Что такое лямбда зонд в машине и как его проверить
Для чего нужен лямбда зонд? Экология на сегодняшний день является очень острым вопросом. На новые автомобили ставится все больше катализаторов, которые значительно снижают содержание вредных веществ в выхлопных газах. Но без контроля и правильных условий эффективно работать эта система не сможет. Для этого и нужен лямбда зонд, который следит за составом выхлопных газов.
Из чего состоит и какое устройство работы лямбда зонда?
Лямбда зонд — один из важных датчиков в автомобилях с инжекторным впрыском топлива. Он считает количество кислорода в выхлопных газах. ЭБУ (Электронный блок управления) системы впрыска топлива принимает сигнал от датчика и, с его помощью, может регулировать количество подаваемого топлива в цилиндры и выставляет угол опережения зажигания для получения максимально производительной топливо-воздушной смеси.
Электронный блок изначально получает информацию об объеме воздуха, который попал во впускной коллектор от расходомера воздуха, который находится за воздушным фильтром автомобиля. Еще одним «источником информации» электронного блока управления является датчик абсолютного давления. Вакуумная трубка подключена одним концом к датчику абсолютного давления, а другим — к впускному коллектору. Именно по показаниям этой вакуумной трубки датчик абсолютного давления отправляет сигнал на ЭБУ.
Ориентируясь по полученным данным, Электронный блок управления «решает» сколько впрыснуть топлива в цилиндр через форсунки, а по датчику лямбда зонд он решает нужно лить больше или меньше бензина для оптимальной работы автомобиля. Это и есть принцип работы лямбда зонда.
В большинстве автомобилей стоит один лямбда зонд, но сегодня можно встретить машины и с двумя датчиками. Применение двух датчиков кислорода, позволяет усилить контроль, за выхлопными газами автомобиля. Это поможет достигнуть наиболее эффективной топливо-воздушной смеси и работы катализатора с учетом всех факторов.
Чтобы разобраться, как работает лямбда зонд лучше, нужно понять, из чего он состоит.
Датчик кислорода — это два электрода: внешний и внутренний. Внешний электрод датчика кислорода изготовлен из металла с керамическими изоляторами и его наконечник покрыт платиной методом напыления и из-за этого очень чувствителен к кислороду. Он просчитывает количество кислорода в выхлопных газах. Внутренний электрод изготавливается из циркония и его рабочая температура до 1000°С, именно по этой причине кислородные датчики оснащены подогревателями. Это очень помогает лямбда зонду работать в момент холодного запуска двигателя.
Датчик кислорода бывает двух видов:
- двухточечный датчик
- широкополосный датчик.
Внешний вид конструкции датчиков почти одинаковая, но выполняют они свои функции по-разному.
Двухточечный датчик содержит два электрода. Он подсчитывает коэффициент избытка воздуха в топливной смеси. Есть определенные параметры и нормы. Этот коэффициент в идеальных условиях равен единице. Но из-за некачественного бензина и не слишком чистого кислорода в наших городах он равен приблизительно 1,03 — 1,05.
Широкополосный датчик — это более новая версия лямбда зонда. В нем находятся два керамических элемента, закачивающий и двухточечный. Закачивающий элемент – физически закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока.
Признаки неисправности лямбда зонда?
Лямбда зонд — уязвимый датчик автомобиля. Его срок службы зависит от условий эксплуатации двигателя автомобиля. Но в среднем ресурс лямбда зонда составляет от 40 тысяч до 80 тысяч километров.
Лямбда зонд признаки неисправности:
- увеличение расхода бензина;
- нехарактерный запах из выхлопной трубы;
- лампочка «check engine».
Датчик улавливает большое количество факторов, которые влияют на работу автомобиля, но особенно чувствителен датчик лямбда-зонд к качеству топлива. Так как основная функция его связана именно с выхлопными газами, а качество бензина является самой первой причиной неправильного соотношения углекислого газа и кислорода из топливо-воздушной смеси.
Самый главный момент в автомобиле — впрыск топлива. Именно поэтому неисправность этого датчика влияет на расход топлива. ЭБУ автомобиля не получает правильную информацию о составляющей выхлопных газов и из-за этого может лить больше топлива. Оно не успевает полностью сгорать и просто остается в выхлопной системе в виде черного нагара. Этот налет мешает датчику работать. Можно использовать жидкости для чистки и самостоятельно протирать датчик, но не проще ли просто проконсультироваться на ближайшей СТО?
Если же ЭБУ не получает никакой информации от лямбда зонда, то он начинает работать по аварийной карте. Аварийная карта — это шаблон, который загружен в «мозги» автомобиля для оперативного реагирования. При этом на приборной панели обязательно должен загореться значок «check engine», который даст сигнал автовладельцу, что нужно обязательно обратиться к автомеханику и выяснить причину поломки.
Есть еще несколько «сигналов», которые могут свидетельствовать о неисправности лямбда зонда. Один из самых заметных это нехарактерный запах из выхлопной трубы. Значит лямбда зонд не справляется со своей задачей и не посылает сигнал на ЭБУ. Но этот признак очень «обобщенный», так как запах может означать еще и выход из строя свечей, катушек, катализатора и т.д.
В случае поломки лямбда зонда также может пострадать и EGR система. В этом случае вакуумный клапан системы EGR будет неправильно функционировать.
Как проверить лямбда зонд?
У всех инжекторных автомобилей есть блок управления, он позволяет диагностировать причину поломки в определенном узле. При неисправности на приборной панели автомобиля обязательно загорится лампочка «Check Engine». Сейчас автоконцерны делают все возможное для того, чтобы автовладельцы быстро могли понять и предотвратить выход из строя любого узла автомобиля. Лампочка «Check Engine» — это один из главных знаков, что нужно ехать на станцию.
Проверить работу датчика лямбда зонда можно при посещении станции, где проведут компьютерную диагностику и выяснят причину неисправностей. На станции механики должны будут подключить провод в диагностический разъем авто и снять цифровой код ошибки. По показаниям компьютерной диагностики будет понятно, что не так с узлами автомобиля и какая причина поломки. Если компьютерная диагностика не показала ошибок, то есть еще «механическая» проверка лямбда зонда. Можно снять датчик и проверить нет ли там нагара из-за неполного сгорания топлива. Тогда его можно просто почистить. Так же можно использовать другие виды проверки. Такие как проверить лямбда зонд тестером или подключить вольтметр. На станциях механики меряют сопротивление лямбда зонда, подключив тестер, или меряют вольтметром напряжение, которое лямбда зонд посылает на электронный блок управления. Проверка датчика вольтметром — это не самая точная и продуктивная диагностика, так как вольтметр не покажет реальные причины поломки. Он может проверить только подачу тока на «мозги» автомобиля. Но если на станции нет возможности проверить с помощью компьютера, то механики используют вольтметр.
Лучше всего не заниматься диагностикой и починкой такого сложного узла автомобиля, как лямбда зонд, самостоятельно, а обратиться за помощью на СТО. Через сервис «Autobooking» можно выбрать самую удобную станцию техобслуживания и найти квалифицированную команду автомехаников для ремонта Вашего автомобиля. Специалисты качественно и быстро смогут произвести процедуру «замена лямбда зонда» или проверить состояние этого узла.
Если Вам необходимо провести замену лямбда зонда, воспользуйтесь формой ниже для поиска СТО:
Для чего нужен лямбда-зонд и как его отремонтировать?
В любой современной машине имеется лямбда-зонд и многие водители не придают ему (и выходу его из строя) значения, а зря. И дело даже не в чистоте воздуха, который от роста количества автомобилей не становится чище, а в том, что без лябда-зонда, двигатель автомобиля уже не работает как надо, и уже не экономичен. Поэтому очень важно при выходе из строя лямбда-зонда, уметь восстановить его как можно раньше. Как это сделать самому, мы и разберёмся в этой статье.
Нормы токсичности выхлопа автомобилей с каждым годом стремительно ужесточаются (особенно в европейских странах), и конструкторы постоянно под это подстраивают двигатели современных автомобилей (под экономичность и чистый выхлоп). От этого теряется часть мощности и усложняется двигатель. А делать выхлоп максимально чистым, каталитический нейтрализатор может только при соблюдении ряда условий. И одно из них — это соотношение топливной смеси, когда на каждую часть бензина приходится 14,7 части воздуха (на карбюраторных машинах немного другое соотношение).
У хорошо настроенного исправного двигателя впрыскового автомобиля, расход бензина зависит в основном от длительности импульсов форсунок. Эту длительность (время в открытом состоянии) задаёт электронный блок управления двигателем, так называемая «эфишка», название у ремонтников появилось от заглавных букв блока — EFI. Когда двигатель впрысковой машины запущен и работает, блок управления считывает необходимую информацию с датчиков, затем обрабатывает её, и исходя из этих показателей открывает форсунки. Но определить точное количество впрыснутого топлива не просто — инжекторы засоряются, может поменяться давление топлива в магистрали или плотность воздуха и много чего ещё. Поэтому для очень точной работы системы и чёткой работы мотора, электронному мозгу (блоку управления) нужна обратная связь. То есть просто необходимо знать, как прошло сгорание топлива в цилиндрах мотора. Вот за эту важную информацию и отвечает лямбда-зонд или как его ещё называют — датчик кислорода.
И если сигнал на нём слабый, то в выхлопных газах машины переизбыток кислорода, это значит, что топливо-воздушная смесь бедная. От этого блок управления моментально увеличит время открытия форсунок и этим естественно обогатит смесь до нужного соотношения. Ну и наоборот, при чрезмерно богатой топливо-воздушной смеси, время открытия форсунок снизится. Так работает исправная система впрыска современных машин, то есть состав топливо-воздушной смеси в работающем моторе корректируется каждую долю секунды.
Более того, на многих современных автомобилях и мотоциклах, на заводе устанавливают несколько лямбда-датчиков (в выпускном коллекторе каждого цилиндра). В этом случае, электронный мозг системы впрыска не просто изменяет длительность открытия всех форсунок, но и контролирует состав горючей смеси в каждом цилиндре отдельно. К тому же блок управления следит за состоянием каталитического нейтрализатора или катализаторов, так как их тоже бывает несколько. Таким образом, на многих современных автомобилях, может быть установлено более десятка лямбда-зондов (чем больше цилиндров в моторе, тем лямбда-датчиков больше). И выходят из строя они примерно одновременно. Но переживать по этому поводу небогатому автовладельцу не стоит, так как на большинстве рядовых и не новых иномарок, которыми пользуется у нас в стране рядовой водитель, лямбда-зонд всего один.
Из-за чего может выйти из строя лямбда-зонд, стоимостью в 200 -300 долларов, за считаные километры. Это и изношенные поршневые кольца (а тем более поршневая группа), изношенные сальники клапанов и их направляющие, этилированный или некачественный бензин, а так же всевозможные непроверенные составы из бутылочек с яркими этикетками, которые водители-чайники так любят заливать в бензобак своей машины. От этих неблагоприятных факторов, уровень сигнала с лямбда-зонда снижается с каждым пройденным километром, а электронный блок решает, что смесь обедняется и соответственно обогащает её (как мы уже знаем, увеличивая длительность импульса открытия форсунок). От этого расход топлива стремительно растёт, а катализатор постепенно забивается.
Многие Кулибины (в кавычках) с толкнувшись с острой проблемой неуёмного аппетита двигателя, догадываются, что виноват датчик кислорода, ну и поступают весьма просто (зачем им думать) : сдёргивают с датчика провод. И теперь сигнала с датчика естественно нет вообще!!! Электронный блок управления «видит», что датчик якобы вышел из строя, зажигает лампочку на панели приборов (Check — но не на всех моделях) и подключает обходную программу. Отмечу особо (особенно для Кулибиных), что основная функция (задача) этой программы, несмотря ни на что, даже на большой расход топлива, помочь автомобилю добраться до ремонтного сервиса. При попытке сымитировать сигнал от датчика, электронный мозг обнаружит, что сигнал с датчика не меняется со временем, и тоже решит, что он вышел из строя, и естественно включит обходную программу. Произойдёт то же самое, как и с обрывом проводов. Теперь держите бумажник всегда наготове, так как вам потребуется для каждой поездки довольно много бензина.
Любой водитель в такой ситуации, задастся вполне естественным вопросом: что же делать, если расход бензина резко повысился? Для начала, если у вас нет своего газоанализатора, съездить в автосервис и замерить уровень СО (во всех режимах работы мотора). И если уровень укладывается в нормы именно вашей машины, а не ГОСТа (для впрысковых машин технические требования ГОСТа по СО не очень то подходят), то мотор вашего автомобиля в перерасходе топлива невиновен. Ищите другие причины, например расход топлива может повысится, если заклинены тормозные колодки, или вы просто ездите на недостаточно накачанных шинах. Многие водители довольно резко стартуют с каждого светофора, а потом удивляются, почему их автомобиль так прожорлив.
Но часто, поездка за замером СО не нужна, так как и так видно всё, как говорится невооружённым глазом. Например если холодный двигатель неустойчиво работает на холостом ходу, постоянно пытаясь заглохнуть, свечи чёрного цвета, но прогревшись мотор начинает работать нормально, то виноват в большинстве случаев наш пресловутый лямбда-зонд. Прогреваясь, он начинает работать нормально. Реже, но всё же могут быть и другие причины описанной неисправности двигателя. И убедиться в чём дело (в датчике или в чем то другом) можно только проверив сам лямбда-зонд. А для этого необходимы специальные приборы, так как сигнал с датчика слишком слаб, и измерить его обычным тестером невозможно. Как проверить работоспособность других датчиков впрысковой машины, причём с помощью обыкновенного тестера, я уже писал и почитать об этом весьма желательно вот в этой статье.
В развитых странах обеспеченные водители поступают очень просто: покупают новый лямбда-зонд, а это как я уже говорил примерно в пределах трёхсот долларов, и выкинув старый, устанавливают на его место новый. У наших отечественных водителей, особенно не богатых, имеются как всегда другие пути решения распространённой проблемы. Например можно приобрести датчик подешевле (от другого автомобиля, например от отечественного). Ведь устройство всех лямбда-зондов одинаковое, и один от другого может отличаться только посадочными размерами да ещё и электро-разъёмом. Главное при покупке учесть посадочный размер (что бы был одинаковый), а электро-разъём можно переделать (продаётся великое множество различных клемм и колодок).
Многие покупают на разборке оригинальный (родной) датчик, но бэушный, что делать не советую, так как неизвестно сколько времени он проработал на машине доноре, и в любой момент он может выйти из строя.
Но есть всё таки способ, как оживить ваш родной, но неисправный лямбда-зонд. И описать этот способ для меня (ну и естественно для вас) на этом блоге просто необходимо, так как блог рассчитан на людей, которые …. . Впрочем чего это я, на кого рассчитан этот блог, можно прочитать на страничке «обо мне». Не будем отвлекаться, а идём дальше.
Во многих крупных городах, технология восстановления лямбда-зонда уже давно отработана и не отличается сложностью. Ведь чтобы вернуть работоспособность датчика, достаточно подержать его всего десять минут в ортофосфорной кислоте (она входит в состав преобразователя ржавчины) при обычной комнатной температуре, а затем хорошенько промыть его водой с мягкой колонковой кисточкой и можно устанавливать его на место — он снова готов к работе. Естественно сигнал восстановится не сразу, а через час или полтора работы мотора (электронному мозгу надо адаптироваться).
Для более тщательной промывки, лямбда-зонд нужно будет вскрыть. Аккуратно (через алюминиевую фольгу) зажав датчик в патрон токарного станка, тонким резцом срезаем у самого основания защитный колпачок (с отверстиями). Далее уже оголённый датчик, который представляет собой керамический стержень (на стержень напыленны платиновые полоски, отсюда его немалая цена) окунаем на 10 минут в кислоту. Ортофосфорная кислота разрушает свинцовую плёнку и нагар на поверхности керамического стержня. Как я уже говорил, держим его в кислоте не более 10 минут, так как если передержать, то могут испортиться токопроводящие платиновые электроды. По этой же причине ни в коем случае нельзя зачищать стержень наждачной бумагой или надфилем. Далее, когда кислота очистит стержень от токопроводящей плёнки, остаётся промыть его в воде и вернуть на место колпачок. Теперь аккуратно капнув аргоновой сваркой, закрепляем колпачок на своём родном месте.
Есть ещё более сложный способ, который недоступен обычному автомобилисту, и я его опишу лишь для общего развития. Ну и для того — вдруг он появится в автосервисе вашего города, и кто-то захочет им воспользоваться, так как он очень эффективен и его можно использовать многократно. Его удалось разработать учёным из дальневосточного РАН отделения. Суть его известна из физики — плотность тока в различных газах определяется концентрацией ионов, величиной их заряда, а так же из подвижностью. А в отработанных газах автомобиля ионы образуются от повышения температуры. И если температура, а от неё и подвижность ионов известны (напряжённость поля тоже известна, так как на неё подаётся 1 вольт), то выходные характеристики зависят только от концентрации ионов. Их измеряют частотомером и осциллографом. Затем на ультрозвуковом стенде в эмульсионном моющем растворе проводят отчистку загрязнённых электродов. При этом возможен электролиз вязких металлов осевших на поверхности (например свинца). При очистке учитывается материал стержня (металлокерамика или фарфор) с напылением металлов, таких как платина, цирконий, барий и др. В итоге восстановленный лямбда-зонд испытывают специальными приборами и устанавливают на машину. И самое главное, как я уже говорил, операцию восстановления можно проводить многократно.
Это ещё раз подтверждает, что наши учёные на много превосходят забугорных, для которых основная идея — это как что-то разработать, а вот как восстановить какую то деталь, им с нашими не сравниться.
Для чего предназначен лямбда-зонд, на чем сказываются его неисправности — Автор обзора Сергей БОЯРСКИХ
Среди множества датчиков, которыми оборудован автомобиль, что делает его, говоря образно, похожим на космонавта, проходящего перед полетом медицинское обследование, есть один, чье название до сих пор звучит как проклятие.
Во всяком случае многие автомобилисты со стажем, заставшие времена, когда иномарки начали осваивать наши улицы и проселочные дороги, обязательно вспомнят историю из своей биографии, которая подтвердит печальную известность этого датчика.
Его именуют кислородным датчиком, датчиком кислорода либо лямбда-зондом. Однако оценивает он не содержание кислорода в отработавших газах, как можно подумать из названия, а разницу между концентрациями O2 в выхлопе и окружающей среде, из-за чего его технически правильное «имя» должно быть более сложным для восприятия.
Последнему из общепринятых названий рассматриваемый датчик обязан двум обстоятельствам. Во-первых, в теории коэффициент избытка воздуха в топливовоздушной смеси, подготовленной к последующему сгоранию в цилиндре двигателя, обозначается греческой буквой лямбда.
Во-вторых, датчик зондирует отработавшие газы, удаляемые из цилиндров после сгорания горючей смеси. Отсюда — зонд.
В то же время похожесть функции лямбда-зонда с назначением приборов, с помощью которых при прохождении техосмотра определяется содержание в выхлопных газах токсичного CO, ведет к ошибке в установлении его истинной миссии.
В период появления иномарок, отличавшихся от вытесняемых с наших дорог «жигулей», «москвичей» и «запорожцев» наличием лямбда-зондов и катализаторов, повсеместно считалось, что каталитический нейтрализатор вместе с лямбда-зондом составляют систему нейтрализации выхлопных газов. До сих пор бытует заблуждение, что лямбда-зонд — экологический «наворот», о чем свидетельствуют совсем свежие статьи на вроде бы серьезных тематических сайтах.
Одним из результатов правильной работы лямбда-зонда действительно является снижение содержания токсичных компонентов, выбрасываемых через выхлопную трубу в окружающую среду. Поэтому датчик кислорода можно наряду с катализатором, сажевым фильтром или новомодной системой впрыска мочевины причислить к ненавидимым многими автовладельцами «подаркам» от экологов, оплачивать которые приходится из своего кармана. Однако на самом деле лямбда-зонд — куда более серьезная и важная персона.
Кислородный датчик оценивает, насколько качественно прошло сгорание в цилиндрах двигателя, — это и есть его предназначение. Если рабочая смесь сгорела правильно, полученные в результате мощность, расход топлива, а вместе с ними и экологические показатели будут оптимальными.
Сгореть неправильно топливовоздушная смесь может, если нарушен баланс между количеством воздуха и топлива, поступившего в цилиндры. Когда топлива подается больше, чем можно сжечь, смесь называют богатой. Если соотношение нарушено в пользу воздуха — бедной.
Соответственно изменяется содержание остаточного кислорода в выхлопе, а с ним и разница между концентрацией кислорода в отработавших газах и окружающей среде, которую определяет лямбда-зонд. Если разница существенная, рабочая смесь, сгоревшая в цилиндрах, наверняка была чересчур богатой. Когда она невелика, можно говорить о бедной смеси.
Схематически смысл действий лямбда-зонда заключается в следующем. За исключением некоторых режимов работы двигателя, например, запуска и прогрева, когда смесь намеренно обогащают, сигнал, что сгоревшая смесь была слишком богатой либо бедной, чаще всего указывает на неэффективную работу мотора. Информация, полученная лямбда-зондом, передается блоку управления двигателем, а далее электроника корректирует подачу топлива в цилиндры таким образом, чтобы соотношение топлива и воздуха в смеси вновь стало оптимальным.
Поэтому неисправности лямбда-зонда обязательно сопровождаются снижением мощности, увеличением расхода топлива и содержания в выхлопе вредных веществ. Однако перед тем как рассмотреть причины выходов лямбда-зондов из строя, следует сказать, что в современных автомобилях датчиков кислорода, как правило, два.
Первый, основной, размещают в начале выхлопного тракта как можно ближе к двигателю, другой располагается после катализатора.
Функции второго скорее диагностические — он следит за тем, работает первый кислородный датчик или нет. Поэтому второй датчик, как правило, проще, из-за чего существенно дешевле первого. Отсюда весьма распространенная ошибка, связанная с желанием сэкономить на замене первого датчика, когда он отказал.
Практика показывает, что если нет вопросов с присоединительными размерами, то поставленный взамен более простой либо подобранный для замены универсальный лямбда-зонд работать будет, однако сомнительно, что он сможет справляться с обязанностями столь же идеально, как делал бы датчик, которому место первого принадлежит по праву.
Другим нюансом, с которым можно столкнуться при замене лямбда-зонда, является то, что в зависимости от экологических норм, действующих на том или ином рынке сбыта, один и тот же мотор может иметь разные настройки, а его лямбда-зонды, несмотря на внешнюю идентичность, — разное исполнение. На это тоже желательно обращать внимание при подборе запчастей.
Сами лямбда-зонды бывают нескольких типов. Не будем останавливаться на том, как их могут называть ремонтники на профессиональном сленге. Некоторые законодатели моды в производстве датчиков, в частности Denso, предлагают следующую классификацию: воздушный, кислородный, титановый, широкополосный. У кислородного и широкополосного лямбда-зондов выходной сигнал для блока управления двигателем — величина напряжения, у воздушного — величина постоянного тока, у титанового — сопротивления. Самый простой из них — воздушный, наиболее сложный — широкополосный.
Каковым бы ни было конструктивное исполнение, главное для надежности и долговечной работы лямбда-зонда — стойкость его рабочего элемента против загрязнения. Если для примера взять датчики, имеющие напряжение в качестве выходного сигнала, то их рабочие элементы изготавливаются с использованием циркониевых и платиновых сплавов.
Если стержень из такого материала разместить так, чтобы его концы оказались в объемах с разным содержанием кислорода, между концами стержня появляется разность потенциалов. При этом напряжение будет тем больше, чем больше разница в концентрациях кислорода. Это принцип работы датчика, из которого следует, что любое загрязнение рабочего элемента является помехой для правильного определения содержания кислорода.
Именно использование некачественного топлива, прежде всего бензина, в продуктах сгорания которого имелись соединения свинца и других металлосодержащих присадок, добавляемых в бензин для увеличения его детонационной стойкости, и было причиной массовой «гибели» лямбда-зондов и приобретенной ими дурной славы в момент «пришествия» иномарок в наши пенаты.
Нынешний бензин с его предшественниками не сравнить. Поэтому сегодня выход лямбда-зондов из строя раньше положенного срока может быть обусловлен следующими внешними причинами.
Это, во-первых, их регулярный перегрев, например, из-за догорания бензина в выхлопном коллекторе, что случается при льющих форсунках, пропусках зажигания на свечах, нарушениях фаз газораспределения. Нечто похожее происходит в моторах, имеющих проблемы с запуском, когда из-за многочисленных неудачных попыток запустить двигатель несгоревшее топливо оказывается в выпускном тракте, где позже догорает. Перегрев может повредить рабочий элемент датчика.
Следующая опасность — обрастание рабочего элемента нагаром. Предпосылка — выброс масла в выпускной тракт при изношенных деталях поршневой группы, маслосъемных колпачках, проблемах с уплотнениями картриджа турбокомпрессора. И последняя из внешних причин — механическое повреждение, ведущее к поломке датчика либо нарушению его непроницаемости для влаги и грязи.
Все остальное, что может произойти, связано с внутренними проблемами. Лучшие лямбда-зонды имеют со стороны выпускного тракта внешний и внутренний защитные колпачки плюс покрытие рабочего элемента, а также оснащены воздушным фильтром со стороны, находящейся снаружи выхлопной системы. Худшие могут этого не иметь, что сказывается на сроке службы.
Наконец, сделать узел нефункционирующим способна электрическая часть, или, другими словами, обрывы в проводке, в том числе в цепи подогрева, которым лямбда-зонды оснащены в связи с тем, что начинают нормально работать только при температурах выше 280°С. Это, кстати, объясняет, почему первый из датчиков размещают как можно ближе к двигателю, — для ускорения разогрева.
Когда датчик кислорода перестает работать, блок управления переводит двигатель в режим работы по усредненным параметрам, не отвечающим текущим нагрузочным и скоростным условиям движения. Отсюда проблемы с тяговыми, экономическими и экологическими показателями.
Что последует дальше, зависит от модели автомобиля. В машинах старых поколений дело может ограничиться зажиганием контрольного указателя Check engine, однако по мере того, как увеличивалась важность экологии, производители начали практиковать перевод мотора на работу в аварийном режиме. После этого даже легкомысленный либо неопытный водитель поймет, что если он куда-то должен ехать, то только на СТО.
Сергей БОЯРСКИХ
Фото автора и из открытых источников
ABW.BY
Более 40.000 предложений о продаже запчастей в нашей базе объявлений
DENSO: как правильно установить универсальный лямбда-зонд
Предлагаем вашему вниманию техническую информацию от компании DENSO по установке универсальных кислородных датчиков.
Как правильно установить универсальный кислородный датчик?
1. Обрежьте провода нового кислородного датчика в соответствии с необходимой длиной.
ВАЖНО: Новый датчик, соединенный с имеющимся у вас коннектором, должен быть такой же длины, как и старый датчик с оригинальным коннектором.
2. Обрежьте провод старого кислородного датчика.
3. Зачистите провода нового датчика и коннектора от изоляции примерно на 7 мм каждый.
4. Обожмите стыковые соединения датчика и проводника специальными клещами и закройте термоусадочной трубкой (размер 22–16).
5. Нагревайте горячим воздухом термоусадочную изоляцию до тех пор, пока соединения не будут плотно закрыты.
Как правильно соединить провода кислородных датчиков по цветам?
1. Выясните, каких цветов провода используются на вашем старом датчике.
2. Подберите соответствующий универсальный кислородный датчик DENSO. Для всех датчиков DENSO существует два типа цветовых сочетаний кабелей в зависимости от артикула.
3. Соедините провода согласно данным, приведенным в таблице ниже:
| Старый (оригинальный) датчик | Новый датчик DENSO | |||||||
| Тип оригинального датчика 1 | Тип оригинального датчика 2 | Тип оригинального датчика 3 | Тип оригинального датчика 4 | Тип оригинального датчика 5 |
DOX — 010… DOX — 011… DOX — 012… DOX — 013… |
DOX — 015… |
||
| Нагреватель + | Черный | Фиолетовый | Белый | Коричневый | Черный | Черный | Фиолетовый | |
| Нагреватель — | Черный | Белый | Белый | Коричневый | Черный | Черный | Белый | |
| Сигнал + | Голубой | Черный | Черный | Фиолетовый | Зеленый | Голубой | Черный | |
| Сигнал — | Белый | Серый | Серый | Бежевый | Белый | Белый | Серый | |
Пример:
Оригинальный датчик имеет 4 провода со следующей цветовой комбинацией: 2 белых, черный и серый. Для вашего автомобиля подходит кислородный датчик DENSO арт. DOX-0107. Следовательно, провода должны быть соединены, как показано на картинке ниже:
Кислородный датчик (лямбда зонд) Toyota – изучаем, «оживляем»
Кислородный датчик Toyota, он же лямбда – зонд, располагается в выпускном коллекторе мотора автомобиля. Задачей такого оборудования становится установление объемов кислорода в выхлопных газах, а стало быть, подача информации об оценке экологичности и для подбора экономичного режима потребления топлива.
Известно, что экологическая ситуация в современных городах оставляет желать только лучшего, и одним из главных негативных факторов становится именно низкое качество воздуха – дефицит кислорода и изобилие в нем вредных загрязнителей. В борьбе за чистоту воздуха из года в год нормы по токсичности выхлопа только ужесточают, и датчик кислорода позволяет осуществлять контроль над качеством выхлопа в рамках отдельного автомобиля, и постоянно получать информацию для катализаторов, которые, ориентируясь на нее, будут следить за показателями выхлопных газов в режиме настоящего времени.
Представляет же собой лямбда зонд Toyota своеобразный гальванический элемент, состоящий из керамического либо циркониевого электролита. Электроды из платины получают доступ как к выхлопам автомобиля, так и к свежему воздуху вокруг, и при температуре порядка 400 градусов начинается процесс, при котором на электродах появляется выходное напряжение. И это напряжение продуцируется благодаря разному содержанию кислорода в выхлопе и в окружающей среде. Если же разницы нет, то и напряжения, соответственно, тоже не появляется. Все эти изменения фиксируются бортовым компьютером, через который и удается получить всю необходимую информацию.
Когда лямбда – датчик выходит из строя
Неисправный кислородный датчик
Далеко не всегда этот датчик выходит из строя резко – как правило, «умирает» он медленно. Как проверить кислородный датчик toyota, чтобы узнать, в норме ли он находится или нет? На деле это совсем не сложно. Чтобы получить всю необходимую информацию, достаточно понаблюдать за ним и сравнить его нынешнюю работу с прежней. Деградация устройства происходит из-за того, что поры керамического элемента засоряются из-за продуктов горения, которые всегда содержатся в выхлопе.В результате реакция устройства на изменения растягивается, торможение может достигать 10-кратного показателя. А поскольку бортовой компьютер в таком случае перестает получать объективную информацию своевременно, которая нужна для создания эффективных горючих смесей, расход топлива может увеличиться. Поскольку с понижением чувствительности датчик просто перестает видеть реальное количество кислорода, показания от него нередко воспринимаются бортовым компьютером как необходимость увеличивать и увеличивать расход топлива. Само собой, это недопустимо и откровенно разорительно, так что разумнее будет своевременно заменить датчик, чтобы избавиться от типичных на момент его деградации проблем.
Таким образом, главным показателем проблем с зондом лямбда можно считать именно резко подскочивший расход топлива. Но чтобы убедиться точно, следует провести проверку. В первую очередь рассмотрите сам этот объект – если он покрыт въевшейся сажей, то наверняка уже неисправен. Повреждения проводки говорят о том же. Если внешнее состояние не вызывает подозрений, то следует измерить показания датчика с помощью вольтметра.
Если же датчик выйдет из строя, системы автомобиля обычно начинают работать в обход его, создавая смесь по актуальной топливной карте. Это далеко не всегда экономично и экологично, поскольку динамичная реакция на любые изменения среды пропадает, машина работает буквально «вслепую», а между тем, обстоятельства могут меняться неоднократно и очень быстро. Следует знать: чистый выброс и экономия топлива в автомобиле возможны только при наличии обратной связи, которую обеспечивает лямбда – зонд.
Датчики на замену
Кислородный датчик для ВАЗ 2110
Если Вы пришли к такой необходимости, как замена лямбда зонда, Вам стоит задуматься, какой именно образец выбрать. Всегда существует возможность выбрать оригинальный вариант, например с каталожным номером 89465-32160 для Toyota Vista, а также 89465-48130, 89465-48020 для Toyota Harrier и Kluger, многие автолюбители хорошо отзываются о Toyota 89465-20270 (для двигателей 3s-fe, 4s-fe), однако желающие сэкономить ищут альтернативы. В качестве альтернативы может выступать даже аналог для ВАЗ 2110 (Bosch 0 258 005 133), однако придется перепаивать провода. Впрочем, если Вы обращаетесь в сервис, где работают хорошие мастера, или же сами имеете опыт тех или иных работ над автомобилем, проблемы с этим не возникнет.Выбрать можно как оригинальную деталь, так и просто заводскую, или, как указывалось, даже от другого автомобиля, главное – установить подобающим образом. Эту работу быстро выполнят в мастерской, и к автомобилю вновь вернется его экономичное потребление топлива и экологические параметры, что, собственно, и требуется. При этом стоит помнить, что от качества и грамотности установки зонда может зависеть и точность показаний, а следовательно, объем потребляемого автомобилем топлива. Так что работы нужно доверять только грамотным специалистам.
Контроллер датчика
— Зачем нужен контроллер датчика лямбда зонд (обманка лямбды)?Он нужен для правильной работы инжектора, который отвечает за смесеобразование. Инжектор формирует смесь отталкиваясь от показаний датчиков лямбда-зонд, поэтому если у нас отсутствует катализатор, то второй дачик сигнал, что выхлоп не соответствует нормам Евро3 или Евро 4 и автомобиль переходит на работу по другой топливной таблице, до устранения неисправности. Это на разных автомобилях выражается по разному, но основные признаки — это более высокое потребление бензина, и некоторая потеря мощности. Поэтому и было разработано это устройство контроллер датчика лямбда-зонд, которое создает сигнал со второго датчика идентичный сигналу машины с катализатором, и после его установки автомобиль работает в штатном режиме.
— Контроллер устанавливается вместо 2-го датчика?Нет, контроллер устанавливается на работоспособный(!!) 2-й датчик. Наши контроллеры не создают случайный сигнал (есть и такие устройства, они как раз устанавливаются вместо датчика, либо связываются с 1-м датчиком). Контроллер корректирует сигнал датчика в режиме реального времени. Датчик лямбда-зонд в зависимости от режимов работы двигателя должен давать разный сигнал, и контроллер корректирует текущий сигнал, т.е. сигнал, который давал бы датчик на машине с катализатором.
— Зачем нужен контроллер, ведь можно поставить механический удлинитель?Да, действительно, существует такое устройство — механический удлинитель, он вкручивается в гайку лямбда-зонда, а затем в него вкручивается датчик. И ошибка на некоторых автомобилях перестает гореть. Это значительно более бюджетный вариант, но если заглянуть глубже, и посмотреть с помощью сканера топливные таблицы работы двигателя, то мы увидем совершенно плохие данные. Т.е. когда датчик выводится из потока, он дает абсолютно неправильный случайный сигнал, и инжектор постоянно меняет смесь пытаясь подстроится под него. Через какое-то время начинают вылезать другие ошибки не связанные с катализатором, но которые являются следствием этого шага.
— Какая гарантия, что устройство будет работать на моем автомобиле?Действительно, даже если Вы нашли свой автомобиль в нашей таблице, дать 100% гарантию работоспособности «обманки» мы не можем. Автомобиль достаточно сложный механизм, часто бывает так, что ошибка по катализатору (0420, 0430) является следствием какой-либо другой ошибки. Но мы выработали некоторую статистику. На машины европейской сборки, если у них после диагностики показывает ошибки только по катализаторам, датчик будет работать с 95% процентной вероятностью. Остальные 5 %… не срабатывает. На автомобилях американской сборки, такая вероятность работоспособности обманки лямбды составляет 80%. Это связано с особенностью алгоритма показания ошибок в блоке управления. Если датчик сработал, т.е. в течении пробега 200-300 км, ошибка по катализатору не зажглась, вступает в действие гарания на контроллер — 1 год.
Датчик кислорода ВАЗ — фото и видео, принцип работы, цена и замена на 2114
Датчик кислорода – он же лямбда-зонд. Устройство призванное замерять уровень кислорода в смеси отработанных газов.
В автомобиле он нужен для достижения правильного сочетания пропорции кислорода и топлива в рабочей смеси. При правильной пропорции кислорода и топлива в смеси, двигатель работает максимально эффективно и что немаловажно уменьшается расход самого топлива.
Виды датчиков и принцип работы
Лямбда-зонд устанавливается в выхлопной системе. Делятся датчики на два вида: двухточечный и широкополосный.
Двухточечный датчик состоит из керамики, элементы которого с двух сторон покрыты диоксидом циркония. Устанавливается перед каталитическим нейтрализатором либо за ним.
Принцип работы – измерение уровня концентрации кислорода в окружающей среде и выхлопных газах. Если уровень меняется и становится разным, на концах элементов датчика создается напряжение, от низкого до высокого. Низкое напряжение создается, если кислорода в системе с избытком.
В противном случае если в системе не хватает нужного уровня кислорода, то создастся высокое напряжение. Эти сигналы поступают в блок управления двигателем, который различает их по силе тока.
Широкополосный датчик – более современная конструкция. Так же имеет два керамических элемента. Один из них можно назвать «закачивающим». Он отвечает за активацию процесса закачивания или удаления воздуха из системы.
Второй элемент можно условно назвать «двухточечным». Принцип работы базируется на том, что пока кислорода в смеси нужное количество сила тока на «закачивающем» элементе не меняется и передается на «двухточечный» элемент.
Он в свою очередь, получая постоянную силу тока от «закачивающего» элемента поддерживает постоянное напряжение между своими элементами и бездействует.
Как только уровень кислорода меняется, «закачивающий» элемент подает измененное напряжение на «двухточечный». Тот в свою очередь обеспечивает либо закачку воздуха в систему либо его откачку обратно.
Лямбда-зонд на автомобилях ВАЗ
На ВАЗах используется несколько типов датчиков:
1. Bosch № 0 258 005 133, норма Евро – 2. Устанавливался на устаревших моделях с объемом двигателя 1,5 литра. На поздних моделях с нормой Евро – 3, этот датчик использовался как первый, и ставили его до катализатора.
Вторым ставили датчик, у которого есть «обратный разъем». Но можно встретить установленные два одинаковых датчика
2. Bosch № 0 258 006537 устанавливался на автомобилях, выпущенных с октября 2004 года.имеют в своем строении нагревательный элемент.
Лямбда – зонды, выпускаемые фирмой «Bosch», взаимозаменяемы с похожими по строению циркониевыми датчиками. Обратите внимание, что датчик без подогрева можно заменить подогреваемым датчиком. Только не наоборот.
Неисправности датчика кислорода и коды ошибок
Из возможных поломок лямбда – зонда можно выделить такие: потеря чувствительности, неработающий подогрев. Как правило, бортовой компьютер не покажет вам поломку, если проблема в потере чувствительности. Другое дело, если оборвалась цепь подогрева – тогда неисправность будет зафиксирована.
- Ошибка Р1115 – в цепи нагрева произошла поломка
- Ошибка Р1102 — на нагревателе кислорода низкое сопротивление
- Ошибка Р0141 — на втором датчике произошла поломка нагревателя
- Ошибка Р0140 – произошел обрыв датчика номер два
- Ошибка Р0138 – второй датчик сигнализирует о завышенном уровне сигнала
- Ошибка Р0137 – второй датчик сигнализирует о пониженном уровне сигнала
- Ошибка Р0136 – произошло замыкание «на массу» второго датчика
- Ошибка Р0135 – вышел из строя нагреватель на первом датчике
- Ошибка P0134 – у первого датчика отсутствует сигнал
- Ошибка Р0133 – первый датчик медленно отвечает на запрос
- Ошибка Р0132 – мало кислорода в системе, сигнал на высоком уровне на первом датчике
- Ошибка Р0131 – много кислорода в системе, сигнал на низком уровне на первом датчике
- Ошибка Р0130 – первый датчик подает неправильные сигналы
Замена датчика кислорода
Если возникает какая–либо поломка, датчик нужно заменить. Можно попробовать сделать это самостоятельно. Рассмотрим ситуацию замены лямбда-зонда на ВАЗе 2114:
- Машину ставим на эстакаду или загоняем на яму и снимаем защиту мотора (для замены датчика с нейтрализатором).
- Ищем провода от датчика кислорода, и по ним идем к самим датчикам, стоят они на катализаторе (первый до нейтрализатора, второй после).
- Разрезаем хомуты, разъединяем разъемы.
- Оставляем систему остывать.
- Берем гаечный ключом на «22» или спец. головку и откручиваем датчик.
- Берем новый датчик и так же устанавливаем его на место старого. Прикручиваем гайки.
- Соединяем провода с разъёмам.
- Новыми хомутами крепим провода к системе охлаждения (не допускать соприкосновения с выхлопной трубой).
- Устанавливаем защиту в обратном порядке.
На остальных моделях машин замена датчика будет происходить идентично.
Проблемы при замене
При замене старый датчик может прикипеть к трубе. В этом случае действуйте так:
- Щедро полейте wd – 40 и пробуйте открутить
- Включаем двигатель, нагреваем выхлопную систему и откручиваем датчик
- Пробуем нагреть (соблюдая осторожность) сам датчик и открутить его
- Несильно обстучите молотком и пробуйте открутить заново
- Если не помогает, попробуйте «термоудар». На хорошо разогретый датчик вылейте холодную воду. Попробуйте снова открутить.
Цена на датчик кислорода
Цена на датчик кислорода будет зависеть от региона и модели. Колеблется она от 1000 до 3000 р. Покупайте лямбда–зонд в специализируемых магазинах и только с гарантией.
Причины поломки датчика кислорода
- На корпус датчика попала охлаждающая, либо тормозная жидкость
- В используемом топливе большое содержание свинца
- Сильный перегрев датчика, вызванный неочищенным топливом (засорение фильтров очистки)
- Датчик просто выработал свой ресурс
- Механическое повреждение датчика во время движения автомобиля.
Вышедший из строя датчик скажется на работе автомобиля в целом и повлечет за собой дополнительные проблемы. Но по ним Вы сможете сразу определить возможную поломку датчика и провести своевременную его замену.
Сопутствующие проблемы при выходе из строя датчика кислорода
- Автомобиль стал потреблять больше топлива, чем обычно
- Автомобиль стал двигаться рывками
- Двигатель стал работать нестабильно
- Нарушилась нормальная работа катализатора
- При проверке на токсичность выхлопных газов — результат дает завышенные показатели.
В завершение хочется дать совет: чтобы в будущем избежать изложенных проблем – следите за работоспособностью лямбда-зонда. Проверяйте его состояние через каждые пять – десять тысяч километров пробега.
Лямбда-зонд — до и после
Дополнительные указания
Лямбда-зонд также называется датчиком кислорода или O 2 или датчиком кислорода в выхлопных газах с подогревом (HEGO) и играет очень важную роль в контроле выбросов выхлопных газов на автомобиле с каталитическим нейтрализатором. Датчик Pre-Cat устанавливается в выхлопную трубу перед каталитическим нейтрализатором, а автомобили, использующие новый EOBD2, также имеют лямбда-датчик post-cat.
Датчики имеют различное количество электрических соединений, максимум до четырех проводов. Они реагируют на содержание кислорода в выхлопной системе и вырабатывают небольшое напряжение в зависимости от воздушно-топливной смеси, наблюдаемой в данный момент. Диапазон напряжения в большинстве случаев колеблется от 0,2 до 0,8 вольт: 0,2 вольт указывает на бедную смесь, а 0,8 В указывает на более богатую смесь.
Транспортное средство, оборудованное лямбда-датчиком, называется «замкнутым контуром», что означает, что после сгорания топлива в процессе сгорания датчик анализирует полученные выбросы и соответствующим образом корректирует заправку двигателя.
Лямбда-датчики могут иметь нагревательный элемент, который нагревает датчик до оптимальной рабочей температуры 600 ° C. Это позволяет расположить датчик дальше от источника тепла в коллекторе в более «чистое» место. Датчик не работает при температуре ниже 300 ° C.
Лямбда-зонд состоит из двух пористых платиновых электродов. Наружная поверхность электрода подвергается воздействию выхлопных газов и покрыта пористой керамикой, а внутренняя поверхность с покрытием подвергается воздействию свежего воздуха.
Наиболее часто используемый датчик имеет элемент из диоксида циркония, вырабатывающий напряжение, когда есть разница в содержании кислорода между двумя электродами. Затем этот сигнал отправляется в электронный блок управления (ЕСМ), и смесь регулируется соответствующим образом.
Titania также используется при производстве другого типа лямбда-зонда, который обеспечивает более быстрое время переключения, чем более распространенный циркониевый датчик. Кислородный датчик из титана отличается от циркониевого датчика тем, что он не может генерировать собственное выходное напряжение и поэтому зависит от 5-вольтового источника питания от электронного блока управления транспортного средства.Эталонное напряжение изменяется в соответствии с соотношением воздух-топливо в двигателе, при этом обедненная смесь возвращается всего лишь 0,4 вольта, а богатая смесь дает около 4,0 вольт.
Контроллер ЭСУД будет управлять подачей топлива в «замкнутом контуре» только тогда, когда позволяют соответствующие условия, что обычно происходит при работе на холостом ходу, малой нагрузке и крейсерском режиме. Когда автомобиль ускоряется, ECM допускает переполнение и игнорирует лямбда-сигналы. Это также происходит во время первоначального разогрева.
Датчики из титана и циркония при правильной работе переключаются приблизительно один раз в секунду (1 Гц) и оба начинают переключаться только после достижения нормальной рабочей температуры.Это переключение можно наблюдать на осциллографе или с помощью напряжения низкого диапазона на мультиметре. На осциллографе результирующая форма сигнала должна выглядеть, как на рисунке выше. Если частота переключения ниже ожидаемой, снятие датчика и очистка его спреем растворителя может улучшить время отклика.
Постоянное высоковольтное выходное напряжение диоксида циркония показывает, что двигатель постоянно работает на обогащенной смеси и находится за пределами диапазона регулировки контроллера ЭСУД; тогда как низкое напряжение указывает на бедную или слабую смесь.
Коммутационное напряжение на датчике после каталитического нейтрализатора указывает на то, что газы проходят через керамический монолит каталитического нейтрализатора, не подвергаясь химическим изменениям, и, следовательно, каталитический нейтрализатор требует замены заведомо исправным устройством, при условии, что форма волны перед каталитическим нейтрализатором находится в пределах спецификации .
Типичный циркониевый лямбда-зонд имеет четыре провода. Цвета у разных производителей различаются, но наиболее распространенное расположение показано ниже.
Верхний провод: белый нагреватель (+)
2-й провод: белый нагреватель (-)
3-й провод: черный — сигнал
4-й провод: серый — земля
Что делает лямбда-зонд?
Что такое лямбда-зонд?
Проще говоря, лямбда-зонд измеряет количество кислорода в выхлопных газах, чтобы убедиться, что двигатель правильно сжигает топливо.
Сейчас мы подробнее рассмотрим, как и почему. Мы также ответим на несколько других вопросов, таких как «как вы тестируете лямбда-зонд?» И «какой лямбда-зонд мне выбрать?»
Поддержание нормальной работы двигателя при ограничении вредных выбросов
Лямбда-датчики были введены в 1977 году для повышения эффективности двигателей автомобилей. Устанавливаемые как в бензиновых, так и в дизельных транспортных средствах, они помогают снизить количество вредных выбросов, в первую очередь таких газов, как угарный газ, и загрязняющих веществ, производимых вашим автомобилем.
Датчики разработаны для работы в соответствии с государственным законодательством о выхлопных газах. Из-за роли, которую они играют в работе вашего автомобиля, они также широко известны как датчики кислорода или датчики кислорода .
Наука, лежащая в основе работы вашего лямбда-зонда
Соотношение воздух-топливо
Когда ваш автомобиль сжигает бензин или дизельное топливо, он смешивает его с воздухом, чтобы обеспечить наиболее эффективную работу вашего двигателя.
Это соотношение воздуха и топлива известно как стехиометрическое соотношение.Или, что гораздо проще, лямбда-отношение. Лямбда — это греческая буква, обозначаемая λ.
Работа на богатой смеси
Когда у вас богатое топливо, это означает, что в смеси не так много воздуха, как должно быть. С богатым топливом возникает избыток несгоревшего топлива. Несгоревшее топливо создает загрязнение, чего мы стараемся избегать.
Работа на обедненной смеси
Когда в топливной смеси слишком много воздуха, создается обедненная топливная смесь. Бедная топливная смесь имеет тенденцию производить больше загрязнителей оксида азота.Это также может привести к снижению производительности двигателя и возможному повреждению двигателя.
Как работает лямбда-зонд для корректировки топливной смеси?
В выхлопной системе вашего автомобиля должен быть по крайней мере один датчик для измерения количества кислорода в выхлопных газах после сгорания топлива.
В современных автомобилях часто бывает 2 датчика. Первый — непосредственно после двигателя и перед каталитическим нейтрализатором. Второй размещается после каталитического нейтрализатора для контроля всей работы.Он также проверяет, правильно ли ваша кошка выполняет свою работу.
Ваш лямбда-зонд преобразует количество кислорода в выхлопных газах в электрический сигнал и отправляет сигнал в компьютер, который управляет работой вашего двигателя.
ECU (блок управления двигателем) обрабатывает показания и отправляет информацию обратно в двигатель. Затем двигатель делает компенсацию того, как смешивать топливо и воздух, чтобы вернуть соотношение туда, где оно должно быть.
Напряжение, создаваемое вашим датчиком, находится в пределах 0.1 В и 0,9 В. Показание 0,1 В соответствует обедненной топливной смеси, а показание 0,9 В — обедненной топливной смеси. Оптимальное напряжение для идеального микса — 0,45 В.
Как часто нужно менять лямбда-зонд?
Из-за характера их работы и расположения в очень жаркой и грязной среде ваш лямбда-зонд со временем изнашивается.
Несколько вещей могут повлиять на срок службы ваших датчиков, но обычно он должен длиться от 50 до 100 000 миль.
Ранние датчики не имели нагревательного элемента. Им требовалось, чтобы температура выхлопных газов достигла определенного значения для работы. Современные датчики оснащены нагревательным элементом, снимающим большое давление с датчика. Эти новые датчики имеют гораздо более длительный срок службы.
Ваш датчик следует периодически проверять, чтобы гарантировать его правильную работу.
Как определить, что ваш лямбда-зонд не работает должным образом
- Производительность вашего двигателя будет ухудшаться — часто возникают перебои в работе, отключение или совсем не запускается
- Когда ваш двигатель работает на холостом ходу или просто тикает, он будет груб и бугристая по сравнению с нормальной
- Мощность двигателя низкая
- Расход топлива выше нормы
- Ваш автомобиль не прошел тест на выбросы
- На приборной панели загорится сигнальная лампа двигателя
Как проверить лямбда-зонд
Есть несколько способов проверить лямбда-зонд.
1. Проверка вашего лямбда-зонда с помощью тестера выхлопных газов
Быстрый и простой способ измерить производительность вашего лямбда-зонда — это анализатор выбросов четырех газов . Это выполняется так же, как и ваш тест на выбросы загрязняющих веществ. Значение лямбда рассчитывается на основе изменения состава выхлопных газов в течение 60 секунд, чтобы убедиться, что поддерживаемое соотношение всегда работает на 1.
Проверка лямбда-датчика с помощью мультиметра
Вам следует использовать только высокоомный мультиметр с цифровым отображать.Мультиметр следует подключить параллельно сигнальной линии датчика и установить на 1 В или 2 В. Когда вы запустите двигатель, должно появиться значение в пределах 0,4–0,6 В. Когда двигатель прогреется до температуры, показания должны меняться в пределах 0,1–0,9 В. Идеальная частота вращения двигателя для наилучших измерений должна быть 2500 об / мин.
Проверка лямбда-зонда с помощью осциллографа
Подключите осциллограф к сигнальной линии. Установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды и снова запустите двигатель на 2500 об / мин.Высота амплитуды сигнала будет соответствовать вашему максимальному и минимальному напряжению (0,1–0,9 В), а время отклика и длительность периода будут отображать частоту (0,5–4 Гц).
Проверка вашего лямбда-зонда с помощью тестера лямбда-зонда
Вы можете купить прибор, предназначенный исключительно для измерения вашего лямбда-зонда. Как и в случае с осциллографом или мультиметром, подключите тестер к сигнальной линии, и когда вы достигнете правильной температуры, ваши показания будут отображаться с помощью светодиодной шкалы.
Всегда заменяйте датчик, аналогичный
Учитывая, что доступны сотни датчиков, вы можете спросить: «Какой лямбда-датчик мне нужен?»
Вы всегда должны сверяться с рекомендациями производителя, так как существуют разные типы датчиков и вам нужен правильный вариант для вашего ECU.
Когда дело доходит до замены датчика , вот несколько советов по чистой и правильной установке:
- Тщательно очистите резьбу в выхлопе.
- Наносите только прилагаемую смазку правильного типа на резьбу датчика. Не смазывайте носик датчика.
- Затягивайте датчик только с предписанным крутящим моментом. Используйте динамометрический ключ с подходящей головкой лямбда-зонда. Избыточное затягивание опасно для любого датчика с нагревательным элементом, так как оно может треснуть внутреннюю керамику и вызвать выход датчика из строя.
Помните о сообщениях об ошибках датчика кислорода — особенно с широкополосными датчиками.
Слишком часто не датчик кислорода, который отвечает за сообщения об ошибках, обычно указывает в этом направлении.Это особенно актуально в случае, когда вместо обычных датчиков O2 используются широкополосные датчики. Вот почему очень важно уделять особое внимание процессу устранения неполадок с этим типом датчика. Узнайте больше о конструкции системы и источнике ошибок в этой статье.
Франк Донслунд, владелец и директор Elektro Partner, предоставляющий горячую линию и технические решения для автомобильных мастерских в Дании, Норвегии и Швеции (Autodata, TEXA, Delphi и Nextech), заявляет: «На нашей горячей линии мы ежедневно отвечаем на вопросы, связанные с датчиками кислорода. .Многие кислородные датчики заменяются исключительно на основании кодов ошибок и без причины. Особенно это касается очень деликатного широкополосного типа, который часто вызывает проблемы в мастерских ».
Назначение, функции и отличие
Датчик кислорода предназначен для обеспечения того, чтобы блок управления двигателем (ЭБУ) обеспечивал правильную смесь топлива и кислорода в любой конкретной ситуации. Это достигается путем непрерывного измерения состава выхлопных газов. Обычный датчик O2 может измерять только количество кислорода (O2) в выхлопных газах и переключаться между двумя сигналами — одним для богатой и другим для бедной смеси.С другой стороны, широкополосный датчик может обеспечить более подробное и разнообразное изображение состава кислорода и топлива в более широком диапазоне.
Оба типа датчиков-измерений основаны на измерении изменений напряжения. Однако для механика важно знать, что разница между широкополосными датчиками и обычными датчиками O2 заключается в том, что напряжение повышается (не понижается), когда топливная смесь становится бедной. Другое отличие состоит в том, что сигнал напряжения поступает от ЭБУ автомобиля, а не от самого датчика.Следовательно, вы не можете считывать выходное напряжение широкополосного датчика напрямую с помощью цифрового осциллографа (DSO), как это делается с обычными датчиками O2.
Еще одна вещь, о которой механик также должен знать, это то, что значение, считываемое для широкополосного датчика на тестере, может вводить в заблуждение. Многие тестеры с «универсальным» программным обеспечением OBD II автоматически преобразуют выходное напряжение широкополосного датчика управления двигателем в шкалу от 0 до 1 вольт, как и обычный датчик O2. Это приводит к тому, что напряжение меняется не так сильно, как вы ожидаете, когда вы работаете на обедненной или богатой смеси, и вы можете ошибочно заключить, что широкополосный датчик неисправен.Самый точный способ проверить широкополосный датчик — это использовать заводской тестер, который показывает фактическое значение напряжения блока управления двигателем, или тестер вторичного рынка, который может это сделать.
Если вы хотите узнать больше об источниках ошибок и устранении неисправностей, вы можете прочитать больше здесь …
Загрязнение
Загрязненный датчик не может передать точные показания топливно-воздушной смеси. В этом смысле широкополосные датчики и датчики O2 одинаково чувствительны.Источников заражения много:
- Охлаждающая вода от протечек в системе охлаждения (негерметичная прокладка ГБЦ или трещины в ГБЦ)
- Фосфор из моторного масла, попавший в камеры сгорания (изношенные направляющие и уплотнения клапанов, изношенные поршневые кольца или цилиндры)
- Герметики RTV с высоким содержанием силикона
- Некоторые присадки к бензину
Слабозагрязненный кислородный датчик медленно реагирует на резкие изменения топливовоздушной смеси.Если датчик кислорода сильно загрязнен, он вообще не реагирует.
Утечки и неисправности
Помимо загрязнения, утечки компрессии или неисправности могут сбивать с толку датчик кислорода, что приводит к неполному сгоранию, вызывая высокий уровень кислорода в выхлопной системе. То же самое и с негерметичным выпускным коллектором.
Схема нагревателя широкополосного датчика
Другим источником кодов ошибок датчика кислорода может быть нагреватель широкополосного датчика.Для широкополосного датчика требуется более высокая рабочая температура (650 ° C), чем для обычного датчика O2 (350–400 ° C). Если нагреватель или электрическая схема не работают оптимально, датчик не может достичь правильной рабочей температуры.
Слишком низкая температура обычно — но не всегда — вызывает код ошибки. В любом случае ВСЕГДА проверяйте электрическую схему на наличие неисправностей, включая напряжение питания и заземление, прежде чем решить, неисправен ли сам датчик.
На двигателях V6 и V8, где используются два широкополосных датчика (по одному для каждого ряда цилиндров), нагреватели обычно управляются реле.Потребляемая мощность цепи нагревателя контролируется ЭБУ. В случае холодного двигателя потребляемая мощность высока, чтобы обеспечить максимально быстрое достижение рабочей температуры широкополосными датчиками. ЭБУ контролирует работу нагревателей и устанавливает код ошибки в случае возникновения ошибки. В то же время питание нагревателей отключается.
Какие еще есть возможные источники ошибок?
Двигатель, работающий на богатой или бедной смеси, часто вызывает ошибку P0172 или P0175 при богатой смеси и P0171 или P0174 при обедненной смеси.Но с чего начать устранение неполадок? Вы можете предположить, что имеется неисправный широкополосный датчик, но есть много других возможных источников ошибок. Коды обедненной смеси срабатывают, когда измеренная LTFT — долгосрочная корректировка топливоподачи (смесь, измеряемая в течение длительного времени) слишком бедная. Подключите тестер и проверьте, есть ли в двигателе состояние обедненной смеси, посмотрев на значение LTFT. Нормальный диапазон обычно составляет от +5 до -5. Если показание составляет от 8 до 10 или выше, блоку управления двигателем необходимо добавить дополнительное топливо, чтобы компенсировать показания, указывающие на бедную смесь.То же самое и с богатой смесью, но здесь показатель LTFT стоит в минусе.
Утечка вакуума или клапан рециркуляции ОГ
Это может быть из-за утечки вакуума во впускном коллекторе, ослабленного вакуумного шланга или клапана рециркуляции ОГ, который не закрывается.
Топливный насос, топливный фильтр, регулятор давления или форсунки
Если не удается определить ни один из вышеупомянутых источников ошибки, следует проверить подачу топлива. Слишком низкое давление топлива — например, из-за изношенного топливного насоса, засорения топливного фильтра или негерметичного регулятора давления топлива — также может быть причиной обедненной смеси.Загрязнение форсунок — еще один возможный источник ошибок.
Расходомер воздуха
Если в топливной системе нет никаких признаков ошибки, необходимо проверить расчетное значение нагрузки с помощью тестера. Следите за изменениями указанного воздушного потока при увеличении скорости двигателя. Если датчик в расходомере воздуха загрязнен, это может привести к слишком низкому значению потока воздуха, передаваемому в ЭБУ (что приводит к обедненной смеси).
Датчик температуры охлаждающей воды
Если счетчик воздушного потока работает нормально, проверьте работу датчика температуры охлаждающей жидкости на предмет правильности показаний.На холодном двигателе показания температуры охлаждающей воды сравниваются с показаниями температуры воздуха на впуске вашего тестера. Оба измерения должны быть идентичными. Разница более чем на несколько градусов указывает на проблему.
Загрязненный или неисправный широкополосный датчик
Если все в порядке, проблема может быть в загрязненном или неисправном широкополосном датчике (ах), который не производит точных измерений. На Toyotas заводской тестер может выполнить «Активный тест A / F Controls».Эта функция находится в меню «Диагностика», «Enhanced OBD II», «Активный тест», «Контроль A / F». В ходе теста смесь изменяется — пока двигатель работает на холостом ходу — для проверки отклика широкополосного датчика.
Типичные коды ошибок OBD II для широкополосных датчиков
Общие коды OBD II, которые указывают на ошибку в нагревателе широкополосных датчиков, включают: P0036, P0037, P0038, P0042, P0043, P0044, P0050, P0051, P0052, P0056, P0057 , P0058, P0062, P0063 и P0064. Коды, указывающие на возможную ошибку в реальном широкополосном датчике, — это коды от P0130 до P0167.Могут быть дополнительные OEM-коды P1, которые различаются в зависимости от марки, года выпуска и модели автомобиля. Например, очень часто на автомобилях Honda коды широкополосных датчиков включают P1166 и P1167. Имейте в виду, что ошибка может быть обнаружена как в датчике, так и в проводах датчика.
Идентификация широкополосных датчиков
Коды широкополосных датчиков также определяют местоположение датчика, например датчик 1 или 2, ряд цилиндров 1 или 2. Датчик 1 представляет собой первичный / регулирующий широкополосный датчик на выпускном коллекторе.Датчик 2 — это вторичный / регулирующий датчик за каталитическим нейтрализатором. Датчик 2 — это обычные датчики O2, а не широкополосные датчики. Ряд цилиндров 1 — это группа, которая содержит цилиндр номер один в порядке зажигания двигателя.
SmogTips.com — Как работает датчик кислорода? Узнайте о датчике кислорода. Найдите датчик кислорода. Датчик O2. Где мой датчик o2. Где мой кислородный датчик. неисправен кислородный датчик. Датчик топлива и воздуха. Соотношение воздух-топливо. Что делает кислородный датчик? датчик кислорода в моей машине.автомобильный кислородный датчик, автомобильный кислородный датчик. Как работает кислородный датчик? вышел из строя кислородный датчик. Консультации по проверке смога и выбросам
Для испытания на смог: Подача топлива в камеры сгорания двигателя контролируется бортовым компьютером или блоком управления двигателем (ЭБУ) и топливными форсунками. Чтобы двигатель прошел проверку на смог, необходимо тщательно контролировать подачу топлива, чтобы производить наименьшие выбросы. Если форсунки не подают достаточное количество топлива в камеры сгорания, это вызывает низкие выбросы CO и бедную топливную смесь, вызывающую высокое содержание углеводородов.В ситуации, когда в форсунках подается слишком много топлива, это приводит к высоким выбросам CO и богатой топливной смеси, что приводит к высоким выбросам углеводородов.Основным компонентом, сообщающим компьютеру, сколько топлива находится в выхлопной системе в любой момент времени, является датчик кислорода. Датчик кислорода отправляет электрический сигнал в ЭБУ, позволяя компьютеру точно определить, сколько топлива он должен продолжать подавать в камеры сгорания. Если по какой-либо причине датчик 02 не отправляет точную информацию в компьютер или ленив с отправкой правильного сигнала, программа подачи топлива будет изменена.
Эксплуатация: Во время нормальной работы напряжение кислородных датчиков должно переключаться между 0,1 и 1,0 вольт со скоростью примерно 50 циклов в минуту. Напряжение датчика O2 выше 0,45 В интерпретируется ECM как богатый выхлоп, а сигнал напряжения датчика O2 ниже 0,45 В как обедненный выхлоп.
ECM отвечает за переключение напряжения датчика кислорода с высокого на низкое для обеспечения оптимальной топливной эффективности, минимальных выбросов и максимального количества миль на галлон.Обычно первым признаком поломки или неисправности датчика кислорода является низкая экономия топлива. В случае отказа: Средний срок службы ненагреваемого кислородного датчика составляет 50 000 миль, а подогреваемого кислородного датчика — 100 000 миль. Что и говорить, кислородные датчики требуют периодической замены. Несоблюдение этого требования с большей вероятностью приведет к сбою проверки на смог. 4 из 10 неудачных проверок смога с высоким содержанием CO будут из-за неисправного, поврежденного или отложенного датчика кислорода. Вероятно, это один из наиболее недооцененных компонентов выбросов, и ему следует уделять гораздо больше внимания.
Часто пройти проверку смога просто, установив новый кислородный датчик. Мы рекомендуем опытному механику по ремонту автомобильного смога или выхлопных газов выполнить демонтаж, установку и диагностику этого компонента.
Лямбда-зонд и его важный вход в ЭБУ
В предыдущей статье мы обсуждали работу ЭБУ, где уже стало ясно, что лямбда-зонд предоставляет важную информацию ЭБУ.Было бы слишком далеко вдаваться в подробности, чтобы обсудить, как эта часть работает и как она взаимодействует с ЭБУ. В этой статье мы объясним точное взаимодействие этих двух компонентов!
Какой датчик?
Правый, лямбда-зонд. Среди автомобильных техников эту часть иногда называют лямбда-зондом, датчиком кислорода или датчиком O2. Это название подразумевает функцию этой части. Короче говоря, этот датчик измеряет количество кислорода в выхлопе.Голландская организация сектора мобильности BOVAG имеет очень красивое и краткое описание этой части:
«Лямбда-зонд — это датчик в выхлопе вашего автомобиля, который измеряет количество кислорода в выхлопных газах. Если значение содержания кислорода меняется, система управления двигателем регулирует это автоматически. Таким образом, каталитический нейтрализатор работает оптимально, а выхлопные газы менее вредны для окружающей среды ».
Сказав это, приятно осознавать, что сегодня в большинстве автомобилей есть два кислородных датчика.Один датчик измеряет количество газов, выходящих из двигателя, а второй датчик расположен за каталитическим нейтрализатором. Поскольку лямбда-зонд представляет собой полый керамический цилиндр, кислород может проходить через датчик. Датчик измеряет присутствие кислорода и выдает сигнал напряжения. Провода на датчике могут нагревать лямбда-зонд и передавать данные в ЭБУ. На основе этих данных ЭБУ определяет, насколько бедная (мало выхлопных газов и много кислорода) или насколько богата (много выхлопных газов и мало кислорода) воздушно-топливная смесь.Нагрев кислородного датчика также имеет важную причину: это позволяет датчику быстро реагировать на холодный двигатель, что приводит к лучшему и более экономичному сгоранию!
Теперь, когда мы это знаем, профессионалу может быть интересно узнать краткую историю этой детали:
История лямбда-зонда
Чтобы рассказать немного об истории лямбда-зонда, мы хотим перенести вас в прошлое. Если быть точным, для этого нужно перейти в 1976 год.Небольшое исследование показывает, что это был особенный год. 1976 год — это год, когда Queen выпустили Bohemian Rhapsody, родилась «казнь Панненка», был основан бренд Apple и вошел в употребление легендарный Concorde. А если посмотреть на учебники истории, то можно понять, что 1976 год был также особенным годом для Швеции. В том же году шведская группа ABBA выпустила Dancing Queen (мы приносим свои извинения за то, что песня застряла у вас в голове прямо сейчас …), Бьорн Борг проложил себе путь к победе в Уимблдоне, и в довершение всего, Швеция представила лямбда-зонд. .Настоящий забавный факт на дни рождения!
Ну, вернемся к датчику O2. В результате ужесточения экологических норм и норм выбросов, которые были введены в Соединенных Штатах, Volvo была первой маркой в 1976 году, которая оборудовала эту новую технологию в моделях 240 и 260. Volvo так гордилась этим нововведением, что даже поставила подлинный Эмблема «Лямбда-зонд» в решетке нескольких автомобилей.
После успешного внедрения Volvo еще более укрепила партнерские отношения с Bosch, которая взяла на себя ответственность за производство цилиндрических деталей.Вскоре в 1982 году появились лямбда-датчики второго поколения. Большим преимуществом этого второго поколения было то, что этот датчик был нагрет. За сорок лет, последовавших за появлением лямбда-зонда, компания Bosch произвела более 1 миллиарда таких деталей.
Что делает ЭБУ с информацией лямбда-зонда?
Заглянув в учебники по истории, пора вернуться к работе лямбда-зонда. Приведенное ранее определение этого датчика содержит очень важный элемент, который заслуживает дальнейшего пояснения.Это относится к следующему предложению: «Если значение содержания кислорода меняется, система управления двигателем отрегулирует это автоматически».
Главный вопрос, конечно, в том, что и как регулирует система управления двигателем, или ЭБУ, в зависимости от содержания кислорода в выхлопных газах. Это основано на так называемом значении лямбда. ЭБУ постоянно сравнивает количество воздуха, которое измеряет датчик кислорода, с количеством впрыскиваемого топлива. Как только это значение опускается ниже 1, в топливной смеси (богатая смесь) не хватает воздуха.Если это значение больше 1, имеется избыток воздуха (бедная смесь). На основании этих данных блок управления двигателем принимает собственное решение. Наиболее очевидное решение для ЭБУ — начать регулировку топливно-воздушной смеси так, чтобы пропорции совпадали. Этого можно достичь, например, регулируя время открытия форсунок. Однако, если значение отклоняется слишком сильно или значение продолжает отклоняться после регулировки, загорится сигнальная лампа двигателя, и двигатель может перейти в аварийный режим.
Неисправный лямбда-зонд оказывает серьезное влияние на ЭБУ
Теперь, когда объяснено взаимодействие обоих компонентов, становится ясно, какое влияние эта часть оказывает на функционирование ЭБУ. Поэтому неисправный лямбда-зонд необходимо быстро заменить. Продолжительное движение с неисправным датчиком также может привести к повреждению каталитического нейтрализатора. Поскольку индикатор управления двигателем (индикатор MIR) часто загорается при неисправности лямбда-зонда, важно продолжить диагностику и выполнить различные тесты.
Проверка и измерение неисправных лямбда-зондов
Первый тест, который вы можете сделать, — увеличить обороты двигателя примерно до 1500–2000 об / мин. Важно как можно меньше двигать акселератором. Если частота вращения нестабильна, у вас может быть первое указание на то, что лямбда-зонд может быть неисправен.
После того, как вы проверили стабильные обороты двигателя, вам необходимо достать омметр и измерить сопротивление нагревателя. Иногда для этого нужно снять теплозащитный экран с выпускного коллектора.Измерьте это при нормальной температуре двигателя (от 85 до 95 ° C) и используйте электрическую схему. Значение правильное? Затем приступайте к измерению сигнала. Правильно работающий кислородный датчик дает значение от 0,1 до 0,9 В. Если это не так, можно сделать вывод, что лямбда-зонд заставил загореться индикатор управления двигателем! Нужно почистить лямбда-зонд, а можно заменить зонд.
Опыт учит нас, что лучше заменить лямбда-зонд на оригинальный, а не выбирать неоригинальный.Как только вы начнете поискать «вторичный лямбда-зонд» на различных автомобильных форумах, станет ясно, что мы имеем в виду под этим. Есть масса случаев, когда проблема не решается, а свет остается включенным.
Лямбда — Шестнадцатеричный код
Фон
Лямбда-датчикитакже известны как датчики кислорода, поскольку они измеряют долю кислорода в выхлопных газах. Эти датчики были впервые разработаны Robert Bosch GmbH много десятилетий назад.
Они используются для определения соотношения воздух-топливо и, в свою очередь, являются неотъемлемой частью замкнутого цикла процесса впрыска топлива, поскольку их измерение в реальном времени определяет, работает ли смесь сгорания в режиме RICH или LEAN, и используя по этой обратной связи ЭБУ адаптирует импульсы форсунок для достижения оптимального сгорания …
Соотношение воздух-топливо для теоретического оптимального сгорания в бензиновых двигателях составляет 14,7 частей воздуха на 1 часть топлива или 14,7: 1, где части измеряются в массе воздуха и массе топлива.Это теоретическое оптимальное соотношение известно как стехиометрическое соотношение воздух-топливо.
| График слева взят из документа Bosch « « Лямбда-датчики », тип LSM 11 » ОБОГАЩЕННАЯ смесь вызывает потребность в кислороде в датчике и, таким образом, проявляется в виде более высокого напряжения датчика, чем БЕЗОПАСНОЕ. смесью, что проявляется низким напряжением на выходе датчика. Существует 2 основных типа лямбда-зондов:
Это ясно изображено на графике и составляет основу для понимания графиков напряжения кислородного / лямбда-датчика на основе значений журнала GS-911 в реальном времени. Страницы Wikipedia Oxygen Sensor и Wikipedia AFR-sensor являются хорошим источником базовой информации по общей теории и деталям того, как работают лямбда-датчики. |
Типичные графики напряжения лямбда
НЕТ ИДЕАЛЬНОГО графика … вот почему мы НЕ МОЖЕМ дать вам справочный график с инструкциями: « Вот как он должен выглядеть, а если он не ТОЧНО выглядит так, то есть проблема! ».Однако, как только вы поймете основы функционирования, вы сможете принять обоснованное решение относительно уместности и правильности того, что вы видите на графиках …! Как правило, узкополосные лямбда-датчики могут измерять только небольшую область по обе стороны от стехиометрического отношения, а выходное напряжение ограничено диапазоном от нуля до 1 вольт. Выходной сигнал обычно выражается в милливольтах (мВ).
Электронный блок управления (ЭБУ) измеряет лямбда-напряжение и использует его для систематического увеличения ширины импульса форсунки (следовательно, эффективного количества топлива) до тех пор, пока оно не превысит установленное среднее значение выше номинальной рабочей точки… Как только он достигает этого «более богатого» максимального значения, он начинает уменьшать базовое значение импульса форсунки до тех пор, пока не достигнет минимального «обедненного порога», прежде чем он снова начнет повторять цикл, таким образом, ЭБУ пытается поддерживать воздух-топливо передаточного числа на его заранее определенной уставке, путем возмущения вокруг заранее определенной уставки …
Вооружившись вышеуказанными знаниями, а также зная, что некоторые ЭБУ имеют минимальные уставки 150 или 200 мВ и максимальные уставки в диапазоне от 600 мВ до очень распространенных 700 мВ, некоторые из которых достигают 800 мВ, мы можем использовать это, чтобы сделать общее, но обоснованное решение о достоверности сигнала напряжения лямбда-зонда.
Ниже приведен график журнала напряжения лямбда-зонда одного из датчиков S1000RR.
Это совершенно нормальный сигнал напряжения кислородного датчика … И чтобы показать, насколько сильно они могут отличаться, вот еще один, на этот раз один из сигналов напряжения лямбда HP2. Вы видите разницу, но и этот тоже хорош!
Оценить работоспособность кислородного датчика при рабочей температуре
Я выбрал именно этот график HP2, так как он также показывает запуск функции замкнутого цикла… что подводит меня к еще одному очень важному моменту …
ПРИМЕЧАНИЕ: Контроллер двигателя работает в разомкнутом контуре во время цикла обогащения при холодном запуске, поэтому работу лямбда-зонда следует оценивать только при рабочей температуре!
Что мы ищем?
Короче ищем:
- колебательный сигнал, который колеблется от 200 мВ до более 600/700 мВ
Чего мы не хотим видеть?
Мы не хотим видеть следующее:
- ровная линия, не по центру, не высоко не низко… (при рабочей температуре)
- ровная восходящая или нисходящая линия
- осциллирующий график, медленно восходящий или нисходящий
- — осциллирующий график с небольшими колебаниями, которые почти не достигают пороговых значений 200 мВ и 700 мВ.
Пример неверного сигнала
Здесь у нас есть сигнал от того же HP2, что и выше, но от лямбда-зонда другого цилиндра.
Вы можете отчетливо увидеть разницу с предыдущим сигналом и тот факт, что что-то определенно не так, бросается в глаза!
Далее возникает вопрос: неисправен ли датчик или это правильное измерение очень неправильного соотношения воздух-топливо? На этот вопрос не всегда легко ответить, и он не является частью этого обсуждения, однако я все же хотел бы уделить этому немного времени.Ключ к BE LOGICAL и SYSTEMATIC о вашем подходе к поиску неисправностей! (это верно для ЛЮБОГО типа диагностики!). В этом случае вам следует взглянуть на обстоятельства. Если работа на холостом ходу грубая, скорее всего, у вас действительно очень плохое соотношение воздух-топливо (используя ваши знания, полученные выше, поскольку напряжение очень низкое, это действительно очень бедная смесь). Если вы подозреваете лямбда-зонд, вы можете поменять местами два лямбда-зонда.
Однако в приведенном выше случае датчик был хорош — как и в большинстве случаев… и соотношение воздух-топливо действительно было очень бедным, по-видимому, из-за «липкой тяги дроссельной заслонки».
Коэффициент регулирования лямбда
Сначала некоторые определения
Лямбда — соотношение воздух / топливо.
Коэффициент лямбда-регулирования (также известный как коэффициент избытка воздуха) — это соотношение между фактическим фактическим и идеальным соотношением воздух / топливо.
Таким образом, лямбда> 1 подразумевает смесь LEAN, и наоборот, лямбда <1 означает смесь RICH.
Ниже приведен график коэффициента лямбда-регулирования для одного из кислородных датчиков S1000RR. Мы можем видеть, что он постоянно работает чуть ниже 1, таким образом, немного обогащен (хорошо известно, что немного более высокое, чем стехиометрическое, соотношение воздух-топливо дает более высокую выходную мощность).
По очевидным причинам, ЭБУ может адаптировать или изменять время впрыска / ширину импульса только в определенных пределах, которые в случае большинства мотоциклов BMW составляют + — 0,20 или + -0,25, что позволяет ЭБУ эффективно управлять коэффициентом регулирования лямбда. от 0.От 8 до 1,2 или от 0,75 до 1,25 соответственно.
Аналогичным образом мы видим коэффициенты регулирования лямбда для обоих датчиков кислорода в нашем примере HP2. Совершенно очевидно, что синий цилиндр кажется вполне нормальным, и столь же очевидно, что мы можем видеть, что красный цилиндр определенно работает на обедненной смеси, большую часть времени застревая при максимальном коэффициенте компенсации 1,25.
Лямбда-зонд Обогрев
Для эффективной работы лямбда-зондов их необходимо нагреть примерно до 316 градусов Цельсия.Для этого у них есть внутренние нагревательные элементы, которые контролируются ЭБУ. Большинство ЭБУ показывают состояние лямбда-нагрева (1 = ВКЛ и 0 = ВЫКЛ). Ниже показан график состояния нагрева одного из цилиндров HP2, который мы обсуждали выше.
Я надеюсь, что приведенной выше информации достаточно, чтобы сформировать достаточно общего представления о лямбда-датчике, о том, как он соотносится с коэффициентом регулирования лямбда и как, в свою очередь, используется ЭБУ для поддержания работы двигателя в соответствии с заданным соотношением воздух-топливо. рабочая точка.У вас под рукой много информации … Интернет — обширный источник информации … и, используя терминологию, полученную из этой статьи, а также двух страниц вики в качестве отправной точки, вы скоро можете стать эксперт по лямбда-датчикам и понимание их интеграции в большой процесс впрыска топлива.
История датчика кислорода — на линии
Фото 1/1 | История датчика кислорода — в сетиСмотреть фотогалерею (1) Фото
Несколько недель назад я посетил завод в Андерсоне, С.C., управляемая Robert Bosch Corporation, которая производит датчики кислорода для систем управления автомобильными двигателями. Если вы думаете, что экскурсия по заводу, который собирает какую-то непонятную часть вашего двигателя, может быть утомительной, вы абсолютно правы. Я уверен, что для серьезных молодых мужчин и женщин, работающих в Bosch, кислородные датчики очень интересны, но на первый взгляд, для вас и меня они всего лишь один из тех виджетов, которые помогают создавать наши автомобили. запустить.
И все же …. когда я узнал, как работает кислородный датчик, и наблюдал за кропотливым процессом производства этих устройств, я начал испытывать если не восхищение, то, по крайней мере, меру уважения к маленьким устройствам.
В 1899 году немец по имени профессор Вальтер Нернст разработал «Ячейку Нернста», газонепроницаемый керамический электролит, который становится электропроводным при температурах выше 620F. Ячейка Нернста переносит ионы кислорода из воздуха внутри ячейки в воздух за ее пределами, генерируя в то же время измеримое напряжение. Уровень генерируемого напряжения зависит от разницы в содержании кислорода между газом внутри и снаружи ячейки. Хотя это было умное устройство, в начале 1900-х годов у него было мало практического применения.
Теперь перенесемся в 1970-е годы, когда Агентство по охране окружающей среды (EPA) ввело строгие правила по выбросам выхлопных газов. Чтобы соответствовать этим правилам, двигатель должен был быть оснащен каталитическим нейтрализатором, а для его правильной работы требовался способ измерения количества кислорода в выхлопной системе. Введите кислородный датчик, также называемый лямбда-зондом, потому что он показывает отношение воздуха к топливу (так называемое лямбда-отношение), потребляемое двигателем.Volvo первой применила кислородный датчик в 1977 году, когда оборудовала этим устройством модели Volvo 240, предназначенные для калифорнийских автомобилей. Прошло совсем немного времени, прежде чем каждому автопроизводителю понадобился прибор для контроля и регулирования топливной смеси в своих двигателях и контроля выбросов выхлопных газов.
Из-за дополнительных требований к бортовой диагностике (OBD) в 1998 году внезапно потребовались два кислородных датчика, один перед преобразователем, а другой после преобразователя, что фактически удвоило рынок этих устройств. Фактически, многие автомобили с двигателями V6 и V8 теперь имеют четыре датчика кислорода, по два на каждый ряд цилиндров.
Гонщикибыстро обнаружили, что они тоже могут использовать кислородный датчик для отслеживания того, что происходит внутри их гоночных двигателей. Спортивные автомобили, автомобили Indycars и команды Формулы-1 нашли устройства полезными для точной настройки критического лямбда-отношения и управления сгоранием. Даже в гонках NASCAR, где использование карбюраторов, казалось бы, является аргументом против компьютеризованного управления, кислородные датчики используются в испытательных отсеках и динамометрах, где каждый аспект сгорания должен отслеживаться и оптимизироваться перед отправкой двигателя на гоночную трассу.
Датчик кислорода — довольно безобидное на вид устройство, размером и формой с палец маленького ребенка. Корпус устройства изготовлен из циркониевой керамики с металлической основой, которая ввинчивается в отверстие в выхлопной системе. Но технология, используемая для создания кислородного датчика, требует, чтобы среда в чистой комнате была во много раз чище, чем в хирургической больнице. Связанные с компьютерами высокотехнологичные системы технического зрения используются для отслеживания почти каждого шага.
Сырье добывается на пляже в Австралии, перерабатывается в Великобритании и закупается в Канаде перед отправкой на завод в Южной Каролине.Плазменное порошковое покрытие происходит с помощью частиц, движущихся со скоростью звука. Для обеспечения газонепроницаемости уплотнения используются два отдельных этапа лазерной сварки. Инженеры Bosch тестируют и повторно тестируют датчики почти на каждом этапе производственного процесса. Испытания на разрыв проводятся при давлении воды 6000 фунтов на квадратный дюйм. Другие тесты проверяют и калибруют точность датчиков при тех же температурах 1200F, которые они будут видеть в потоке выхлопных газов двигателя, так что частота отказов новых датчиков составляет два на миллион отгруженных.А завод отгружает семь миллионов датчиков в год.
Внезапно эта скучная маленькая деталь двигателя начинает напоминать то, что вы могли бы найти в космической программе. И мало построить что-то, что хорошо работает сегодня. Кислородные датчики будущего должны загораться быстрее, предоставляя данные за 5 секунд. вместо 20 сек. Они должны быть меньше по размеру и иметь более высокую термостойкость по мере повышения эффективности двигателя. Это требует дополнительных исследований и еще больших инвестиций в высокотехнологичное производство.Легко понять, почему только крупные и солидные компании имеют средства для ведения такого рода бизнеса.
Когда я проходил через завод Bosch, мне пришло в голову, что где-то в другом месте, на других чистых и аккуратных объектах по всему миру, другие столь же усердные инженеры и техники усердно производили другие, казалось бы, незначительные детали с тем же уровнем качества и с использованием тех же самых вид технологий космической эры. Им необходимо, если они хотят быть частью глобальной системы поставщиков, которая поддерживает работу сборочных линий производителя автомобилей.Инвестиции в исследования и разработки, технологии и производство огромны, но без всего этого автомобили, на которых мы сегодня ездим, были бы невозможны.
Подумайте обо всех миллионах деталей, необходимых для изготовления автомобиля. Есть все эти мелочи, такие как болты, гайки, зажимы и крепежные детали, свечи зажигания, топливные форсунки и кислородные датчики, и даже более мелкие детали, такие как тумблеры дверных замков. А еще есть более крупные детали, такие как блок цилиндров, поршни и коленчатый вал.Независимо от того, насколько велики, все они должны быть разработаны и испытаны, усовершенствованы и отточены в соответствии с техническими требованиями, качеством и долговечностью. Это начинает звучать как космическая программа, пока вы не поймете, что каждая деталь должна быть доработана, чтобы соответствовать строгим требованиям по стоимости и упаковке до доставки. В отличие от государственной программы, где-то на линии производитель автомобилей и каждый поставщик должны найти способ сделать это, получая прибыль, иначе они не будут работать очень долго.
На первый взгляд мой день на заводе кислородных датчиков Bosch в Южной Каролине может показаться довольно скучным.Это одна маленькая деталь, которая волнует немногих автовладельцев. Но сделайте шаг назад и посмотрите на картину в целом. Каждая деталь современного автомобиля имеет решающее значение, и каждая из них должна быть спроектирована с учетом уровня технологий и качества, которые были немыслимы всего несколько лет назад.
