Диагностика электронного оборудования: Диагностирование электронных систем управления | Диагностирование автомобиля

Содержание

Диагностирование электронных систем управления | Диагностирование автомобиля

Виды диагностических систем

В конструкциях автомобилей все более широкое применение находят электронные системы управления. Проведение диагностирования современного автомобиля без использования средств для анализа работы электронных систем управления может дать недостаточно полную информацию о его техническом состоянии.

Диагностические средства для определения технического состояния электронных систем управления можно подразделить на три категории:

  1. стационарные (стендовые) диагностические системы
  2. бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами
  3. бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное считывающее устройство

Стендовые диагностические системы

Эти системы не подключаются к бортовым электронным блокам управления и, таким образом, не зависят от бортовой диагностической системы автомобиля. Они обычно диагностируют отдельные механизмы двигателя и системы зажигания, поэтому их часто называют мотор-тестерами. Основными элементами мотор-тестера являются датчики, а также блок обработки и индикации результатов измерений воспринимаемых сигналов. Датчики и регистрирующие приборы соединены с кабелями с помощью штекеров и зажимов.

Рис. Мотор-тестер

Мотор-тестеры выполняются на базе компьютеров, имеют клавиатуру, дисплей, дисководы, привод CD-ROM. В комплект обычно входит набор соединительных проводов и кабелей, стробоскоп, а в отдельных случаях — и газоанализатор отработавших газов. Информация вводится в компьютер с помощью соответствующего анализатора, в котором размещены аналогово-цифровые преобразователи, компараторы, усилители и другие устройства предварительной обработки сигналов. Анализатор подключается к необходимым элементам на автомобиле с помощью комплекта кабелей, который представляет собой набор проводов, подключаемых к отрицательной, положительной клеммам аккумулятора и катушке зажигания, провода высокого напряжения к катушке зажигания и к свече первого цилиндра, а кроме того, бесконтактный датчик тока на шине зарядки аккумулятора, датчик температуры масла в двигателе (вставляется вместо щупа), датчик разрежения во впускном коллекторе и т.

п.

Основная часть мотор-тестера — осциллоскоп, на экране которого появляются различные осциллограммы, отражающие режим работы и техническое состояние проверяемых деталей и приборов системы зажигания. Оценка сигнала, появляющегося на экране осциллоскопа, основывается на анализе изменений (при наличии неисправностей) характера электрических процессов, протекающих в цепях низкого и высокого напряжения. По отдельным частям изображения можно судить также о работе некоторых элементов систем питания и зажигания, а характер изменения позволяет выявлять причины неисправностей.

Компьютер мотор-тестера обрабатывает информацию, полученную от двигателя, и представляет результаты на дисплее или в виде распечатки на принтере. С мотор-тестером может поставляться комплект лазерных компакт-дисков с технической информацией о различных моделях автомобилей, а также с инструкциями оператору о порядке подключения мотор-тестера к автомобилю и о последовательности проведения контрольных операций.

Перед проведением диагностирования вводят модель автомобиля, тип двигателя, трансмиссии, системы зажигания, впрыска топлива и другие параметры, характеризующие объект диагностирования. Мотор-тестеры способны диагностировать большинство автомобильных систем, в том числе системы пуска, электроснабжения, зажигания, оценивать компрессию в цилиндрах, измерять параметры системы питания.

Современные мотор-тестеры могут выдавать информацию о состоянии системы зажигания в виде цифр или осциллограммы процесса. Примером служит мотор-тестер М3-2 (Беларусь), с помощью которого можно определять состояние двигателя (по развиваемой мощности, балансу мощности по цилиндрам, относительной компрессии), стартера, генератора, реле-регулятора, аккумулятора, прерывателя-распределителя, электропроводов, свечей зажигания, лямбда-датчика, форсунок системы впрыска бензиновых двигателей, дизельной топливной аппаратуры, измерять с помощью стробоскопа углы опережения зажигания для бензиновых двигателей и впрыска для дизельных двигателей.

По мере усложнения автомобильной электроники расширяются и функциональные возможности стационарных систем, поскольку необходимо диагностировать не только управление двигателем, но и тормозные системы, активную подвеску и т.

д.

Универсальность компьютерных мотор-тестеров определяется их программным обеспечением. Многие из них работают в привычной большинству пользователей операционной системе Windows.

К недостаткам мотор-тестеров следует отнести то, что с их помощью трудно обнаружить непостоянные неисправности в сложных электронных системах, когда неисправность в одной системе проявляется в виде симптомов в других системах, функционально связанных с первой.

Бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами

Системы программного обеспечения автомобилей большинства ведущих стран мира начиная с 80-х годов XX в. обеспечиваются функцией считывания кодов неисправностей с помощью контрольной лампы, например Check engine — проверь двигатель. Это наиболее простой вид бортового диагностирования, которое заключается в условном присвоении ряду неисправностей электронной системы управления цифровых кодов. Эти коды при проявлении соответствующих им неисправностей заносятся в память электронного блока управления системой.

После проведения определенных манипуляций данные коды могут отображаться контрольной лампочкой в виде ряда длинных и коротких импульсов. После визуального считывания импульсов их значение может быть расшифровано с помощью специальных таблиц.

Рис. Пример размещения индикатора Сheck engine (позиция 1)

Бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное считывающее устройство

Считывание информации с такого программного обеспечения осуществляется с помощью специальных устройств — сканеров. Контролируемые параметры и коды неисправностей считываются непосредственно с электронного блока управления и интерпретируются специалистами сервиса.

Сканером, или сканирующим прибором, называют портативные компьютерные тестеры, служащие для диагностирования различных электронных систем управления посредством считывания цифровой информации с диагностического разъема автомобиля.

Сканер, как правило, имеет небольшой по размеру жидкокристаллический дисплей, поэтому просматривать данные на нем, даже используя прокрутку кадра, не всегда удобно. Обычно имеется возможность подключения сканера к компьютеру через последовательный порт для передачи данных. Специальное программное обеспечение позволяет просматривать данные со сканера в табличном и графическом виде на мониторе компьютера, сохранять их, создавать базы данных по обслуживаемым автомобилям.

Рис. Программируемый сканер ДСТ-2М (Россия) без персонального компьютера

Сканеры различаются своими функциональными возможностями и спектром тестируемых автомобилей.

Наиболее широкими возможностями обладают специализированные сканеры, используемые для диагностирования автомобилей только одной марки. Применение таких сканеров вследствие их узкой специализации ограничивается отдельными предприятиями автосервиса, обслуживающими автомобили конкретных моделей. Более широкое распространение получили сканеры, предназначенные для диагностирования систем впрыска и других механизмов, агрегатов и систем автомобилей различных моделей.

Имеются программы, позволяющие вводить непосредственно в компьютер информацию через последовательный порт с автомобильного диагностического разъема с помощью соответствующего соединительного кабеля. Персональный компьютер в таком случае выполняет функции сканера, его иногда так и называют — компьютерный сканер. При использовании персонального компьютера нет необходимости иметь комплект программных картриджей для различных систем и моделей, так как емкость жесткого диска компьютера позволяет хранить на нем все необходимые данные и программы.

Система самодиагностики транспортного средства в процессе его работы непрерывно сравнивает текущие величины сигналов с эталонными значениями в памяти электронного блока управления. Кроме того, она отслеживает реакцию исполнительных механизмов. Любые несоответствия параметров друг другу или эталонным значениям расцениваются как неисправность, каждой из которых присвоен свой код. Ранее системы управления могли определить и запомнить 10-15 кодов, современные системы хранят до нескольких сотен кодов, относящихся не только к двигателю, но и к автоматической коробке передач, антиблокировочной системе (АБС), подушкам безопасности, климат-контролю и т.

д.

В некоторых блоках управления самодиагностика позволяет корректировать угол опережения зажигания, а на автомобилях без нейтрализатора — регулировать содержание оксида углерода в отработавших газах. Кроме того, на современных моделях сканеров реализовано так называемое тестовое диагностирование: входные сигналы подаются в определенный момент с последующей проверкой датчиков и реакции исполнительных элементов.

Сканер проверяет входные и выходные параметры электрических цепей и информирует оператора об их величине. Таким образом, он всего лишь фиксирует наличие или отсутствие неисправностей в каком-либо узле, но не позволяет определять их причины, которых может быть много для одних и тех же значений контролируемых параметров.

По способу хранения информации аппаратные сканеры делятся на картриджные и программируемые. Для приведения картриджного сканера в рабочее состояние необходим картридж с диагностическим кабелем, соответствующим проверяемой модели автомобиля. Комплект такого сканера состоит из трех основных частей: самого сканера, сменных картриджей и соединительных кабелей, предназначенных для присоединения к диагностическому разъему проверяемого автомобиля.

Каждый картридж предназначен для работы с блоком управления своего типа.

Рис. Картриджный сканер для диагностирования автомобилей одной или определенных марок

Указанного недостатка лишены программируемые сканеры. Их встроенную память (Flash-память) можно многократно перепрограммировать с помощью персонального компьютера. Устаревшие версии программного обеспечения можно обновить через интернет либо компакт-диск, поставляемый производителем транспортного средства или сканера. Такие сканеры хорошо приспособлены к эксплуатации в условиях автосервиса. Более того, они позволяют диагностировать системы движущегося автомобиля.

Более информативными являются сканеры, соединенные с персональным компьютером. Для согласования данных, получаемых компьютером с блока управления, используется адаптер.

Рис. Программируемый сканер с персональным компьютером

В настоящее время наибольшее распространение получили сканеры KST-500 и KST-520 фирмы «Бош», используемые с персональным компьютером, а также сканеры ДСТ-2, ДСТ-10-Кф (Россия) и др.

Сканеры имеют несколько режимов работы. В режиме «Ошибки» на экране высвечиваются цифровые коды той или иной неисправности, хранящиеся в памяти блока управления на автомобиле. Режим «Параметры» позволяет оценить работу двигателя при движении автомобиля: напряжение в бортовой сети, детонацию, частоту вращения коленчатого вала, состав смеси, скорость движения и т.д. Для просмотра изменения параметров работы двигателя в динамике предусмотрен режим «Сбор данных». Некоторые сканеры, например KST-520, для наблюдения за работой системы впрыска и других систем автомобиля в динамике могут выдавать графическое изображение сигналов на экране, т.е. позволяют наблюдать их визуально. Возможности сканеров при проверке системы впрыска конкретного автомобиля определяются диагностическими функциями блока управления данного автомобиля, однако, как правило, все сканеры считывают и стирают коды неисправностей, выводят цифровые параметры в реальном масштабе времени, могут приводить в действие некоторые исполнительные механизмы (форсунки, реле, соленоиды).

Сканер подключается через специальный разъем на автомобиле к конкретному блоку управления или электронной системе в целом.

До 2000 г. большинство автомобилей было оборудовано диагностическими разъемами, имеющими разное количество и расположение штырьков, что не позволяло применять универсальные сканеры для съема информации. Поэтому в 2000 г. большинством производителей транспортных средств был принят стандарт OBD-II по оборудованию электронных систем управления. Требования этого стандарта предусматривают:

  • стандартный диагностический разъем
  • стандартное размещение диагностического разъема
  • стандартный протокол обмена данными между сканером и автомобильной бортовой системой диагностики
  • стандартный список кодов неисправностей
  • сохранение в памяти электронного блока управления кадра значений параметров при появлении кода ошибки («замороженный» кадр)
  • мониторинг бортовыми диагностическими средствами элементов, отказ которых может привести к увеличению объемов токсичных выбросов в окружающую среду
  • доступ как специализированных, так и универсальных сканеров к кодам ошибок, параметрам, «замороженным» кадрам, тестирующим процедурам и т. д.
  • единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок

На рисунке показан 16-штырьковый диагностический разъем, являющийся стандартным на автомобилях, соответствующих требованиям OBD-II.

Рис. Стандартный диагностический разъем

Диагностический разъем размещается в пассажирском салоне (обычно под приборной панелью) и обеспечивает доступ к системным данным. К такому разъему может быть подключен любой сканер.

Считывание диагностических кодов

Коды неисправностей могут быть считаны двумя способами. Первый (для уже уходящих в прошлое систем самодиагностики) — светодиодным пробником, подключаемым к диагностическому разъему, или с помощью контрольной диагностической лампы. Расшифровка кодов производится с использованием уже упоминавшихся таблиц, входящих в состав эксплуатационных документов на автомобиль. Второй, современный, способ — получение кодов сканером. Как правило, эти приборы не только извлекают коды ошибок, но и расшифровывают их.

Для предупреждения водителя о неисправности электронной системы управления на панели приборов имеется контрольная лампа. После включения зажигания на исправном автомобиле лампа горит в течение 3…10 с, а затем должна погаснуть. Если лампа не гаснет, это свидетельствует о неисправности системы управления, и следует проверить эту систему по определенным кодам. По требованиям нормативных документов по безопасности движения некоторых стран, автомобиль, имеющий активные коды неисправности определенных электронных систем управления, не допускается к эксплуатации.

Коды неисправностей иногда условно делят на «медленные» и «быстрые».

Рассмотрим «медленные» коды. При обнаружении неисправности ее код заносится в память и на панели приборов включается соответствующая контрольная лампа. Выяснить, какой это код, можно одним из следующих способов (в зависимости от конкретного исполнения блока управления):

  1. считать информацию по светодиоду на корпусе блока управления, который периодически вспыхивает и гаснет
  2. соединить проводником определенные клеммы диагностического разъема или замкнуть определенную клемму разъема на «массу» и включить зажигание, после чего контрольная лампа начнет периодически мигать, передавая информацию о коде неисправности
  3. подключить светодиод или аналоговый вольтметр к определенным контактам диагностического разъема и по вспышкам светодиода (или колебаниям стрелки вольтметра) получить информацию о коде неисправности

Так как «медленные» коды предназначены для визуального считывания, частота их передачи очень низкая (около 1 Гц), объем передаваемой информации мал.

Коды обычно выдаются в виде повторяющихся последовательностей вспышек. Код содержит несколько цифр, смысловое значение которых затем расшифровывается по таблице неисправностей, входящей в состав эксплуатационных документов на автомобиль. Длинными вспышками (1,5.2,5 с) передается старший (первый) разряд кода, короткими (0,5.0,6 с) — младший (второй) разряд.

Пример высвечивания кода 1-3-1-2, соответствующий неисправности электронной форсунки впрыска первого цилиндра двигателя Hyundai, приведен на рисунке:

Рис. Пример высвечивания кода неисправности

После обнаружения неисправности она локализуется путем последовательной проверки тех элементов электронной системы управления, которые находятся в электрической цепи, отвечающей за генерирование считанного кода (датчиков, разъемов, проводки и т.д.).

«Медленные» коды просты, надежны, не требуют дорогостоящего диагностического оборудования, но малоинформативны.

«Быстрые коды» обеспечивают выборку из памяти электронного блока управления большого объема информации через последовательный интерфейс. Этот интерфейс и диагностический разъем используются как при проверке и настройке автомобиля на заводе-изготовителе, так и при диагностировании.

Одной из функций, реализуемых сканерами, является проверка сигнала датчика на рациональность, т.е. на соответствие требуемым (штатным) сигналам. Датчик может быть неисправен и посылать в блок управления неверную информацию. Если проверка сигнала датчика на рациональность в программе блока управления не предусмотрена, то в них управляющие алгоритмы реализуются с использованием неверной информации датчика. При этом будут неправильно рассчитаны важные выходные параметры, например угол опережения зажигания и длительность импульса отпирания форсунок, что приведет к ухудшению ездовых характеристик автомобиля, двигатель может глохнуть после запуска и т.д. Однако пока в количественном выражении неверный сигнал с датчика будет в пределах нормы, никакие коды ошибок в память электронного блока не запишутся и неисправность никак не обозначится.

Для обнаружения неисправности реализуется функция отключения «подозрительного» датчика. Тогда электронный блок запишет в память код ошибки и изменит сигнал с датчика на расчетное (резервное) значение. Например, при отключении датчика массового расхода воздуха его сигнал заменяется резервным сигналом, рассчитанным по положению дроссельной заслонки и частоте вращения коленчатого вала двигателя. Если после отключения «подозрительного» датчика работа двигателя улучшится, это означает, что датчик неисправен.

В современных блоках управления по мере совершенствования программного обеспечения появляется возможность выявлять подобные неисправности. Это так называемая проверка на рациональность и правильное функционирование, которая реализуется в бортовых диагностических системах второго поколения (OBD-II). Она заключается в том, что текущие значения сигналов со всех датчиков постоянно проверяются на взаимооднозначное соответствие штатным сигналам для данного режима работы двигателя. Штатные значения сигналов хранятся в постоянной памяти микропроцессора электронного блока.

Для удобства измерения входных и выходных сигналов электронного блока управления применяют разветвитель сигналов. Он представляет собой комплект кабелей и разъемов, подключаемых между электронным блоком управления и жгутом проводов для доступа к входным и выходным сигналам. В состав разветвителя входит коммутационная панель для подключения контрольно-измерительных приборов к любой цепи жгута.

Рис. Разветвитель сигналов РС-2 (Россия)

Работа отдельных датчиков может быть сымитирована специальным имитатором датчиков, например типа ИД-4. Он предназначен для имитации выходного напряжения потен- циометрических и резистивных датчиков электронной системы управления инжекторных двигателей. Данный имитатор позволяет имитировать сигнал датчика положения дроссельной заслонки, потенциометра регулировки содержания оксида углерода, датчиков давления во впускном коллекторе, атмосферного давления, массового расхода воздуха и других датчиков. Входящие в состав имитатора кабели позволяют подключаться к разъемам различных типов.

Рис. Имитатор датчиков ИД-4 (Россия)

Удаление кодов неисправности

После ремонта все коды следует удалить из памяти блока управления, иначе блок будет ошибочно учитывать их при последующем управлении системами автомобиля.

Применяют три метода удаления (стирания) кодов неисправностей:

  1. Стирание кодов по команде со сканера, подключенного к диагностическому разъему. На некоторых автомобилях ранних моделей такая процедура невозможна, поскольку она не поддерживается блоком управления. Этот метод является наиболее предпочтительным и рекомендуемым производителями.
  2. Если нет сканера или электронный блок не поддерживает стирание кодов сканером, следует отключить питание блока путем извлечения соответствующего предохранителя. Вместе с кодами ошибок из памяти блока сотрется и информация для адаптивного управления.
  3. Отключение от «массы» шины аккумуляторной батареи. Следует иметь в виду, что в этом случае вместе с кодами стирается и прочая информация (установка времени на электронных часах, коды радиоприемника и т.д.).

Приборы и приспособления для диагностики компьютеров и оргтехники

Количество находящегося в эксплуатации разнообразного электронного оборудования растет с каждым днем. Значительная его часть может нормально функционировать только при регулярном техническом обслуживании, поскольку, как и любая другая техника, оно порой выходит из строя и требует ремонта. О приборах, которые помогают выполнять эти виды работ, и пойдет речь ниже.

Сегодня самым распространенным оборудованием в офисе является компьютер и его периферия (принтеры, видеомониторы, накопители). Этого, к сожалению, нельзя сказать о средствах диагностики - они по-прежнему остаются большой редкостью. Причин тому несколько: высокая стоимость таких приборов, зачаточное состояние отечественных сервисных служб и, в немалой степени, развитые возможности самодиагностики компьютеров и периферии (в случае простых неисправностей компьютер способен диагностировать себя сам). Имеющиеся диагностические программы позволяют, в частности, тестировать память, накопители на гибких и жестких дисках, внешние интерфейсы (для этого в разъем достаточно установить заглушки, в которых входы соединены с выходами). Кроме того, в комплекте с отдельными модулями (например, звуковой картой) помимо драйверов производители поставляют и специализированные программы для их диагностики.

Но для того, чтобы запустить любую программу, компьютер необходимо сначала загрузить. Если же после включения питания он не подает признаков жизни, то тогда, воспользовавшись модульной конструкцией компьютера, неисправность можно попытаться отыскать методом замены. Такой метод позволяет выявить большую часть неисправных модулей. Правда, он всегда таит в себе опасность выхода из строя нового модуля при его установке в неисправный компьютер (особенно если неработоспособность компьютера вызвана неисправностью шинных формирователей материнской платы).

ДИАГНОСТИКА МАТЕРИНСКИХ ПЛАТ

Средства диагностики материнской платы представляют собой модуль, подключаемый к ее системной магистрали. Они представлены достаточно большим числом разновидностей, отличающихся типом поддерживаемой магистрали (ISA, MCA, PCI) и набором возможностей. Функциональность простых устройств ограничивается отображением POST-кодов BIOS (power on self test - результаты самотестирования после включения питания), индикацией сигналов магистрали и контролем питающего напряжения. В своей работе они используют средства BIOS или тесты, загружаемые из ПЗУ на самом модуле. Более сложные устройства осуществляют, помимо этого, диагностику адресации, прямого доступа к памяти и прерываний. Кроме того, в ПЗУ могут содержаться и универсальные программы тестов для всех основных узлов компьютера (клавиатуры, интерфейсов, накопителей).

У всех упомянутых выше устройств выбор тестов осуществляется с помощью переключателей, а отображение - на светодиодных цифровых и позиционных индикаторах. Следовательно, основная роль в этих системах отводится человеку, а автоматизация и документирование процесса тестирования и диагностики невозможны. Более мощные диагностические системы свободны от этого недостатка: они содержат в своем составе процессор, благодаря которому тестирование выполняется в автоматическом режиме. Управление и отображение результатов осуществляются с помощью программного обеспечения с другого компьютера: он подключается к основному устройству через последовательный интерфейс. Такие системы не только осуществляют полное тестирование компьютера в автоматическом режиме (включая проверку интерфейса клавиатуры), но и реализуют другие дополнительные функции (сигнатурный и логический анализатор), наличие которых позволяет использовать их для диагностики при серийном производстве.

ТЕСТИРОВАНИЕ МОДУЛЕЙ ПАМЯТИ

Пожалуй, самой распространенной проблемой является неустойчивая работа оперативной памяти, из-за чего компьютер может периодически выходить из строя в самый неподходящий момент. Такие неисправности можно определить только с помощью специализированных тестеров. Тестирование без изъятия модулей памяти из компьютера позволяет выявить лишь полностью вышедшие из строя модули памяти. Качество тестирования на специализированном оборудовании существенно выше, так как оно выполняется в стрессовых условиях, с использованием более сложных алгоритмов, при повышенном или пониженном напряжении и с варьированием временных параметров процедур записи/считывания. Кроме того, некоторые тестеры могут измерять реальные временные параметры модулей памяти. Ввиду разнообразия имеющихся модулей памяти тестеры имеют соединители нескольких типов или поставляются вместе с переходниками.

ДИАГНОСТИКА ДИСКОВЫХ НАКОПИТЕЛЕЙ

Как отмечалось выше, для тестирования накопителей на жестких магнитных дисках универсальных тестовых программ оказывается вполне достаточно (конечно, при наличии достоверно исправного интерфейса). Немного сложнее ситуация с накопителями на гибких дисках. Если дискета в таком накопителе читается и записывается, то это отнюдь не значит, что она будет восприниматься накопителями других компьютеров. Убедиться в совместимости или добиться ее юстировкой головок позволяет применение эталонных диагностических дискет. Уровень снимаемого с головки сигнала можно оценить с помощью осциллографа. Однако процесс настройки может быть существенно упрощен при использовании специальной тестовой программы. Такая программа в реальном времени отображает на экране компьютера результаты считывания информации и, таким образом, упрощает оценку точности позиционирования обеих головок.

РЕМОНТ ВИДЕОМОНИТОРОВ

Проверить качество работы видеомонитора в различных режимах позволяет большинство универсальных диагностических программ. Но для этого вам потребуется компьютер с соответствующей видеокартой. Между тем эту работу можно существенно упростить за счет использования генераторов тестовых сигналов. Генераторы могут выдавать все компоненты видеосигнала (VIDEO, Y, RGB, V-SYNC, H-SYNC) и композитный видеосигнал в цифровой и аналоговой форме в широком диапазоне частот развертки. Для обеспечения совместимости с различными типами входов видеомониторов они могут иметь разъемы различного вида. Кроме формирования развертки в заданном режиме генераторы могут выдавать монохромный или цветной испытательный сигнал для регулировки цепей видеомониторов.

ТЕСТИРОВАНИЕ ПОСЛЕДОВАТЕЛЬНЫХ И ПАРАЛЛЕЛЬНЫХ ИНТЕРФЕЙСОВ

Очень часто проблемы передачи данных, вызванные неисправностями последовательного или параллельного интерфейса, могут быть диагностированы с помощью программных средств и заглушек, в которых входы соединены с выходами для организации петли.

ДИАГНОСТИКА ПРИНТЕРОВ

Немного проще обстоит дело с тестированием принтеров. Большинство из них имеет развитые встроенные средства диагностики. Иногда часть этих средств или информация о кодах ошибок имеется только у специалистов фирменных сервисных центров. Что касается матричных принтеров, то, благодаря их простоте, широкодоступных тестов для диагностики вполне достаточно. А вот лазерные принтеры требуют особого подхода. С одной стороны, в них слишком много компонентов, при выходе которых из строя выявить причину проблемы оказывается весьма непросто. С другой - их конструкция такова, что заглянуть внутрь во время их работы невозможно. Кроме того, некоторые модели просто не могут работать без компьютера, так как не имеют собственных средств отображения и управления. Поэтому диагностика лазерных принтеров без специального оборудования иногда напоминает гадание на кофейной гуще. Решение названных проблем дает тестер лазерных принтеров. Этот редкий прибор обеспечивает измерение всех необходимых для работы печатающего узла напряжений, устранение всех блокировок от удаленных узлов, эмуляцию клавиатуры и дисплея для работы с рассчитанными на программное управление принтерами, генерацию пробных изображений. Стоит отметить, что универсальные тестеры предназначены для работы с достаточно широким набором моделей принтеров различных производителей, где используются однотипные приводы (блок печати и картридж).

ТЕСТИРОВАНИЕ СОЕДИНИТЕЛЬНЫХ ШНУРОВ

Даже в организации среднего размера обслуживающему персоналу приходится постоянно заниматься проверкой шнуров различных периферийных устройств или, если они не отмаркированы, определением схемы их разводки. Если эта работа выполняется с помощью прозвонки (мультиметра), то на нее тратится очень много времени. Поэтому там, где подключено большое количество периферийных устройств, можно использовать специальные приборы для контроля шнуров, так как они позволяют в автоматическом или полуавтоматическом режиме проверить шнур на предмет выявления оборванных, замкнутых и неправильно подсоединенных проводов. Результаты тестирования (номера соединенных между собой контактов разъемов) отображаются на индикаторе. Обычно такие приборы способны тестировать кабели с любой комбинацией вилок и розеток DB9, DB15, DB25, Centronics, RJ-11 и RJ-45, а также коаксиальные кабели с соединителями RG-58, RG-59 и RG-62. Аналогичные приборы используются для тестирования кабелей и других интерфейсов (IDE, SCSI и т. п.).

Выбераем набор инструментов

Для выбора набота инструментов выберите соответствующий раздел:

 

Диагностика электронных систем автомобилей.

В настоящее время наиболее важным и экономически оправданным является широкое внедрение электронных систем, позволяющих улучшить характеристики, стоимость эксплуатации двигателя и трансмиссии, а также систем для повышения.

Современный автомобиль уже сложно представить без различных электронных систем управляющих и контролирующих работу различных узлов и агрегатов. В настоящее время широкое распространение получили бортовые системы контроля на базе электронных блоков управления (ЭБУ). Все электронные блоки по функциональному назначению могут быть классифицированы на три основные системы управления: двигателем; трансмиссией и ходовой частью. В мире разработано и серийно выпускается большое разнообразие систем управления двигателями. Эти системы по принципу действия имеют много общего, но и существенно отличаются. Система управления бензиновым двигателем обеспечивает оптимальную его работу путем управления впрыском. топлива, углом опережения зажигания, частотой вращения коленчатого вала двигателя на холостом ходу и проведения диагностики. Система электронного управления дизельным двигателем контролирует количество впрыскиваемого топлива, момент начала впрыска. В электронной системе управления трансмиссией объектом регулирования является главным образом автоматическая трансмиссия. На основании сигналов датчиков угла открытия дроссельной заслонки и скорости автомобиля ЭБУ(электронные блоки управлении) выбирает оптимальные передаточное число трансмиссии и время включения сцепления. Электронная система управления трансмиссией по сравнению с применявшейся ранее гидромеханической системой повышает точность регулирования передаточного числа, упрощает механизм управления, повышает экономичность и управляемость. Управление ходовой частью включает в себя управление процессами движения, изменения траектории и торможения автомобиля. Электронные системы безопасности включают в себя: противоугонные устройства, аппаратуру связи, центральную блокировку замков дверей, режимы безопасности и т.д.

Использование электронных систем отнюдь не превращает автомобиль в интеллектуального робота. Во главе по-прежнему остается водитель, который обязан критически осмысливать дорожную ситуацию и реальные возможности своей машины. Электронные системы призваны лишь облегчить работу водителя и исправить мелкие оплошности. Для обозначения названий систем безопасности автомобилей производители ввели следующие аббревиатуры:

ABS

Эта система предназначена для того, что бы предотвратить блокировку колёс автомобиля при торможении, сохранить курсовую устойчивость, и не потерять управляемость.

ADK

Система контроля дистанции при парковке, которая посредством ультразвуковых сенсоров определяет расстояние до ближайшего препятствия. Система включает в себя ультразвуковые преобразователи и блок управления.

  • для сенсоров по углам переднего бампера 0,8 м;
  • для сенсоров по фронту переднего бампера 1,2 м;
  • для сенсоров по углам заднего бампера 0,8 м;
  • для сенсоров по фронту заднего бампера 1,6 м.

ASR

ASR –противо-буксовочная система.Контролирует проскальзывание у автомобиля ведущих колёс, и не допускает пробуксовки при разгоне.

EDS

Система электронной блокировки дифференциала. Благодаря этой системе:

  • повышается безопасность автомобиля
  • улучшаются его тяговые характеристики при неблагоприятных дорожных условиях
  • облегчается старт
  • интенсивный разгон
  • движение на подъем

Определяет угловые скорости ведущих колес и непрерывно сопоставляет их между собой. При несовпадении угловых скоростей, возникающем, например, при буксовании одного их колес, последнее подтормаживается до тех пор, пока не сравняется по частоте вращения с небуксующим.

При разности частот вращения около 110 об/мин система автоматически включается в работу и без ограничений действует на скоростях до 80 км/ч.

EBV

EBV– электронный распределитель тормозных сил (РТС). Данный узел предназначен для того, чтобы при начале торможения автомобиля тормозные силы распределялись равномерно.

ABL Активные биксеноновые фары освещают дорогу в два раза эффективнее обычных галогеновых фар и улучшают видимость при прохождении поворота. Управляемые микропроцессорами лампы с электроприводами поворачиваются на угол до 15° в обоих направлениях, чтобы надежно освещать выбранную вами траекторию. Датчик освещенности выключает систему в светлое время суток для увеличения срока ее службы.

PBA

(Прогнозирующая система торможения) – работает вместе с адаптивным круиз-контролем. Определив, что автомобиль находится слишком близко от находящегося впереди другого автомобиля, эта система сокращает до минимума расстояние между тормозными колодками и дисками. В экстренной ситуации, эта система помогает сэкономить немного времени. В следующем усовершенствовании этой системы, если после начала ее работы водитель не предпринял никаких мер по восстановлению безопасной дистанции, PBA сама немного притормаживает автомобиль, возвращая водителя с небес на землю.

ACC (адаптивный круиз-контроль)

Используется для поддержания заданной скорости автомобиля и контроля безопасной дистанции до находящейся впереди автомашины. При сокращении расстояния до впереди идущей машины, система притормаживает автомобиль до тех пор, пока дистанция до нее не восстановится. И наоборот, когда передняя автомашина начинает удаляться, ACC прибавит скорость автомобиля, пока не достигнет или заданной скорости или заданной дистанции.

Принцип устройства систем электронного управления

Все электронные системы управления автомобиля имеют общий принцип работы, будь то электронная система управления двигателем или электронная система управления АКПП. Хотя это и совсем различные узлы автомобиля выполняющие различные функции, принципиальное устройство и принцип работы их электронных систем управления идентичен. Электронная система управления состоит из набора датчиков, ЭБУ и комплекта исполнительных элементов. Датчики системы считывают необходимую информацию и передают в электронный блок управления (электронный мозг). Аналоговая информация, поступающая от датчиков, переводится в цифровую форму с помощью встроенного аналого-цифрового преобразователя. Электронный блок управления выполнен полностью цифровым на основе микропроцессора. Полученные данные обрабатываются с помощью алгоритма, заложенного в микропроцессор, который определяет перечень необходимых действий. Подавая сигнал на исполнительные элементы.

В заключении статьи,хотелось бы отметить, что автомобиль невозможно представить без электронных систем. Так как, они: обеспечивают безопасность, предотвращают множество ошибок, которые мог бы совершить водитель автомобиля. Но у этих замечательных систем есть свои недостатки: современные электронные системы не однократно взламывают, поэтому необходимо большее обеспечение безопасности не только самому объекту, но и составляющим его системам.

Диагностирование электрооборудования, электронного оборудования и приборов освещения

Надежность автомобиля в условиях эксплуатации в значительной степени зависит от исправности приборов электрооборудования и электронного оборудования, по вине которых возникает около 15% неисправностей автомобиля.

Ресурс механических узлов электрооборудования ограничивают трущиеся поверхности, необходимо хорошо смазывать, защищать от пыли, влаги и грязи. Вследствие резких температурных перепадов, непрерывных вибраций, попадания влаги, пыли, бензина, масла или паров различные контактные токопроводящие детали работают в сложных условиях. Изоляционные материалы также подвержены разрушением под действием нагрева, влаги и электрического поля. Резкие перепады температуры способствуют образованию трещин в приборах электрооборудования, расположенных под капотом двигателя, особенно зимой, а конденсация влаги снижает их изоляционные качества; так же отрицательно действуют на некоторые изоляционные материалы пары бензина и масла.

По электрооборудованию проверяют следующие структурные диагностические параметры: мощность генератора, прогиб ремня привода генератора; напряжение включения реле обратного тока; электрическое напряжение, поддерживаемое регулятором напряжения; мощность стартера; высоту щеток стартера; зазор между подшипниками стартера и их посадочными местами; передачу приводом стартера крутящего момента.


Аккумуляторные батареи. Аккумуляторные батареи необходимо содержать в чистоте. Пробки заливных отверстий должны быть плотно завернуты, поверхность батарей сухая, а их вентиляционные отверстия прочищены. Пыль, влагу и грязь удаляют сухой тканью. Если на поверхность мастики попал электролит, то его нейтрализуют 1% -м раствором нашатырного спирта, а затем протирают поверхность сухой тканью. Наконечники проводов, а также клеммы и штыри аккумуляторов тщательно зачищают от окислов, плотно затягивают на клеммах и смазывают тонким слоем технического вазелина, очищают ветошью, смоченной в 10%-м растворе нашатырного спирта или 5%-м растворе каустической соды. Периодически проверяют крепление аккумуляторных батарей. Они должны быть плотно укреплены в гнезде, а зимой утеплены.

Уровень электролита проверяют стеклянной трубочкой. Периодичность проверки в зимнее время не реже чем через 30 дней и летом – через 10…15 дней. Снижение уровня электролита ниже нормы может привести к сульфатации пластин из-за их обнажения, так как обнаженные места (прежде всего у отрицательных пластин) усиленно окисляются, образуя сульфат свинца.


Плотность электролита определяют ареометром. Работоспособность батареи оценивают постоянством напряжения под нагрузкой соответствующей работе стартера. Проверить работоспособность аккумуляторной батареи, установленной на автомобиле, можно при запуске двигателя стартером, так как ее исправность отражается на работе стартера. Если стартер развивает мощность, достаточную для нормального запуска двигателя, то это свидетельствует об исправности аккумуляторной батареи. Оценить работоспособность аккумуляторных батарей, снятых с автомобиля, можно, проверив напряжение батареи под большой нагрузкой. Для этого применяют нагрузочные вилки, которые искусственно создают нагрузку, равную нагрузке при включенном стартере.

Генераторные установки и реле-регуляторы. Генераторные установки достаточно долговечны и надежны при правильном уходе за ними в эксплуатации. Диагностирование генератора включает следующие операции: наружный осмотр якоря, коллектора, щеток; определение частоты вращения генератора на начало и полную отдачу; проверку температуры его нагрева; выявление шумов и стуков, проверку состояния деталей генератора с помощью специального оборудования. Особое внимание при этом следует уделять щеткам, так как качество работы генератора зависит от хорошего контакта щеток с коллектором. Причинами нарушения контакта могут быть: загрязнение коллектора, изнашивание щеток и коллектора, заедание щеток в щеткодержателях, ослабление пружин, прижимающих щетки к коллектору. Загрязненный коллектор нужно протереть чистой тканью, смоченной в бензине. Сильно изношенные коллекторы протачивают. Щетки, изношенные больше, чем наполовину или поврежденные заменяют новыми.

Надежная работа двигателя зависит также от состояния изоляции всех участков цепи высокого напряжения. Утечка тока в цепи высокого напряжения пропорциональна загрязненности изоляторов свечи и крышек распределителя, трещине в изоляторах, загрязненности пылью и маслом разрушенных или с пробитой изоляцией проводов и другим неисправностям. Утечка тока снижает напряжение на электродах свечи, создает слабую искру, перебои в работе двигателя.

По системе зажигания проверяют следующие структурные диагностические параметры: начальный угол опережения зажигания; угол опережения зажигания, создаваемый центробежным или вакуумным автоматом; угол поворота вала двигателя, соответствующий замкнутому состоянию контактов прерывателя; зазор между контактами прерывателя; асинхронизм искрообразования; зазор между втулкой и валиком распределителя высокого напряжения; радиальное биение кулачка прерывателя; электрическую емкость конденсатора; электрическое сопротивление обмоток катушки зажигания; пробивное напряжение изоляции проводов высокого напряжения; зазор между электродами свечи; вторичное электрическое напряжение; электрическое сопротивление высоковольтных проводов; электрическое сопротивление изоляции свечи. Главным в обслуживании системы зажигания является содержание приборов цепи низкого напряжения в состоянии, обеспечивающем получение максимально возможного тока в первичной обмотке катушки зажигания, поддержание необходимой изоляции приборов и проводов цепи высокого напряжения, установка зажигания и проверка автоматов опережения зажигания.

Стартер. Работу стартера на автомобиле можно проверить с помощью специальных приборов в режиме полного торможения по силе потребляемого тока и падению напряжения в электрической цепи стартера. Между стартером и аккумуляторной батареей предварительно включают шунт. Стартеры, снятые с автомобиля, проверяют на стендах. При этом с помощью динамометра определяют крутящий момент, продувают корпус воздухом; проверяют состояние коллектора, щеток и контактов включения. Коллектор чистят стеклянной шкуркой. Периодически проверяют крепление стартера.

Электронные системы автомобилей. Диагностические средства для определения технического состояния электронных систем управления можно подразделить на три категории: стационарные (стендовые) диагностические системы; бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами; бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное диагностическое устройство.

Стендовые диагностические системы. Эти системы подключаются к бортовому электронному блоку управления и, таким образом, не зависят от бортовой диагностической системы автомобиля. Они обычно диагностируют отдельные механизмы двигателя и системы зажигания, их часто называют мотор-тестерами. Основными элементами мотор-тестера являются датчики, а также блок обработки и индикации результатов измерений воспринимаемых сигналов. Датчики и регистрирующие приборы соединены с кабелями с помощью штекеров и зажимов.

Бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами. Системы программного обеспечения автомобилей большинства ведущих стран мира начиная с 80-х годов XX в. обеспечиваются функцией считывания кодов неисправностей с помощью контрольной лампы, например Сheck engine – проверь двигатель. Это наиболее простой вид бортового диагностирования, которое заключается в условном присвоении ряду неисправностей электронной системы управления цифровых кодов. Эти коды при проявлении соответствующих им неисправностей заносятся в память электронного блока управления системой. После проведения определенных манипуляций данные коды могут отображаться контрольной лампочкой в виде ряда длинных и коротких импульсов. После визуального считывания данных импульсов их значение может быть расшифровано с помощью специальных таблиц.

Бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное диагностическое устройство. Считывание информации с такого программного обеспечения осуществляется с помощью специальных устройств – сканеров. Контролируемые параметры и коды неисправностей считываются непосредственно с электронного блока управления и интерпретируются специалистами сервиса.

Сканером или сканирующим прибором называют портативные компьютерные тестеры, обычно с дисплеем на жидких кристаллах, служащие для диагностирования различных электронных систем управления посредством считывания цифровой информации с диагностического разъема автомобиля.

Сканеры различаются своими функциональными возможностями и спектром тестируемых автомобилей.

По способу хранения информации аппаратные сканеры делятся на картриджные и программируемые. Для приведения картриджного сканера в рабочее состояние необходим картридж с диагностическим кабелем, соответствующим проверяемой модели автомобиля. Комплект такого сканера состоит из трех основных частей: самого сканера, сменных картриджей и соединительных кабелей, предназначенных для присоединения к диагностическому разъему проверяемого автомобиля. Каждый картридж предназначен для работы с контроллером своего типа («Джи-Эм», «Бош», «Январь» и др.).

Более информативными являются сканеры, соединенные с персональным компьютером. Для согласования данных, получаемых компьютером с контроллера, используется адаптер.

Сканер подключается через специальный разъем на автомобиле к конкретному блоку управления или всей электронной системе.

Считывание диагностических кодов. Коды неисправностей могут быть считаны двумя способами. Первый (для уже уходящих в прошлое систем самодиагностики) – светодиодным пробником, подключаемым к диагностическому разъему или с помощью контрольной диагностической лампы. Расшифровка кодов производится с помощью таблиц, входящих в состав эксплуатационных документов на автомобиль или – получение кодов сканером. Некоторые подобные приборы не только извлекают коды ошибок, но и расшифровывают их.

Коды неисправностей условно делят на «медленные» и «быстрые». Контрольная лампа зажигается для предупреждения водителя о неисправности. После включения зажигания лампа горит в течении 3 с, а затем должна погаснуть. Если лампа не гаснет, это свидетельствует о неисправности системы управления автомобилем, и следует проверить эту систему по определенным кодам. По требованиям нормативных документов по безопасности движения некоторых стран, автомобиль, имеющий активные коды неисправности электронных систем управления, считается неисправным.

Наличие диагностического разъема позволяет получать диагностическую информацию от датчиков различных систем автомобиля (двигатель, АBS, ЕSP, трансмиссия, подвеска и т. д.) с помощью сканера или мотор-тестера.

Одной из функций, реализуемых сканерами, является проверка сигнала от датчиков автомобиля на рациональность, т. е. на соответствие требуемым (штатным) сигналам. При этом датчик может быть неисправен и посылать в блок управления неверную информацию. Если проверка сигнала датчика на рациональность в программе микроконтроллера блока управления не предусмотрена, то в них управляющие алгоритмы реализуются с использованием неверной информации датчика. При этом будут неправильно рассчитаны важные выходные параметры, например угол опережения зажигания и длительность импульса отпирания форсунок, что приведет к ухудшению ездовых характеристик автомобиля, двигатель может глохнуть после запуска и т.д. Однако пока в количественном выражении неверный сигнал с датчика будет в пределах нормы, никакие коды ошибок в память электронного блока не запишутся и неисправность никак не обозначится.

Приборы сигнальные и освещения. Для приборов освещения характерны такие неисправности: отсутствие света (при исправных источниках питания) из-за перегорания нитей лампочек, неисправности включателей, нарушения контактов; отказ всей системы освещения автомобиля из-за короткого замыкания в цепь или приборах освещения; неправильная регулировка их положения на автомобиле.

Правильная установка фар – одно из условий обеспечения безопасности движения. Установка фар определяется параметрами, показанными на рис. 2.

На рис. 2 обозначено: 1 – ось отсчета; 2 – горизонтальная (левая) часть светотеневой границы; 3 – наклонная (правая) часть светотеневой границы; 4 - вертикальная плоскость, проходящая через ось отсчета; 5 – плоскость, параллельная плоскости рабочей площадки, на которой установлен автомобиль; 6 – плоскость матового экрана; α – угол наклона светового пучка к горизонтальной плоскости; L–расстояние от оптического центра фары до экрана; 7 – положение контрольной точки для измерения силы света в направлении оси отсчета светового прибора; 8 – положение контрольной точки для измерения силы света в режиме «ближний свет» в направлении линии, расположенной в одной вертикальной плоскости с оптической осью прибора для проверки и регулировки фар, и направленной под углом 52’ ниже горизонтальной части светотеневой границы светового пучка ближнего света; 9 –положение контрольной точки для измерения силы света противотуманных фар в направлении 3° вверх; 10, 11 – координаты точек для измерения положения светотеневой границы в вертикальной плоскости; R–расстояние по экрану от проекции оптического центра фары до положения горизонтальной (левой) части светотеневой границы; K - расстояние поэкрану от проекции оптического центра фары до положения светотеневой

Рис. 2. Схемы расположения АТС на посту проверки света фар, форма светотеневой границы и размещение контрольных точек на экране

а - для режима "ближний свет" с наклонным правым участком светотеневой границы; б - для режима "ближний свет" с ломаным правым участком светотеневой границы; в - для противотуманных фар

границы пучка света противотуманной фары; H–расстояние от проекции оптического центра фары до плоскости рабочей площадки; U, S–координаты точек измерения положения светотеневой границы в горизонтальной и вертикальной плоскостях соответственно.

Положение фар проверяют и регулируют при помощи настенных или переносных экранов либо специальных передвижных (или переносных) оптических приборов.

На рис. 3 показана схема площадки с экраном для определения параметров установки фар автомобиля.

На матовом экране размером 2,5×1,5 м наносится горизонтальная линия Д-Д на высотеh от плоскости площадки, на которой установлен автомобиль, и две вертикальные линии Л-Л и П-П, отстоящие от вертикальной осевой линии экрана О-О на расстоянии d, равное половине расстояния между центрами рассеивателей фар.

Рис. 3. Схема площадки с экраном для определения параметров установки фар автомобиля

Величину h определяют по формуле, которая учитывает снижение угла наклона светового потока фар при регулировке их на ненагруженном автомобиле

,

где H–высота центров рассеивателей фар над площадкой, на

которой установлен автомобиль, м;

L – расстояние от рассеивателей фар до плоскости экрана, м.

Ниже линии Д-Д на расстоянии С наносят горизонтальную линию Б-Б, которая служит для проверки параметров ближнего света фар. Расстояние между линиями Д-Д и Б-Б устанавливается в зависимости от расстояния L.

Для определения параметров установки фар ненагруженный автомобиль с нормальным давлением в шинах устанавливают на ровной горизонтальной площадке (рис. 4) перпендикулярно плоскости экрана. Продольная ось автомобиля и линия А-А должны располагаться в одной вертикальной плоскости.

При определении параметров установки фар включают свет и, действуя переключателем, проверяют исправность соединений и одновременности загорания в лампочках нитей ближнего и дальнего света. Затем правую фару закрывают светонепроницаемым материалом и включают дальний свет. Центр светового пятна овальной формы, отбрасываемого на экран левой фарой, при правильной установке должен совпадать с точкой пересечения вертикальной линии Л-Л и горизонтальной Д-Д. Затем таким же образом проверяют параметры установки правой фары.

Далее проверяют расположение светового пятна ближнего света. Центр светового пятна должен располагаться на пересечении линий Б-Б и Л-Л (для левой фары) и Б-Б и П-П (для правой фары).

Для измерения силы света фары на матовом экране площадки установлены фотоэлементы.

Существуют оптические приборы, предназначенные для диагностирования и настройки фар различных систем, определения силы света при помощи фотометра.

Сила света фонарей (сигналов торможения, габаритных огней, указателей поворотов и аварийной сигнализации и др.) измеряется с помощью пары фотоэлемент – микроамперметр или люксметрами. Располагать фотоэлемент целесообразно на расстоянии 2,5…3,0 мот проверяемого фонаря. Контроль временных параметров проблесков (времени до первого зажигания, частоты следования проблесков, скважности фонарей указателей поворотов) обеспечивается синхронным включением измерительного блока и цепи фонаря при индикации светового сигнала от источника света указателей поворотов. Временные интервалы, как правило, измеряются с помощью секундомера. Некоторые модели приборов для проверки света фар оснащены устройством для автоматического измерения частоты следования проблесков.

Также контролируют состояние проводки, соединений и креплений. Очищают от грязи и пыли отражатели и рассеиватели фар и фонарей.

Методы диагностирования электрооборудования — Студопедия

Особенности, методические и информационные основы методов диагностирования электрооборудования достаточно разнообразны и подробно описаны в специальной литературе. Поэтому ниже дается лишь общий обзор наиболее распространенных методов контроля, разрабатываемых в России. Некоторые применяемые и наиболее перспективные разрабатываемые направления диагностирования электрооборудования приведены в табл. 5.2.

Метод инфракраснойтермографии. Изменение температуры узлов и элементов электрооборудования в процессе эксплуатации является важным информативным признаком их технического состояния. Дистанционный контроль температуры нагрева токоведущих частей, контактных соединений, корпусов электрооборудования, подвесной и опорно-стержневой изоляции реализуется средствами тепловизионного контроля. Этот метод диагностики основан на регистрации инфракрасного излучения.

Разрешающая способность тепловизионного контроля 0,2 оС. В электроэнергетике России наиболее широко распространены отечественные тепловизоры ТВ-03 и тепловизоры шведской фирмыAGEMA, напримерAGEMA-782.

Оценка технического состояния контактных соединений производится сравнением температуры однотипных контактов, находящихся в одинаковых условиях по нагрузке и охлаждению, а также температуры контактного соединения и сплошных участков токопроводов. Оценка технического состояния изоляторов основана на анализе разницы температур дефектного и непробитого изолятора. Эта разница определяется напряжением на изоляторе и величиной диэлектрических потерь фарфора изолятора.


Температура пробитого изолятора равна температуре окружающей среды, так как напряжение на нем нуль. Температура непробитого изолятора определяется по средним параметрам емкости, размеров и напряжения и превышает температуру окружающей среды на 0,4–0,5 оС.

Направления диагностирования электрооборудования

Электрооборудование Направление диагностирования
Турбогенераторы Диагностика теплового состояния обмотки ротора Диагностика неисправностей обмотки статора Диагностика системы охлаждения стержней обмотки статора Контроль вибрации и диагностика механического состояния Диагностика щеточно-контактного аппарата Контроль электромагнитного излучения Диагностика уплотнений и подшипников Диагностика системы возбуждения
Силовые трансформаторы Хроматографический анализ газов, растворенных в масле Температурный контроль Контроль износа контактов РПН Тепловизионный контроль трансформаторов Регистрация частичных разрядов в изоляции
Выключатели высокого напряжения Контроль коммутационного и механического ресурса Оценка состояния контактной системы Контроль характеристик привода Контроль состояния фарфоровых изоляторов Контроль утечек дугогасительной среды (воздух, элегаз)
Высоковольтные электродвигатели Диагностика обрыва стержней короткозамкнутого ротора Контроль витковых замыканий Вибрационный контроль обмоток статора Контроль подшипникового узла Контроль и защита от неуспешных пусков Контроль эксцентриситета воздушного зазора между ротором и статором Контроль неполнофазных режимов Контроль направления вращения Непрерывный селективный контроль активного сопротивления изоляции Температурный контроль Оценка расхода ресурса на основе контроля пусковых и длительных режимов работы
КРУ и токопроводы Контроль дуговой защиты Тепловизионный контроль состояния электрических контактов и изоляторов
Воздушные и кабельные линии Дистанционная тепловизионная диагностика контактов и подвесной изоляции Контроль частичных разрядов Диагностика опор ЛЭП Контроль состояния изоляции кабелей

Тепловизионный метод контроля получил наибольшее применение в открытых и закрытых распредустройствах напряжением 35 кВ и выше, а также на ЛЭП.


Метод хроматографического контроля маслонаполненного оборудования. Это наиболее проработанный и распространенный в электроэнергетике метод диагностики. Он применим для раннего обнаружения развивающихся дефектов внутри маслонаполненных силовых трансформаторов, автотрансформаторов, шунтирующих реакторов, крупных электрических машин с водомасляной системой охлаждения, измерительных трансформаторов, высоковольтных вводов и высоковольтных кабелей. Хроматография есть разделение смесей. Идея метода основана на предположении, что повреждение в маслонаполненном оборудовании сопровождается выделением различных газов, отсутствующих в масле при нормальной работе. Эти газы растворены в масле. Выделив их из масла и проведя хроматографический анализ, можно обнаружить дефекты на ранней стадии возникновения. В настоящее время изучен состав газов, содержащихся в масле недефектного нормально работающего оборудования, выявлены газы, характерные для различных повреждений, и граничные их концентрации. При этом определяют концентрации водорода, метана, этилена, этана, ацетилена, оксида и диоксида углерода,и других газов.

Отбор масла из работающего трансформатора производится специальнымимаслоотборниками поршневого типа. При этом исключается соприкосновение масла с окружающей воздушной средой, и предотвращаются потери растворенных в масле газов в процессе отбора. Масло помещается в замкнутый объем, и газ над поверхностью масла подвергается анализу. Для анализа состава, динамики изменения и концентрации газов в пробах масла применяют хроматографы. Кроме того, известны встроенные средства анализа газов, растворенных в масле, и выделившихся газов, а также устройства непрерывного контроля, основанные на определении СО2и Н2, растворенных в масле. Характер и примерное место повреждения определяют по количественному составу газов. Необходимость выявления дефекта на ранних стадиях его развития требует обработки данных хроматографического анализа. Оценка состояния маслонаполненного оборудования осуществляется, как правило, на базе четырех критериев: предельных концентраций, скорости нарастания концентрации газов, отношений концентраций газов, критерия равновесия.

Первый критерий позволяет судить по значению превышения предельных концентраций о характере внутренних дефектов. Так, сильные повреждения изоляции характеризуются высокой концентрацией водорода и ацетилена и обычно сопровождаются наличием углекислого газа. Относительно большая концентрация насыщенных и ненасыщенных углеводородов , в сочетании с небольшим процентом указывает на тепловое разложение масла вследствие перегрева металлических частей. Если присутствует заметное количество СО и, то это означает, что происходит разложение целлюлозы. Резкое увеличение и свидетельствует о сильном локальном перегреве, сопровождающемся обугливанием масла. Если содержание в 10–20 раз больше чем СОпри отсутствии других газообразных продуктов разложения, то причиной является термическое разложение целлюлозы. При высоких температурах обнаруживается небольшое количество , а содержание кислорода заметно снижено. Наличие водорода и небольшого содержания этилена и показательно для частичных разрядов. В случае слабого искрения обнаруживается небольшое количество. Присутствие говорит о развивающемся дефекте внутри трансформатора, который необходимо вывести из эксплуатации и осмотреть.

При втором критерии контролируется скорость нарастания концентраций газов. Если прирост содержания газов составляет более 10 % в месяц, трансформатор ставится на учащенный контроль. Достоверность оценки состояния с помощью этого критерия значительно выше по углеводородным газам и СО, чем по водороду и оксиду углерода, потери которых в пробе масла иногда соизмеримы с численными значениями этого критерия.

Третий критерий дает возможность использовать три отношения пар газов. Наиболее частыми причинами упомянутых отношений являются возникновение дефектов в изоляции трансформаторного железа, нагрев и выгорание контактов РПН, нарушение изоляции стяжных шпилек и ярмовых балок с образованием короткозамкнутого контура, нагрев контактов соединений отводов низкого напряжения.

Четвертый критерий основан на сопоставлении результатов анализа масла из газового реле и из пробы. Используется в случаях срабатывания газовой защиты. На базе этого критерия делается заключение о возможности включения трансформатора в работу и определяется дефект электрического характера, когда повторное включение трансформатора могло бы привести к увеличению очага повреждения.

Перспективным направлением применения указанных критериев является разработка алгоритмов для реализации автоматизированных систем оценки состояния маслонаполненного оборудования. Следует отметить универсальность метода и растущую с увеличением напряжения эффективность его использования.

Метод контроля диэлектрических характеристик изоляции. Основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tgd) и др. В основе контроля тока утечки лежит измерение тока, проходящего через твердую изоляцию при наличии напряжения. Известны два метода контроля. В первом, прямом методе измеряется модуль комплексной проводимости изоляции или ее емкость. Метод требует регистрации долей процента в изменении контролируемого параметра, применения различных схем повышения чувствительности и помехоустойчивости, что является его недостатком. Во втором методе сравниваются емкость и tgd однотипного электрооборудования с помощью схемы Шеринга. Метод требует наличия специальных измерительных выводов изолированной от земли конструкции. Он может использоваться для контроля за высоковольтными измерительными трансформаторами и конденсаторами связи.

Метод контроля разрядов. Все большее распространение в качестве показателя состояния изоляции электрооборудования получает использование разрядов. Известные методы измерения характеристик разрядов можно разделить на измерение частичных, пазовых и поверхностных разрядов и на электрические и неэлектрические методы. Методы применяются на напряжениях 110 кВ и выше в трансформаторах и электрических машинах.

Исследуются зависимости уровня интенсивности частичных разрядов в изоляции электрических машин от тепловых и механических воздействий. Анализируются данные для выявления связей между характеристиками частичных разрядов и сроками службы изоляции. Измерение частичных разрядов позволяет контролировать состояние изоляции во время испытаний и выявлять ее предаварийное состояние. Наличие частичных разрядов определяется по появляющимся импульсам напряжения и по изменениям электромагнитного поля во внешней цепи с помощью электромагнитного датчика. Известны устройства, контролирующие амплитуду и частоту следования импульсов в определенных диапазонах частот.

Основные трудности применения метода частичных разрядов связаны с наличием помех, обусловленных коммутациями и переходными процессами в первичных цепях установки, наличием коронных разрядов, радиопомех и т.д. Проблема измерения сигнала и его отделения от помех не всегда разрешима. Эффективность использования контроля частичных разрядов увеличивается с ростом рабочего напряжения, так как, с одной стороны, растут напряженность электрического поля и вероятность возникновения дефектов, с другой – появляется возможность отказаться от испытаний повышенным напряжением.

Выявлять пазовые разряды, искрения и образования дуг целесообразно и в обмотках крупных электрических машин под нагрузкой. Причины возникновения разрядов: ослабление пазовых клиньев, истирание и усадка подклиновых прокладок между стержнями обмоток статора, обрыв элементарных проводников, вибрация пластин гибких выводов и др. Выявить искровой, тлеющий и дуговой разряды можно с помощью, например, индуктивных датчиков. Выявить разряды можно также с помощью проводящих электродов, наложенных на изоляцию, емкостных датчиков, подключаемых к нейтрали и линейному выводу, или антенны, устанавливаемой на роторе машины, высокочастотного трансформатора, расположенного в цепи заземления нейтрали, и измерителя радиопомех.

Дефекты стержневых изоляторов, такие как трещины и локальные проводящие загрязнения, являются источниками поверхностных разрядов. Образование поверхностных разрядов сопровождается излучением в звуковом, оптическом и радиодиапазонах. Известен метод оптического контроля излучения поверхностных разрядов с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно-временного распределения яркости свечения и определении по ее характеру дефектных изоляторов. Для этих же целей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа "Филин". Данный принцип можно применить и для выявления таких дефектов, как обрыв стержней ротора асинхронного электродвигателя, образование дуги в КРУ и т.п.

Описанные методы не дают однозначной связи уровня и характера контролируемых параметров с характером и местом повреждения. Они универсальны по принципу и требуют индивидуального подхода к каждому объекту и специальных экспериментальных исследований.

Метод вибродиагностики. Для контроля за техническим состоянием механических узлов большое значение имеет связь параметров объекта с таким интегральным признаком, как спектр частот вибрации. Всякое параметрическое возбуждение смещает спектр. Это и используется в качестве признака. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Электрофизический метод контроля. Перспективным направлением диагностики электрооборудования является применение электрофизических методов контроля. Достоинство таких методов – быстрое получение первичной информации, удобство ее передачи и представление в виде сигнала отклика. Легко встраиваются датчики в объект, сравнительно проста аппаратурная реализация, хорошие возможности настройки на различные электрофизические эффекты, высока эффективность выявления дефектов. Легко поддаются автоматизации и реализации на ЭВМ.

Методическую основу использования электрофизических методов составляет принцип наблюдаемости, а носителями информации являются электрофизические эффекты, возникающие при активизации физических процессов. По способам проявления, вывода и обработки информации эффекты такого типа можно разделить на интегральные эффекты и связанные с ними переходные процессы, эффекты нелинейности, флуктуационные эффекты и шумы.

Использование электрофизических эффектов производится на основе определения способа проявления дефекта или дефектообразующего фактора в виде конкретного физического процесса и возможности наблюдения за этим процессом внешними средствами. Эта возможность обусловливается силой проявления эффекта и разрешающей способностью применяемых измерительных средств.

Статьи :: Как правильно выбрать диагностический сканер - DIAG2CAR.RU

Мы расскажем подробнее об автосканерах для диагностики автомобилей. Во-первых стоит отметить что у слова «автосканер» есть синонимы: диагностический сканер, сканер для диагностики, авто сканер, автомобильный сканер, auto-scaner, auto scanner, autoscanner, auto scaner - при использовании этих слов всегда подразумевают одно и то же устройство. Этим устройством всегдя является компьютер (стационарный, переносной, карманный), имеющий кабель для подключения к диагностическому разъему авто и предустановленное программное обеспечение для диагностики автомобиля, в некоторых случаях автосканер не является самостоятельным устройством и работает в связке с обычным пользовательским компьютером. Основным назначением таких автосканеров является диагностика автомобиля посредством подключения прибора через диагностический разъем к ЭБУ(электронному блоку управления), в частности поиск неисправностей с использованием данных, получаемых с датчиков установленных в различных узлах автомобиля: двигатель, трансмиссия, шасси, кузов и т.д. Автосканер получает данные в виде кодов ошибок, которым соответствует та или иная неисправность (чтение кодов ошибок). Кроме того диагностический сканер позволяет определить неисправность тех узлов и систем, в которых отсутствуют датчики, по косвенным признакам - т.е несколько незначительных неисправностей могут повлечь более значительную неисправность доступ к диагностике которой напрямую будет отсутствовать, но при диагностике так или иначе причина неисправности будет обнаружена. Комплексная диагностика - пожалуй основная незаменимая функция всех автосканеров, она позволяет осуществлять диагностику, поиск ошибок и неисправностей, рассматривая автомобиль как систему взаимосвязанных узлов и агрегатов, осуществляя при этом анализ с учетом связей диагностируемых элементов.

Профессиональное диагностическое оборудование, в отличие от мультимарочного (универсального оборудования) поддерживает полнофункциональную и доскональную работу с автомобилями конкретных производителей, например BMW, Mercedes-Benz, Audi, Ford, Opel, Honda и т.д. Профессиональное диагностическое оборудование является наиболее подходящим для дилерских сервисных центров и СТО специализирующихся на профессиональной, полноценной и качественной диагностике автомобилей ведущих мировых производителей. Профессиональные диагностические сканеры гарантируют поддержку работы только с конкретными марками автомобилей, но в отдельных случаях профессиональные автосканеры работают с автомобилями одного автоконцерна, например General Motors: Cadillac, Hummer, Chevrolet, Saab, GMC и пр., или Daimler AG: Mercedes-Benz, Mercedes-AMG, Smart, Maybach.

Портативные автосканеры это самый дешевый и самый простой способ продиагностировать автомобиль, идеально подходит для гаражной диагностики, простой диагностики на мелких СТО. Портативное диагностическое оборудование является простым в использовании, как правило имеет монохромный дисплей и компактный размер, что позволяет легко переносить такой автосканер. Портативный автосканер это готовое к эксплуатации устройство, не требующее инсталляции программы для диагностики - она уже предустановлена. К минусам можно отнести лишь то что функционал у таких диагностических приборов очень ограничен, в основном это чтение и сброс кодов ошибок.

Автосканеры на основе компьютера или ноутбука, пожалуй, самое выгодное приобретение которое может сделать небольшой автосервис, станция технического обслуживания атвомобилей или просто автолюбитель. За счет того что техническое устройство автосканера состоит только из диагностического адаптера и набора кабелей, он имеет низкую стоимость. Но при этом с использованием стационарного компьютера или ноутбука на котором установлена программа дли диагностики, поставляемая с автосканером, дает возможность использовать все возможное программные функции современных автосканеров. По цене автосканеры на базе компьютера можно сравнить с портативными автосканерами, но их нельзя сравнивать по функциональности. Так же как и портативные автосканеры, диагностические сканеры на основе компьютера имеют малый вес и размер. Такие автосканеры подключаются к любому компьютеру посредством универсальной последовательной шины (USB) или последовательного порта (Com port).

Оборудование для диагностики автомобилей: автосканеры, дилерские сканеры, мотор-тестеры и прочее диагностическое оборудование - наш профиль !

Диагностика автомобилей - без этой процедуры не может состояться качественный ремонт автомобилей, по этому диагностическое оборудование для автомобилей должно быть в руках каждого технического специалиста автосервиса. Почему следует купить диагностическое оборудованиеОборудование для диагностики автомобилей позволяет быстро определить неисправность автомобиля: например определить неисправность ходовой части, найти неисправность двигателя, трансмиссии, или каких либо электронных систем автомобиля. Быстрое и точное определение неисправностей, последующий ремонт и исправление неполадок - это и есть качественный сервис, которого так не хватает владельцам дорогих автомобилей. По этому основную часть нашего каталога составляет профессиональное оборудование для диагностики автомобилей. Такое диагностическое оборудование используется на станциях технического обслуживания автомобилей, в автосервисах и дилерских центрах. Но наш каталог этим не ограничивается, у нас можно купить диагностическое оборудование для личного пользования - это оборудование для диагностики отличается простотой использования, очень низкой ценой доступной любому автовладельцу и достаточно простым, но достаточным функционалом. Как правило диагностика автомобилей ВАЗ, ГАЗ, УАЗ осуществляется именно таким автомобильным диагностическим оборудованием - простым и дешевым.

Если вы или ваш автосервис, СТО, дилерский центр осуществляет ремонт двигателя, ремонт АКПП и КПП, ремонт ходовой части, ремонт тормозной системы, ремонт инжектора, ремонт системы охлаждения, ремонт электрооборудования, кузовной ремонт, ремонт автомобильных кондиционеров, ремонт подушек безопасности, чип-тюнинг двигателя, корректировку одометров и подобные услуги - то вы попали по нужному адресу, наш магазин диагностического оборудования может стать и вашим поставщиком оборудования для диагностики и ремонта автомобилей. Какие условия мы предлагаем нашим клиентам? 
Первым и основным условием является ассортимент оборудования для диагностики: в каталоге присутствует более 300 наименований диагностического оборудования - у нас вы всегда сможете найти подходящий прибор для ремонта автомобилей. 
Второе условие - цены на оборудование для диагностики автомобилей доступны каждому. Причиной тому является ценовая политика и упомянутый выше асортимент. Третьим преимуществом являются производители и по совместительству наши поставщики оборудования для диагностики автомобилей - это крупнейшие и хорошо зарекомендовавшие себя компании, работающие на рынке автосервисного оборудования долгие годы и имеющие целью своего существования - производство лучшего оборудования для диагностики, отвечающего современным требованиям и стандартам и что естественно - удовлетворяющим потребности автосервисов, СТО и рядовых автолюбителей.
Четвертое условие это бесплатные консультации по вопросам покупки. Автодиагностика ваш профиль? Вы представляете автосервис? Вы автолюбитель и хотите самостоятельно определить неисправность своего автомобиля, но при этом не знаете какой прибор для автодиагностики выбрать - обращайтесь к нам по телефону, электронной почте,  поможем вам сделать выбор оборудования для диагностики автомобилей, ответим на ваши вопросы относительно диагностического оборудования, расскажем все подробности насчет диагностики автомобилей с помощью конкретного оборудования.
Пятым условием является оплата и доставка. Диагностическое оборудование для автомобилей мы продаем по отлаженной за годы работы схеме, мы работаем с проверенными службами доставки, у нас есть свои курьеры, мы принимаем оплату наличными, безналичными и электронными деньгами. Для любого случая мы можем найти альтернативу, если ситуация того требует и покупатель даже из самой дальней части России или еще более далеких частей стран СНГ сможет купить оборудование для диагностики автомобилей.

Если вы заинтересованы в партнерстве с нашей компанией и хотите стать дилером по продаже оборудования для диагностики автомобилей - свяжитесь с нами по телефону или электронной почте.

Оборудование для диагностики автомобилей: основные различия и назначение

Диагностическое оборудование является современным инструментом необходимым для любой СТО или автомастерской. Оборудование для диагностики автомобиля это единственный надежный, быстрый и точный способ определить неисправности автомобиля, его двигателя и электронных систем. Работа по ремонту автомобиля всегда начинается с предварительной диагностики автомобиля с использованием специального диагностического оборудования. Все оборудование для диагностики легковых автомобилей делится на несколько групп: диагностическое оборудование предназначенное для дилерской диагностики и диагностическое оборудование для мультимарочной диагностики машин.

Диагностическое оборудование для дилерской диагностики предназначено для диагностики автомобилей любых моделей одного производителя: BMW, Ford, Honda, Mercedes-Benz, Opel, Porsche, Renault, Toyota, Citroen, Peugeot, Chrysler, Mitsubishi, Nissan, Subaru, Volvo. Либо для диагностики автомобилей входящих в одну производственную группу: VAG (Audi, Skoda, Volkswagen, SEAT), GM (Buick, Cadillac, Chevrolet, GMC, GM Daewoo, Pontiac, Holden, Pontiac, Saturn, Saab, Vauxhall, Wuling, Hummer). Диагностическое оборудование для дилерской диагностики позволяет осуществлять работу по поиску неисправностей на самом высоком дилерском уровне.

Мультимарочное оборудование для диагностики автомобилей применяется в автомобилях различных марок и моделей. Такое оборудование для диагностики имеет очень широкий охват и богатый функционал, что позволяет обходиться всего одним прибором с набором адаптеров, при обслуживании различных автомобилей. Этой группе диагностического оборудования следует уделить особое внимание, если вы планируете организовать обслуживание и диагностику автомобилей различных производителей. Например автосканер Launch X-431 работает с более чем 120 марками автомобилей, и эта цифра несомненно впечатляет. Естественно, мультимарочное оборудование для диагностики поддерживает все известные марки и модели автомобилей отечественного производства.

Если для вас основным критерием выбора подходящего оборудования для диагностики является цена, то обязательно ознакомьтесь с двумя группами оборудования: автосканеры на базе ПК и портативное оборудование для диагностики.

Диагностическое оборудование на базе ПК имеет очень низкую стоимость, достаточный функционал и поддерживает различные автомобили Европейского, Американского, Азиатского и Российского производства. Основной функционал таких автосканеров это работа с кодами ошибок. Оборудование на базе ПК компактное, и простое в эксплуатации что позволяет использовать его не только в автосервисах, но и в небольших автомастерских. Это диагностическое оборудование требует наличия стационарного компьютера или ноутбука для инсталляции на него программного обеспечения, которое позволит адаптеру взаимодействовать с ПК. Программа для диагностики автомобиля чаще всего имеет русскоязычный интерфейс, что облегчает процесс диагностики автомобиля. В дополнение ко всему, программа для диагностики, которая поставляется в комплекте с оборудованием для диагностики, имеет демонстрационную версию, которая доступна для загрузки и инсталляции перед покупкой автосканера - вы можете бесплатно ознакомиться с самой программой, ее пользовательским интерфейсом и функциональными возможностями.

Портативное оборудование для диагностики автомобилей имеет необходимый функционал для определения неисправностей автомобиля, его ходовой части, двигателя и прочих систем путем чтения и расшифровки кодов ошибок. Так как портативные автосканеры работают по протоколу OBD 2, это означает что они могут взаимодействовать с большинством современных автомобилей. Плюсами являются не только малый размер и легкий вес но и отсутствие необходимости подключения к компьютеру. Этот фактор делает портативное оборудование для диагностики абсолютным лидером в экономном ценовом сегменте. Простота пользования и низкая цена делают портативное диагностическое оборудование доступным для каждого автолюбителя, мастерской, СТО.

Еще одна группа диагностического оборудования это автосканеры грузового транспорта. Они предназначены для профессионального использования на автосервисах и СТО грузовых автомобилей, автобусов отечественного и зарубежного производства: MAN, Volvo, Iveco, Renault, Scania, DAF, Mercedes-Benz, Volvo, КамАЗ.

Все представленное выше оборудование для диагностики, так или иначе использует комплексный подход и осуществляет диагностику всех электронных систем автомобиля и автомобиля в целом, включая двигатель, ходовую часть, кузов и прочее. Но для детальной диагностики двигателя машины предназначены мотор-тестеры, которым в нашем каталоге отведено отдельное место. Мотор тестеры позволяют работать с системой зажигания, газораспределения и топливоподачи. Мотор тестеры, а так же осциллографы с превосходной точностью регистрируют показания, которые подвергаясь тщательному анализу программ дают исчерпывающую информацию о состоянии мотора.

С 1996 г. в США при диагностике механизмов управления автомобилями обязательно применение системы OBD-II (на моделях как американского производителя, так и импортируемых в Штаты). Её суть – сканирование блоков управления двигателем и другими агрегатами автомашины и фиксация допущенных при этом отклонений от допустимых экологических норм (в первую очередь – в составе выхлопных газов). Внедрение данной системы было вызвано явным обострением экологических проблем и, как следствие – развитием движения по защите окружающей среды. Изначальная экологическая «специализация» данной системы несколько ограничила возможности её развития в диагностировании дефектов иного рода – но обеспечила её широкое использование как в США, так и в остальном мире.

Её применение в других странах также ведёт свой отчёт с 1996 г., но – только относительно ограниченного круга марок и моделей. Однако в 2001 г. стандарт, требующий оснащения автомобиля системой экологического контроля, был принят и в Европе (EOBD) – и система OBD-II стала гораздо более распространённой. Изначально её применяли к автомобилям работающим на бензине, а с 2004 г. – на дизеле. Но при этом некоторые автомобили более ранних чем 1996 (для Европы – 2001) лет выпуска также совместимы со стандартом OBD-II (т.н. pre-OBD автомобили).

Стандартными функциями системы OBD-II являются следующие:

  1. сканирование текущих параметров функционирования системы управления. Количество поддерживаемых стандартом параметров – приблизительно 20, однако существуют автомобили, поддерживающие гораздо большее количество параметров (например некоторые модели корпорации General Motors поддерживают до 100 параметров). Но при этом каждым отдельный блок управления поддерживается только некоторые из их общего количества. Основными сканируемыми параметрами являются следующие:
    • режим функционирования системы топливной коррекции (в режиме "Closed Loop" информация с датчика кислорода учитывается в её работе, в режиме "Open Loop" – нет)
    • температура хладоносителя
    • краткосрочная и долгосрочная корректировка топливоподачи по банку
    • сила давления топлива
    • сила давления во впускном коллекторе
    • расчетная нагрузка на двигатель и его обороты
    • скорость автомашины
  2. Обычно диагностика отдельной функции системы управления автомобилем предполагает одновременный контроль не более чем 2-3-х параметров. Но в некоторых случаях необходимо параллельное отслеживание и большего их количества. Но оно, как и формат их демонстрации (текст или графика) находится в зависимости от следующих факторов:
    • функционал конкретного сканирующего прибора
    • скорость обмена данными между сканером и блоком управления автомобилем (каковая в свою очередь определяется поддерживаемым протоколом). Но здесь нужно признать, что самый распространенный из протоколов (ISO-9141) в то же время является наиболее низкоскоростным (максимально возможное количество одновременно просматриваемых при работе с ним параметров – 2-4)
  3. Выведение текущих показателей работы системы управления в формате фотоизображения в момент возникновения дефектов
  4. Сканирование кодов неисправностей
  5. Удаление диагностических данных (кодов неисправности, результатов различных тестов и т.п.)
  6. Сканирование данных результатов тестирования лямбда-зондов
  7. запрос последних данных однократных диагностических тестов, контролирующих работу катализатора, режим циркуляции выхлопов и вентиляции топливного бака.
  8. запрос данных непрерывных диагностических тестов, контролирующих параметры, влияющие на состав выхлопа (состав горючей смеси, пропуски зажигания и др.)
  9. Управление исполнительными устройствами.
  10. запрос данных диагностирования автомобиля (его идентификационного номера и данных калибровки).
  11. ручной ввод требования запроса диагностических данных

OBD-II-диагностика предполагает использование пяти протоколов обмена информацией, каждый из которых подразделяется в свою очередь на несколько разновидностей – CAN, ISO 9141, ISO 14230 (также именуется KWP2000), PWM и VPW. Различие между разновидностями – чисто детальное (например, в скорости обмена данными). В сети можно найти так называемые «таблицы применимости» – списки соответствия марок и моделей автомашин и OBD-II-протоколов, поддерживаемых ими. Но эти списки ещё не дают полной и точной информации – не всегда присутствующее в списке авто будет поддерживать OBD-II, как и отсутствующее не обязательно будет лишено этой функции. Тем более сложнее судить о функции поддержки конкретной разновидности протоколов. Дело в том, что всё зависит от конкретной модели, года выпуска а также рынка, на который ориентирован данный автомобиль.

 

Так как же определить, поддерживает ли ваша автомашина OBD-II-стандарты или же нет? В первую очередь (для значительного большинства автомобилей) нужно заглянуть под приборную панель рядом с местом водителя и попробовать найти там 16-контактный диагностический разъем в форме трапеции (DLC - Diagnostic Link Connector) – возможно, что его будет закрывать крышка с надписью «Diagnose», «OBD-II» или подобной. Однако есть автомобили (к примеру, Opel Vectra 1996–1997 гг. выпуска), снабжённые данным разъёмом, но вообще не совместимые со стандартом OBD-II. Тогда необходимо применение сканера, совместимого с фабричными протоколами конкретной марки и модели автомашины. Но чтобы определить, подходит ли этот сканер для диагностирования именно вашего авто, нужно выяснить, поддерживает ли оно OBD-II в принципе – и, если да, до какой стандарт именно. Для этого следует:

  1. изучить техническую документацию ИМЕННО ЭТОГО автомобиля (а не только информацию, касающуюся данной модели вообще), а также его идентификационные таблички – на предмет присутствия среди них таблички «OBD-II certified» (сертифицирована совместимость с OBD-II) или (в идеале) – «OBD-II compliant» (совместим с OBD-II)
  2. ознакомиться с информационной базой данных – например, Mitchell-on-Demand, а для уточнения информации (в общей базе могут быть погрешности) – с дилерскими базами данных по конкретным маркам и моделям
  3. определить, какой именно OBD-II протокол поддерживается вашим автомобилем. В этом может помочь специальный сканер – например, моделей OZEN MOByDic 2600 и Х-431. Комплект ScanTool может помочь Вам в процессе ручной проверки (попеременного подключения адаптеров и определения, какой из них устанавливает связь с системой управления автомобилем). Для облегчения процесса поисков советуем Вам начинать либо с протокола ISO (как самого распространённого), либо с указанного конкретно для данного транспортного средства в «Таблице применимости»
  4. проверить имеющийся разъём диагностики на предмет наличия в нём активных выводов (активными обычно являются не все, а только некоторые выводы, разные для каждого протокола) распиновка разъема диагностики OBD-II (16 контактов) (стандарт J1962):
    02 J1850 Bus+
    04 Chassis Ground
    05 Signal Ground
    06 CAN High (J-2284)
    07 ISO 9141-2 K-Line
    10 J1850 Bus
    14 CAN Low (J-2284)
    15 ISO 9141-2 L-Line
    16 Battery Power (напряжение АКБ)
    Конкретный набор выводов позволяет с некоторой долей вероятности определить, какой именно протокол поддерживается данным автомобилем. Например:
    • для протокола ISO-9141-2 активными являются выводы 4, 5, 7, 16, иногда – 15 (определяется его совместимость с автомобилем присутствием в разъёме контакта 7 и отсутствием в нём контактов 2 и/или 10)
    • для протокола SAE J1850 PWM (Pulse Width Modulation) активными являются выводы 2, 4, 5, 10 и 16 (они же, кроме 10, являются активными для протокола SAE J1850 VPW (Variable Pulse Width Modulation)). Совместимость автомобиля с данными протоколами определяется отсутствием контакта 7 в диагностическом разъёме
  5. Как уже неоднократно отмечалось, самыми распространёнными являются протоколы ISO. Но существуют и исключения – допустим, в большинстве легковых моделей и минивэнов General Motors используются протокол SAE J1850 VPW, а для большинства транспортных средств марки Ford стандартным является использование протокола J1850 PWM – и т.п.

 

В дополнение к вышесказанному следует отметить, что в OBD-II также существует стандарт SAE J2012, в котором прописаны соответствующие этой системе коды неисправностей (DTC – Diagnostic Trouble Code). Они все соответствуют одному формату и структура их письменного обозначения также однотипна – одна латинская буква и четыре арабские цифры (в иных случаях допустимо также использование букв). Но при дешифровке они распределяются на две группы – основных и дополнительных (расширенных) (generic и extended соответственно). Первой категории кодов свойственна жесткая стандартизация и одинаковая для всех транспортных средств, совместимых с OBD-II, дешифровка. Но один и тот же код на РАЗНЫХ автомобилях может быть индикатором РАЗНЫХ неисправностей – всё зависит от конструкции конкретного авто. Коды второй категории, введённой в своё время с целью увеличения количества диагностических функций, распределяются по различным маркам и моделям автомашин.

Одной из важнейших задач бортовой диагностики системы управления двигателем является обеспечение связи с диагностическим оборудованием. О наличии неисправности в работе системы контроллер информирует водителя с помощью диагностической лампы.

Далее система бортовой диагностики должна обеспечить возможность считывания сохраненной в памяти контроллера более полной информации об этой неисправности. Для этого в системе предусмотрен канал обмена данными с диагностическим оборудованием. После подключения диагностического тестера к колодке диагностики системы между контроллером и тестером происходит обмен по специальному диагностическому протоколу. Рассмотрим этот протокол как средство проведения диагностики работы системы управления двигателем. 

Под термином “диагностическое оборудование”, или “тестер”, мы будем понимать специализированный прибор или персональный компьютер с программой для проведения диагностических работ на автомобилях с электронной системой управления двигателем. Многим, наверное, известны такие тестеры и программы, поэтому не будем упоминать их конкретные типы и названия. Все современные контроллеры автомобилей ВАЗ работают с диагностическим оборудованием по протоколу KWP2000 (Keyword Protocol 2000). Этот протокол является международным стандартом (ISO 14230), и его используют во многих системах импортных автомобилей. Сразу заметим, что стандарт определяет только способ “общения” между оборудованием и контроллером, а сама информация (таблицы параметров, определенные производителем коды неисправностей системы, перечень тестируемых исполнительных устройств системы и т. д.) может быть различной. Поэтому оборудование для диагностики не является универсальным.

С помощью диагностического протокола обмена данными диагностическое оборудование может выполнять следующие функции, необходимые при проведении диагностики работы двигателя:

1. Получение информации о системе, двигателе и автомобиле (паспортные данные): идентификационный номер автомобиля (VIN), версия и номер программного обеспечения (ПО) контроллера, дата подготовки ПО, тип двигателя и системы управления, номер для заказа запасных частей и т. д. Это позволяет получить информацию, “не заглядывая под капот”.

2. Получение информации о значениях основных параметров работы системы.

Контроллер передает тестеру таблицу значений текущих параметров работы системы, а тестер отображает их на дисплее. Значения отображаются в физических величинах или в виде графиков изменения во времени. Список параметров определяется на стадии проектирования системы и, по мнению разработчиков, является достаточным для проведения диагностических работ в условиях автосервиса. Типовой набор параметров следующий: температура охлаждающей жидкости, напряжение бортовой сети, скорость вращения коленвала двигателя, положение дроссельной заслонки, нагрузка (масса воздуха) двигателя, угол опережения зажигания, параметры регулирования состава топливовоздушной смеси, параметры регулирования холостого хода и т. д. Понятно, что нельзя предлагать один и тот же список параметров для различных систем с различной конфигурацией. Даже системы с одинаковым контроллером, но выполняющие разные функции (“Eвро-2” и “Евро-3”) будут иметь разные списки параметров. 

Кроме значений параметров тестер может получить от контроллера значения напряжения сигналов с датчиков системы (в зависимости от конфигурации системы список датчиков тоже будет разный). Анализируя значения текущих параметров, можно выявить неисправности в работе системы, которые не определяются функциями самодиагностики. Например, значение температуры охлаждающей жидкости, полученное тестером, равно 30оC, а указатель температуры панели приборов уже подходит к красной зоне — это указывает на неверную работу датчика температуры системы. Или значение положения дроссельной заслонки равно 5%, а педаль акселератора полностью отпущена — в этом случае или неисправен датчик положения дроссельной заслонки, или есть проблемы в механической части привода дросселя. В руководстве по ремонту автомобилей с электронными системами управления двигателем существуют карты проведения диагностики, где описана последовательность действий для обнаружения неисправностей с использованием диагностического оборудования.

3. Получение информации из памяти контроллера о неисправностях в работе системы.

Мы уже говорили о том, что в памяти ошибок контроллера хранится следующая информация: код ошибки, статус-флаги и Freeze Frame. Рассмотрим эту информацию более подробно.

Код ошибки. Каждая неисправность системы кодируется согласно международному стандарту SAE J2012 пятисимвольным кодом. Например, P0122. Первая буква “P” показывает, что ошибка относится к системе управления двигателем. Следующий символ “0” показывает, что эта ошибка определена стандартом (может быть и “2”). Для ошибок, не вошедших в стандарт, а определенных производителем, этот символ будет “1” или “3”. Следующая комбинация символов “12” указывает на датчик положения дроссельной заслонки. Последний символ показывает тип ошибки, в нашем случае “2” — это низкий уровень сигнала с датчика.

Cтатус-флаги. Это дополнительная информация об ошибке. Они показывают, как обстоят дела с этой неисправностью в настоящий момент: активная или нет, случайная или постоянная, ведет к зажиганию диагностической лампы или нет, влияет на увеличение токсичности или нет... Для разных контроллеров существует разный набор статус-флагов. Контроллеры МР70 и М7.9.7, кроме этого, могут сообщать тестеру дополнительно, сколько раз возникала неисправность, время после сброса контроллера и до трех значений параметров работы системы в момент фиксирования ошибки.

Freeze Frame. Это зафиксированный (замороженный) на момент возникновения неисправности список значений параметров системы. Исследуя эти значения, можно определить, когда (при какой температуре, скорости вращения коленвала, нагрузке, скорости автомобиля и т. д.) возникла неисправность. Это поможет выяснить причину возникновения ошибки. Вообще, Freeze Frame — это стандартный список параметров, значения которых должны фиксироваться, но производители систем управления или автомобилей вправе выбрать из этого списка свой набор. Пока в системах управления двигателем автомобилей BAЗ только контроллеры МР70 и М7.9.7 поддерживают в своих реализациях диагностического протокола KWP2000 режим считывания параметров Freeze Frame.

По команде с диагностического тестера можно очистить память хранения ошибок контроллера.

4. Запуск тестов проверки исполнительных устройств системы.

При проведении диагностических работ часто возникает необходимость проверки работоспособности исполнительных устройств системы. В этом случае тестер подает команду на включение или выключение (изменение состояния) устройства. Например, при измерении баланса форсунок перед каждым измерением необходимо наличие рабочего давления в топливной системе (периодически нужно включать электробензонасос). Включение реле бензонасоса можно производить с помощью тестера, не изменяя электрическую схему жгута проводов системы. С помощью диагностического оборудования можно проверить работоспособность всех реле системы, форсунок, модуля зажигания и клапана продувки адсорбера. Кроме того, можно управлять регулятором холостого хода (задать положение регулятора или желаем

Diagnosys - Электронный глоссарий

Искать ...

  • Диагностис
    • О нас
    • Аккредитация качества
    • Экологическая политика
    • История компании
    • Философия и этика
    • NI Alliance
    • НИОКР, инновации
    • Прием на работу
  • Свяжитесь с нами
    • Партнеры по продажам
      • Африка
      • Азия
      • Австралазия
      • Европа
      • средний Восток
      • Северная Америка
      • Южная Америка
    • Офисы
      • Великобритания
      • НАС
      • Германия
      • Индия
    • Обратная связь
  • Решения
    • По рынку
      • Общественный транспорт
        • Документация
        • Адаптеры для тестирования интерфейса
        • Ключевые области знаний
      • Защита
      • Промышленность
      • CORE
    • По функциям
      • Модуль и тест LRU
        • S500
        • Подсистема диагностики S500 +
      • Тест высокой мощности
        • Двигательные установки
        • Испытание вспомогательной силовой установки
      • Тест производительности и диагностика
        • S790 Series2
      • Тестирование печатных плат и поиск неисправностей
      • Устранение неполадок портативных устройств
        • FaultFinder VIP
      • Системы обратной схемы
        • PinPoint IIR
        • PinPoint Sigma
      • Удаление покрытия
        • CRS9000
      • Интеграция тестовых данных
        • Серверы результатов тестирования
  • Продукция
    • S500
      • Самотестирование системы S500
    • Подсистема диагностики S500 +
    • Сервер результатов тестирования
    • Диапазон PinPoint
      • PinPoint II R
      • MAC - многофункциональная аналоговая карта
      • PinPoint Alpha
      • PinPoint Sigma
      • Диагностическая подсистема (DSS)
      • Тестовые адаптеры (DTI)
    • S790 Series2
    • FaultFinder VIP
    • AutoPoint DT
      • AutoPoint MARS
    • CRS9000
    • Инструменты программирования тестов
      • Графический управляемый зонд
      • NI LabVIEW
      • XJTAG
      • Программное обеспечение TestVue
      • Программное обеспечение CATE
  • Поддержка

...Дольше работоспособности электроники

Искать ...

  • Диагностис
    • О нас
    • Аккредитация качества
    • Экологическая политика
    • История компании
    • Философия и этика
    • NI Alliance
    • НИОКР, инновации
    • Прием на работу
  • Свяжитесь с нами
    • Партнеры по продажам
      • Африка
      • Азия
      • Австралазия
      • Европа
      • средний Восток
      • Северная Америка
      • Южная Америка
    • Офисы
      • Великобритания
      • НАС
      • Германия
      • Индия
    • Обратная связь
  • Решения
    • По рынку
      • Общественный транспорт
        • Документация
        • Адаптеры для тестирования интерфейса
        • Ключевые области знаний
      • Защита
      • Промышленность
      • CORE
    • По функциям
      • Модуль и тест LRU
        • S500
        • Подсистема диагностики S500 +
      • Тест высокой мощности
        • Двигательные установки
        • Испытание вспомогательной силовой установки

Основы электрических испытаний

Задача специалиста по тестированию состоит в том, чтобы знать, какое тестовое оборудование использовать для решения поставленной задачи, а также понимать ограничения используемого тестового оборудования.

Электрические испытания в своей основной форме - это приложение напряжения или тока к цепи и сравнение измеренного значения с ожидаемым результатом. Электрическое испытательное оборудование проверяет математические расчеты схемы, и каждая единица испытательного оборудования предназначена для конкретного применения.

Задача специалиста по тестированию состоит в том, чтобы знать, какое тестовое оборудование использовать для выполнения поставленной задачи, а также понимать ограничения используемого тестового оборудования.В этой статье мы рассмотрим наиболее распространенные образцы испытательного оборудования, используемые в полевых условиях.

Электрическое испытательное оборудование следует рассматривать как источник смертельной электрической энергии. Технические специалисты должны соблюдать все предупреждения по технике безопасности и соблюдать все практические меры предосторожности для предотвращения контакта с частями оборудования и соответствующими цепями, находящимися под напряжением, включая использование соответствующих средств индивидуальной защиты.

Связанные: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Мультиметр

Цифровые мультиметры - наиболее распространенный вид измерителей, используемых сегодня.Фото: Fluke

Также известный как VOM (вольт-омметр), мультиметр - это портативное устройство, которое объединяет несколько функций измерения (таких как напряжение, ток, сопротивление и частота) в одном устройстве.

Мультиметры

в основном используются для диагностики электрических проблем в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателями, бытовые приборы, источники питания и системы электропроводки.

Цифровые мультиметры - наиболее распространенный вид измерителей, используемых сегодня; однако аналоговые мультиметры все же предпочтительнее в некоторых случаях, например, при мониторинге быстро меняющегося значения или чувствительных измерениях, таких как проверка полярности трансформатора тока.


Мегомметр

Мегомметры - одно из наиболее часто используемых испытательных устройств. Фото: TestGuy

Мегомметр, который обычно называют просто мегомметром, представляет собой особый тип омметра, который используется для измерения электрического сопротивления изоляторов.

Значения сопротивлений мегомметрами могут находиться в диапазоне от нескольких МОм до нескольких миллионов МОм (тераом). Мегомметры вырабатывают высокое напряжение через внутреннюю схему с батарейным питанием или ручной генератор с выходным напряжением от 250 до 15000 вольт.

Мегомметры являются одним из наиболее часто используемых единиц испытательного оборудования и могут использоваться для измерения изоляции различных типов оборудования, таких как автоматические выключатели, трансформаторы, распределительное устройство и кабели.

Связано: Основное испытательное оборудование: Тестер сопротивления изоляции


Омметр низкого сопротивления

10A DLRO (слева) и 100A DLRO (справа). Фотография: Megger

.

Этот низкоомный омметр, который в полевых условиях часто называют DLRO, используется для высокоточных измерений сопротивления ниже 1 Ом.Омметры с низким сопротивлением вырабатывают токи постоянного тока низкого напряжения от батареи с выходным током до 100 А.

Измерение сопротивления достигается с помощью четырех клемм, называемых контактами Кельвина. Две клеммы несут ток от измерителя (C1, C2), а два других позволяют измерителю измерять напряжение на резисторе (P1, P2). В измерителе этого типа любое падение напряжения из-за сопротивления первой пары проводов и их контактного сопротивления не учитывается измерителем.

Омметры с низким сопротивлением

являются одними из наиболее часто используемых единиц испытательного оборудования и могут использоваться для измерения сопротивления различных типов оборудования, таких как автоматический выключатель и переключающие контакты, кабель и шинопровод, трансформаторы и генераторы, обмотки двигателя и предохранители. .


Набор для проверки гипотенциала (AC / DC / VLF)

Испытательные комплекты Hipot состоят из высоковольтного провода, возвратного провода и заземляющего провода. Фото: HV, Inc.

Испытание на устойчивость к диэлектрику (или высоковольтное сопротивление) проверяет хорошую изоляцию в аппаратуре среднего и высокого напряжения, в отличие от испытания на целостность. Изоляция нагружена выше номинальных значений, чтобы гарантировать минимальные утечки тока от изоляции к земле.

Испытательные комплекты Hipot состоят из высоковольтного провода, возвратного провода и заземляющего провода.Высоковольтный провод подключается к тестируемому устройству, при этом все остальные компоненты заземляются, а результирующий ток измеряется через обратную цепь.

Если протекает слишком большой обратный ток, сработает внутренняя защита испытательного комплекта. Hipot-тест - это тест «годен, не годен», что означает, что ток утечки не должен отключать испытательный комплект, но минимально допустимого значения не существует.

Выходное напряжение может находиться в диапазоне от 1 кВ до 100 кВ + переменного тока при сетевой частоте или постоянного тока в зависимости от тестируемого устройства.Испытание на устойчивость к очень низкой частоте (VLF) - это применение синусоидального сигнала переменного тока, обычно с частотой 0,01 0,1 Гц, для оценки качества электрической изоляции в высоких емкостных нагрузках, таких как кабели.

Связано: Обзор тестирования и диагностики силового кабеля


Набор для сильноточных испытаний (от 500A до 15000A +)

Сильноточный испытательный комплект с первичным впрыском и включенным выключателем. Фотография: Megger

.

Сильноточный испытательный комплект может состоять из двух частей, известных как блок управления и блок вывода, или эти функции могут быть объединены в одном корпусе.Низковольтные и сильноточные выходы используются для проверки первичного впрыска выключателей низкого напряжения.

Испытательный комплект с высоким током или первичной инжекцией состоит из больших трансформаторов, которые понижают линейное напряжение (например, 480 В) до очень низкого уровня, например 2-15 В. Значительное снижение напряжения позволяет значительно увеличить доступный выходной ток (15 кА +), особенно на короткое время.

Токовый выход управляется переключателем ответвлений и переменным резистором. Встроенные таймеры отображают период между включением и отключением тока, чтобы указать, сколько времени требуется для отключения автоматического выключателя.

Автоматические выключатели

можно подключать напрямую к сильноточной испытательной установке через шину или кабель. В зависимости от размера, этот тип испытательного оборудования может также использоваться для проверки реле тока замыкания на землю и других реле тока путем прямого подключения к шине распределительного устройства.


Набор вторичных тестов

Вторичные испытательные комплекты разработаны производителями расцепителей для использования с расцепителями одного типа или семейства с использованием патентованного соединения. Фото: Switchserve

. Автоматические выключатели

с полупроводниковыми и микропроцессорными расцепителями можно тестировать, подавая вторичный ток непосредственно в расцепитель, а не пропуская первичный ток через трансформаторы тока с использованием испытательного комплекта для сильноточного тока.Основным недостатком метода проверки подачи вторичного тока является то, что проверяются только логика и компоненты твердотельного расцепителя.

Вторичные испытательные комплекты разработаны производителями расцепителей для использования с расцепителями одного типа или семейства с использованием патентованного соединения. Наборы для тестирования могут варьироваться от простых ручных, кнопочных по дизайну, до более сложных чемоданов, которые работают аналогично испытательному комплекту для первичной инъекции.

Переносные блоки

часто используются для отключения защитных функций расцепителей, таких как замыкание на землю, при проверке автоматических выключателей через первичный ввод.

Связано: Тестирование первичной и вторичной подачи для автоматических выключателей


Набор для проверки реле

Комплекты для проверки реле

оснащены несколькими источниками для проверки твердотельной и многофункциональной цифровой защиты. Фото: TestGuy

Это имитаторы энергосистем, используемые для тестирования устройств защиты, используемых в промышленных и энергетических системах. Комплекты для проверки реле оснащены несколькими источниками для проверки твердотельной и многофункциональной цифровой защиты, каждый канал напряжения и тока работает независимо для создания различных условий энергосистемы.

Высококачественное испытательное оборудование реле может проверять не только простые реле напряжения, тока и частоты, но и сложные схемы защиты, такие как защита линии с помощью связи и схемы защиты, в которых используются IED (интеллектуальные электронные устройства), соответствующие стандарту IEC61850.

Связано: Проверка и техническое обслуживание реле защиты


Набор для проверки коэффициента мощности

Примеры оборудования для проверки коэффициента мощности. Фото: TestGuy

Наборы для проверки коэффициента мощности

обеспечивают комплексный диагностический тест изоляции переменного тока для высоковольтного оборудования, такого как трансформаторы, вводы, автоматические выключатели, кабели, грозовые разрядники и вращающееся оборудование.

Испытательные напряжения обычно составляют 12 кВ и ниже, набор для проверки коэффициента мощности измеряет напряжение и ток тестируемого устройства с использованием эталонного импеданса. Все представленные результаты, включая потерю мощности, коэффициент мощности и емкость, получены из векторных значений напряжения и тока.

Испытания проводятся путем измерения емкости и коэффициента рассеяния (коэффициента мощности) образца. Измеренные значения изменятся при возникновении нежелательных условий, таких как наличие влаги на изоляции или внутри нее; наличие токопроводящих загрязняющих веществ в изоляционных маслах, газах или твердых телах; наличие внутренних частичных разрядов и др.

Тестовые соединения включают в себя один высоковольтный провод, (2) провода низкого напряжения и заземление. Защитные выключатели и стробоскоп включены для защиты оператора, а датчик температуры используется для корректировки значений теста. Комплекты для проверки коэффициента мощности обычно работают с портативным компьютером, подключенным через USB или Ethernet.

Связано: 3 основных режима проверки коэффициента мощности


Набор для проверки сопротивления обмотки

Примеры оборудования для проверки сопротивления обмоток трансформатора.Фото: TestGuy

Измерение сопротивления обмотки - важный диагностический инструмент для оценки возможных повреждений обмоток трансформатора и двигателя. Сопротивление обмотки в трансформаторах изменится из-за короткого замыкания витков, слабых соединений или ухудшения контактов в переключателях ответвлений.

Измерения получаются путем пропускания известного постоянного тока через тестируемую обмотку и измерения падения напряжения на каждой клемме (закон Ома). Современное испытательное оборудование для этих целей использует мост Кельвина для достижения результатов; Вы можете представить себе набор для измерения сопротивления обмоток как очень большой омметр с низким сопротивлением (DLRO).

Комплекты для измерения сопротивления обмоток имеют (2) токовые провода, (2) провода напряжения и (1) заземляющий провод. Типичный диапазон тока комплекта для проверки сопротивления обмотки составляет 1–50 А. Было обнаружено, что более высокие токи сокращают время испытаний на сильноточных вторичных обмотках.

Связано: Описание испытаний сопротивления обмотки трансформатора


Набор для измерения коэффициента трансформации трансформатора (TTR)

Схема подключения тестирования трехфазного ТТР. Фото: EEP.

Испытательный комплект TTR подает напряжение на высоковольтную обмотку трансформатора и измеряет результирующее напряжение от низковольтной обмотки. Это измерение известно как коэффициент трансформации.Помимо коэффициента трансформации, блоки измеряют ток возбуждения, отклонение фазового угла между обмотками высокого и низкого напряжения и ошибку соотношения в процентах.

Комплекты для измерения коэффициента трансформации трансформатора

бывают разных стилей и различных типов соединений, однако все тестеры коэффициента трансформации имеют как минимум два верхних вывода и два нижних вывода. Напряжение возбуждения испытательного комплекта TTR обычно меньше 100 В.

Связано: Введение в испытание коэффициента трансформации трансформатора


Набор для испытаний трансформатора тока

Пример испытательного оборудования трансформатора тока

Фото: Megger

Испытательные комплекты

CT - это небольшие многофункциональные устройства, предназначенные для проверки размагничивания, соотношения, насыщения, сопротивления обмотки, полярности, отклонения фазы и изоляции трансформаторов тока.Высококачественное испытательное оборудование ТТ может напрямую подключаться к ТТ с несколькими коэффициентами и выполнять все испытания на всех ответвлениях одним нажатием кнопки и без замены проводов.

Трансформаторы тока

можно испытывать в конфигурации оборудования, например, при установке в трансформаторы, масляные выключатели или распределительные устройства. Современный трансформатор тока с несколькими выходами по напряжению и току может использоваться в качестве испытательного комплекта реле при работе с портативным компьютером.

Связано: Объяснение 6 электрических испытаний трансформаторов тока


Набор для испытания атмосферных условий магнетрона (MAC)

Пример испытательного комплекта для испытания атмосферных условий магнетрона (MAC).Фото: Испытание вакуумного прерывателя

Традиционные полевые испытания вакуумных прерывателей используют испытание с высоким потенциалом для оценки диэлектрической прочности бутылки, это испытание дает результат годен / не годен, который не определяет, когда или если давление газа внутри баллона снизилось. упал до критического уровня. В отличие от высокотемпературного теста, тестирование вакуумных прерывателей с использованием принципов магнетронных атмосферных условий (MAC) может обеспечить жизнеспособные средства для определения состояния вакуумных прерывателей до отказа.

Тест магнитного поля настраивается путем простого помещения вакуумного прерывателя в катушку возбуждения, которая создает постоянный ток, который остается постоянным во время теста. На открытые контакты подается постоянное напряжение постоянного тока, обычно 10 кВ, и измеряется ток, протекающий через VI.


Набор для проверки сопротивления заземления

Оборудование для проверки сопротивления заземления с принадлежностями. Фотография: AEMC

Набор для измерения сопротивления заземления работает путем подачи тока в землю между испытательным электродом и удаленным зондом, измеряет падение напряжения, вызванное почвой, до заданной точки, а затем использует закон Ома для расчета сопротивления.

Наборы для проверки сопротивления заземления

представлены в различных стилях, наиболее распространенными из которых являются 4-контактный блок для проверки удельного сопротивления почвы и трехконтактный блок для проверки падения потенциала. Медные стержни или аналогичные стержни используются для контакта с землей вместе с катушками с небольшими многожильными проводами для измерения больших расстояний.

Измерительные клещи для измерения сопротивления заземления измеряют сопротивление заземляющего стержня и сети без использования вспомогательных заземляющих стержней. Они предлагают точные показания без отключения тестируемой системы заземления, но имеют ограничения.

Связанный: 4 Важные методы проверки сопротивления заземления


Регистратор мощности

Существует много различных типов регистраторов мощности, которые различаются по размеру, точности и вместимости. Фото: Fluke

Регистраторы мощности

- это устройства, используемые для сбора данных о напряжении и токе, которые можно загрузить в программное обеспечение для анализа состояния электрической системы. Это инструменты для поиска и устранения неисправностей, которые используются для выявления электрических проблем, таких как скачки напряжения, провалы, мерцание и низкий коэффициент мощности.

Регистраторы мощности

также могут использоваться для измерения энергопотребления за определенный период времени, что полезно для инженеров, планирующих расширение системы, или для клиентов, которые хотят проверить свои счета за электроэнергию. Существует много различных типов регистраторов мощности, которые различаются по размеру, точности и вместимости.

Установка трехфазного регистратора мощности включает в себя обертывание проводов трансформаторами тока с разъемным сердечником и отсечение набора выводов от напряжения системы и заземления. Регистратор настроен для измерения в соответствии с конфигурацией системы в течение определенного периода времени, а также его можно просматривать в режиме реального времени с помощью ПК или встроенного экрана.


Инфракрасная камера

Инфракрасные камеры

доступны в различных стилях и разрешениях. Какая камера лучше всего подходит для проверки, зависит от типа проверяемого оборудования и условий окружающей среды. Фото: TestGuy

Тепловизоры - это камеры, которые обнаруживают невидимое инфракрасное излучение и преобразуют эти данные в цветное изображение на экране. Инфракрасные камеры чаще всего используются для проверки целостности электрических систем, поскольку процедуры тестирования являются бесконтактными и могут выполняться быстро при работающем оборудовании.

Сравнение тепловых характеристик нормально работающего оборудования и оборудования, которое оценивается на предмет аномальных условий, является отличным средством поиска и устранения неисправностей. Даже если аномальное тепловое изображение до конца не изучено, его можно использовать для определения необходимости дальнейшего тестирования.

Тепловизоры классифицируются по точности и разрешающей способности детектора. Инфракрасные камеры высокого класса отличаются захватом изображений с высоким разрешением и точностью измерения температуры до десятых долей градуса или меньше.

Связанный: Инфракрасная термография для электрических распределительных систем


Тестер вибрации

Во время работы тестируемой машины акселерометр определяет ее вибрацию в трех плоскостях движения (вертикальной, горизонтальной и осевой). Фото: Brithinee Electric

Анализаторы вибрации

используются для выявления и обнаружения наиболее распространенных механических неисправностей (подшипники, перекосы, дисбаланс, ослабление) во вращающемся оборудовании. По мере возникновения механических или электрических неисправностей в двигателях возрастает уровень вибрации.Это увеличение уровней вибрации и шума происходит при разной степени тяжести развивающейся неисправности.

Акселерометры

используются для измерения вибрации при работающем оборудовании, а данные загружаются в программное обеспечение для анализа. Во время работы тестируемой машины акселерометр определяет ее вибрацию в трех плоскостях движения (вертикальной, горизонтальной и осевой).


Ультразвуковой тестер

Дуга, трекинг и корона - все это вызывает ионизацию, которая нарушает молекулы окружающего воздуха.Ультразвуковой тестер обнаруживает высокочастотные звуки, производимые этими излучениями, и переводит их в слышимый человеком диапазон.

Звук каждого излучения слышен в наушниках, а интенсивность сигнала отображается на дисплее. Эти звуки могут быть записаны и проанализированы с помощью программного обеспечения ультразвукового спектрального анализа для более точной диагностики.

Обычно электрооборудование должно быть бесшумным, хотя некоторое оборудование, такое как трансформаторы, может издавать постоянный гул или некоторые устойчивые механические шумы.Их не следует путать с беспорядочным, шипящим жаром, неравномерным и хлопающим звуком электрического разряда.

Ультразвуковые извещатели также могут использоваться для обнаружения утечек воздуха в баках трансформаторов и выключателях с элегазовой изоляцией.


Банк нагрузки

Блоки нагрузки

доступны для различных применений и обычно имеют размер в зависимости от номинальной мощности в кВт. Фотография: ASCO Avtron

Блоки нагрузки

используются для ввода в эксплуатацию, обслуживания и проверки источников электроэнергии, таких как дизельные генераторы и источники бесперебойного питания (ИБП).Блок нагрузки прикладывает электрическую нагрузку к тестируемому устройству и рассеивает полученную электрическую энергию через резистивные элементы в виде тепла. Резистивные элементы охлаждаются моторизованными вентиляторами внутри конструкции блока нагрузки.

При необходимости можно соединить несколько блоков нагрузки. Некоторые банки нагрузки являются чисто резистивными, в то время как другие могут быть чисто индуктивными, чисто емкостными или любой их комбинацией. Банки нагрузки - лучший способ воспроизвести, доказать и проверить реальные потребности критически важных систем электроснабжения.


Тестер импеданса батареи

Оборудование для испытания импеданса батарей

в основном используется на подстанциях и в ИБП для определения состояния свинцово-кислотных ячеек путем измерения важных параметров батареи, таких как импеданс ячейки, напряжение ячейки, сопротивление межэлементного соединения и ток пульсации. Все три теста могут быть выполнены на одном устройстве.

Тестер импеданса батареи работает, подавая сигнал переменного тока на отдельную ячейку и измеряя падение напряжения переменного тока, вызванное этим переменным током, а также ток в отдельной ячейке.Затем он рассчитает импеданс. Используемый стандартный набор отведений - двухточечный, по Кельвину. Одна точка предназначена для подачи тока, а другая - для измерения потенциала.


Аккумуляторный ареометр

Удельный вес измеряется ареометром. Цифровые ареометры, подобные изображенному выше, - самый простой способ получить показания. Фото: BAE Canada.

Аккумуляторный ареометр используется для проверки состояния заряда аккумуляторного элемента путем измерения плотности электролита, что достигается путем измерения удельного веса электролита.Чем больше концентрация серной кислоты, тем плотнее становится электролит. Чем выше плотность, тем выше уровень заряда.

По мере старения аккумулятора удельный вес электролита будет уменьшаться при полном заряде. Удельный вес измеряется путем втягивания пробы жидкости в испытательное оборудование и получения показаний. Показания могут быть представлены поплавком на числовой шкале или цифровым дисплеем.

Связано: 3 простых, но эффективных теста для аккумуляторных систем


5 Технологии и инструменты в процессе диагностики | Улучшение диагностики в здравоохранении

, вынуждая клиницистов «сосредоточиться на отметках, а не на вдумчивом документировании своего клинического мышления» (Schiff and Bates, 2010, p.1066). Кроме того, исследования показали, что электронная документация увеличивает нагрузку на врачей: пациенты отделений интенсивной терапии и врачи тратят значительно больше времени на клинический анализ и документацию после внедрения EHR (Carayon et al., 2015). Например, обширная клиническая документация для обоснования оплаты, облегченная функцией копирования и вставки электронных медицинских записей, может способствовать когнитивной перегрузке и затруднять клинические рассуждения. В главе 7 более подробно рассказывается о том, как рекомендации по документации для выставления счетов влияют на диагностический процесс, и представлены рекомендации комитета о том, как лучше согласовать рекомендации по документации с клиническими исследованиями.

Основная цель использования данных, собранных в EHR, для юридического, биллинга и управления здоровьем населения привела к появлению множества структурированных форматов клинической документации в инструментах ИТ здравоохранения. Однако структурированная документация может вызвать проблемы для врачей, поскольку они «при написании клинических заметок ценят различные факторы, такие как выразительность повествования, соответствие существующему рабочему процессу и удобство использования» (Rosenbloom et al., 2011, стр. 181). Клиницисты должны иметь возможность эффективно записывать информацию таким образом, чтобы она была полезна другим специалистам здравоохранения, участвующим в уходе за пациентом.Исследования показали, что «в общем контексте краткое, неограниченное, свободное текстовое общение является наиболее эффективным для координации работы над сложной задачей» (Ash et al., 2004, p. 106). Есть также опасения, что чрезмерно структурированный ввод данных повлиял на когнитивную направленность и способность клиницистов сосредоточиться на соответствующей информации в ЭУЗ и уделять ей внимание (Ash et al., 2004).

Инструменты

, такие как технология распознавания речи, были разработаны для помощи врачам с клинической документацией с разной степенью успеха.Хотя несколько исследований показали, что технология распознавания голоса может сократить время обработки отчетов о результатах (Johnson et al., 2014; Prevedello et al., 2014; Singh and Pal, 2011), существует ряд проблем, связанных с этой технологией, которые затруднить выполнение или может отрицательно повлиять на процесс диагностики. Сюда входят высокие затраты на внедрение, необходимость всестороннего обучения пользователей, снижение качества отчетов из-за ошибок, связанных с технологиями, и прерывания рабочего процесса (Bhan et al., 2008; де ла Крус, 2014; Fratzke et al., 2014; Хьюстон и Рупп, 2000; Хойт и Йошихаши, 2010; Джонсон и др., 2014; Quint et al., 2008).

Еще одна технология, которая может помочь решить проблемы клинической документации, - это обработка естественного языка (Hripcsak and Vawdrey, 2013). Обработка естественного языка извлекает данные из произвольного текста, преобразуя заметки и повествования врачей в структурированные стандартизированные форматы. Когда задача достаточно ограничена и есть достаточно времени для обучения системы, системы обработки естественного языка могут извлечь

Что такое ЭМС Электромагнитная совместимость »Примечания по электронике

EMC приобретает все большее значение по мере увеличения числа устройств, подключенных к беспроводной сети.Определение того, что такое ЭМС, и понимание концепций позволяют с самого начала достичь электромагнитной совместимости.


EMC / EMI Включает:
Основы EMC Основы электромагнитных помех Стандарты ЭМС CISPR11 CISPR16 CISPR22 FCC 47 часть 15 Методы проектирования ЭМС Тест на соответствие требованиям ЭМС


Электромагнитная совместимость, ЭМС - это концепция, позволяющая различным электронным устройствам работать без взаимных помех - электромагнитных помех, электромагнитных помех - когда они работают в непосредственной близости друг от друга.

Все электронные схемы могут излучать или улавливать нежелательные электрические помехи, которые могут нарушить работу той или иной схемы.

Что такое ЭМС - определение

Часто, имея дело с ЭМС, возникает вопрос: что такое ЭМС; и иметь определение.

Определение ЭМС: ЭМС определяется как способность устройств и систем работать в своей электромагнитной среде без нарушения их функций и без сбоев, и наоборот.

Электромагнитная совместимость, EMC гарантирует, что работа не влияет на электромагнитную среду до такой степени, что это отрицательно влияет на функции других устройств и систем.

Повышение осведомленности об ЭМС

В первые дни развития электроники использовалось сравнительно немного электронного оборудования. Однако сегодня количество предметов повседневной электроники значительно выросло. Некоторые из них передают сигналы, а многие другие являются чувствительными приемниками.Другие могут использовать системы цифровой электроники, которые могут ложно срабатываться переходными сигналами. Эти и многие другие примеры могут сделать ЭМС решающим элементом любой конструкции электроники.

На заре электронных систем хлопки, хлопки и общий шум, воспринимаемый радио, воспринимались как часть «опыта» прослушивания радио, даже если они были созданы человеком из другого местного электрического оборудования.

Некоторые из первых серьезных проблем, связанных с воздействием электрических помех на электронные системы, были связаны с военными приложениями.После Второй мировой войны, с ростом значения ядерного оружия, электронный импульс, генерируемый взрывом, и его влияние на оборудование стали проблемой. Также вызывало беспокойство влияние мощных радарных систем на оборудование.

Позже стали очевидны риски для электронного оборудования, связанные с электростатическим разрядом. Это не только повредило электронное оборудование, но и могло вызвать ложные срабатывания.

В течение 1970-х годов использование логических схем быстро росло, и вместе с этим увеличивалась скорость переключения.Эти цепи открылись для воздействия электромагнитных помех, и выросло понимание необходимости включения мер предосторожности по электромагнитной совместимости в конструкцию, если эти элементы должны удовлетворительно работать в реальном мире.

В результате этого растущего осознания многие страны осознали EMC как растущую проблему. Некоторые начали издавать директивы для производителей электронного оборудования, определяя стандарты, которым оборудование должно соответствовать перед тем, как его можно будет продать. Европейское сообщество было одной из первых областей, где были соблюдены требования ЭМС.Хотя поначалу многие были настроены скептически, введение стандартов EMC повысило стандарты и позволило большинству типов оборудования работать параллельно друг с другом без помех. Это было особенно важно в связи с быстрым ростом использования мобильных телефонов

Основы ЭМС

Цель применения мер по ЭМС - гарантировать, что различные элементы электронного оборудования могут работать в непосредственной близости, не вызывая чрезмерных помех.

Помехи, которые приводят к снижению производительности, известны как электромагнитные помехи, EMI.Именно эти помехи необходимо уменьшить, чтобы гарантировать, что различные элементы электрического оборудования совместимы и могут работать в присутствии друг друга.

ЭМС состоит из двух основных элементов:

  • Излучения: Излучения EMI относятся к генерации нежелательной электромагнитной энергии. Их необходимо снизить ниже определенных допустимых пределов, чтобы гарантировать, что они не вызывают сбоев в работе другого оборудования.
  • Восприимчивость и невосприимчивость: Чувствительность элемента электроники к электромагнитным помехам - это то, как он реагирует на нежелательную электромагнитную энергию.Целью конструкции схемы является обеспечение достаточно высокого уровня устойчивости к этим нежелательным сигналам.

Электромагнитные помехи, EMI

Электромагнитные помехи, EMI - это название, данное нежелательному электромагнитному излучению, которое создает потенциальные помехи для других элементов электронного оборудования.

Существует множество способов передачи электромагнитных помех от одного элемента оборудования к другому. Понимание этих методов является ключом к снижению воздействия электромагнитных помех.

EMI можно разделить на две категории:

  • Непрерывные помехи: Постоянные помехи часто имеют форму радиосигнала или колебаний, которые поддерживаются. Это может быть неэкранированный генератор, или это может быть широкополосный шум.
  • Импульсная помеха: Этот вид помех состоит из короткого импульса. Это может произойти из-за электростатического разряда, молнии или переключаемой цепи.

Помимо понимания формы помех, также необходимо знать, как помехи передаются от передающего устройства к принимающему. К сожалению, это не всегда легко обнаружить, поскольку многие пути трудно определить. Однако хороший первоначальный дизайн решает многие проблемы.

Стандарты ЭМС

С ростом осведомленности и необходимости поддерживать высокие стандарты электромагнитной совместимости были введены многие стандарты, чтобы помочь производителям соответствовать уровням, которые им необходимы для поддержания полной электромагнитной совместимости.

Много лет назад уровни электромагнитной совместимости были низкими, и часто возникали помехи - такси, проезжающее мимо дома при использовании своего радиотелефона, с большой вероятностью нарушило работу телевизора, и было много других случаев.

В результате возникла необходимость во введении стандартов ЭМС для обеспечения требуемых уровней совместимости.

EMC теперь является неотъемлемой частью любого проекта по разработке электроники. В настоящее время стандарты внедряются и применяются во всем мире, поэтому любой новый продукт должен соответствовать и был протестирован, чтобы убедиться, что он соответствует соответствующим стандартам EMC.Хотя это представляет собой дополнительную проблему для инженера-конструктора электроники, важно, чтобы использовались передовые методы ЭМС и чтобы характеристики ЭМС продукта были достаточными для обеспечения его правильной работы во всех разумных сценариях.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Машинное обучение для медицинской диагностики - 4 актуальных приложения

Медицинская диагностика - это категория медицинских тестов, предназначенных для выявления инфекций, состояний и заболеваний. Эти медицинские средства диагностики подпадают под категорию медицинских диагностических средств in vitro (IVD), которые покупаются потребителями или используются в лабораторных условиях. Для получения результатов биологические образцы, такие как кровь или ткань, выделяют из человеческого тела. Сегодня ИИ играет важную роль в развитии области медицинской диагностики.

В этой статье мы рассмотрим текущие применения ИИ в медицинской диагностике, чтобы помочь руководителям бизнеса понять тенденции, формирующие эту область. Мы представим наши выводы в трех основных разделах:

  • Общие определения и обобщенные выводы из нашего исследования
  • Текущие применения ИИ в медицинской диагностике
  • Связанные интервью с руководителями Emerj

Наш собственный ИИ в здравоохранении Отраслевые исследования показывают, что около трети всех SaaS-компаний в области ИИ в сфере здравоохранения частично или исключительно фокусируются на диагностике, что делает ее одним из основных направлений для растущих стартапов в этой области.Более подробную информацию о мобильной медицинской диагностике можно найти в нашей статье «ИИ для мобильной медицинской диагностики - текущие приложения».

Перед тем, как погрузиться в существующие приложения, мы начнем с общих фактов и терминологии о медицинской диагностике in vitro, а также с краткого обзора результатов нашего исследования по этой теме:

Машинное обучение для медицинской диагностики: выводы Вперед

Институт медицины Национальной академии наук, инженерии и медицины сообщает, что «диагностические ошибки являются причиной примерно 10 процентов смертей пациентов», а также составляют от 6 до 17 процентов госпитальных осложнений.Важно отметить, что работа врача обычно не является прямой причиной диагностических ошибок. Фактически, исследователи объясняют причину ошибок диагностики множеством факторов, включая:

  • Неэффективное сотрудничество и интеграцию информационных технологий здравоохранения (Health IT)
  • Пробелы в общении между врачами, пациентами и их семьями
  • Система работы в сфере здравоохранения который, по замыслу, не обеспечивает адекватной поддержки процесса диагностики

Чтобы предоставить дополнительный контекст, обзор 25 лет выплат по искам о злоупотреблениях в США.S. исследователей Johns Hopkins показали, что заявления об ошибках диагностики чаще встречаются в амбулаторных условиях (68,8%) по сравнению с стационарными (31,2%). Однако те, которые произошли в стационарных условиях, были примерно на 11,5% более вероятными с летальным исходом. Общая сумма выплат за 25 периодов составила 38,8 млрд долларов.

Для решения этих проблем многие исследователи и компании используют искусственный интеллект для улучшения медицинской диагностики.

При прогнозируемом росте рынка диагностики in vitro к 2023 году до 76 миллиардов долларов, старение населения, распространенность хронических заболеваний и появление персонализированной медицины являются факторами, способствующими увеличению размера рынка IVD.По оценкам, национальные расходы на здравоохранение достигли 3,4 триллиона долларов в 2016 году, а доля здравоохранения в ВВП, по прогнозам, достигнет почти 20 процентов к 2025 году.

Текущие приложения ИИ в медицинской диагностике

Многие из сегодняшних диагностических приложений машинного обучения по всей видимости, подпадают под следующие категории:

  • Чат-боты : Компании используют AI-чат-ботов с возможностью распознавания речи для выявления закономерностей в симптомах пациента, чтобы сформировать потенциальный диагноз, предотвратить заболевание и / или рекомендовать соответствующий курс действий.
  • Онкология : Исследователи используют глубокое обучение для обучения алгоритмов распознавания раковых тканей на уровне, сопоставимом с подготовленными врачами. (Читателям, специализирующимся на лечении рака, может быть интересно прочитать нашу полную статью о глубоком обучении в онкологии.)
  • Патология : Патология - это медицинская специальность, которая занимается диагностикой заболеваний на основе лабораторных анализов. жидкостей организма, таких как кровь и моча, а также тканей.Машинное зрение и другие технологии машинного обучения могут улучшить те усилия, которые традиционно оставлялись только патологам с микроскопами.
  • Rare Diseases : Программное обеспечение для распознавания лиц объединяется с машинным обучением, чтобы помочь врачам диагностировать редкие заболевания. Фотографии пациентов анализируются с помощью анализа лица и глубокого обучения для выявления фенотипов, которые коррелируют с редкими генетическими заболеваниями.

Важно отметить, что это не полный список всех диагностических приложений ИИ.Мы стремились представить краткую репрезентативную группу текущих инициатив на основе нашего исследования.

Теперь мы рассмотрим текущие приложения ИИ в медицинской диагностике, начиная с чат-ботов.

Чат-боты

Приложение чат-бота Babylon Health, как показано на их домашней странице.

Британский стартап Babylon Health - это служба подписки на медицинское обслуживание, которая разработала чат-бота для профилактики и диагностики заболеваний.

Сообщается, что с помощью распознавания речи чат-бот будет сравнивать симптомы, которые он получает от пользователя, с базой данных болезней.В ответ он порекомендует соответствующий курс действий, основанный на сочетании описанных симптомов, истории болезни и состояния пациента.

Например, ответ приложения на сообщение о гриппоподобных симптомах может быть рекомендацией посетить аптеку за лекарствами, отпускаемыми без рецепта. Напротив, если пользователь сообщает о более серьезных симптомах, приложение может порекомендовать позвонить на горячую линию или обратиться непосредственно в больницу.

В дополнение к функции диагностики, приложение также предназначено для интеграции данных пациента с носимых устройств для мониторинга таких жизненно важных функций, как частота сердечных сокращений и уровень холестерина.

В настоящее время Babylon поддерживается 85 миллионами долларов в рамках серий A и B от 9 инвесторов, включая инвестиционные фирмы и индивидуальных инвесторов, таких как основатели проекта DeepMind Learning от Google Демис Хассабис и Мустафа Сулейман.

Опираясь на 150000 зарегистрированных пользователей, которые в настоящее время платят 7,99 фунтов стерлингов (11,40 долларов США) в месяц за доступ к флагманским индивидуальным видео-консультациям с врачом Babylon от пула из 100 врачей (доступны 12 часов в день, 6 дней в неделю) чат-бота предполагается, что он будет стоить около 4 фунтов стерлингов.99 (7,10 доллара США) в месяц.

Чат-бот был предложен для тестирования группе из 21 500 пациентов в двух больницах. Стартап получил регистрацию от 10 процентов этих пациентов для тестирования приложения. Сообщается, что в обеих больницах Эссекса время ожидания пациентов сократилось с тех пор, как в апреле 2015 года Вавилон был впервые предоставлен бесплатно для их пациентов.

Однако неясно, насколько сократилось время ожидания.

Описанная как «личный помощник по здоровью», компания Ada Health из Берлина предлагает платформу, которая использует искусственный интеллект и машинное обучение для отслеживания состояния здоровья пациентов и предлагает пользователям лучшее понимание изменений в их здоровье.Платформа предлагается отдельным пользователям, организациям и врачам.

Хотя запуск сам по себе не описывает себя как диагностическую услугу, приложение предоставляет рекомендации, основанные на симптомах пациента и информации о его здоровье.

Помимо обзоров, опубликованных на веб-сайте стартапа, и обзоров, опубликованных пользователями на сайтах, где приложение доступно для загрузки, конкретные данные о влиянии платформы Ada на результаты лечения пациентов или понимание ее модели финансирования получить нелегко. имеется в наличии.

В некотором смысле чат-боты в сфере здравоохранения немного похожи на Интернет вещей для фитнеса несколько лет назад. Это кажется неизбежным, кажется многообещающим, кажется, что это имеет смысл, но какие именно инструменты используются какими сторонами для получения результатов… мы просто пока не можем сказать. Я подозреваю, что в ближайшие 2-3 года мы увидим появление успешных сценариев использования.

Некоторые из наших прошлых гостей подкастов по искусственному интеллекту догадывались о том, как может выглядеть интерфейс чата в сфере здравоохранения:

«Спустя пять лет я не удивлюсь, если перед тем, как обратиться к врачу, вы поговорите с чат-бот ... и раньше станьте информированным пациентом. - Риза Беркан, основатель exClone Inc.

Онкология

Исследователи Стэнфордского университета обучили алгоритм диагностики рака кожи с использованием глубокого обучения, в частности, глубоких сверточных нейронных сетей (CNN). Алгоритм был обучен обнаруживать рак кожи или меланому с использованием «130 000 изображений кожных поражений, представляющих более 2 000 различных заболеваний».

В США ежегодно выявляется около 5,4 миллиона новых диагнозов рака кожи, и раннее выявление имеет решающее значение для повышения выживаемости.Например, раннее выявление коррелирует с 97-процентной пятилетней выживаемостью, но быстро снижается на более поздних стадиях, достигая 15-20-процентного запаса на стадии IV. В 2017 году примерно 9730 человек умрут от меланомы и один человек умирает от меланомы каждые 54 минуты.

Чтобы представить контекст, визуальный осмотр является первым шагом диагностики рака кожи, и дерматолог осматривает интересующее поражение с помощью дерматоскопа (портативного микроскопа). Если дерматолог считает, что поражение действительно злокачественное, или если первоначальная оценка неубедительна, дерматолог проведет биопсию.

Стэнфордский алгоритм глубокого обучения был протестирован с участием 21 сертифицированного дерматолога, которые просмотрели 370 изображений и их спросили, «будут ли они проводить биопсию или лечение, или успокаивать пациента» на основе каждого изображения. Результаты показали, что алгоритм имел те же возможности, что и 21 дерматолог, в определении наилучшего курса действий для всех изображений.

Из журнала Nature: Классификация рака кожи на уровне дерматологов с помощью глубоких нейронных сетей.

Это многообещающие результаты, однако исследовательская группа признает, что перед внедрением алгоритма в клиническую практику требуется дополнительное тщательное тестирование.В настоящее время наше исследование не предоставило доказательств какого-либо клинического применения.

Больше информации и большое количество примеров использования программ искусственного интеллекта в онкологии можно увидеть в нашем полномасштабном отчете по этой теме.

Патология

Способ диагностики заболеваний патологами, который включает в себя ручное наблюдение изображений под микроскопом, оставался относительно неизменным на протяжении более века. Стремясь повысить скорость и точность диагнозов, группа исследователей из Медицинского центра Бет Исраэль и Гарвардской медицинской школы использовала глубокое обучение для обучения алгоритму, способному интегрировать множественное распознавание речи и распознавание изображений для диагностики опухолей.

Исследователи начали с сотен изображений с помеченными областями, показывающими раковые и доброкачественные клетки. Затем были извлечены помеченные регионы, в результате чего были получены миллионы примеров, которые послужили основой для модели, которая будет обучать алгоритм.

По сравнению с человеческими патологами, результаты исследования показали, что показатель успешности диагностики составил 92 процента; на четыре процентных пункта ниже, чем у человека в 96 процентов.Однако если объединить алгоритм и результаты, полученные человеком, уровень точности составил 99,5 процента.

Наше исследование не предоставило доказательств какого-либо клинического применения, однако эти результаты могут привести к более широкому внедрению методов глубокого обучения в области патологии в ближайшем будущем.

Rare Diseases

Через приложение Face2Gene программное обеспечение для распознавания лиц объединяется с машинным обучением, чтобы помочь врачам диагностировать редкие заболевания (в данном случае от дисморфических черт лица).Фотографии пациентов анализируются с помощью анализа лица и глубокого обучения для выявления фенотипов, которые коррелируют с редкими генетическими заболеваниями.

Платформа в настоящее время доступна только обученным клиницистам для предотвращения ложных срабатываний и поддерживает более 7500 заболеваний. Face2Gene перечисляет на своем веб-сайте ряд партнеров, включая Медицинский колледж Бейлора, Клинику Кливленда и Kaiser Permanente. Однако неясно, сколько всего пользователей имеют доступ к Face2Gene и какое влияние приложение оказало на эти группы пациентов.

Видео ниже представляет собой полное пошаговое видео по программе Face2Gene. Примерно в 6:30 видео есть краткая демонстрация соответствия лица ребенка различным синдромам, которые у ребенка могут быть на основе анализа лица:

Заключительные мысли по диагностике ML / AI

Машинное зрение становится общей нитью этих диагностических приложений, и следует отметить, что улучшения в этой области будут тесно коррелировать с надежными приложениями в диагностике.Однако метод проб и ошибок сильно повлияет на ценность этой технологии в реальном мире и на степень ее внедрения в области диагностики.

Применение ИИ в медицинской диагностике находится на ранней стадии внедрения в различных областях, и в настоящее время доступны ограниченные данные о результатах лечения пациентов. Эти приложения могут повлиять на то, как врачи и системы здравоохранения подходят к диагностике, а также на способность людей понимать изменения в своем здоровье в режиме реального времени.

При прогнозируемом быстром росте сектора медицинского оборудования компании, прилагающие усилия для вывода на рынок точной и надежной медицинской диагностики на основе приложений машинного и глубокого обучения, могут быть готовы захватить процентную долю этого прибыльного рынка (огромные венчурные инвестиции в здравоохранение ИИ может показаться, что у ИИ есть шанс повлиять на следующую волну медицинских диагностических технологий).

Несмотря на большие перспективы, ИИ в медицинской диагностике все еще является относительно новым подходом, и многим клиницистам еще предстоит убедиться в его надежности, чувствительности и в том, как он будет практически интегрирован в клиническую практику без ущерба для клинического опыта.

«[Медицинские бригады], которые наиболее интересны, - это те, в которые входят как медицинские работники , так и специалисты по ИИ, потому что обычно люди ИИ появляются со словами« как только кто-то дает нам много данных мы собираемся найти все секреты », и , тогда медицинские работники действительно не знают, что возможно - когда вы собираете их вместе, вы начинаете видеть некоторые убедительные приложения…» - Стивен Гулланс

Продолжение Потребуется тщательное тестирование этих приложений, чтобы подтвердить их полезность в сочетании с обучением клиницистов и систем здравоохранения тому, как эффективно применять эти технологии в клинической практике.

Мы продолжим внимательно следить за областью медицинской диагностики, так как подозреваем, что в ближайшем будущем это станет активной областью для других приложений искусственного интеллекта. Следите за обновлениями нашего раздела, посвященного здравоохранению, чтобы узнать о наших последних обзорах, исследованиях и интервью.

Интервью по теме здравоохранения от ИИ в Отраслевой подкаст

В Emerj мы фокусируемся на представлении реальных приложений ИИ и достоверных фактов нашей аудитории бизнес-лидеров. Наше исследование ландшафта возможностей ИИ отфильтровывает «шумиху» и заголовки, чтобы дать представление о реальных экономических и стратегических преимуществах ИИ сегодня и в ближайшем будущем.

В нашем подкасте «ИИ в промышленности» мы проводим интервью с руководителями, инвесторами и исследователями, чтобы вооружить нашу аудиторию знаниями о реальных тенденциях и проблемах применения ИИ и их экономических последствиях.

Подкаст легко доступен на iTunes, а письменные резюме, в которых представлены основные моменты интервью, можно найти в разделе «Интервью» на Emerj.com. Тем не менее, мы выбрали несколько интервью, которые могут быть интересны читателям, которым понравилась эта статья о медицинской диагностике:

  • Стив Гулланс из Excel Venture Management изучает практические соображения по внедрению медицинских технологий, причины, которые зачастую меньше связаны с качеством или потенциалом технологии. и больше о ясности в отношении рентабельности инвестиций для инвесторов.
  • Кори Кидд из Catalia Health делится прогнозами относительно пятилетних тенденций в области медицинских приложений искусственного интеллекта.
  • Доктор Риза Беркан из exClone обсуждает чат-ботов и затрагивает будущие применения того, что может проявиться в этой области через 5–10 лет в медицинских и других потребительских приложениях.
  • Юфэн Дэн, главный научный сотрудник Infervision, обсуждает расширение возможностей машинного зрения, в том числе о том, какие данные нужно собирать и что теперь возможно с помощью этой технологии.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *