Датчик холла авто: Датчик Холла: принцип работы, типы, применение, как проверить

Содержание

Датчик Холла, виды, устройство и принцип работы.

Датчик Холла — это датчик магнитного поля, на двигателе он фиксирует магнитные импульсы от сопряженного с ним устройства (трамблёр, распредвал) и на основе его показаний распределяется искра по цилиндрам.

Современный автомобиль может похвастаться наличием нескольких десятков датчиков. Есть датчики, контролирующие количество топлива, есть датчики, проверяющие давление в двигателе, но самым незаменимым является датчик Холла.

Впервые он был применен при строительстве автомобилей еще более 70 лет назад, и с тех пор достойной альтернативы ему не нашлось. Он продолжает использоваться, и каждый из автомобилистов наслышан о его существовании.

Что представляет собой датчик Холла и для чего он нужен в автомобиле.

Данный датчик единственный в автомобиле, который имеет собственное имя. Он назван в честь известного американского физика Эдвина Холла, который открыл особенности поведения полупроводника в магнитном поле. В техническом плане датчик Холла представляет собой простейшее магнитоэлектрическое устройство. Фактически это датчик, который фиксирует наличие магнитного поля. Принцип его действия достаточно прост, и в нем вполне можно разобраться.

Конструктивно, работает это следующим образом. Плоский проводник под напряжением помещается в магнитное поле. Под действием магнитного поля, ток смещается в одному краю проводника, таким образом возникает разница потенциалов.

В автомобиле, датчик Холла работает как обычный ключ (размыкатель и замыкатель). Магнит вращается в трамблере машины, и влияет на датчик, закрепленный стационарно. Когда датчик «чувствует» магнитное поле трамблера, он подает импульс, который вызывает искру зажигания.

Собственно, данный датчик – один из основных элементов системы зажигания автомобили. Он присутствует в любой машине вне зависимости от ее стоимости. Кроме того, он может быть использован в цифровых спидометрах и тахометрах, проверять скорость вращения передаточных колес и контролировать работу антиблокировочной системы автомобиля.

Также стоит отметить тот факт, что датчик Холла очень надежен. Сам по себе он может работать долгие годы, и чаще всего, поломка происходит из-за физического воздействия или чрезмерного загрязнения датчика. Достаточно часто, датчик Холла специально устанавливают таким образом, чтобы его можно было быстро снять и заметить. Исключение составляют лишь устройства, которые контролируют работу сложных систем автомобиля.

Виды современных датчиков Холла.

Техническая революция коснулась даже консервативного датчика Холла. Благодаря применению современных полупроводниковых материалов, устройство стало намного меньше, компактнее и надежней. В настоящее время различают аналоговые и цифровые датчики Холла.

  • Аналоговый датчик. Данное устройство с полным правом можно считать классическим, так как именно оно появилось первым. Принцип работы устройства следующий – индукция магнитного поля преобразуется в напряжение в зависимости от силы поля. Чем сильнее магнитное поле – тем больше будет напряжение. Кроме того, имеет значение расстояние, на котором находится магнит, излучающей поле. В настоящее время подобные датчики практически не используются в автомобилях, так как имеют значительные размеры и устаревшую конструкцию.
  • Цифровые датчики. Работает лишь в двух положениях (магнитное поле зафиксировано и не зафиксировано). Индукция достигается лишь в том случае, если магнитное поле превысило определённое значение. Если индукция слишком слабая, то датчик попросту не сработает. Самый распространённый тип датчика, повсеместно используется в автомобильной промышленности. В свою очередь, цифровые датчики подразделяются на униполярные и биполярные. Униполярные датчики срабатывают при нарастании магнитного поля, и выключаются, когда сила магнитного поля ослабевает. В свою очередь, биполярные датчики реагируют не на силу магнитной индукции, а на полярность. Говоря проще одна полярность включает датчик, а другая выключает его. Также, стоит отметить тот факт, что цифровой датчик Холла имеет сложную конструкцию.
    Используется полупроводниковый монолитный кристалл, который в случае повреждения не подлежит ремонту

Как проверить работоспособность датчика Холла?

Существует несколько способов проверки данного датчика. Каждый из них может быть использован в тех или иных обстоятельствах, и имеет право на существование.

  • Проверка с помощью тестера. Необходимо взять любой цифровой тестер, установить его в режим вольтметра, и померять напряжение на датчике Холла. Правильно работающий датчик будет показывать напряжение от 0,2 и до 3 Вольт. Если напряжение отсутствует вовсе или выше трех Вольт, то датчик вышел из строя и нуждается в срочной замене.
  • Проверка с помощью аналогично работающего устройства. Вместо датчика Холла, работоспособность которого необходимо проверить, можно подключить аналогично работающее устройство. Создать устройство, использующее в работе эффект Холла не сложно. Необходим небольшой кусок провода и колодка с распределителем. Естественно, автомобиль не может использовать такую конструкцию в течение долгого времени, но для однократной проверки этого более чем достаточно. Такая несложная проверка покажет, кроется проблема в датчике, или дело совсем не в нем.
  • Проверка с помощью нового датчика Холла. Можно установить изначально исправный датчик Холла, и таким образом решить проблему с диагностикой неисправности.

Это достаточно затратный вид ремонта, но в случае если неисправность крылась именно в датчике, это сразу решит проблему с установкой и заменой.

Датчик Холла автомобиля ВАЗ-2106

Владельцы ранних моделей «Жигулей» помнят и знакомы с проблемами, связанными с работой механического фаз газораспределения зажигания. Время от времени автомобиль начинал вести себя странно: глох на холостом ходу или внезапно начинал дергаться. В большинстве случаев причиной был сгоревший контакт механической цапфы. С появлением в ВАЗ-2106 электронного зажигания и датчика Холла эта проблема сразу же исчезла.

Содержание

  1. История датчика Холла
  2. Устройство
  3. Принцип работы ДХ
  4. Неисправности ДХ
  5. Проверка ДХ
  6. Замена ДХ
  7. Видео по теме

История датчика Холла

Датчик назван в честь американского физика Холла, который открыл эффект Холла в 1879 году. Его суть заключается в том, что металлическая пластина под действием постоянного тока, будучи помещенной в магнитное поле, получает разность потенциалов на своих краях. Изобретение нашло свое применение только в 1950-х гг. Все изменилось с наступлением эры полупроводников, в основе которых лежали редкоземельные элементы германий, индий и кремний. Это позволило производить мини-контроллеры, измеряющие характеристики электрического тока в магнитном поле, в том числе датчики Холла (ДХ) для электронного зажигания в автомобиле ВАЗ-2106.

Датчик Холла ВАЗ 2106:

 

Устройство

При переходе на бесконтактную систему зажигания (CVS) ствол был усовершенствован. Сам распределитель был переработан, добавлено коммутационное устройство — электронный регулятор зажигания. Крышка зажигания и бегунок остались прежними, но вместо резца появился датчик Холла, а также был установлен синхронизирующий стакан (диск с прорезями), соосный с валом.

Пластина синхронизации крепится двумя винтами к кронштейну подшипника под крышкой барабана. От него через разъем к коммутатору идут три провода: два из них — питание (+ и 0), а третий передает управляющий сигнал на коммутатор. Датчик состоит из двух частей: измерителя и магнита. Между ними проходит боковая часть вращающегося стакана с 4 вырезами (по числу цилиндров двигателя).

Расположение датчика:

Принцип работы ДХ

Распределительный вал входит в угловые зубья, которые, в свою очередь, соединяются с шестерней коленчатого вала. Изменение апертуры чашки, попадающей в «поле зрения» датчика, вызывает изменения в электромагнитном поле. Об этом сигнализирует пропорциональное изменение напряжения на сигнальном проводе, которое «предупреждает» коммутатор. Это, в свою очередь, синхронно подает ток высокого напряжения на центральный провод крышки замка зажигания, откуда он проходит через тапку и провода к свечам зажигания.

Эта бесконтактная система зажигания явно более совершенна, чем распределитель с прерывателем. Однако, по сравнению с современными электронными модулями зажигания, ЭПРА ВАЗ-2106 более подвержена отказам из-за наличия движущихся частей. Это наиболее распространенная причина неисправности системы зажигания.

ВАЗ 2106 LUJ:

Неисправности ДХ

Неисправности двигателя ВАЗ-2106 могут быть вызваны не только отказом ПЧ. Поэтому выявление причин неисправности проводится поэтапно, проверяя питание, состояние катушки, проводов, контактов и т.д. Только после исключения других причин можно определить, что датчик Холла неисправен.

Износ датчика Холла ВАЗ-2106 характеризуется следующими неисправностями:

  • расход топлива резко возрастает;
  • Двигатель глохнет и может заклинить во время движения;
  • Двигатель не хочет запускаться.

После проверки всех возможных причин неисправности ДВС (двигателя внутреннего сгорания) необходимо перейти к проверке работоспособности датчика Холла.

Проверка ДХ

Существуют различные способы проверки датчика Холла на автомобиле ВАЗ-2106. Один из них самый простой и потребует двух человек, хотя, если вы обладаете необычайной ловкостью, можно обойтись и двумя руками. Метод состоит из следующих этапов:

  1. Отсоедините штекер от разъема тахометра.
  2. Отсоедините центральный кабель от крышки барабана и обнажите его конец, сдвинув защитный колпачок.
  3. Клеммы 3 и 2 разъема датчика замыкают кабель.
  4. Поднесите наконечник центрального кабеля к любой части двигателя внутреннего сгорания или кузова на расстояние 3-5 мм.
  5. Включите зажигание. В этот момент между наконечником кабеля и заземлением должна возникнуть электрическая искра.

Если искра отсутствует, это означает, что ПЧ следует заменить.

Читайте далее, чтобы узнать, как снять старый счетчик и установить новый.

Замена ДХ

Заменить датчик Холла может любой автовладелец, имеющий минимальный опыт работы с простыми инструментами, такими как отвертка и плоскогубцы. Чтобы установить новый датчик, выполните следующие действия:

  1. Отсоедините отрицательную клемму от аккумулятора и поставьте автомобиль на ручной тормоз.
  2. Открутив два пружинных фиксатора, снимите крышку цилиндра.
  3. Выньте штифт из оси, удерживающей шток вакуумного регулятора.
  4. Выкрутите два винта и снимите сам регулятор, освободив боковое отверстие в чаше распределителя зажигания.
  5. Выкрутите винты, удерживающие датчик hal и его разъем.
  6. Вытяните датчик и провода через отверстие.
  7. Установите новый датчик с проводами и разъемом.
  8. Повторите описанные выше действия в обратном порядке.

Извлечение датчика:

При покупке нового датчика Холла убедитесь, что он относится к ВАЗ-2106, так как датчики от других моделей ВАЗ не подойдут к кронштейнам. Избегайте датчиков неизвестных производителей. Дешевая покупка может привести к неприятностям в виде неожиданной остановки на дороге вашего автомобиля.

Видео по теме

Датчик Холла — что это, как работает? Устройства, принцип работы, очистка и замена, признаки неисправности

Датчик Холла играет важную роль в автомобилестроении, авиации, приборостроении, а также в других отраслях промышленности. Хотя он является второстепенным компонентом автомобильной системы, он имеет огромное значение для синхронизации отдельных элементов автомобиля. Он устанавливается в различных местах автомобильной системы и присутствует в системе ABS, а также в системах ESP, VCS, PSM.

Устройство и функции датчика Холла

Преобразователь на эффекте Холла — это преобразователь, который изменяет свое выходное напряжение в результате изменения напряженности магнитного поля. Проще говоря, преобразователь на основе эффекта Холла — это устройство, измеряющее силу магнитного поля.

Датчик Холла представляет собой щель с полупроводником на одной стороне и постоянным магнитом на другой. Когда его магнитное поле пропускает ток, сила, действующая на электроны, имеет вектор, перпендикулярный току и магнитному полю.
Все типы датчиков, основанные на эффекте Холла, используются в современных прецизионных приложениях для определения скорости, бесконтактной коммутации, позиционирования. На основе эффекта Холла создаются и другие типы датчиков, например, датчики углового и линейного перемещения, магнитного поля, тока и потока.

Например, датчики Холла компании Logic Hall применяются в различных устройствах синхронизации, считывателях магнитных карт, бесконтактных выключателях, системах зажигания, клавиатурах и т.д. Интегральные линейные датчики также широко применяются для измерения линейных или угловых перемещений и электрического тока.

Помимо автомобилей и мотоциклов, сенсорные устройства на основе эффекта Холла также используются в производстве электронного оборудования. Подобные типы устройств, осуществляющих бесконтактный сбор информации, встречаются также в стиральных машинах для управления скоростью вращения барабана, клавиатурах и кулерах для компьютеров.

Одним из наиболее распространенных устройств, работающих на эффекте Холла, является датчик Холла для выключателей. Его выход изменяет свое логическое состояние, если магнитное поле превышает определенное значение. Датчик Холла для переключателей широко используется в бесщеточных двигателях для определения положения ротора DPR.

Так называемый, эффект Холла был открыт в 1879 году американским физиком Э. Г. Холлом во время работы с тонкими золотыми пластинами. Он наблюдал интересное явление в поведении проводника с током в магнитном поле.

Ученый провел эксперимент, в ходе которого обнаружил, что при пропускании тока через медную пластину, помещенную между магнитами, на ее боковых поверхностях возникает разность потенциалов.

Эффект Холла — это прохождение электричества через проводник, в результате чего создается магнитное поле. Это происходит, когда проводящая пластина помещается в магнитное поле, в результате чего возникает напряжение, известное как напряжение Холла.
Величина магнитного поля зависит от величины протекающего через него тока. Датчик Холла полезен для измерения величины тока без прерывания питания.

Недостатком датчика Холла является его чувствительность к электромагнитным помехам. Кроме того, использование сложных электронных модулей в конструкции этого сенсорного устройства в определенной степени снижает его точность. Эти особенности необходимо учитывать при работе с данным оборудованием.

Датчик Холла в системе транспортного средства

Эффект Холла нашел применение в автомобильной промышленности через 75 лет после его открытия, когда началось производство полупроводниковых пленок со специфическими свойствами.

Датчик на эффекте Холла участвует в движении коленчатого и распределительного валов. Его роль заключается в определении того, в каком положении находятся коленчатый и распределительный валы, а также в том, чтобы отвечать за синхронизацию двигателя.
Датчики коленчатого и распределительного валов — одни из самых важных компонентов в автомобильной системе. Это автомобильное устройство сканирует обороты двигателя и положение поршней и клапанов, управляет моментом зажигания двигателя и впрыском топлива в цилиндры двигателя.

Полый датчик считывает положение кулачка распределительного вала в четырехтактных двигателях. Таким образом, он точно определяет, какой цилиндр в данный момент находится в положении сгорания, и синхронизирует зажигание двигателя и впрыск топлива соответствующим образом.

Существует несколько типов датчиков Холла — индуктивные датчики, магнитные (датчики на эффекте Холла) и оптические и другие. В большинстве автомобилей датчики являются магнитными, оптическими или индуктивными.

Магнитные и оптические датчики в основном используются в автомобилях старых моделей. Датчики Холла этого типа имеют длительный срок службы, но нуждаются в регулярной диагностике и чистке. В противном случае со временем они загрязняются, и способность к точному считыванию снижается. Оптические датчики Холла имеют выемку посередине, в то время как магнитные датчики имеют плоскую поверхность.

Их производят такие известные компании, как:

• Siemens,
• Micronas Intermetall,
• Honeywell,
• Melexis,
• Analog Device.

Признаки неисправности датчика Холла

Когда датчик Холла загрязнен или поврежден, разница в поведении автомобиля сразу же становится заметной. Существует несколько характерных признаков, по которым можно определить, что датчик Холла нашего автомобиля поврежден или загрязнен.

Например:

• один из цилиндров отказывается работать,
• двигатель трудно запустить,
• на приборной панели загорается предупреждающая лампочка,
• задержка подачи газа,
• наличие вибраций двигателя.

Замена датчика Холла

Замена датчика холостого хода коленчатого вала не является сложным процессом. Он легко снимается на большинстве моделей автомобилей и имеет зажим, облегчающий откручивание болта датчика.

Прежде всего, необходимо определить его местонахождение, поскольку обычно он находится рядом с ремнем/цепью на автомобиле. Следует иметь в виду, что на некоторых моделях автомобилей доступ к датчику Холла затруднен.

При определении местоположения датчика следует ориентироваться по длинному болту, который удерживает его на месте. Никаких других болтов, гаек или зажимов, которыми крепится датчик корпуса, нет. Исключение составляют некоторые модели Mercedes, в которых датчик удерживается двумя болтами.

Сначала необходимо вынуть шплинт, а затем длинный болт на датчике Холла. При снятии датчика необходимо также снять клеммы аккумулятора. При замене старого датчика Холла на новый рекомендуется сначала очистить старый датчик.

Очистка датчика Холла

Процесс очистки датчика холостого хода коленчатого вала также не представляет особой сложности. Единственная сложность заключается в его обнаружении. Для очистки понадобится растворитель, чтобы удалить слой грязи на датчике. Иногда очистка датчика коленчатого вала может помочь устранить проблему без необходимости его замены.
Если после очистки датчика вы все еще видите следы повреждения, рекомендуется сразу приобрести новый. Его стоимость относительно невысока.

В автомобилях марки BMW существуют некоторые трудности при подключении датчика Холла. Особенностью этих автомобилей является то, что датчики нуждаются в более частой очистке, чем в других типах автомобилей.
Более старые модели автомобилей, такие как Golf 2, 3 и 4, также имеют определенные проблемы с датчиком Холла. W-образные двигатели, с другой стороны, имеют два датчика.

Лучший способ продлить срок службы датчика коленчатого вала автомобиля — регулярно проводить полную диагностику. При диагностике лучше всего выяснить, есть ли серьезная неисправность в датчике Холла или он просто нуждается в чистке.

Датчик холла назначение и принцип работы

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

Датчик Холла предназначен для определения момента искрообразования в бесконтактной системе зажигания (БСЖ) автомобиля.

Принцип действия датчика Холла

Принцип действия датчика основан на эффекте Холла, когда магнитное поле проводника изменяется при прохождении в нем специального экрана с прорезями.

На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине трамблера и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В). При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, производит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель трамблера и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

Примечания и дополнения

— На эффекте Холла основан принцип действия еще нескольких автомобильных датчиков, например, датчика скорости инжекторных ВАЗ 21083, 21093, 21099.

Еще статьи по датчикам автомобилей ВАЗ 2108, 2109, 21099

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Среди элементов радиоэлектроники, автоматики, а также измерительной техники, датчик Холла, принцип работы которого основан на одноименном эффекте, занимает особое место. Смысл упомянутого эффекта заключается в том, что при помещении проводника в магнитное поле появляется электродвижущая сила (ЭДС), направление которой будет перпендикулярным полю и току. Как же это используется в автомобиле?

Датчик Холла – принцип работы и назначение

В современных условиях происходит постоянное технологическое развитие датчиков Холла. Они отличаются надежностью, точностью и постоянством данных. Широкое распространение эти приборы получили в автомобилях и других транспортных средствах. Они обладают повышенной устойчивостью к агрессивным внешним воздействиям. Датчики Холла являются составной частью многих устройств, с помощью которых контролируется определенное состояние техники.

Во многих случаях этот прибор размещается в трамблере и отвечает за образование искры, то есть он используется вместо контактов. Нередко данный прибор применяется для слежения за током нагрузки. С его помощью производится отключение при возникновении токовых перегрузок. В случае перегревания датчика происходит срабатывание температурной защиты. Резкое изменение напряжения может иметь для устройства тяжелые последствия. Поэтому в последних моделях устанавливается внутренний диод, препятствующий обратному включению напряжения.

Датчик Холла до настоящего времени не смог заменить обычные механические переключатели. Однако в любом случае он имеет ряд значительных преимуществ. Основными из них являются отсутствие контактов, загрязнений, а также механических нагрузок. Поэтому часто можно встретить датчик Холла на скутере, применяемый в качестве составной части датчика зажигания.


Датчик Холла – схема подключения и «физика» процесса

Классическое устройство датчика Холла на практике – тонкий полупроводниковый листовой материал. При прохождении через него постоянного тока на краях листа образуется сравнительно невысокое напряжение. Если под прямым углом поперек пластинки проходит магнитное поле, то на краях листа происходит усиление напряжения, которое находится в прямо пропорциональной зависимости с магнитной индукцией. Датчик Холла является одной из разновидностей датчиков импульсов, создающих электрические импульсы с низким напряжением. Благодаря своим качествам, этот элемент широко применяется в бесконтактных системах зажигания.

Мы рассмотрели, какой имеет датчик Холла принцип работы, схема его пока что нам не ясна. Она включает в свой набор постоянный магнит, полупроводниковую пластину с микросхемой и стальной экран, имеющий прорези. Стальной экран через прорези осуществляет пропуск магнитного поля, благодаря чему в пластине из полупроводников начинает возникать напряжение. Сам экран не пропускает магнитного поля, поэтому, когда прорези и экран чередуются, происходит создание импульсов низкого напряжения.

При конструктивном объединении этого датчика с распределителем получается единое устройство – трамблер, выполняющий функции прерывателя-распределителя зажигания.

Датчик Холла и особенности эксплуатации

Когда в конструкции авто активно эксплуатируется датчик Холла, схема подключения его требует регулярных проверок и профилактического обслуживания. Главное еще и не навредить во время таких проверок, поэтому отсоединение разъема кабеля от датчика должно в обязательном порядке производиться при выключенном зажигании. Иначе элемент может просто выйти из строя, ремонтировать его нет смысла, потребуется замена.

Проверить правильность схемы можно следующим образом: при вращении коленчатого вала и, соответственно, вала распределителя должен попеременно загораться и гаснуть контрольный светодиод, указывающий на наличие сигнала. Запрещается проверять датчик с помощью обычной контрольной лампы. Особое внимание во время работы устройства следует обращать на чистоту и надежность в разъеме и контакте штекеров. Необходимо помнить, что датчик Холла нельзя использовать в обычной системе зажигания.

Несмотря на сложность процедуры проверки датчика Холла каждый может провести проверку самостоятельно, хотя объективность тестирования будет ниже. Например, можно воспользоваться мультиметром, установить работу прибора в режим вольтметра и измерить выходное напряжение, которое должно находиться в диапазоне от 0,4 до 11 В. Ну, а самый простой способ проверки это установка заведомо исправного датчика, если изменения будут очевидны, это повод отправиться в магазин за новым датчиком.

Как работает датчик холла в автомобиле

Главная » Разное » Как работает датчик холла в автомобиле

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Как работает датчик кислорода в автомобиле?

Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 года, имеют датчик кислорода . Датчик является частью системы контроля выбросов и передает данные в компьютер управления двигателем. Цель датчика — помочь двигателю работать максимально эффективно, а также производить как можно меньше выбросов.

Бензиновый двигатель сжигает бензин в присутствии кислорода (подробности см. В разделе «Как работают автомобильные двигатели»).Оказывается, существует определенное соотношение «воздух и бензин», которое является «идеальным», и это соотношение составляет 14,7: 1 (разные виды топлива имеют разные идеальные соотношения — это соотношение зависит от количества водорода и углерода, найденных в данном количестве. топлива). Если в этом идеальном соотношении меньше воздуха, то после сгорания останется топливо. Это называется смесь богатых . Богатые смеси вредны, потому что несгоревшее топливо создает загрязнение. Если воздуха больше, чем в этом идеальном соотношении, значит, избыток кислорода.Это называется смесью Lean . Бедная смесь приводит к образованию большего количества оксидов азота, а в некоторых случаях это может привести к снижению производительности и даже повреждению двигателя.

Датчик кислорода расположен в выхлопной трубе и может определять богатые и бедные смеси. Механизм в большинстве датчиков включает химическую реакцию, которая генерирует напряжение (подробности см. В патентах ниже). Компьютер двигателя проверяет напряжение, чтобы определить, является ли смесь насыщенной или обедненной, и соответствующим образом регулирует количество топлива, поступающего в двигатель.

Причина, по которой двигателю нужен датчик кислорода, заключается в том, что количество кислорода, которое может вытянуть двигатель, зависит от всех видов вещей, таких как высота над уровнем моря, температура воздуха, температура двигателя, атмосферное давление, нагрузка на двигатель и т. д.

Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому в итоге он начинает гадать. Ваша машина работает плохо и использует больше топлива, чем нужно.

Связанные Статьи HowStuffWorks
Больше замечательных ссылок

, Как видит автомобиль с автоматическим управлением?

Чтобы ездить лучше людей, автономные транспортные средства должны сначала видеть лучше людей.

Создание надежных возможностей визуального контроля для автомобилей с самостоятельным вождением стало серьезным препятствием для развития. Однако, благодаря сочетанию различных датчиков, разработчики смогли создать систему обнаружения, которая может «видеть» окружающую среду автомобиля даже лучше, чем человеческое зрение.

Ключами к этой системе являются разнесение — различные типы датчиков — и резервирование — перекрывающиеся датчики, которые могут проверить, что то, что обнаруживает автомобиль, является точным.

Три основных автономных датчика автомобиля: камера, радар и лидар. Работая вместе, они обеспечивают визуальный вид автомобиля и помогают определить скорость и расстояние до ближайших объектов, а также их трехмерную форму.

Кроме того, датчики, известные как инерционные единицы измерения, помогают отслеживать ускорение и местоположение автомобиля.

Чтобы понять, как эти датчики работают на автомобиле с самостоятельным вождением — а также заменить и улучшить зрение человека при вождении — начнем с увеличения наиболее часто используемого датчика — камеры.

Камера никогда не лежит

От фотографий до видео камеры — самый точный способ создать визуальное представление о мире, особенно когда речь идет о автомобилях с автоматическим управлением.

Датчик автономной камеры вождения, разработанный партнером NVIDIA DRIVE Sekonix.

Автономные транспортные средства используют камеры, расположенные с каждой стороны — спереди, сзади, слева и справа — для сшивания 360-градусного обзора окружающей среды. Некоторые из них имеют широкое поле зрения — до 120 градусов — и более короткий диапазон.Другие сосредотачиваются на более узком представлении, чтобы обеспечить визуальные эффекты на большом расстоянии.

В некоторых автомобилях даже есть камеры типа «рыбий глаз», которые содержат сверхширокоугольные объективы, обеспечивающие панорамный обзор, чтобы дать полную картину того, что находится за транспортным средством для его парковки.

Несмотря на то, что они обеспечивают точную визуализацию, камеры имеют свои ограничения. Они могут различать детали окружающей среды, однако, расстояния этих объектов должны быть рассчитаны, чтобы точно знать, где они находятся.Датчикам на основе камер также труднее обнаруживать объекты в условиях плохой видимости, таких как туман, дождь или ночное время.

Автономное транспортное средство использует данные камеры для восприятия объектов в окружающей среде.

На радаре

Радарные датчики

могут улучшить зрение камеры в условиях плохой видимости, например, в ночное вождение, и улучшить обнаружение для автомобилей с самостоятельным вождением.

Традиционно используемый для обнаружения кораблей, самолетов и метеорологических образований, радар работает путем передачи радиоволн в импульсах.Как только эти волны ударяются о объект, они возвращаются к датчику, предоставляя данные о скорости и местоположении объекта.

Партнер NVIDIA DRIVE Metawave предлагает высокоточные технологии радиолокационного зондирования.

Как и камеры автомобиля, радарные датчики обычно окружают автомобиль, чтобы обнаружить объекты под любым углом. Они способны определять скорость и расстояние, однако не могут различить разные типы транспортных средств.

Хотя данных, предоставляемых радаром объемного звука и камерой, достаточно для более низких уровней автономии, они не охватывают все ситуации без человека-водителя.Вот где приходит лидар.

Laser Focus

Камера и радар являются распространенными датчиками: большинство новых автомобилей сегодня уже используют их для расширенной помощи водителю и помощи при парковке. Они также могут охватывать более низкие уровни автономии, когда

Лидарный сенсор, разработанный партнером NVIDIA DRIVE Velodyne.

человек контролирует систему.

Тем не менее, для полной возможности без водителя, лидар — датчик, который измеряет расстояния с помощью импульсных лазеров — оказался невероятно полезным.

Lidar позволяет автомобилям с самостоятельным вождением иметь трехмерное изображение окружающей среды. Он обеспечивает форму и глубину для окружающих автомобилей и пешеходов, а также географию дороги. И, как радар, он работает так же хорошо в условиях низкой освещенности.

Излучая невидимые лазеры на невероятно высоких скоростях, лидарные датчики способны рисовать детальную трехмерную картинку по сигналам, которые мгновенно отражаются. Эти сигналы создают «облака точек», которые представляют окружающую среду транспортного средства для повышения безопасности и разнообразия данных датчиков.

Визуализация велодинного лидарного датчика обнаружения объектов с помощью лазерных импульсов.

Транспортным средствам нужен лидар только в нескольких ключевых местах, чтобы быть эффективными. Тем не менее, датчики более дороги в реализации — в 10 раз дороже камеры и радара — и имеют более ограниченный радиус действия.

Собираем все вместе

Камера, радар и лидарные датчики предоставляют богатые данные об окружающей среде автомобиля. Тем не менее, подобно тому, как человеческий мозг обрабатывает визуальные данные, воспринимаемые глазами, автономный аппарат должен уметь воспринимать этот постоянный поток информации.

Автомобили с автоматическим управлением делают это с помощью процесса, называемого «слияние датчиков». Сенсорные входы поступают в высокопроизводительный централизованный компьютер ИИ, такой как платформа NVIDIA DRIVE AGX, которая объединяет соответствующие порции данных для автомобиля, чтобы принимать решения о вождении.

Таким образом, вместо того, чтобы полагаться только на один тип данных датчика в определенные моменты, объединение датчиков позволяет объединять различную информацию из набора датчиков — например, форму, скорость и расстояние — для обеспечения надежности.

Это также обеспечивает избыточность. При принятии решения об изменении полос движения получение данных как от камер, так и от радиолокационных датчиков перед переходом на следующую полосу значительно повышает безопасность маневра, так же как текущие предупреждения о «слепых точках» служат резервной копией для водителей-людей.

Платформа DRIVE AGX выполняет этот процесс во время движения автомобиля, поэтому у нее всегда есть полная актуальная картина окружающей среды. Это означает, что в отличие от людей-водителей, автономные транспортные средства не имеют слепых зон и всегда бдительны в отношении движущегося и меняющегося мира вокруг них.

Чтобы узнать больше о том, как автономные транспортные средства видят и понимают, прочитайте о программном обеспечении NVIDIA для восприятия и ознакомьтесь с платформой NVIDIA DRIVE.

, Топ-11 автомобильных датчиков и их функции — Автомобиль XYZ

В современном мире термин «сенсор» — это термин, который вы часто слышите. Эта технология становится все более популярной. Это также было реализовано в автомобилях. В современных автомобилях различных типов датчиков. Так что вы можете задаться вопросом о автомобильных датчиков и их функциях .

Различные типы датчиков, используемых в автомобилях:

Существуют различные типы датчиков, и каждый тип отличается. Различные датчики служат для разных задач. В этой статье мы рассмотрим различные типы датчиков в автомобилях. Мы поговорим об их функциональности. Мы также поговорим о важности этих датчиков.

Каждый датчик важен. Компьютер — настоящий мозг, если у вас есть компьютеризированная система управления двигателем. Он использует датчики, чтобы знать, что происходит внутри автомобиля. Итак, вы знаете, насколько важны автомобильных датчиков и их функции.

Если вы не знаете о автомобильных датчиках и их функциях, мы поможем вам.Мы поговорим о некоторых наиболее знакомых автомобильных датчиках и их функциях. Это поможет вам узнать больше о них. Итак, приступим к делу. Вот список датчиков —

1. Датчик охлаждающей жидкости

Если вы хотите знать об автомобильных датчиках и их функциях, то вы должны знать о самых важных автомобильных датчиках. Когда вы говорите о важных автомобильных датчиках, Датчик охлаждающей жидкости является одним из самых важных.

Датчик охлаждающей жидкости, пожалуй, самый важный датчик.Потому что компьютер полагается на свой вход для управления другими функциями. Например, активация или деактивация системы раннего испарения топлива (EFE), опережение и замедление зажигания, расход рециркуляции отработавших газов, продувка бака и т. Д.

Этот датчик обычно расположен на головке или впускном коллекторе. Поскольку это такой важный датчик, это может быть проблемой, если датчик неисправен. Если датчик неисправен, появятся некоторые симптомы, такие как плохой пробег топлива, остановка. Таким образом, дело в том, что вы должны убедиться, что датчик охлаждающей жидкости не поврежден.Если он неисправен, то это будет проблемой. Нажмите здесь для датчиков охлаждающей жидкости

2. Датчик массового расхода воздуха:

Датчик массового расхода воздуха (MAF) является одним из датчиков, который используется в автомобильном двигателе. Без тени сомнения, это один из самых важных датчиков, которые вы можете найти в автомобиле. Он управляется компьютером и может рассчитывать плотность воздуха, всасываемого двигателем. Убедитесь, что датчик работает правильно.Если Датчик массового расхода воздуха перестанет работать, то ваш автомобиль может перестать работать. Кроме того, расход топлива будет выше. Существует два типа датчиков MAF. Один из них — измеритель лопасти, а другой — горячий провод.

Кроме того, вы можете узнать больше, как чистить его самостоятельно.

3. Датчик частоты вращения двигателя

Еще один датчик, который используется в автомобиле, — это датчик частоты вращения двигателя. Это еще один важный датчик. Не заблуждайтесь об этом. Датчик прикреплен к коленвалу.Его задача — следить за коленвалом. Чтобы быть более точным, его работа заключается в контроле скорости вращения коленчатого вала.

4. Датчик кислорода:

Датчик кислорода — это еще один датчик в нашем списке автомобильных датчиков. Это очень знакомый датчик. Он также известен как датчики 02. Он расположен в выхлопной трубе. Датчик определяет, сколько кислорода осталось в выхлопе. Это укажет, горит ли топливо богатым или бедным. Это может быть неприятно, если датчик не работает хорошо.У вас будут реальные проблемы с рукой, если датчик кислорода не работает, и вы должны заменить его и починить новый. Всегда важно, чтобы в вашем автомобиле был установлен лучший датчик кислорода. Неисправный кислородный датчик приведет к большому расходу топлива, чего вы хотите избежать. Поэтому необходимо знать, как работает датчик кислорода и почему важно менять его в случае отказа.

5. Датчик детонационного искрения

Этот датчик гарантирует, что топливо горит без проблем.Датчик предотвратит детонацию. Мы все знаем, что детонация — это то, что вы хотите предотвратить. В противном случае это может вызвать реальные проблемы. Нижняя строка — , если вы хотите, чтобы топливо горело ровно , то этот датчик вы должны иметь.

6. Датчик температуры топлива

Если топливо холоднее, оно будет плотнее. С другой стороны, нельзя сказать то же самое о теплом топливе. Теплое топливо менее плотное. Теперь есть разница между теплым топливом и холодным топливом.Более теплое топливо сгорает быстрее, а более холодное сгорает медленнее. Датчик температуры топлива обеспечивает идеальный расход топлива вашего автомобиля. Если в вашем автомобиле кончится топливо, многие части вашего автомобиля могут быть повреждены. Итак, датчик обеспечивает впрыск нужного количества топлива . Таким образом, вы можете водить автомобиль плавно . Так что это также датчик, о котором вы должны знать.

7. Датчик абсолютного давления в коллекторе (MAF)

Датчик абсолютного давления в коллекторе — еще один, о котором вы услышите.Это будет чувствовать нагрузку двигателя. Он имеет возможность определять различие между давлением во впускном коллекторе и снаружи. Вы должны заметить, что это датчик, который редко используется в наши дни. Раньше он был популярен.

8. Датчик скорости автомобиля

Просто услышав название, вы можете в значительной степени оценить его функциональность. Но мы все равно это объясним. Датчик скорости автомобиля имеет возможность определять скорость колес. Это своего рода тахометр.

9. Датчик напряжения

Датчик напряжения также очень важен. Он управляет скоростью вашего автомобиля. Это гарантирует, что скорость является контролируемой. Это хороший датчик , чтобы иметь в вашем автомобиле. Так что вы должны иметь это.

10. Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки используется с EFI ( электронный впрыск топлива ) и карбюратором с обратной связью. Он уведомляет компьютер о скорости открытия дроссельной заслонки.Кроме того, он сообщает компьютеру об относительном положении дроссельной заслонки.

Датчик положения дроссельной заслонки в основном является переменным резистором. Это изменяет сопротивление, когда дроссель открывается.

Нетрудно узнать симптомы неисправного датчика положения дроссельной заслонки. Когда во время ускорения возникает спотыкание, вы будете знать, что датчик положения дроссельной заслонки неисправен. Это основной признак неисправности датчика положения дроссельной заслонки. При замене датчика не допускайте неправильной настройки.Подробнее

11. Датчик положения распределительного вала

Наконец, поговорим о датчике положения дроссельной заслонки. Это один из многих примеров датчиков, о которых стоит упомянуть. Как и любой другой датчик, он также может быть полезен для вас. Модуль управления использует датчик положения распределительного вала . Это может указывать на положение цилиндра номер один. Чтобы начать последовательный впрыск топлива, модуль управления использует эту информацию в качестве контрольной точки.

FAQ: (часто задаваемый вопрос)
Вопрос: Сколько датчиков у автомобиля?

Ответ: В автомобилях используются различные типы датчиков. В современную эпоху машина очень умная, и автопроизводители внедряют новые датчики с новыми возможностями. Приблизительно от 60 до 200 датчиков используются в современном автомобиле. Датчики позволяют очень легко управлять машиной и выявлять проблемы в очень короткие сроки.

Вопрос: Сколько стоит датчик для автомобиля?

Ответ: Зависит от модели и производителя автомобиля.На рынке вы можете найти датчики стоимостью от 20 до 300 долларов, например датчики O2, стоимостью от 20 до 100 долларов. Иногда это может быть высоко. Если вы хотите узнать подробности цены датчиков, просто нажмите здесь.

Вопрос: Как починить автомобильный датчик?

Ответ:

  • С помощью сканера обнаружите неисправные датчики
  • Отсоедините отрицательный вывод батареи
  • Снимите неисправные датчики
  • Очистите положение датчика
  • Установите новые датчики
  • Подключите все Electric Line
  • Тест-драйв автомобиля

Мы надеемся, что вы можете понять, как починить автомобильные датчики, если вы хотите узнать больше о сканере падения автомобиля с кодом ODB II, просто нажмите здесь

Вопрос: Что происходит, когда скорость автомобиля датчик выходит из строя?

Ответ: Датчик скорости автомобиля может вызвать много проблем, если он выйдет из строя.Это может привести к увеличению оборотов передачи. Иногда, это может никогда не войти в высшую передачу.

Вопрос: Как долго работают автомобильные датчики?

Ответ: Это зависит от многих вещей, таких как, как вы ухаживаете, убираете вы или нет, проверяете или нет. Тем не менее, как правило, датчик проходит от 50000 до 60000 миль. Если ваш автомобиль обслуживается должным образом, он может длиться немного дольше.

Окончательный вердикт:

В конце концов, это некоторые из датчиков в автомобиле, о которых вы должны знать.Для безопасности вам нужны эти датчики в автомобилях. Рекомендуется покупать качественные датчики, изготовленные ведущими производителями автомобильных датчиков.

Автомобильные датчики важны для плавного вождения автомобиля. Он сообщит вам, есть ли проблемы с вашим автомобилем. Поэтому вам важно знать об автомобильных датчиках и их функциях. Есть еще один момент, который вы должны помнить. Существуют разные типы датчиков. Но это займет много денег, чтобы купить все эти датчики.Кроме того, вам даже не нужны все эти датчики. Некоторые из датчиков, которые мы упоминали ранее, могут быть не важны для вас. Если вы опытный владелец автомобиля, то вам следует знать о датчиках, которые вам подходят.

Кроме того, иногда на ваших автомобилях может загореться лампочка двигателя. Обычно это происходит, когда что-то не так с вашей машиной. Вы можете спросить себя: почему у меня загорается контрольная лампа двигателя? Причин может быть много, в том числе неисправные датчики, не затягивая крышку бензобака и т. Д.Если ваш автомобиль имеет неисправные датчики, вы можете использовать сканеры для его обнаружения. На рынке есть много продуктов. Panlong Bluetooth OBDII сканер , OBD2 сканер CAN OBDII Code Reader, ANCEL AD310 Классический улучшенный сканер, беспроводной сканер KOBRA OBD-II, BAFX Bluetooth OBD-II сканер , Autel Autolink AL319 OBD-II сканер, OxGord OBD Сканер BlueDriver Профессиональный Bluetooth OBD-II сканер. Это поможет вам.

Вот 2 способа проверки кодов освещения двигателя с помощью OBD-сканеров

Эта статья была посвящена автомобильным датчикам и их функциям. Надеюсь, это помогло вам узнать об использовании датчиков, типах датчиков транспортных средств и о том, как датчики работают в целом. Суть в том, что владельцу автомобиля важно знать о автомобильных датчиков и их функциях .

Список автомобильных датчиков (WIKIPEDIA)

.


Смотрите также

  • Как поменять автомобиль на другой с доплатой
  • Как очистить от накипи радиатор автомобиля
  • Как проверить работу термостата на автомобиле
  • Как проверить автомобиль на ограничения по гос номеру
  • Как перевозить грудных детей в автомобиле с 1 июля 2020 года
  • Обгонял автомобиль а он решил повернуть как доказать что я прав
  • Как аннулировать договор купли продажи автомобиля
  • Как ставится на учет автомобиль
  • Доверенность на автомобиль как заполнять
  • Как угнать автомобиль статья
  • Как подключить генератор на автомобиле

Принципы работы и устройство датчика холла

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер положения клапанов

  • Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).
  • Так можно фиксировать открывание и закрывание клапанов.

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0).

Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает.

По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

Датчики Холла: принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.

) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя.

Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота).
    Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Что такое датчик Холла и где он используется

Магнитные датчики Холла широко распространены в современных условиях и применяются не только в специализированных изделиях, но и в обычной бытовой технике.

Большинство пользователей даже не подозревают, какие чувствительные элементы работают у них в телефоне, например, и что они могут быть установлены не только в электронной аппаратуре, но и в средствах передвижения (в автомобиле или мотоцикле).

В этой статье мы рассмотрим устройство, принцип работы и назначение датчика Холла.

Принцип действия и типы

Использование сенсоров в различных устройствах (в планшете, в частности) объясняется их способностью реагировать на изменения поля и отключаться при закрытии магнитной крышки чехла. Благодаря этому свойству они устанавливаются и в стиральных машинах, позволяя контролировать скорость вращения барабана. Если выразиться простым языком – здесь датчик Холла используется как тахометр.

Историческая справка

Чтобы понять принцип работы этого элемента, потребуется небольшой экскурс в историю. В 1879 году американский физик Холл открыл интересное явление, связанное с поведением проводника с током в магнитном поле.

Проверка показала, что если через помещенную между магнитами медную пластину пропускать ток, то на ее боковых гранях появляется разность потенциалов.

Возникает закономерный вопрос: как проверить это напряжение в домашних условиях?

Оказалось, что на практике его можно измерить мультиметром или любым другим прибором, имеющим соответствующие пределы. То же самое можно сделать любым подходящим тестером или подобным ему прибором.

Подключение измерителя подтверждает то, что движущиеся электроны под действием магнитного поля отклоняются в сторону (перпендикулярно направлению их движения).

Важно! Величина этого отклонения или разность потенциалов пропорциональна «мощности» магнитов и силе тока через пластину.

На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля. На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия.

Классификация

Важно понимать, какие бывают датчики Холла, и по какому принципу их принято классифицировать. По особенностям работы и тому для чего он нужен или по назначению, датчик Холла может иметь различные исполнения. Одна из разновидностей – аналоговые приборы, вырабатывающие на выходе непрерывный сигнал.

В отличие от них цифровой элемент имеет только два дискретных состояния («ноль» и «единица»). Эта разновидность прибора может быть униполярной или иметь биполярный тип.

Первая из них срабатывает при обнаружении поля любой полярности и отключается при его исчезновении. То есть униполярный цифровой сенсор реагирует только на отсутствие или наличие магнитной напряженности.

Рассмотренные особенности каждого из подвидов также помогают понять, что это такое – датчик Холла.

Униполярные сенсоры переключаются в «единицу» лишь при достижении полем порогового уровня и не способны определять его наличие при слабых напряженностях. Указанное свойство – существенный минус таких приборов, заметно ограничивающий сферу их применения. Биполярный датчик срабатывает с учетом полярности магнитного поля, одна из которых включает его, а другая – выключает.

Условное графическое обозначение приборов этого класса приведено на фото ниже:

Устройство и примеры использования

Простейшая система с датчиком Холла включает в свой состав следующие элементы:

  1. Постоянный магнит (его функция – создание магнитного поля).
  2. Подвижный ротор с лопастями или зубцами.
  3. Особый стержень из магнитного материала (магнитопровод).
  4. Пластиковый корпус.

Помимо этого, техническая характеристика датчика предусматривает применение микросхем, задействованных в измерительном процессе.

Понять принцип работы этого прибора удается, если ознакомиться с подробной схемой включения датчика Холла в зоне проведения измерений. Схема подключения и суть работы сенсора может быть представлена следующим образом:

  • В зазоре, образованном половинками магнитопровода, перемещаются металлические лопасти ротора.
  • При их вращении происходит периодическое шунтирование магнитного потока.
  • Встроенной микросхемой предусмотрено определение нулевого показателя индукции (в эти моменты напряжение на ее выходе максимально).
  • По частоте таких всплесков, подсчитываемой той же микросхемой, судят о скорости вращения контролируемого объекта (двигательного вала в мотоцикле, например).

Чтобы этот процесс протекал нормально – при включении сенсора в измерительную цепь должна учитываться цоколевка данного образца (она бывает разной).

Обобщая рассмотренную схему, следует предположить, что датчики этого класса способны измерять скорость вращения коленвала любого движущегося средства. Универсальность сенсора, не исключающая возможности его установки в скутере, например, позволяет применять датчик Холла не только в сложных технических устройствах, но и в обычной бытовой технике.

Применение в системе зажигания и стиральных машинах

При использовании датчика Холла в системе зажигания автомобиля с его помощью удается фиксировать момент размыкания трамблера.

В данном случае он работает как аналоговый преобразователь, определяющий мгновения прерывания бортового питания.

На этом же принципе базируется его применение в рабочих модулях стиральной машины, что позволяет по скорости вращения барабана определять увеличение веса белья.

Датчики Холла устанавливаются и в некоторых образцах измерительной аппаратуры. Чаще всего ими комплектуются бесконтактные клещи, применяемые для измерения тока в проводниках. Встроенный прибор реагирует на изменение электромагнитного поля, образующегося вокруг силового кабеля. Кроме того, он подходит для ручки газа электровелосипеда, позволяя контролировать угол ее поворота.

В бытовых условиях

В клавиатурах компьютеров эти приборы обеспечивают бесконтактный способ снятия информации. Сенсор, входящий в состав кулера бытового ПК, способен управлять полярностью обмоток ротора, то есть менять направление его вращения.

  • При использовании такого элемента в смартфоне, в частности, он обеспечивает выключение устройства при помещении его в чехол с «магнитной» застежкой.

Рассматривая области применения датчики Холла простыми словами можно сказать, что его использование в технической сфере практически ничем не ограничено. В электронном конструкторе Ардуино, например, имеется набор с таким датчиком, позволяющий на практике проиллюстрировать эффект Холла.

Это не единственный пример его использования в целях обучения, помогающий начинающим пользователям понять, как подключить и использовать сенсоры полевых структур.

В заключение отметим, что к недостаткам датчиков Холла относят их чувствительность к электромагнитным помехам, нередко возникающим в рабочих цепях. Кроме того, использование сложных электронных модулей в конструкции прибора в какой-то мере влияет на его надежность, несколько снижая ее. Эти минусы сенсора не рассматриваются как его дефекты, а просто учитываются при работе с аппаратурой.

Теперь вы знаете, что такое датчик Холла, как он работает и зачем нужен. Надеемся, предоставленная информация была для полезной и интересной!

Материалы по теме:

Датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения.

Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги.

То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало.

Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта.

В самом простом переключающем датчике Холла все это выглядит примерно вот так:

  • где
  • Supply Voltage – напряжение питания датчика
  • Ground – земля
  • Voltage Regulator – регулятор напряжения
  • А – операционный усилитель
  • Hall Sensor – собственно сама пластинка Холла
  • Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер.

Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью.

Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Автомобильные ИС на эффекте Холла — ABLIC Inc.

Автомобильные ИС