
Материалы
- Три трубы из ПВХ, одна длиной около 30 см, а другие длиной не менее 15 см
- Три тройника из ПВХ
- Одно колено из ПВХ
- Двигатель
- Провод (длиной около двух футов)
- Провод фрезы
- Ступица (можно приобрести у Kid Wind Project)
- Деревянные дюбеля
- Мультиметр
- Зажимы типа «крокодил»
- Ножницы
- Лента
- Фен или вентилятор
- Материалы для лезвий, такие как бальзовая бумага, алюминиевая фольга, строительная бумага , палочки для мороженого и т. д.
Указания
- Вставьте 15-сантиметровую трубу из ПВХ в среднее отверстие тройника из ПВХ. Повторите то же самое с другой 15-сантиметровой трубой из ПВХ и тройником.
- Соедините две части вместе, вставив свободные концы труб по сторонам третьего тройника так, чтобы среднее отверстие было направлено вверх.
- Вставьте оставшуюся трубу из ПВХ в тройниковое отверстие, направленное вверх, так, чтобы труба стояла вертикально.
- Поместите последний тройник на свободный конец башни.
- Подсоедините к двигателю два провода.Надежно установите двигатель в шарнир наверху башни. Пропустите провода по трубе башни и выведите из одного из тройников на основании. При необходимости используйте изоленту, чтобы надежно удерживать двигатель на месте.
- Прикрепите пластиковую круглую деталь, называемую ступицей, к прямой металлической детали на внешней стороне двигателя.
- Подсоедините провода к мультиметру с помощью зажимов типа «крокодил». Установите мультиметр на 20 вольт.
- Вставьте несколько небольших деревянных дюбелей в отверстия ступицы.Создайте ветер с помощью фена или вентилятора. Проверьте мультиметр, чтобы узнать, сколько энергии вырабатывается.
- Используя различные материалы, спроектируйте различные лопасти ветряной турбины. Учитывайте вес, гладкость поверхности и количество необходимых лезвий. Прикрепите лезвия к дюбелям с помощью скотча.
- Снова включите фен или вентилятор и проверьте турбину с каждым типом лопастей, которые вы разработали. Чем отличается электрическая мощность? Протестируйте турбину с разными скоростями ветра, такими как низкие, средние и высокие настройки вентилятора.Влияет ли скорость ветра на выработку электроэнергии?
Что происходит?
Поскольку кинетическая механическая энергия движущегося ветра вращает лопасти ветряной турбины, генератор внутри турбины также вращается. Это заставляет спиральный провод вращаться вокруг магнита и создает электрический ток, который мы измеряем с помощью мультиметра.
Так как энергия не создается и не уничтожается, чем больше энергия вводится, тем больше будет выход энергии.Следовательно, чем больше механической энергии вы начинаете — чем быстрее вращаются лопасти — тем больше электроэнергии будет вырабатывать турбина.
Справочная информация
Ветер возникает из-за разницы в давлении, создаваемой неравномерным нагревом поверхности Земли солнцем. Излучение солнца заставляет землю накапливать тепловую энергию. Воздух над землей также получает тепловую энергию и расширяется, становясь менее плотным и поднимаясь вверх.
Это движение вызывает область низкого давления на поверхности, создавая вакуум, который втягивает воздух.Более холодный и плотный воздух течет к поверхности с низким давлением, заполняя пространство, оставшееся поднимающимся нагретым воздухом. Это создает конвекционный ток, а тепловая энергия преобразуется в кинетическую механическую энергию в виде движущегося воздуха или ветра.
Ветряная турбина преобразует механическую энергию ветра в электрическую. Турбина берет кинетическую энергию движущейся жидкости, в данном случае воздуха, и преобразует ее во вращательное движение. Когда ветер проходит мимо лопастей ветряной турбины, он перемещает или вращает лопасти.Эти лопасти вращают генератор. Генератор работает как инверсия электродвигателя; вместо того, чтобы применять электрическую энергию для поворота и создания механической энергии, он использует механическую энергию для поворота и создания электрической энергии. Генераторы вращают спиральную проволоку вокруг магнитов для создания электрического тока.