Диод зенера что это: Стабилитрон или диод Зенера — подробное описание

Содержание

Стабилитрон или диод Зенера — подробное описание

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференциального сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитрон с резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

 

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

 

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

 

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Стабилитрон (Диод Зенера) — Принцип работы, ВАХ, сфера применения

Стабилитрон – это особый тип диодов, которые также называются зенеровскими. У этого типа есть главная особенность – при подаче напряжения, выше определенного номинала, увеличивается ток на выходе. Диод Зенера, который имеет и другое название – стабилитрон, имеет вид диода, который работает в режиме пробоя обратного смещения перехода. До этого, через него проходит небольшой ток, а утечка очень маленькая, что обуславливается большим сопротивлением.

При пробое, номинал тока моментально возрастает, так как его сопротивление в данный отрезок времени несколько долей Ом. В статье изложены принцип работы, где используются и какие функции они выполняют в современной радиоэлектронике. По теме диодов Зенера в статье представлены два интересных видеоролика и подробная научная статья бонусом для читателя.

Диоды Зенера или стабилитрона.

Принцип работы стабилитрона

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993). Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах. Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током. На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г». Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

Стабилитрон.

К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры. Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки. Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою.

Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния. Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м. Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитрон на схеме.

Характеристики диода Зенера

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах. Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Материал в тему: устройство подстроечного резистора.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем. Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Устройство полупроводникового диода.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так: Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод. Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза. Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Материал по теме: Что такое реле контроля.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр? Давайте возьмем стакан и будем наполнять его водой. Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику. Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине.

Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана. Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

 

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В: Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт. Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой.

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.   Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности. где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение. Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Обозначение стабилитрона.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где:

  • Iпр– прямой ток, А
  • Uпр – прямое напряжение, В
  • Эти два параметра в стабилитроне не используются
  • Uобр– обратное напряжение, В
  • Uст– номинальное напряжение стабилизации, В
  • Iст – номинальный ток стабилизации, А
  • Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.
  • Imax– максимальный ток стабилитрона, А
  • Imin– минимальный ток стабилитрона, А
  • Iст, Imax, Imin– это  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником. Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Стабилитрон.

Заключение

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

В статье разобраны все аспекты работы стабилитрона. Более детальную информацию можно узнать в статье Лабораторная работа по диодам Зенера. Более подробно об этом можно узнать, прочитав статью Что такое генератор Ганна.В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electricalschool.info

www.ruselectronic.com

www.ustroistvo-avtomobilya.ru

Предыдущая

ПолупроводникиЧто такое варикап?

Следующая

ПолупроводникиЧто такое фотодиод

Как работает стабилитрон | Характеристика стабилитрона.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана.

Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

[quads id=1]

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон


Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется

параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.


Можете посмотреть видео на тему “КАК РАБОТАЕТ СТАБИЛИТРОН (ДИОД ЗЕНЕРА)”, рекомендую.

Стабилитроны (Диод Зенера), Стабисторы Электроника, Микроэле…

Сразу хочу сказать, что здесь никакой воды про стабилитрон, и только нужная информация. Для того чтобы лучше понимать что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база

Существуует большое многообразие полупроводниковых приборов, — Диоды Шоттки, диоды Ганна, стабилитрон ы, светодиоды, фотодиоды, туннельные диоды и еще много разных типов и областей применения.

Полупроводниковые диоды, для которых характерна слабая зависимость напряжения от тока в области электрического пробоя при обратном смещении, называют стабилитронами.

Стабилитроном называется полупроводниковый диод , напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне, и который предназначен для стабилизации уровня напряжения в схеме. Стабилитроном — радиокомпонент, конструктивно напоминающий диод, но кардинально отличающийся от него характером функционирования. Ключевым элементом так же, как и в обычном полупроводниковом вентиле, является полупроводниковый p-n-переход. И реакции обоих элементов на подачу обратного напряжения схожи – они оба запираются. Разница заключается в том, что пробой p-n-переходной зоны, который наступает при достижении обратным смещением некоего критического значения и выводит диод из строя, для стабилитрона является рабочим режимом.

Исходным материалом служит кремний, обеспечивающий малые обратные токи, широкий диапазон температур, высокую крутизну ВАХ в области напряжения стабилизации. Принцип работы стабилитронов основан на использовании свойства p-n-перехода при электрическом пробое сохранять практически постоянную величину напряжения в определенном диапазоне изменения обратного тока. Механизм пробоя может быть туннельным, лавинным или смешанным.

Основа функциональности стабилитрона состоит в том, что при довольно больших изменениях обратного тока напряжение на элементе остается практически неизменным. Другими словами, насколько бы существенным ни было обратное смещение, радиокомпонент будет поддерживать постоянный уровень выходной разности потенциалов. Эта стабилизированное напряжение может использоваться в качестве опорного, что и находит применение в реальных радиоэлектронных устройствах, критичных к электрическим характеристикам сигнала.

У полупроводникового стабилитрона (рис. 11.4, а) — в рабочем режиме используется обратная ветвь его ВАХ (рис. 11.4, б), причем на участке, соответствующем электрическому пробою.

Рис. 11.4. Полупроводниковый стабилитрон:

а — условное изображение; б — ВАХ стабилитрона

Туннельный и лавинный пробой


Пробой p-n-перехода, при котором работают стабилитроны, может быть лавинным или туннельным. Они являются электрическими и носят обратимый характер. То есть при отключении обратного смещения физико-химические свойства полупроводников восстанавливаются, и диод продолжает исполнять свои функции. Однако в случае стабилитронов условия возникновения пробоя создаются и поддерживаются искусственно.

В основе лавинного и туннельного пробоя лежат одноименные квантовые эффекты, наблюдаемые в кристаллической структуре полупроводника при возбуждении электрического поля. При разной природе и механизмах данных процессов их последствия одинаковы – электроны приобретают энергию, достаточную для прохождения через p-n-переход. Возникает пробой, и через диод начинает протекать обратный ток.

Именно в этом режиме и работает стабилитрон. При этом существует различие между радиокомпонентами, в которых используются разные эффекты. Стабилитроны, функционирующие при лавинном пробое, оперируют разностями потенциалов свыше 7 Вольт. В элементах, рассчитанных на напряжение стабилизации 3-7 Вольт, провоцируется туннельный пробой. Для стабилизации более низких разностей потенциалов применяются стабистор ы , о которых мы расскажем ниже.

Классификация стабилитронов


В настоящее время выпускается широкая номенклатура стабилитронов, но вся их масса классифицируется по функциональным характеристикам и конструкции. В зависимости от параметров данные радиокомпоненты подразделяются на следующие классы:

  1. прецизионные;
  2. двуханодные;
  3. быстродействующие.

Прецизионные отличаются высокой точностью стабилизации напряжения . Об этом говорит сайт https://intellect.icu . Отклонения стабилизируемой разности потенциалов на выходе такой детали не превышают 0,0001%. Точность сильно зависит от времени жизни прецизионного стабилитрона и температуры полупроводника. В связи с этим в отношении этих радиокомпонентов введены эксплуатационные нормы, которые должны постоянно контролироваться в процессе использования аппаратуры.

Двуханодный стабилитрон исполняет функцию двух стабилитронов, включенных встречно. Это позволяет элементу обрабатывать сигналы и с одинаковой эффективностью обрабатывать напряжения разной полярности. Такая радиодеталь изготавливается в едином технологическом цикле, когда на одном кристалле кремния выращивается два встречных p-n-перехода, но, в принципе, роль двуханодного радиокомпонента могут играть и два дискретных стабилитрона, взаимно соединенных катодами.

И, наконец, стабилитроны третьего типа – быстродействующие – отличаются пониженной барьерной емкостью, вследствие чего сокращается продолжительность переходных процессов, протекающих в полупроводнике. Эти радиокомпоненты являются наилучшим решением для работы с импульсными сигналами. Конструктивная особенность данных элементов состоит в небольшой ширине p-n-перехода, которая обеспечивается применением особой технологии легирования полупроводника.

Стабистор


Немного по-другому функционируют радиокомпоненты, называемые стабисторами, о которых мы говорили выше. Они исполняют ту же функцию, то есть стабилизируют выходное напряжение, но являются низковольтными. Обычные стабилитроны не способны оперировать малыми разностями потенциалов. При напряжениях до 3 Вольт не возникает условий ни для лавинного, ни для туннельного пробоя p-n-перехода. Для стабилизации меньших напряжений прибегают к другому решению, а именно к использованию не обратного, а прямого смещения.

Установлено, что в сильно легированном p-n-переходе дырки и электроны рекомбинируют таким образом, что при значительном прямом токе наблюдается эффект стабилизации выходного напряжения на уровне 2,5-3 Вольт. Это обуславливает ключевое технологическое различие стабилитронов и стабисторов. Вторые предназначены для работы только в низковольтных радиосхемах.

Устройство маломощного стабилитрона

с гибкими выводами в пластиковом (вверху) и стеклянном (внизу) корпусах

Рис Устройство маломощного стабилитрона с гибкими выводами в пластиковом корпусе

Рис. Устройство маломощного стабилитрона с гибкими выводами в стеклянном корпусе

У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой пробой носит лавинный характер. Для обеспечения электрического пробоя при относительно небольших обратных напряжениях напряженность электрического поля в p-n-переходе должна быть значительно выше, чем у обычных диодов, поэтому при изготовлении стабилитронов используют материалы с высокой концентрацией примесей.

обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах

Вольт-амперная характеристика и схема включения стабилитрона.


ВАХ стабилитрона реальная

Идеальная ВАХ стабилитрона

Основные параметры стабилитронов

1. Uст
2. Дифференциальное сопротивление Rдиф = 0.5 – 200 Ом
3. Iст min ток стабилизации минимальный
4. Iст max ток стабилизации максимальный
Imax≈ Pmax/Uст

В качестве стабилитронов применяют кремниевые диоды, обладающие большой устойчивостью к тепловому пробою.

Кремниевые стабилитроны используются для стабилизации напряжений источников питания, а также для фиксации уровней U в различных схемах

Группы маломощных диодов в виде диодных матриц и диодных сборок используются в логических устройствах дешифраторах и других элементах ВТ.

Стабилитрон в схему стабилизации обычно включают так, чтобы p-n-переход был смещен в обратном направлении.

Для стабилизации малых напряжений U = 1 — 1.5B используют стабисторы

Презиционные и двунаправленные стабилитроны

В прецизионных стабилитронах используют три последовательно соединенных p-n-перехода, один из которых – стабилизирующий, два других – термокомпенсирующие. Если стабилизирующий переход работает в режиме лавинного пробоя, то с увеличением температуры напряжение на нем растет. Одновременно прямое напряжение на двух термокомпенсирующих переходах уменьшается, поэтому общее напряжение на стабилитроне меняется незначительно.

Для обеспечения стабилизации двуполярных напряжений стабилитроны общего назначения включают последовательно, а прецизионные – параллельно.

Двуханодные стабилитроны имеют структуру, формируемую диффузией примесей в пластину n-кремния одновременно с двух сторон. Образующиеся при этом два p-n-перехода включены встречно. Внешние выводы имеют только анодные p-области структуры. При подаче на стабилитрон напряжения любой полярности один переход работает в режиме электрического пробоя, а другой является термокомпенсирующим

Области применения стабилитронов и стабисторов


Хорошие стабилизирующие свойства стабилитронов и стабисторов обуславливают основную сферу применения этих радиокомпонентов – создание фиксированного питающего и опорного напряжения в различных радиоэлектронных устройствах. На первом месте по распространенности стоят стабилитроны, используемые в источниках питания. Применение этих специализированных диодов обеспечивает стабильные выходные параметры питающего напряжения и одновременно упрощает схему.

В блоках питания с повышенными требованиями по точности выходных характеристик находят применение прецизионные стабилитроны. Эти элементы устанавливаются в высокоточной измерительной аппаратуре и аналого-цифровых преобразователях. Двуханодные стабилитроны используются в подавителях импульсных помех. Данные радиокомпоненты в реальных схемах нередко сочетаются с импульсными диодами. Быстродействующие стабилитроны в сочетании с СВЧ-диодами применяются в аппаратуре, работающей на сверхвысоких частотах – передатчиках, радиолокаторах и так далее.

Защитные стабилитроны в «умном» МДП-транзисторе семейства Intelligent Power Switch компании International Rectifier

Основная область применения стабилитрона — стабилизация постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора стабилитрон выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах стабилитрону отводится только функция источника опорного напряжения, а регулирующим элементом служит внешний силовой транзистор .

Прецизионные термокомпенсированные стабилитроны и стабилитроны со скрытой структурой широко применяются в качестве дискретных и интегральных источников опорного напряжения (ИОН), в том числе в наиболее требовательных к стабильности напряжения схемах измерительных аналого-цифровых преобразователей. C середины 1970-х годов и по сей день (2012 год) стабилитроны со скрытой структурой являются наиболее точными и стабильными твердотельными ИОН. Точностные показатели лабораторных эталонов напряжения на специально отобранных интегральных стабилитронах приближаются к показателям нормального элемента Вестона[38].

Особые импульсные лавинные стабилитроны («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяются для защиты электроаппаратуры от перенапряжений, вызываемых разрядами молний и статического электричества, а также от выбросов напряжения на индуктивных нагрузках. Такие приборы номинальной мощностью 1 Вт выдерживают импульсы тока в десятки и сотни ампер намного лучше, чем «обычные» пятидесятиваттные силовые стабилитроны. Для защиты входов электроизмерительных приборов и затворов полевых транзисторов используются обычные маломощные стабилитроны. В современных «умных» МДП-транзисторах защитные стабилитроны выполняются на одном кристалле с силовым транзистором.

В прошлом стабилитроны выполняли и иные задачи, которые впоследствии потеряли прежнее значение:

  • Ограничение, формирование, амплитудная селекция и детектирование импульсов. Еще в эпоху электронных ламп кремниевые стабилитроны широко применялись для ограничения размаха импульсов и преобразования сигналов произвольной формы в импульсы заданной полярности. С развитием интегральных технологий эту функцию взяли на себя устройства на быстродействующих компараторах, а затем цифровые процессоры обработки сигналов.
  • Стабилизация напряжения переменного тока также сводилась к ограничению размаха синусоидального напряжения двусторонним стабилитроном. При изменении входного напряжении амплитуда выходного напряжения поддерживалась постоянной, а его действующее значение лишь незначительно отставало от действующего значения входного напряжения.
  • Задание напряжений срабатывания реле . При необходимости установить нестандартный порог срабатывания реле последовательно с его обмоткой включали стабилитрон, доводивший порог срабатывания до требуемого значения. С развитием полупроводниковых переключательных схем сфера применения реле сузилась, а функцию управления реле взяли на себя транзисторные и интегральные пороговые схемы.
  • Задание рабочих точек усилительных каскадов. В ламповых усилителях 1960-х годов стабилитроны использовались как замена RC-цепочек автоматического смещения. На нижних частотах звукового диапазона и на инфразвуковых частотах расчетные емкости конденсаторов таких цепей становились неприемлемо велики, поэтому стабилитрон стал экономичной альтернативой дорогому конденсатору.
  • Межкаскадный сдвиг уровней. Сдвиг уровней в ламповых усилителях постоянного тока обычно осуществлялся с помощью газонаполненных стабилитронов или обычных неоновых ламп. C изобретением полупроводниковых стабилитронов они стали применяться вместо газонаполненных. Аналогичные решения применялись и в транзисторной аппаратуре, но были быстро вытеснены более совершенными схемами сдвига уровней на транзисторах.
  • Стабилитроны с высоким ТКН использовались как датчики температуры в мостовых измерительных схемах. По мере снижения напряжений питания и потребляемых мощностей эту функцию приняли на себя прямо смещенные диоды, транзисторные PTAT-цепи и интегральные схемы на их основе.

В среде моделирования SPICE модель элементарного стабилитрона используется не только по прямому назначению, но и для описания режима пробоя в моделях «реальных» биполярных транзисторов. Стандартная для SPICE модель транзистора Эберса—Молла режим пробоя не рассматривает

См. также

А как ты думаешь, при улучшении стабилитрон, будет лучше нам? Надеюсь, что теперь ты понял что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

Стабилитрон. Устройство, применение и характеристики

Стабилитрон (или диод Зенера) — сильно легированный полупроводниковый диод, который предназначен для работы в обратном направлении. Другими словами, диод, который специально разработан для оптимизации области пробоя, известен как стабилитрон.

Ниже показано графическое обозначение стабилитрона на электрических схемах:

Устройство стабилитрона

Устройство стабилитрона показано на рисунке ниже. Стабилитрон используется в режиме обратного смещения. Обратное смещение означает, что материал n-типа диода подключен к положительной клемме источника питания, а материал p-типа подключен к отрицательной клемме источника питания. Область истощения (обедненная область) диода очень тонкая, потому что он сделан из сильно легированного полупроводникового материала.

Принцип работы стабилитрона

Стабилитрон изготовлен из сильно легированного полупроводникового материала. Сильно легированный означает, что полупроводниковый материал имеет высокое содержание  примесей и это повышает его проводимость. Область обеднения стабилитрона очень тонкая из-за примесей. Сильно легирующий материал увеличивает напряженность электрического поля в обедненной области элемента даже при небольшом обратном напряжении.

Когда смещение стабилитрона не применяется, электроны остаются в валентной зоне материала р-типа и ток через диод не протекает. Зона, в которой находятся валентные электроны (крайняя электронная орбита), называется электроном валентной зоны. Электроны валентной зоны легко переходят из одной полосы в другую, когда на нее подается внешняя энергия.

Когда обратное смещение применяется к диоду и напряжение питания равно напряжению стабилитрона, оно начинает проводить в обратном направлении смещения. Напряжение стабилитрона — это напряжение, при котором область обеднения полностью исчезает.

Обратное смещение через диод увеличивает напряженность электрического поля в области истощения. Таким образом, это позволяет электронам перемещаться из валентной зоны материала p-типа в зону проводимости материала n-типа. Эта передача электронов валентной зоны в зону проводимости уменьшает барьер между материалом p и n-типа. Когда область истощения исчезает практически полностью, диод начинает проводить в обратном направлении.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика стабилитрона (диода Зенера) показана на рисунке ниже. Эта кривая показывает, что стабилитрон, когда подключен напрямую, ведет себя как обычный диод. Но когда на него подается обратное напряжение и обратное напряжение выходит за пределы заданного значения, в диоде происходит пробой и он начинает работать как стабилитрон.

При пробое диода Зенера ток начинает течь в обратном направлении. График пробоя стабилитрона не совсем вертикальный, как показано выше, который показывает, что стабилитрон имеет сопротивление. Напряжение на диоде Зенера представлено уравнением, показанным ниже.

Применение стабилитрона

Диод Зенера в основном используется в коммерческих и промышленных применениях. Ниже приведены основные применения стабилитрона:

В качестве стабилизатора напряжения — стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника напряжения к нагрузке. Стабилитрон подключается параллельно нагрузке и поддерживает постоянное напряжение UZ и, следовательно, стабилизирует напряжение.

Для защиты измерителя — стабилитрон обычно используется в мультиметрах для защиты измерителя от случайных перегрузок. Измерительный элемент подключен параллельно с диодом Зенера. Когда в цепи происходит перегрузка, большая часть тока проходит через стабилитрон. Таким образом, измерительный элемент защищается от повреждений.

Для формирования сигнала — стабилитрон используется для преобразования синусоидальной волны в прямоугольную. Это можно сделать, подключив два стабилитрона встречно последовательно с сопротивлением.

Когда напряжение, подаваемое на нагрузку, меньше напряжения пробоя стабилитрона, диод Зенера имеет высокое внутреннее сопротивление, что эквивалентно разрыву электрической сети (разомкнутый контакт) и ток протекает только через нагрузку. Когда напряжение становится больше напряжения пробоя стабилитрона, сопротивление стабилитрона резко снижается, что является аналогом короткого замыкания (контакт замкнут) и ток протекает через стабилитрон, а не через нагрузку. Из-за чего происходит сильное падение напряжения в цепи, после падения напряжения в цепи ниже напряжения пробоя стабилитрона, сопротивление диода Зенера восстанавливается и ток перестает протекать через него. Таким образом, осуществляется защита чувствительных элементов электрической цепи от перенапряжения.

это что такое и для чего он нужен? Как работает стабилитрон Стабилитрон на 30 вольт отечественные

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • U ст — напряжение стабилизации при номинальном токе I ст;
  • I ст min — минимальный ток начала электрического пробоя;
  • I ст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

P max = I ст max ∙ U ст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления R б и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора R б.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление R б подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или

Резистор R б рассчитывается по формуле:

R б = (U пит — U ном)(I ст + I н).

Ток стабилитрона I ст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе U пит и тока нагрузки I н.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение U н, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • U пит = 12-15 В — напряжение входа;
  • U ст = 9 В — стабилизированное напряжение;

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R ∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

R экв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

R б = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

U R = 15 — 9 = 6 В.

Затем определяется ток через резистор:

I R = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, I c = I R = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что U ст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Заключение

Стабилитрон — это диод с особыми свойствами. Достоинством стабилитронов является высокий уровень стабилизации напряжения при широком диапазоне изменения рабочего тока, а также простые схемы подключения. Для стабилизации малого напряжения приборы включают в прямом направлении, и они начинают работать как обычные диоды.

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:


Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки — 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 — он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.


Блок питания 0-30 Вольт своими руками

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема — блок питания . .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Схема блока питания:


Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается от аналогичных точностью поддержания выходного напряжения — тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями.


После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.

Корпус делаем из того, что под рукой. Классический вариант — металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.

В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.

Кулер можно оставить — лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.

Для передней панели не поскупился и купил пластиковую коробочку — в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.

Амперметр берём стрелочный — чтоб хорошо были видны броски тока, а вольтметр поставил цировой — так удобнее и красивее!

После сборки регулируемого блока питания проверяем его в работе — он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В — при верхнем. Подключив нагрузку пол ампера — смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.

В общем, при всей своей кажущейся простоте, данный блок питания наверное один из лучших по своим параметрам. При необходимости можно добавить в него узел защиты — пару лишних транзисторов.

TVS-лампа, стабилитрон, диод Шоттки — Русские Блоги

TVS-лампа, стабилитрон, диод Шоттки


1. Краткое введение

1.1 TVS
TVS (ограничитель переходного напряжения), также известный как диод подавления переходных процессов, представляет собой новый тип широко используемых высокоэффективных устройств защиты цепей, он имеет очень быстрое время отклика (уровень субнаносекунд ) И довольно высокая способность поглощения перенапряжения. Когда два его конца подвергаются мгновенному удару с высокой энергией, TVS может изменять значение импеданса между двумя концами с высокого до низкого импеданса на очень высокой скорости, чтобы поглотить мгновенный большой ток и ограничить напряжение между двумя своими концами. Заранее установленное значение для защиты следующих компонентов схемы от воздействия кратковременных скачков высокого напряжения.

1.2 Schottky
Диод Шоттки назван в честь своего изобретателя доктора Шоттки. SBD — это аббревиатура от Schottky Barrier Diode (диод с барьером Шоттки, сокращенно SBD). SBD создается не с использованием принципа формирования PN-перехода между полупроводником P-типа и полупроводником N-типа, а с использованием принципа перехода металл-полупроводник, образованного контактом между металлом и полупроводником. Поэтому SBD также называют диодом металл-полупроводник (контактным) или диодом с поверхностным барьером, который является диодом с горячими носителями.

1.3 Zener
Стабилитрон, английское название Zener diode, также называемый стабилитроном. Используя состояние обратного пробоя pn перехода, ток можно изменять в большом диапазоне, в то время как напряжение в основном не изменяется, и создается диод с эффектом стабилизации напряжения. Этот диод представляет собой полупроводниковое устройство, которое имеет высокое сопротивление до критического напряжения обратного пробоя.В этой критической точке пробоя обратное сопротивление уменьшается до очень небольшого значения, а ток увеличивается в этой области с низким сопротивлением. напряжение остается постоянным, и диод Зенера делится в зависимости от напряжения пробоя. из-за этой характеристики, диод Зенера в основном используется в качестве регулятора напряжения или опорного напряжения компонента. Стабилитроны можно подключать последовательно для использования при более высоких напряжениях, а более стабильные напряжения можно получить, подключив их последовательно.

1.4 Разница между лампой TVS, стабилитроном и диодом Шоттки
Проще говоря, TVS управляет мгновенным большим напряжением схемы защиты пользователя, и схема может разрядить большой ток через TVS для защиты цепи, что эквивалентно предохранителю цепи. Спусковой механизм обратного пробоя.
Стабилитрон всегда работает в состоянии обратного пробоя, когда он работает нормально. Используя характеристики состояния обратного пробоя, напряжение можно стабилизировать при значительных изменениях тока.
Диоды Шоттки в основном используются в качестве диодов свободного хода (обычно используются вместе с устройствами накопления энергии для разряда устройств накопления энергии), диодов выпрямителя и т. д.
2. Основные характеристики

2.1 TVS
В указанных условиях обратного применения, когда он подвергается воздействию импульса мгновенного перенапряжения высокой энергии, его рабочий импеданс может быть немедленно уменьшен до очень низкого значения проводимости, что позволяет пропускать большие токи, И зафиксируйте напряжение до заданного уровня, чтобы эффективно защитить прецизионные компоненты электронной схемы от повреждений.
TVS может выдерживать мгновенную импульсную мощность до киловатт, а время срабатывания фиксатора составляет всего 1 пс (10 ^ -12 с).
Допустимый прямой импульсный ток TVS может достигать 50 ~ 200A при условии T = 25 ℃ и T = 10 мс.
Двунаправленный TVS может мгновенно поглощать большую импульсную мощность как в положительном, так и в отрицательном направлении и ограничивать напряжение до заданного уровня. Двунаправленный TVS подходит для цепей переменного тока, а однонаправленный TVS обычно используется для цепей постоянного тока.
Характеристики VI однонаправленных TVS, прямые характеристики однонаправленных TVS такие же, как у обычных стабилитронов, а точка перегиба обратного пробоя приблизительно «под прямым углом» для жесткого пробоя, что является типичным PN-переходом. Лавинное устройство.
Характеристика VI двусторонней TVS, характеристика VI двусторонней TVS похожа на комбинацию «спина к спине» двух односторонних TVS, которые имеют одинаковые характеристики лавинного разрушения и зажимают в обоих направлениях. Характеристики, симметричное соотношение напряжения пробоя с обеих сторон: 0,9≤V (BR) (положительный) / V (BR) (обратный) ≤1,1, как только напряжение помех, приложенное к обоим концам, превысит напряжение ограничения Vc, оно будет немедленно Подавленный, двусторонний TVS очень удобен для приложений контура переменного тока.


Общие параметры и инструкции по выбору:
Напряжение пробоя V (BR) В области, где устройство выходит из строя, при заданном испытательном токе I (BR) измеренное напряжение на устройстве называется напряжением пробоя. В этой области диод превращается в путь с низким сопротивлением.
Максимальный импульсный импульсный ток в обратном направлении IPP, максимальный импульсный импульсный ток, разрешенный устройством при заданных импульсных условиях во время обратного хода. Произведение IPP и максимального напряжения ограничения Vc (MAX) является максимальным значением переходной импульсной мощности. Примечание: TVS следует выбирать правильно при использовании, чтобы номинальная импульсная мощность PPR в переходных процессах была больше, чем максимальная импульсная мощность в переходных процессах, которая может возникнуть в защищаемом устройстве или линии.
Максимальное обратное рабочее напряжение VRWM (или напряжение смещения) Когда устройство работает в обратном направлении, при указанном IR, напряжение на устройстве называется максимальным обратным рабочим напряжением VRWM. Обычно VRWM = (0,8 ~ 0,9) В (BR). Примечание: при таком напряжении потребляемая мощность устройства очень мала. При использовании VRWM не должно быть ниже нормального рабочего напряжения защищаемого устройства или цепи.
Максимальное напряжение ограничения Vc (max) Максимальное напряжение на обоих концах устройства под действием импульсного пикового тока Ipp называется максимальным напряжением ограничения. Примечание: при использовании сделайте Vc (max) не выше максимально допустимого безопасного напряжения защищаемого устройства.
Пиковая мощность обратного импульса PPR TVS PPR зависит от максимального тока импульса IPP и максимального напряжения ограничения Vc (max). Кроме того, это также связано с формой импульса, продолжительностью импульса и температурой окружающей среды. .
По полярности его можно разделить на: однополярное и биполярное; по назначению можно разделить на: общее и специальное; по корпусу и внутренней структуре его можно разделить на: осевое Выводные диоды, двойные линейные массивы TVS, SMD и высокомощные модули и т. Д.

2.2 Schottky
SBD имеет преимущества высокой частоты переключения и пониженного прямого напряжения, но его обратное напряжение пробоя относительно низкое, в основном не выше 60 В, а максимальное составляет всего около 100 В, что ограничивает диапазон его применения. . Диод Шоттки — это диод, основанный на барьере, образованном контактом между металлом и полупроводником, называемый барьерным диодом Шоттки (SBD), с прямым падением напряжения (0,4-0,5 В) и коротким временем обратного восстановления. (10-40 наносекунд), и обратный ток утечки велик, выдерживаемое напряжение низкое, обычно менее 150 В, и в основном используется в случаях низкого напряжения. Его выдерживаемое напряжение часто низкое, но его скорость восстановления быстрая. Он в основном используется в качестве высокочастотных, низковольтных, сильноточных выпрямительных диодов, диодов свободного хода, защитных диодов, а также полезен в качестве выпрямительных диодов и диодов для детекторов малых сигналов в таких схемах, как микроволновая связь. использовать. Это чаще встречается в источниках питания связи, инверторах и т. Д. Поскольку SBD более подвержен тепловому пробою, чем диод с PN-переходом, обратный ток утечки больше, чем у диодов с PN-переходом.

Наиболее примечательной особенностью является то, что время обратного восстановления чрезвычайно короткое (может составлять всего несколько наносекунд), а прямое падение напряжения составляет всего около 0,4 В.
Он в основном используется в качестве высокочастотных, низковольтных, сильноточных выпрямительных диодов, обратных диодов, защитных диодов, а также используется в качестве выпрямительных диодов и диодов для обнаружения слабого сигнала в СВЧ-коммуникациях и других схемах.

2.3 Zener
Прямая характеристика вольт-амперной характеристики стабилитрона аналогична характеристике обычного диода. Когда обратное напряжение приближается к критическому значению обратного напряжения, обратный ток внезапно увеличивается, что называется ударом В этой критической точке пробоя обратное сопротивление внезапно падает до очень небольшого значения. Хотя ток изменяется в большом диапазоне, напряжение на диоде в основном стабильно вблизи напряжения пробоя, тем самым реализуя функцию стабилизации напряжения диода.
Стабилитрон в основном используется для стабилизации напряжения. Особенность стабилитрона в том, что после пробоя напряжение на обоих концах практически не меняется.
Таким образом, когда трубка регулятора напряжения подключена к цепи, если напряжение в каждой точке схемы колеблется из-за колебаний напряжения источника питания или по другим причинам, напряжение на нагрузке в основном останется неизменным. .


Основные параметры

Uz — стабильное напряжение
относится к стабильному значению напряжения, генерируемому на обоих концах трубки Зенера при прохождении номинального тока. Это значение немного зависит от рабочего тока и температуры. Из-за различий в производственном процессе величина стабилизации напряжения у стабилитронов одного и того же типа не полностью одинакова. Например, Vzmin стабилитрона 2CW51 составляет 3,0 В, а Vzmax — 3,6 В.
Iz — номинальный ток
относится к значению тока через трубку Зенера, когда она генерирует стабильное напряжение. Когда значение ниже этого значения, хотя трубка регулятора напряжения не способна стабилизировать напряжение, эффект регулирования напряжения будет хуже; когда значение выше этого значения, при условии, что номинальные потери мощности не превышены, это также допускается, и характеристики регулирования напряжения будут лучше, но Потребляйте больше энергии.
Rz — динамическое сопротивление.
относится к отношению изменения напряжения на обоих концах трубки регулятора к изменению тока. Соотношение зависит от рабочего тока. Обычно, чем больше рабочий ток, тем меньше динамическое сопротивление. Например, когда рабочий ток стабилитрона 2CW7C составляет 5 мА, Rz составляет 18 Ом; когда рабочий ток 10 мА, Rz составляет 8 Ом; когда он равен 20 мА, Rz составляет 2 Ом;> 20 мА в основном поддерживает это значение.
Pz — номинальная потребляемая мощность.
определяется допустимым превышением температуры микросхемы, и его значение является произведением стабильного напряжения Vz и максимально допустимого тока Izm. Например, если Vz лампы стабилитрона 2CW51 составляет 3 В, а Izm — 20 мА, то Pz трубки составляет 60 мВт.
α — температурный коэффициент.
Если температура трубки Зенера изменяется, ее стабильное напряжение также немного изменится. Относительное изменение напряжения на трубке, вызванное изменением температуры на 1 ° C, является температурным коэффициентом.
Вообще говоря, значение регулирования напряжения ниже 6 В относится к пробою Зенера, а температурный коэффициент отрицательный; выше 6 В относится к лавинному пробою, а температурный коэффициент положительный. Вот почему регулятор напряжения с напряжением 15 В постепенно увеличивается с температурой, а регулятор напряжения с напряжением 5 В постепенно уменьшается с температурой.
IR — обратный ток утечки
относится к току утечки, создаваемому стабилитроном при заданном обратном напряжении. Например, когда VR = 1 В трубки регулятора напряжения 2CW58, IR = 0,1 мкА; когда VR = 6 В, IR = 10 мкА.

2.4 Обычный кремниевый диод:
Выдерживаемое напряжение обычных кремниевых диодов может быть увеличено, но его скорость восстановления мала и может использоваться только для низкочастотного выпрямления. Если оно высокочастотное, оно не сможет быстро восстановиться. Произошла обратная утечка, что в конечном итоге привело к серьезному нагреву и возгоранию трубы;

2.5 Разница между трубкой TVS и трубкой регулятора напряжения:
TVS (диод подавления переходных процессов) будет включаться и закрываться мгновенно после превышения его выдерживаемого напряжения. Скорость отклика находится на уровне нс. Он в основном используется для подавления мгновенных скачков напряжения и уменьшения воздействия скачков напряжения. Потеря компонентов.
Трубка регулятора напряжения является регулятором напряжения. Если она превышает значение регулирования напряжения, пока мощность не превышает допустимое значение, она будет стабилизироваться в пределах диапазона значений регулирования напряжения.
Двунаправленный пробойный диод, также называемый диодом подавления переходных напряжений (TVS), представляет собой устройство защиты от перенапряжения с характеристиками двунаправленного регулирования напряжения и двунаправленными характеристиками отрицательного сопротивления, аналогичное варистору. . Он используется в различных цепях питания переменного и постоянного тока для подавления мгновенных перенапряжений. Когда импульсное импульсное напряжение появляется в защищенной цепи мгновенно, двунаправленный пробойный диод может быстро выйти из строя стабилитрон, переходя из состояния с высоким сопротивлением в состояние с низким сопротивлением, шунтируя и ограничивая импульсное напряжение, тем самым защищая компоненты в цепи. Повреждено мгновенным скачком импульсного напряжения.

Диод стабилизатора напряжения в основном играет роль стабилизации напряжения в цепи, и его необходимо перевернуть, чтобы вызвать обратный пробой, и напряжение на нагрузке в основном останется неизменным. Трубка TVS представляет собой диод подавления переходных процессов.Его схемное обозначение такое же, как у обычного диода Зенера, а форма не отличается от обычного диода.Когда оба конца трубки TVS подвергаются кратковременному воздействию высокой энергии, она может достигать чрезвычайно высокой скорости (до 1 / (10 ^ 12) секунд), чтобы его импеданс внезапно упал и в то же время поглотил большой ток, зафиксируйте напряжение между его двумя концами до заданного значения, чтобы гарантировать, что следующие компоненты схемы защищены от кратковременного воздействия высокой энергии И поврежден. И TVS, и стабилитроны могут использоваться для стабилизации напряжения, но ток пробоя стабилитрона меньше.Напряжение стабилизации напряжения выше 10 В составляет всего 1 мА, что относительно больше, чем ток пробоя стабилитрона. Точность регулирования напряжения на диоде может быть относительно высокой.
можно визуально понять так: можно понять, что обычная трубка регулятора напряжения представляет собой небольшую пружину, которую можно использовать на небольших точных приборах; трубка TVS представляет собой большую пружину, которую можно использовать на тяжелой технике. Обычная трубка регулятора напряжения предназначена для получения стабильного напряжения в сложной цепи, тогда как трубка TVS ориентирована на защиту цепи, которая имеет вкус предохранителя.

2.6 Разница между диодом Шоттки и стабилитроном
Чтобы понять разницу между диодами Шоттки и стабилитронами, мы должны сначала понять, что такое стабилитрон?
Обычно диоды имеют прямую проводимость и обратную отсечку; если обратное напряжение, приложенное к диоду, превышает емкость диода, диод выйдет из строя. Но есть своего рода диод, прямые характеристики которого такие же, как у обычных диодов, но обратные характеристики более особенные: когда обратное напряжение увеличивается до определенного уровня, хотя трубка находится в состоянии пробоя, через нее проходит больший ток, но она не повреждена, и Воспроизводимость этого явления очень хорошая; пока трубка находится в состоянии пробоя, хотя электричество, протекающее через трубку, сильно изменяется, напряжение на трубке изменяется очень мало, чтобы стабилизировать его. Этот специальный диод называется стабилитроном.

В чем разница между диодом Шоттки и стабилитроном?
Напряжение прямой проводимости диода Шоттки очень низкое, всего 0,4 В, а обратное не будет проводить до напряжения пробоя, которое играет роль переключателя с быстрым откликом. Прямое напряжение стабилитрона составляет около 0,7 В, как и у обычных диодов. В обратном состоянии он отключается до достижения критического напряжения. Когда критическое напряжение достигается, он будет в проводящем состоянии, и напряжение больше не будет увеличиваться. Поэтому он используется в важных компонентах для стабилизации напряжения.

Диоды Шоттки имеют небольшое прямое падение напряжения и быструю скорость выключения и в основном используются для импульсных источников питания для выпрямления. Независимо от прямого использования стабилитрона, он всегда используется в обратном направлении в состоянии пробоя. Необходимо учитывать значение стабилизации напряжения, температурный коэффициент, рассеиваемую мощность и т. Д. Таким образом, диоды Шоттки полностью отличаются от стабилитронов.Диоды Шоттки используются для переключения, характеризуются низким напряжением прямой проводимости и могут работать в высокочастотных коммутационных ситуациях. Диод стабилизатора напряжения играет роль стабилизации напряжения, и большинство приложений подключены параллельно на двух концах источника питания и устройства IC, чтобы предотвратить перенапряжение и играть защитную роль.

2.7 Условные обозначения различных диодов

Основы

: Введение в стабилитроны

Стабилитроны

— это особый тип полупроводниковых диодов — устройств, которые позволяют току течь только в одном направлении, которые также позволяют току течь в противоположном направлении, но только при достаточном напряжении. И хотя это звучит немного эзотерически, на самом деле они являются одними из самых удобных компонентов, когда-либо встречавшихся на рабочем месте инженера, обеспечивая отличные решения для ряда общих потребностей в схемотехнике.

Далее мы покажем вам, как (и когда) использовать стабилитрон для приложений, включая простые опорные напряжения, ограничение сигналов до определенных диапазонов напряжения и снижение нагрузки на регулятор напряжения.

Справочная информация: Полупроводниковые диоды, настоящие и идеальные

Чтобы понять, чем стабилитроны отличаются от других диодов, давайте сначала рассмотрим свойства обычных диодов. И хотя существует много различных типов диодов — см. Здесь длинный список — мы собираемся сосредоточиться на так называемых «нормальных» полупроводниковых диодах, чаще всего построенных с кремниевым p-n переходом.

Диоды обычно поставляются в стеклянных или пластиковых цилиндрических корпусах, маркированных полосой с одной стороны для обозначения полярности.В идеальном диоде ток течет только в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона), отмеченному полосой. Схематический символ представляет собой треугольник, указывающий на полосу, где ток течет в том же направлении, к концу с перемычкой (полосой). Версии диодов для поверхностного монтажа, как правило, следуют одному и тому же соглашению о маркировке, где катодный конец маркируется широкой полосой.

Если мы подключим диод в простую схему с источником переменного напряжения и ограничивающим ток резистором, мы сможем измерить ток I через диод, когда к нему приложено заданное напряжение В, .В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток. Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет течь выше заданного порога. Величина протекающего тока фактически экспоненциальна с увеличением напряжения.

Порог, при котором протекает значительный ток, обычно составляет около 0,7 В для простых полупроводниковых диодов, но может быть и ниже 0.15 В для диодов Шоттки или до 4 В для некоторых типов светодиодов.

Конечно, ни один диод не идеален. В реальных диодах, когда напряжение меняется на противоположное, может протекать очень небольшой ток (утечка). И, что более важно, каждый диод рассчитан на определенную максимальную величину обратного напряжения. Если вы приложите напряжение более отрицательное, чем этот предел, диод подвергнется «обратному пробою» и начнет проводить значительный ток, но назад, от нормального направления тока диода.Для обычного диода мы бы сказали, что отказал диод , если он начинает проводить ток в этом направлении.

Помимо: Фактическая физика того, что происходит при пробое, довольно интересна; этому поведению способствуют два отдельных эффекта: эффект Зенера и лавинный пробой.

Стабилитроны

Стабилитроны

— это полупроводниковые диоды, которые были изготовлены так, чтобы их обратный пробой происходил при определенном, четко определенном напряжении (его «напряжение стабилитрона»), и которые спроектированы таким образом, чтобы они могли непрерывно работать в этом режиме пробоя.Обычно доступные стабилитроны доступны с пробивными напряжениями («напряжениями стабилитрона») от 1,8 до 200 В.

Схематический символ стабилитрона показан выше — он очень похож на обычный диод, но с загнутыми краями на полосе. Стабилитрон по-прежнему проводит электричество в прямом направлении, как любой другой диод, но также проводит в обратном направлении, если приложенное напряжение обратное и больше, чем напряжение пробоя стабилитрона.

Типичное применение может быть таким, как указано выше: стабилитрон 10 В (тип 1N4740) включен последовательно с резистором и фиксированным источником питания 12 В. Номинал резистора выбирается таким образом, чтобы через него и через стабилитрон протекало несколько мА, удерживая его в области пробоя. В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА.

Опоры напряжения Зенера

Фиксированное напряжение стабилитронов делает их чрезвычайно удобными в качестве источников быстрого опорного напряжения.Базовая схема выглядит так:

Необходимо учитывать несколько требований. Во-первых, входное напряжение должно быть выше напряжения стабилитрона. Во-вторых, номинал резистора должен быть выбран таким, чтобы через стабилитрон всегда протекал ток.

Некоторые предостережения: Это не обязательно хороший источник питания для всех целей — резистор ограничивает ток, который можно потреблять. Это также не обязательно опорное напряжение с точностью ; напряжение будет зависеть от величины потребляемого тока.(То есть, чтобы напряжение было стабильным, нагрузка, управляемая этим опорным напряжением, должна быть постоянной.) Напряжение также зависит от температуры. Стабилитроны в диапазоне 5-6 В обладают наилучшей температурной стабильностью, и есть высокоточные стабилитроны (например, LM399), которые включают собственную термостабилизированную печь, чтобы в дальнейшем поддерживать температуру диода как можно более стабильной.

Развивая эту идею немного дальше, вы можете создать полноценный многорельсовый источник питания, используя только набор стабилитронов для генерации всех необходимых напряжений, при условии, что текущие требования к разным напряжениям питания невысоки. .Схема выше является частью работающего лабораторного прибора.

Клещи напряжения: ограничение сигналов с помощью стабилитронов

Изменяющийся аналоговый сигнал может быть ограничен довольно узким диапазоном напряжений с помощью одного стабилитрона. Если у вас есть напряжение, которое колеблется между + 7 В и -7 В, вы можете использовать один стабилитрон 4 В, подключенный к земле, чтобы гарантировать, что сигнал не превышает 4 В или опускается ниже -0,7 В (где диод проводит вперед на землю).

Если вы хотите ограничить сигнал, чтобы он никогда не становился отрицательным — например, для входа в аналого-цифровой преобразователь, который принимает сигналы в диапазоне 0-5 В, вы можете подключить анод стабилитрона к шине питания на 1 В вместо земли. Тогда диапазон выходного сигнала будет ограничен диапазоном 0,3 В — 5 В.

Еще один изящный трюк — использовать последовательно два противоположно ориентированных стабилитрона. Это может обеспечить, например, симметричный предел отклонения сигнала от земли.Это также обычная конфигурация для использования стабилитронов в качестве подавителя переходных процессов.

Преобразование напряжения: снижение нагрузки на регулятор

Вот что-то не работает. У нас есть TL750L05, который представляет собой тип линейного регулятора с выходом 5 В, который может выдавать до 150 мА на выходе, и его нагрузка будет переменной. Нам нужно запитать его от источника 36 В. К сожалению, максимальное входное напряжение TL750L05 составляет 26 В.

Давайте попробуем добавить резистор последовательно, чтобы немного понизить это напряжение:

Наша выходная нагрузка может составлять от 125 мА до 10 мА.Итак, резистор какого номинала у нас подойдет?

Предположим, мы предполагаем нагрузку 125 мА. Затем снять (скажем) 20 В на резисторе, 20 В / .125 А = 160 Ом. Если мы используем 160 Ом, то при нагрузке 10 мА оно упадет только на 160 Ом × 0,01 А = 1,6 В, а 36 В — 1,6 В все еще больше, чем 26 В. Чтобы быть безопасным для нагрузки 10 мА, мы должны выбрать резистор, который дает нам падение как минимум 11 В при входном напряжении регулятора 25 В. Таким образом, 11 В / 0,01 А = 1100 Ом будет безопасным для нагрузки 10 мА. Но если нагрузка увеличится до 125 мА, падение на 1100 Ом будет V = 0.125 А × 1100 Ом = 137 В, что означает, что на входе регулятора будет ниже 5 В, и он перестанет работать.

Очевидно, что вы не можете выбрать номинал резистора, который действительно работал бы как для низкого, так и для сильноточного случая.

В сторону: Мы пропустили пару незначительных деталей о регуляторах напряжения, которые часто заслуживают внимания. Во-первых, линейный регулятор всегда требует немного больше напряжения на входе, чем на выходе.Эта разница напряжений называется «падением напряжения» и может достигать 0,6 В для TL750L05, так называемого стабилизатора с «малым падением напряжения». Это означает, что при выводе 5 В при 150 мА входная клемма регулятора должна быть на 5,6 В или выше. Мы можем спокойно игнорировать это здесь, потому что 36 В — 137 В все еще ниже 5,6 В.

Вторая небольшая деталь заключается в том, что линейный регулятор на самом деле потребляет немного больше тока на своем входе, чем на выходе. Причина этого в том, что часть тока, протекающего на вход регулятора, течет на землю через его третью «заземляющую» клемму, а не на выходную клемму.Этот «ток покоя» может достигать 12 мА для TL750L05. Это означает, что когда 125 мА выходит из выходной клеммы регулятора, на входную клемму может поступать до 137 мА. В приведенном выше примере это означает, что максимальное падение напряжения на резисторе 1100 Ом было бы более точно оценить как V = 0,137 A × 1100 Ом = 151 В. Опять же, это не меняет нашего анализа.

Давайте попробуем еще раз, на этот раз с нашим другом, стабилитроном.

Наконец, давайте попробуем использовать один жирный стабилитрон на 20 В (тип 1N5357BRLG), чтобы снизить нагрузку.Тогда выход на аноде стабилитрона составляет всего 16 В, что находится в пределах безопасного входного диапазона регулятора. 1N5357BRLG рассчитан на максимум 5 Вт.

Когда регулятор работает на выходе 125 мА, его входной ток может достигать 137 мА, включая ток покоя, поэтому мощность, рассеиваемая стабилитроном, может достигать 20 В × 0,137 А = 2,74 Вт. Он будет нагреваться, но мы находимся в безопасных условиях эксплуатации стабилитрона, и теперь схема заработает.

Обновлено в апреле 2020 года, чтобы включить примечания о падении напряжения линейного регулятора и тока покоя.

Общие сведения о технических характеристиках стабилитрона »Примечания по электронике

Как и любой другой компонент, стабилитрон / диод опорного напряжения имеет характеристики, позволяющие выбрать правильное устройство для любой данной конструкции.


Учебное пособие по стабилитронам / эталонным диодам В комплект входит: Стабилитрон
Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

Другие диоды: Типы диодов


В таблицах данных указывается множество различных параметров или спецификаций для стабилитронов — эти параметры определяют характеристики диода в определенных пределах, и их изучение является неотъемлемой частью любого процесса проектирования.

При выборе подходящего опорного стабилитрона для любого заданного положения в цепи необходимо убедиться, что он будет соответствовать его требованиям. Понимание технических характеристик — ключ к выбору подходящего устройства.

Существует множество различных параметров, которые можно увидеть в спецификациях стабилитронов, приведенных в технических описаниях. Некоторые из наиболее важных из них приведены ниже.

Характеристики стабилитрона IV

ВАХ стабилитрона / опорного диода напряжения является ключом к его работе.В прямом направлении диод работает так же, как и любой другой, но в обратном направлении могут использоваться его конкретные рабочие параметры.

Вольт-амперная характеристика стабилитрона

Стабилитрон имеет нормальную прямую характеристику, при которой ток возрастает после достижения начального напряжения включения. Обычно это 0,6 В для кремниевых диодов — практически все стабилитроны являются кремниевыми диодами.

Когда напряжение растет в обратном направлении, сначала течет очень небольшой ток.Только после достижения напряжения обратного пробоя протекает ток, как показано на диаграмме. Как только достигается обратное напряжение пробоя, напряжение остается относительно постоянным независимо от тока, протекающего через диод.

Технические характеристики стабилитрона

При просмотре спецификации стабилитрона можно указать несколько параметров. Каждый из них описывает разные аспекты характеристик стабилитрона опорного напряжения. Глядя на каждую отдельную характеристику, можно понять работу диода и убедиться, что он будет правильно работать в любой данной цепи.

  • Напряжение Vz: Напряжение стабилитрона или обратное напряжение диода часто обозначается буквами Vz. Напряжения доступны в широком диапазоне значений, обычно следующих за диапазонами E12 и E24, хотя не все диоды подчиняются этому соглашению. В некоторых случаях значения E12 могут быть немного дешевле и могут быть более широко доступны.

    Значения обычно начинаются примерно с 2,4 В, хотя не все диапазоны простираются до таких низких значений.Значения ниже этого недоступны. Диапазоны могут простираться где угодно в диапазоне от 47 В до 200 В, в зависимости от фактического диапазона стабилитрона. Максимальное напряжение для вариантов SMD часто составляет около 47 В.

    Значения напряжения стабилитрона в диапазоне E12
    1,0 1,2 1,5
    1,8 2,2 2,7
    3,3 3,9 4.7
    5,6 6,8 8,2

    В диапазоне E24 доступно в два раза больше значений, чем в E12, что дает гораздо больший выбор значений. В некоторых случаях это может быть полезным, поскольку можно выбрать более точные значения, что снижает потребность в настройке там, где точное значение не достигается.


    Значения напряжения стабилитрона в диапазоне E24
    1,0 1.1 1,2
    1,3 1,5 1,6
    1,8 2,0 2,2
    2,4 2,7 3,0
    3,3 3,6 3,9
    4,3 4,7 5,1
    5,6 6,2 6,8
    7,5 8.2 9,1
  • Ток: Ток IZM стабилитрона — это максимальный ток, который может протекать через стабилитрон при его номинальном напряжении VZ.

    Обычно для работы диода также требуется минимальный ток. Как правило, это может быть от 5 до 10 мА для типичного устройства с выводами на 400 мВт. Ниже этого уровня тока диод не выходит из строя в достаточной степени для поддержания заявленного напряжения.

    Лучше всего, чтобы стабилитрон работал выше этого минимального значения с некоторым запасом, но без вероятности того, что он будет рассеивать слишком много энергии, когда стабилитрон должен пропускать больший ток.

  • Номинальная мощность: Все стабилитроны имеют номинальную мощность, которую нельзя превышать. Он определяет максимальную мощность, которая может рассеиваться корпусом, и представляет собой произведение напряжения на диоде, умноженного на ток, протекающий через него.

    Например, многие устройства с небольшими выводами имеют рассеиваемую мощность 400 мВт или 500 мВт при 20 ° C, но доступны более крупные варианты с гораздо более высокими уровнями рассеяния.

    Также доступны варианты для поверхностного монтажа, но, как правило, они имеют более низкие уровни рассеяния, учитывая размер корпуса и их способность отводить тепло.

    Общие номинальные мощности для выводных устройств включают 400 мВт (наиболее распространенные), 500 мВт, 1 Вт, 3 Вт, 5 Вт и даже 10 Вт. Доступны даже версии мощностью 50 Вт, но они часто устанавливаются на шпильки, чтобы гарантировать, что диод может быть установлен на радиатор для отвода рассеиваемого тепла.Значения для устройств поверхностного монтажа могут составлять около 200, 350, 500 мВт, а отдельные устройства могут увеличиваться до 1 Вт.

    Использование стабилитронов высокой мощности приведет к увеличению затрат в результате более крупных устройств, которые будут более дорогими, а также дополнительных оборудование, необходимое для крепления устройств и отвода тепла. Это помимо повышенного энергопотребления. Иногда могут использоваться альтернативные методы, чтобы использовать стабилитроны с меньшей мощностью и повысить эффективность, хотя может потребоваться сбалансировать это с увеличением сложности.

  • Сопротивление стабилитрона Rz: ВАХ стабилитрона не полностью вертикальна в области пробоя. Это означает, что при небольших изменениях тока будет небольшое изменение напряжения на диоде. Изменение напряжения для данного изменения тока — это сопротивление диода. Это значение сопротивления, часто называемое сопротивлением, обозначается Rz. Сопротивление стабилитрона Обратный наклон показан как динамическое сопротивление диода, и этот параметр часто указывается в технических характеристиках производителей.Обычно крутизна не сильно меняется для разных уровней тока, при условии, что они составляют примерно от 0,1 до 1 номинального тока Izt.
  • Допуск по напряжению: Если диоды маркированы и отсортированы для соответствия диапазонам значений E12 или E24, типичные характеристики допусков для диодов составляют ± 5%. В некоторых таблицах данных напряжение может указываться как типичное, а затем указываться максимальное и минимальное значение.
  • Температурная стабильность: Для многих приложений важна температурная стабильность стабилитрона.Хорошо известно, что напряжение на диоде меняется в зависимости от температуры. Фактически, два механизма, которые используются для обеспечения пробоя в этих диодах, имеют противоположные температурные коэффициенты, и один эффект преобладает при напряжении ниже 5 В, а другой — выше. Соответственно, диоды с напряжением около 5 В, как правило, обеспечивают наилучшую температурную стабильность.

    Температурная характеристика стабилитрона
    Из приведенного примера видно, что существует заметная разница между характеристиками обратного напряжения стабилитрона при 0 ° C и 50 ° C.Это необходимо учитывать, если схема и оборудование, в которых будет использоваться стабилитрон, подвержены изменению температуры.


  • Спецификация температуры перехода: Для обеспечения надежности диода температура диодного перехода является ключевой. Несмотря на то, что корпус может быть достаточно холодным, активная область может быть намного горячее. В результате некоторые производители указывают рабочий диапазон для самого разветвления.Для нормальной конструкции обычно сохраняется приемлемый запас между максимальной ожидаемой температурой внутри оборудования и места соединения. Внутренняя температура оборудования снова будет выше, чем температура снаружи оборудования. Необходимо следить за тем, чтобы отдельные предметы не становились слишком горячими, несмотря на приемлемую температуру окружающей среды за пределами оборудования.
  • Упаковка: Стабилитроны поставляются в различных корпусах.Основной выбор — между поверхностным монтажом и традиционными выводами. Однако выбранный пакет часто определяет уровень рассеивания тепла. Доступные варианты будут подробно описаны в спецификации стабилитронов.

Пример технических характеристик стабилитрона

Чтобы дать некоторое представление о характеристиках, ожидаемых от стабилитрона, ниже приведен реальный пример. Приведены основные параметры, которые потребуются в схемотехнике.

  • Стабилитрон с выводами BZY88 Этот диод описывается как миниатюрный стабилитрон для регулируемых цепей питания, защиты от перенапряжения, подавления дуги и других функций в различных областях. Версия 5V1 (5,1 В) была взята в качестве примера.
Типичные характеристики / технические характеристики стабилитрона BZY88
Характеристика Типичное значение Блок Детали
Рассеиваемая мощность постоянного тока 400 мВт @ Tl = 50 ° C: снижение выше 50 ° C 3.2 мВт / ° C
Температура перехода -65 до +175 ° С
Напряжение Vz при 5 мА 4,8 мин.
5,1 тип.
5,4 макс.
В
Zzt при 5 мА 76 Ом
ИК @VR 1 @ 2,0 мкА

Параметры, приведенные в таблице данных для этого обычного стабилитрона, дают полезную информацию о технических характеристиках стабилитрона.Хотя они предназначены только для небольшого диода, такие же данные приведены и для других стабилитронов.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Преимущества стабилитрона для функциональности схемы

Отправлено

Стабилитрон — это тип выпрямительного полупроводникового диода, который используется для регулирования напряжения в цепи и работает в режиме обратного смещения, чтобы избежать отказа. Полупроводниковые диоды позволяют току течь только в одном направлении, но стабилитроны позволяют току течь и в противоположном направлении при воздействии достаточного напряжения.Стабилитроны обеспечивают отличное решение для нескольких общих схем.

Ниже компания Solid State Inc. рассматривает применение, работу и преимущества стабилитронов.

В чем разница между диодом и стабилитроном?

Как уже отмечалось, диод — это полупроводник, который проводит только в одном направлении, тогда как стабилитрон проводит как в прямом, так и в обратном направлениях смещения. Если бы нормальный диод работал в обратном направлении, он бы вышел из строя, хотя стабилитрон не повредит.Вместо этого стабилитроны в полной мере используют количество приложенного обратного напряжения.

Стабилитрон: основные операции и приложения

Стабилитрон

работает так же, как диод с PN-переходом, когда работает в прямом направлении смещения, но в своих приложениях обычно используется для обратного режима. Тем не менее, стабилитроны также регулируют напряжение в одном направлении (обычном) или в обоих направлениях (двунаправленном). Он имеет широкий диапазон напряжений, и, когда обратное напряжение увеличивается до напряжения пробоя, через диод начинает течь ток.Поскольку напряжение остается довольно постоянным в широком диапазоне источников питания, они используются для регулирования напряжения, ограничителей перенапряжения, схем ограничения и в качестве опорных элементов в различных приложениях.

Если вы собираете диоды или используете их в цепи, важно определить, в какую сторону направлять диод. Два вывода диода называются анодом к корпусу (AK) и катодом к корпусу (KK). Анод — это электрод, через который в устройство поступает положительный заряд от внешней цепи; Катод — это электрод, который направляет ток, выходящий из устройства.

Преимущества стабилитронов

Использование стабилитронов в схемах дает ряд преимуществ, включая следующие:

  • Дешевле, чем другие диоды
  • Возможность переключения напряжения
  • Легко совместим и доступен для всех систем
  • Высокопроизводительный стандарт
  • Защита от перенапряжения
  • Способность регулирования и стабилизации напряжения цепи
  • Большой контроль над током перелива
  • Используется в схемах меньшего размера

Итак, стабилитроны предназначены для работы в режиме обратного смещения, при котором они начинают проводить значительный ток.Он может работать как регулятор напряжения, потребляя меньше тока, если напряжение слишком низкое, или, поочередно, потребляя больше, если напряжение слишком высокое.

Свяжитесь со специалистами Solid State Inc.

Solid State Inc. — известный производитель электронных компонентов. Помимо стабилитронов и диодов, мы предлагаем транзисторы, светодиоды, выпрямители, симисторы, диоды и многое другое. Чтобы поговорить с нашей командой, свяжитесь с Solid State Inc. сегодня.

Введение в стабилитрон — инженерные знания

Здравствуйте, ребята, надеюсь, у вас все отлично.В сегодняшнем руководстве мы рассмотрим Введение в стабилитрон. Диод — это полупроводниковое устройство, которое используется для преобразования переменного тока в постоянный. Обычно ток через диод протекает только в условиях прямого смещения и блокирует ток в условиях обратного смещения. При прямом смещении сопротивление диода меньше, а при обратном смещении сопротивление диода высокое. Если мы увеличим напряжение на диоде в состоянии обратного смещения, то наступит момент, когда ток начнет течь в состоянии обратного смещения.В этот момент с меньшим изменением напряжения происходит большое приращение тока в режиме обратного смещения.

Резкое увеличение тока называется лавинным пробоем или пробоем Зенера. Напряжение, при котором эта лавина выходит из стабилитрона, называется напряжением стабилитрона, а ток — током стабилитрона. Обычный диод не может работать в области пробоя, так как в этой области большой ток может повредить диод. Существует специальный диод, который может работать при пробое стабилитронов или лавин без повреждений, известный как стабилитрон.В условиях прямого смещения он работает аналогично обычному диоду, и через него проходит большой ток. В сегодняшнем посте мы подробно рассмотрим его работу, конструкцию, применение, характеристики V-I и некоторые другие связанные параметры. Итак, давайте начнем с Introduction to Zener Diode.

Введение в стабилитрон
  • Стабилитрон — это тип диода, который работает в области обратного пробоя, в которой обычный диод не работает.
  • Если напряжение на аноде диода положительное, а на катоде отрицательное, то он работает как обычный диод.
  • Если напряжение на аноде отрицательное, а на катоде положительное значение, чем значение обратного напряжения, при котором происходит пробой и начинает течь обратный ток, называется Напряжение Зенера .
  • Этот процесс был открыт Кларенсом Зинером, американским физиком, и известен как эффект Зенера .
  • Существуют разные значения для разных напряжений стабилитрона для стабилитронов. Некоторые диоды имеют свойство регулировать значение напряжения стабилитрона.
  • Уровень легирования PN перехода стабилитрона больше, чем у нормального диода. Обратный пробой, аналогичный стабилитрону, также происходит в нормальном диоде, но кривая в случае обратного пробоя не является хорошей в обычном диоде, как в стабилитроне.
  • Стабилитрон
  • может работать в области пробоя, но диод в целом не может повреждаться в этой области.
  • Но конструкция стабилитрона такова, что он может очень легко работать в области пробоя без каких-либо помех.
  • Стабилитрон
  • используется практически во всех электронных приборах и является основным элементом любой схемотехники устройств.
  • Эти диоды также используются для защиты любых схем от перенапряжения, особенно от электростатического разряда (резкое протекание тока между 2 заряженными объектами).
  • Обозначение стабилитрона показано на рисунке ниже.На этом рисунке также показана рабочая область стабилитрона.

Стабилитрон
  • Конструкция стабилитрона такова, что он может работать при обратном пробое. В стабилитроне бывает 2 типа обратного пробоя.
  • Первый — лавина, второй — пробой Зенера.
  • Лавинный пробой происходит при высоком значении обратного напряжения.
  • При этом пробой стабилитрона происходит при меньшем значении напряжения обратного смещения.
  • Для уменьшения значения пробоя диод напряжения имеет высокое значение легирования.
  • Из-за большого количества легирования его обедненная область очень тонкая. Как следствие, в области истощения образуется поле.
  • Напряженность поля около напряжения пробоя стабилитрона или (VZ) настолько высока, что оно может вытаскивать электроны из их зоны равновесия, и из-за этого электроны начинают течь ток.
  • Стабилитрон, имеющий значение пробоя напряжения менее пяти вольт, работает при пробое стабилитрона.
  • Но стабилитрон, напряжение пробоя которого превышает 50 вольт, работает при пробое стабилитрона.
  • Диод, работающий либо в области пробоя, либо в области лавины, называется стабилитроном.
  • Нормальный диапазон напряжения пробоя, доступный на рынке для стабилитронов, составляет от одного до более чем двух пятидесяти вольт с допуском от одного до двадцати процентов.
Характеристики стабилитрона
  • На рисунке ниже показана характеристика стабилитрона при обратном смещении.

  • Вы можете видеть, что с увеличением обратного напряжения VR происходит очень меньшее приращение обратного тока IR до точки изгиба кривой.
  • Этот обратный ток также известен как ток Зенера Iz.
  • Когда начинается эффект пробоя в точке перегиба, внутреннее сопротивление стабилитрона называется Импеданс стабилитрона (Z Z ) начинает уменьшаться с резким увеличением значения обратного тока.
  • От самой нижней точки изгиба кривой напряжение пробоя стабилитрона (Vz) почти остается постоянным, но приращение этих напряжений значительно меньше из-за увеличения стабилитрона или обратного тока Iz.

Постановление Зенера

  • Способность диода поддерживать постоянное обратное напряжение на своих выводах — основная особенность стабилитрона.
  • Во время работы при пробое региональный диод работает как регулятор напряжения, поскольку он сохраняет постоянное значение напряжений на своих выводах при большом увеличении значения обратного тока.
  • Минимальное значение обратного тока, I ZK , должно поддерживаться, чтобы диод работал как регулятор напряжения в области пробоя.
  • На приведенном выше рисунке вы можете заметить, что, когда обратный ток меньше точки изгиба кривой, из-за того, что напряжение также значительно уменьшается, также уменьшается регулировка диода.
  • При наименьшем значении тока существует предельное значение тока I ZM , при превышении которого диод может выйти из строя из-за высокого рассеяния мощности.
  • Итак, мы пришли к выводу, что для диапазона обратного тока от I ZK до I ZM напряжение на стабилитроне постоянно.
  • Номинальное напряжение VZ для диода указано в таблице данных с обратным током IR, известным как испытательный ток Зенера.
Схемы эквивалента стабилитрона
  • На этом рисунке вы можете увидеть идеальный стабилитрон и его результирующую идеальную характеристическую кривую.

  • Потери напряжения на этом диоде постоянны и равны номинальному напряжению стабилитрона.
  • Эта потеря напряжения на диоде, возникающая во время обратного пробоя, обозначается символом постоянного напряжения, но генерация напряжения не является свойством стабилитрона.
  • На рисунке ниже показана схема практического диода, имеющего импеданс стабилитрона или сопротивление диода ZZ.

  • Поскольку характеристическая кривая этого диода не вертикальна, как у идеального диода из-за изменения тока Зенера (ΔIZ), его напряжение Зенера (ΔVZ) также увеличивается. Вы можете видеть на приведенной выше характеристической кривой.

Zz = (ΔVZ) / (ΔIZ)

  • Обычно Z Z указывается при испытательном токе стабилитрона.В некоторых условиях можно предположить, что Z Z является менее постоянной величиной выше полного диапазона стабилитронного тока и является чисто резистивным элементом.
  • Не рекомендуется использовать диод вблизи изгиба кривой, так как в этой области значения импеданса велики.
  • Для анализа различных схем и поиска неисправностей идеальный диод обеспечит наилучшие результаты, и с ним проще обращаться, чем со сложной схемой практичного диода.
Температурный коэффициент стабилитрона
  • Температурный коэффициент определяет процентное изменение напряжения стабилитрона для каждого градуса изменения температуры.
  • Например, из-за двенадцати вольт стабилитрон с положительным коэффициентом будет показывать приращение на 1,2 милливольта в Vz, когда температура перехода повышается на Цельсия.
  • Приведенная ниже формула может быть использована для определения изменения напряжения стабилитрона в результате изменения температуры перехода для определенного температурного коэффициента.

ΔV Z = V Z x TC x ΔT

  • В этом уравнении значение Vz номинального напряжения стабилитрона при эталонной температуре 25 o ° C, Tc — коэффициент изменения температуры и T по отношению к эталонной температуре.
  • Положительное значение Tc указывает, что напряжение стабилитрона увеличивается с увеличением температуры и уменьшается с уменьшением температуры.
  • Отрицательное значение TC указывает, что напряжение стабилитрона уменьшается с увеличением температуры и возрастает с уменьшением температуры.
  • В определенных условиях температурный коэффициент указывается в мВ / ° C вместо% / C.
  • В этих условиях Vz обозначается как.

ΔV Z = TC x ΔT

Рассеивание мощности на стабилитроне и снижение номинальных характеристик
  • Стабилитроны работают на предельной мощности, называемой максимальной рассеиваемой мощностью постоянного тока, P D (max) .
  • Например, рейтинг стабилитрона 1N746 составляет P D (макс.) = 500 мВт, а рейтинг 1N3305A — P D (макс.) = 50 Вт.
  • Здесь приводится формула рассеяния мощности постоянного тока.

P D = V Z I Z

Снижение мощности стабилитрона

  • Максимальная рассеиваемая мощность P D (max) стабилитрона обычно определяется для определенного значения температуры или выше этого значения, например, пятьдесят по Цельсию.
  • При превышении этой конкретной температуры значение P D (макс.) уменьшается по отношению к коэффициенту снижения номинальных характеристик.
  • Коэффициент снижения мощности определяется в мВт / ° C. Максимальное снижение номинальной мощности можно найти с помощью следующей формулы.

P D (снижение мощности) = P D (макс.) — (мВт / ° C) ΔT

Работа стабилитрона
  • В нормальном диоде для режима обратного смещения требуется большой ток, превышающий напряжение пробоя.
  • При превышении напряжения пробоя обратного смещения от нормального диода течет большой ток из-за лавинного пробоя.
  • Этот ток будет продолжать течь, если его не остановит какая-либо внешняя цепь из-за того, что этот ток будет выделять тепло, которое повредит диод.
  • По своим свойствам стабилитрон почти аналогичен обычному диоду с той разницей, что стабилитрон сконструирован для уменьшения значения напряжения пробоя, известного как напряжение стабилитрона.
  • С противоположным нормальному диоду стабилитрон в условиях обратного смещения имеет управляющий пробой и имеет функцию сохранения напряжения на стабилитроне вблизи напряжения пробоя стабилитрона.
  • Например, диод, имеющий напряжение пробоя стабилитрона 3,2 В, будет иметь потерю напряжения около 3,2 В в другом диапазоне обратного тока.
  • Благодаря этому стабилитрон является лучшим вариантом для таких приложений, где используется опорное напряжение, например, в усилителях.
  • Другой метод, который приводит к таким же последствиям, — это лавинный эффект, такой как в лавинном диоде.
  • Есть 2 типа диодов, которые производятся по одной технологии и имеют 2 особенности в этом диоде.
  • Диод, изготовленный из кремния с напряжением 5,6 В, наибольший эффект Зенера, имеет отрицательный температурный коэффициент.
  • Более 5,6 В наибольший лавинный эффект показывает положительный температурный коэффициент.

Применение стабилитрона
  • Здесь подробно описаны некоторые применения стабилитрона.

Ограничитель формы волны

  • На рисунке ниже в этой схеме используется диод в качестве ограничителя. 2 диода соединены последовательно своими лицевыми сторонами.
  • Благодаря такому расположению они будут зажимать обе половины волны.
  • Эти схемы с изменяющейся формой сигнала также используются для удаления пиков в различных схемах.

Переключатель напряжения

  • Стабилитрон также можно использовать для сдвига напряжения.
  • Эта схема снижает выходное напряжение до значения, равного напряжению пробоя стабилитрона. На рисунке ниже показана электрическая схема устройства переключения передач.

Регулятор напряжения

  • Стабилитрон используется во многих схемах в качестве регуляторов напряжения и обеспечивает соответствующее значение напряжения.

Похожие сообщения

Итак, друзья, это полный пост о стабилитронах, я постарался изо всех сил, чтобы сделать этот пост для вас легким и простым.Если у вас есть вопросы по этому посту, задавайте их в комментариях. Увидимся в следующем посте, хорошего дня. Спасибо за прочтение.

Автор: Генри
http://www.theengineeringknowledge.com

Я профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях. Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром. Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.

Сообщение навигации

Стабилитрон

— Определение, VI характеристики и пробой стабилитрона

А нормальный п-п переходной диод пропускает электрический ток только в прямом направлении. предвзятое состояние. Когда прямое смещение приложено к диод p-n перехода, он позволяет большое количество электрического ток и блокирует только небольшое количество электрического тока.Следовательно, нападающий смещенный диод на p-n переходе предлагает лишь небольшой сопротивление электрическому току.

Когда обратное смещенное напряжение подается на диод p-n перехода, он блокирует большое количество электрического тока и позволяет только небольшое количество электрического тока. Следовательно, обратный смещенный диод на p-n переходе обеспечивает большое сопротивление электрический ток.

Если Напряжение обратного смещения, приложенное к диоду с p-n переходом, равно сильно увеличивается, происходит внезапное повышение тока. На это точка, небольшое повышение напряжения быстро увеличивает электрический ток. Этот внезапное повышение электрического тока вызывает пробой перехода называется стабилитрон или лавинный пробой. Напряжение, при котором Пробой стабилитрона называется напряжением стабилитрона, и внезапное увеличение тока называется током стабилитрона.

А нормальный диод p-n перехода не работает при пробое область, потому что избыточный ток необратимо диод. Обычные диоды с p-n переходом не предназначены для работают в области обратного пробоя. Следовательно, нормальный p-n переходной диод не работает в области обратного пробоя.

Что такое стабилитрон?

А стабилитрон — это особый тип устройства, предназначенный для работы в области пробоя стабилитрона.Стабилитроны работают как обычно Диоды с p-n переходом в прямом смещении. Когда на стабилитрон подается напряжение прямого смещения. допускает большое количество электрического тока и блоков только небольшое количество электрического тока.

Стабилитрон

сильно перегружен. легированный, чем обычный диод с p-n переходом. Следовательно, у него очень тонкое истощение область, край.Следовательно, стабилитроны позволяют увеличить электрическую мощность. ток, чем нормальные диоды с p-n переходом.

Стабилитрон

позволяет электрический ток в прямом направлении, как обычный диод но также пропускает электрический ток в обратном направлении, если приложенное обратное напряжение больше стабилитрона Напряжение. Стабилитрон всегда подключен в обратном направлении направление, потому что он специально разработан для работы в обратное направление.

стабилитрон определение

А Стабилитрон — это полупроводниковый прибор с p-n переходом, разработанный работать в области обратного пробоя. Поломка напряжение стабилитрона тщательно настраивается путем управления уровень легирования при производстве.

название стабилитрон был назван в честь американского физика Кларенс Мелвин Зенер, открывший эффект Зенера.Зинер диоды являются основными строительными блоками электронных схем. Они широко используются во всех видах электронного оборудования. Стабилитроны в основном используются для защиты электронных схем. от перенапряжения.

Обрыв в стабилитрон

Там Есть два типа областей обратного пробоя в стабилитроне: лавинный пробой и пробой стабилитрона.

Лавина поломка

лавина пробой происходит как в нормальных диодах, так и в стабилитронах при высокое обратное напряжение. Когда приложено высокое обратное напряжение к диоду p-n перехода, свободный электроны (неосновные носители) получают большое количество энергии и разогнался до больших скоростей.

свободные электроны, движущиеся с высокой скоростью, будут сталкиваться с атомами и выбить больше электронов.Эти электроны снова ускоряется и сталкивается с другими атомами. Из-за этого непрерывное столкновение с атомами, большое количество свободных электроны генерируются. В результате электрический ток в диод быстро увеличивается. Это внезапное увеличение электрический ток может навсегда разрушить нормальный диод. Однако лавинные диоды нельзя разрушить, потому что они тщательно спроектированы для работы в лавинных условиях область, край.Лавинный пробой происходит в стабилитронах с напряжение стабилитрона (В z ) более 6 В.

Зенера поломка

Пробой стабилитрона происходит в сильно легированных диодах с p-n переходом из-за их узкой области истощения. При обратном смещенное напряжение, приложенное к диоду, увеличивается, узкая область истощения генерирует сильное электрическое поле.

Когда обратное смещенное напряжение, приложенное к диоду, достигает близко к напряжению Зенера, электрическое поле в область обеднения достаточно сильна, чтобы вытягивать электроны из их валентная группа. Валентные электроны, которые получают достаточная энергия от сильного электрического поля область истощения нарушит связь с родительским атомом.Балдахин электроны, которые разрывают связь с родительским атомом, будут становятся свободными электронами. Эти свободные электроны несут электрический ток. ток из одного места в другое. При пробое стабилитрона области, небольшое увеличение напряжения будет быстро увеличиваться электрический ток.

  • стабилитрон пробой происходит при низком обратном напряжении, а лавинный пробой происходит при высоком обратном напряжении.
  • стабилитрон в стабилитронах происходит пробой, потому что у них очень тонкая область истощения.
  • Разбивка Область является нормальной рабочей областью стабилитрона.
  • стабилитрон Пробой происходит в стабилитронах при напряжении стабилитрона (В z ) менее 6В.

Символ стабилитрон

Символ стабилитрона показан на рисунке ниже.Стабилитрон состоит из двух выводов: катода и анода.

В стабилитрон, электрический ток течет от обоих анодов к катод и катод к аноду.

символ стабилитрона аналогичен нормальному p-n переходу диодный, но с загнутыми краями на вертикальной полосе.

VI характеристики стабилитрона

VI характеристики стабилитрона показаны ниже. фигура.При подаче напряжения прямого смещения на стабилитрон диод, работает как обычный диод. Однако при обратном на стабилитрон подается смещенное напряжение, он работает в по-разному.

Когда Обратно смещенное напряжение подается на стабилитрон, он допускает только небольшое количество тока утечки до тех пор, пока напряжение меньше напряжения стабилитрона.При обратном смещении напряжение, приложенное к стабилитрону, достигает напряжения стабилитрона, он начинает пропускать большое количество электрического тока. На это точка, небольшое увеличение обратного напряжения быстро увеличивает электрический ток. Из-за этого внезапного подъема в электрическом токе происходит пробой, называемый стабилитроном авария. Однако стабилитрон демонстрирует управляемый поломка, приводящая к повреждению устройства.

Напряжение пробоя стабилитрона зависит от количество примененного допинга. Если диод сильно легирован, Пробой стабилитрона происходит при малых обратных напряжениях. С другой стороны, если диод слегка легирован, пробой стабилитрона возникает при высоких обратных напряжениях. Доступны стабилитроны с напряжениями стабилитрона в диапазоне 1.От 8 до 400 В.

Преимущества стабилитрона

  • Мощность рассеивающая способность очень высокая
  • Высокий точность
  • Малый размер
  • Низкая стоимость

Приложения стабилитрона

  • Обычно используется как источник опорного напряжения
  • Стабилитроны
  • используются в стабилизаторах напряжения или шунтах. регуляторы.
  • Стабилитроны используются в коммутационных операциях
  • Стабилитроны
  • используются в схемах отсечки и зажима.
  • Стабилитроны используются в различных схемах защиты

Типы диодов

различные типы диодов следующие:

  1. стабилитрон диод
  2. Лавинный диод
  3. Фотодиод
  4. Свет Излучающий диод
  5. Лазер диод
  6. Туннель диод
  7. Шоттки диод
  8. Варактор диод
  9. П-Н переходной диод

стабилитрон | Инжиниринг | Фэндом

Обозначение стабилитрона.

Диод обычно рассматривается как устройство, позволяющее току течь через него только в одном направлении; однако стабилитроны позволяют току течь и в обратном направлении, если напряжение выше номинального пробоя или «напряжения стабилитрона».

Обычный твердотельный диод не пропускает ток, если он смещен в обратном направлении ниже его напряжения обратного пробоя. При превышении напряжения пробоя обычный диод разрушается при пробое из-за избыточного тока, что приводит к перегреву.Однако процесс обратим, если устройство работает в определенных пределах. В случае прямого смещения (в направлении стрелки) на диоде наблюдается падение напряжения примерно 0,6 В для типичного кремниевого диода. Падение напряжения зависит от типа диода.

Стабилитрон демонстрирует почти те же свойства, за исключением того, что устройство специально спроектировано так, чтобы иметь значительно пониженное напряжение пробоя, так называемое напряжение Зенера . Стабилитрон содержит сильно легированный p-n-переход, позволяющий электронам туннелировать из валентной зоны материала p-типа в зону проводимости материала n-типа.Стабилитрон с обратным смещением будет демонстрировать управляемый пробой и пропускать ток, чтобы поддерживать напряжение на стабилитроне на уровне напряжения Зенера. Например, стабилитрон на 3,2 В будет демонстрировать падение напряжения на 3,2 В при обратном смещении. Однако ток не безграничен, поэтому стабилитрон обычно используется для генерации опорного напряжения для каскада усилителя или в качестве стабилизатора напряжения для слаботочных приложений.

Напряжение пробоя можно довольно точно контролировать в процессе легирования.Доступны допуски с точностью до 0,05%, хотя наиболее широко используемые допуски составляют 5% и 10%.

Эффект открыл американский физик Кларенс Мелвин Зинер.

Другой механизм, производящий аналогичный эффект, — это лавинный эффект, как в лавинном диоде. На самом деле два типа диодов сконструированы одинаково, и в диодах этого типа присутствуют оба эффекта. В кремниевых диодах напряжением до 5,6 вольт эффект стабилитрона является преобладающим эффектом и показывает заметный отрицательный температурный коэффициент.При напряжении выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.

В диоде на 5,6 В эти два эффекта возникают вместе, а их температурные коэффициенты аккуратно компенсируют друг друга, поэтому диод на 5,6 В является предпочтительным элементом в критичных к температуре приложениях.

Современные технологии производства позволяют производить устройства с напряжением ниже 5,6 В с незначительными температурными коэффициентами, но по мере того, как встречаются устройства с более высоким напряжением, температурный коэффициент резко возрастает.Диод на 75 В имеет в 10 раз больший коэффициент, чем у диода на 12 В.

Все такие диоды, независимо от напряжения пробоя, обычно продаются под общим термином «стабилитрон».

Стабилитроны

широко используются в электронных схемах. Их основная функция — регулировать напряжение в цепи. При параллельном подключении к источнику переменного напряжения, так что он имеет обратное смещение, стабилитрон действует как короткое замыкание, когда напряжение достигает обратного напряжения пробоя диода, и, следовательно, ограничивает напряжение до известного значения.Стабилитрон, используемый таким образом, известен как шунтирующий стабилизатор напряжения (шунтирующий , означает параллельное соединение, а стабилизатор напряжения представляет собой класс цепей, вырабатывающих фиксированное напряжение).

  • b: Стабилитрон | Викиучебники: Стабилитроны [1]

Стабилитрон | Инженеры Edge

Связанные ресурсы: приборы

Стабилитрон

Стабилитрон — это уникальный диод, который позволяет току течь в прямом направлении так же, как идеальный диод, но также позволяет ему течь в обратном направлении, когда напряжение выше определенного значения, известного как напряжение пробоя. , «напряжение изгиба стабилитрона» или «напряжение стабилитрона».

Стабилитрон показан с типичными корпусами. Отображается обратный ток-отображается iZ

Операция:

Обычный твердотельный диод не пропускает значительный ток, если он смещен в обратном направлении ниже напряжения обратного пробоя. Когда напряжение пробоя обратного смещения превышено, обычный диод подвергается сильному току из-за лавинного пробоя. Если этот ток не ограничен схемами, диод будет необратимо поврежден из-за перегрева.Стабилитрон демонстрирует почти те же свойства, за исключением того, что устройство специально спроектировано так, чтобы иметь значительно пониженное напряжение пробоя, так называемое напряжение стабилитрона. В отличие от обычного устройства, стабилитрон с обратным смещением будет демонстрировать управляемый пробой и позволяет току поддерживать напряжение на стабилитроне, близкое к напряжению пробоя стабилитрона. Например, диод с напряжением пробоя стабилитрона 3,2 В будет демонстрировать падение напряжения почти на 3,2 В в широком диапазоне обратных токов.Поэтому стабилитрон идеален для таких приложений, как генерация опорного напряжения (например, для каскада усилителя) или в качестве стабилизатора напряжения для слаботочных приложений.

Вольт-амперная характеристика стабилитрона с напряжением пробоя 17 В. Обратите внимание на изменение шкалы напряжения между прямым (положительным) направлением и обратным (отрицательным) направлением

Другой механизм, производящий аналогичный эффект, — это лавинный эффект, как в лавинном диоде.На самом деле два типа диодов сконструированы одинаково, и в диодах этого типа присутствуют оба эффекта. В кремниевых диодах напряжением до 5,6 вольт эффект стабилитрона является преобладающим эффектом и показывает заметный отрицательный температурный коэффициент. При напряжении выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.

В диоде 5,6 В эти два эффекта возникают вместе, и их температурные коэффициенты почти компенсируют друг друга, таким образом, 5.Диод 6 В является предпочтительным компонентом в приложениях с критичными температурами. Современные технологии производства позволяют производить устройства с напряжением ниже 5,6 В с незначительными температурными коэффициентами, но по мере того, как встречаются устройства с более высоким напряжением, температурный коэффициент резко возрастает. Диод на 75 В имеет в 10 раз больший коэффициент, чем диод на 12 В.

Такие диоды, независимо от напряжения пробоя, обычно продаются под общим термином «стабилитрон».

Заявление:

Стабилитроны

широко используются в качестве источников опорного напряжения и шунтирующих стабилизаторов для регулирования напряжения в небольших цепях.При параллельном подключении к источнику переменного напряжения с обратным смещением стабилитрон становится проводящим, когда напряжение достигает обратного напряжения пробоя диода. С этого момента относительно низкий импеданс диода поддерживает напряжение на диоде на этом значении.

В этой схеме, типичном источнике опорного напряжения или регуляторе, входное напряжение UIN стабилизируется до стабильного выходного напряжения UOUT.Напряжение пробоя диода D стабильно в широком диапазоне токов и поддерживает относительно постоянное значение UOUT, даже если входное напряжение может колебаться в довольно широком диапазоне. Из-за низкого импеданса диода при такой работе резистор R используется для ограничения тока в цепи.

В случае этой простой ссылки ток, протекающий в диоде, определяется с использованием закона Ома и известного падения напряжения на резисторе R;

IDiode = (UIN — UOUT) / R
Значение R должно удовлетворять двум условиям:

1.R должен быть достаточно малым, чтобы ток через D удерживал D в обратном пробое. Значение этого тока указано в таблице данных для D. Например, обычное устройство BZX79C5V6, стабилитрон 5,6 В 0,5 Вт, имеет рекомендуемый обратный ток 5 мА. Если ток через D недостаточен, то UOUT будет нерегулируемым и будет меньше номинального напряжения пробоя (это отличается от ламп регулятора напряжения, где выходное напряжение будет выше номинального и может подняться до UIN). При вычислении R необходимо сделать поправку на любой ток через внешнюю нагрузку, не показанную на этой диаграмме, подключенную через UOUT.

2. R должно быть достаточно большим, чтобы ток через D не разрушил устройство. Если ток через D равен ID, его напряжение пробоя VB и максимальная рассеиваемая мощность PMAX, тогда IDVB


Нагрузка может быть помещена на диод в этой опорной цепи, и пока стабилитрон остается в обратном пробое, диод будет обеспечивать стабильный источник напряжения для нагрузки. Стабилитроны в этой конфигурации часто используются в качестве стабильных эталонов для более совершенных схем стабилизатора напряжения.

Шунтирующие стабилизаторы

просты, но требования, чтобы балластный резистор был достаточно малым, чтобы избежать чрезмерного падения напряжения в худшем случае (низкое входное напряжение одновременно с большим током нагрузки), как правило, оставляют большой ток, протекающий в диоде, большую часть время, что делает регулятор довольно расточительным с высокой рассеиваемой мощностью в режиме покоя, подходящим только для небольших нагрузок.

Эти устройства также встречаются, обычно последовательно с переходом база-эмиттер, в транзисторных каскадах, где можно использовать выборочный выбор устройства, сосредоточенного вокруг точки лавины или стабилитрона, для введения компенсационного температурного коэффициента балансировки PN перехода транзистора.Примером такого использования может быть усилитель ошибки постоянного тока, используемый в системе обратной связи цепи регулируемого источника питания.

Стабилитроны

также используются в устройствах защиты от перенапряжения для ограничения скачков напряжения при переходных процессах.

Еще одно примечательное применение стабилитрона — использование шума, вызванного его лавинным пробоем, в генераторе случайных чисел, который никогда не повторяется.

© Авторские права 2000-2021, Engineers Edge, LLC www.Engineedge.com
Все права защищены
Заявление об ограничении ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *