Устройство гидротрансформатора — ZFMaster
Под термином трансмиссия понимают все механизмы, установленные между маховиком двигателя и ведущими колесами. Обычно трансмиссия с автоматической коробкой передач включает в себя: гидротрансформатор, коробку передач, шрусы или карданную передачу, раздаточную коробку, главную передачу, дифференциал и полуоси. Как правило, картер трансформатора прикручивается к картеру коробки или они имеют единый общий картер. Гидротрансформатор осуществляет связь двигателя с коробкой передач, и частично его функции схожи с функциями сцепления. В случае использования автоматической коробки передач решение о переключении, а также его качество, принимается и обеспечивается системой управления. Это в значительной мере облегчает процесс управления транспортным средством, делает его менее трудоемким, особенно, в условиях плотных городских потоков.
Гидродинамическая передача – в настоящее время имеются два типа гидродинамических передач: гидромуфта и гидротрансформатор.
Гидромуфта – самый простой элемент гидропривода. Ее отличительная особенность заключается в том, что крутящий момент на ведущем валу гидромуфты всегда равен моменту на выходном валу. Конструкция гидромуфты очень проста. Она состоит из насосного и турбинного колес примерно одинаковой конструкции, находящихся в заполненном маслом картере (рис 1а и 1б).
При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение. При быстром вращении насосного колеса масло совершает сложное движение, состоящее из переносного и относительного движений. Первое возникает за счет вращения масла вместе с насосным колесом. Второе определяется перемещением масла вдоль насосного колеса к периферии. Относительное движение вызвано действием центробежных сил, возникающих в масле в результате вращения вместе с насосным колесом (рис 2).
В результате на выходе из насосного колеса абсолютная скорость потока масла определяется векторной суммой скоростей переносного и относительного движений (рис 3).
Часть энергии потока масла, определяемая его переносной скоростью отдается через лопатки турбинному колесу. Гидротрансформатор. Принцип действия гидротрансформатора (трансформатора) такой же, как и гидромуфты. Те же самые относительное и переносное движения масла. Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо (рис 4),
и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла.
Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя.
Читайте также: ремонт АКПП БМВ в кузове E60.
Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Современные трансформаторы имеют коэффициент трансформации момента на стоповом режиме 2,0-2,5. Под термином “коэффициент трансформации” понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе. Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса.
В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты, коэффициент трансформации которой равен 1. Трансформатор обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. Кроме того, трансформатор является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии.
Природа любой гидродинамической передачи такова, что в нем всегда имеет место скольжение, т.е. угловая скорость турбинного колеса никогда не равна угловой скорости насосного колеса. Естественно, что это приводит к снижению топливной экономичности автомобиля. Поэтому для улучшения топливно-экономичных характеристик автомобиля в автоматических трансмиссиях предусматривается блокировка трансформатора. Методы блокировки трансформатора. Блокировочная муфта позволяет обойти гидротрансформатор и напрямую соединить двигатель с входным валом коробки передач. Таким образом, устраняется скольжение между насосным и турбинным колесом, что приводит к повышению топливной экономичности автомобиля. Типичная конструкция блокировочной муфты трансформатора показана на рисунке 5.
Ступица нажимного диска (рис 6) шлицами соединяется со ступицей турбинного колеса. Между нажимным диском и ступицей расположены пружины, выполняющие роль демпфера крутильных колебаний (рис 6). В процессе блокировки поршень совершает колебания относительно ступицы, деформируя пружины, которые поглощают крутильные колебания, возбуждаемые двигателем.
Механическая энергия проходит через пружинный демпфер и попадает на выходной вал трансформатора.
Для улучшения работы блокировочной муфты к внутренней поверхности кожуха трансформатора или нажимного диска прикрепляется фрикционная накладка (рис 7).
Блокировочные муфты всех трансформаторов имеют однотипные конструкции нажимного диска, и для их управления обычно используются одинаковые гидравлические схемы. На рисунках 8 и 9.
упрощенно показан один из вариантов управления муфтой трансформатора. В выключенном состоянии масло подается между картером и нажимным диском. Это предохраняет муфту от самопроизвольного включения. Масло, перед тем, как попасть в трансформатор, проходит между диском и кожухом, и далее из трансформатора поступает в систему охлаждения. Для блокировки трансформатора клапан управления переключает контур, и давление подается к поршню с другой стороны. Масло, находящееся ранее между поршнем и кожухом трансформатора сливается через вал турбины, что обеспечивает плавность включения муфты.
Турбинное колесо теперь соединено с валом двигателя и трансформатор заблокирован. Иногда управление блокировкой трансформатора осуществляет через коробку передач. Четырехскоростная автоматическая коробка передач AOD (Ford) имеет вспомогательный входной вал, который напрямую, через пружинный демпфер, связан с двигателем (рис 10).
На третьей и четвертой передачах этот вал через блокировочную муфту включения повышающей передачи соединяется с планетарной коробкой передач. На третьей передаче 60% мощности двигателя передается механически и 40% через трансформатор. На четвертой передаче все 100% мощности двигателя передаются механически через этот вал. На первой, второй и передаче заднего хода весь поток мощности проходит через гидротрансформатор.
Что может выйти из строя в трансформаторе? В первую очередь муфта свободного хода реактора. Здесь возможны два варианта: ролики муфты из-за износа начинают проскальзывать, и муфта не может в этом случае полностью передавать на картер момент, воспринимаемый реактором; ролики могут заклиниться, и в муфте будет отсутствовать режим свободного хода, что не позволит трансформатору переходить на режим работы гидромуфты.
Иногда выходит из строя блокировочная муфта. Чаще всего это происходит из-за значительного износа фрикционной накладки. Во всех отмеченных выше случаях ремонт трансформатора возможен только в специализированных сервисных центрах. Редко, но бывает, в трансформаторе оказываются поврежденными лопатки насосного, турбинного или реакторного колес. В этом случае замена трансформатора неизбежна.
назначение, устройство и принцип работы
Чем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали…
Содержание
- Назначение гидротрансформатора
- Устройство гидротрансформатора
- Принцип работы гидротрансформатора
- Блокировка гидротрансформатора (ГДТ)
- Неисправности гидротрансформатора, их причины
- Преимущества и недостатки гидротрансформатора
- Заключение
Назначение гидротрансформатора
Большинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки.
Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции.
Гидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически.
Этот узел нужен для:
- Увеличения и передачи крутящего момента с двигателя на коробку.
- Защиты автомата при резком увеличении/снижении оборотов.
- Нормализации передачи вращения во время разгона (гашения двойного увеличения вращения).
- Прерывания связи между двигателем и трансмиссией при смене передачи (трансформатор забирает часть крутящего момента на себя).
Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы.
Устройство гидротрансформатора
Гидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором.
Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.Гидротрансформатор состоит из:
- корпуса;
- реакторного колеса (статора) на муфте;
- насосного (центробежного) колеса;
- турбинного колеса;
- механизма блокировки.
Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует.
Принцип работы гидротрансформатора
Принцип работы сравнительно простой, и наглядно показан на видео-уроке, ниже.
- Крутящий момент от двигателя через насосное колесо и трансмиссионную жидкость АТФ (без жесткой связи) передается на турбинное колесо, которое в свою очередь жорстко связано с коробкой передач. То есть поток создает насосное колесо, после попадания жидкости на турбинное колесо оно начинает вращаться.
- При увеличении оборотов двигателя сила потока тоже увеличивается. Масло, отбиваясь от турбинного колеса, попадает обратно на насосное, только уже через реактивное колесо, которое в свою очередь усиливает поток жидкости. Таким образом происходит увеличение крутящего момента (трансформация) — от этого и названия агрегата.

- Трансформация происходит до тех пор, пока скорость вращения насосного и турбинного колеса не сравняются. В этом случае реакторное колесо начинает крутится свободно, не увеличивая поток жидкости. В итоге гидротрансформатор начинает работать в режиме гидромуфты. Собственно в этом и их отличие — гидромуфта не трансформирует крутящий момент.
Блокировка гидротрансформатора (ГДТ)
Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться. В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка. При такой блокировке существенно экономится расход топлива.
Устройство гидротрансформатора с муфтой блокировкиТакже на современных авто, блокировка включается на любых передачах и даже для торможения двигателем.
Делается это для эффективного и динамичного разгона и торможения автомобиля. Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу. Крутящий момент начинает передаваться без участия жидкости.
Неисправности гидротрансформатора, их причины
Гидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:
- Неисправности трансформатора (износ валов и соединений между ними, засорение или износ клапанов, подающих масло).
- Неисправности блочной плиты (сбои в работе масляного насоса, выход из строя датчиков, отвечающих за подачу масла, засорение каналов и фильтров системы подачи масла).
Признаков неисправности много:
- Автомобиль немного пробуксовывает в начале движения.

- Во время движение слышится жужжание, стуки.
- При смене передачи ощущаются толчки, мотор глохнет.
- Замедленный разгон, сопровождающийся шуршанием.
- Перегрев бублика.
- Появление запаха горения пластмассы.
- Вибрация трансформатора.
- Недостаточный уровень трансмиссионной жидкости.
Причины проявления симптомов:
- Механический шум во время холостого хода появляется при износе подшипников.
- При появлении вибраций необходимо проверить качество трансмиссионной жидкости и степень загрязненности фильтра (вибрация исчезает после очистки фильтра и замены жидкости).
- Характеристики разгона меняются из-за износа муфты, на которой закреплен статор (деталь нужно заменить).
- Скрежет, стук во время движения появляется при разрушении лопастей колес (бублик чаще всего меняется из-за нецелесообразности ремонта).
- Расплавленной пластмассой пахнет при засорении системы охлаждения коробки или уменьшении объема трансмиссионной жидкости.

- Автомобиль глохнет при смене передачи, если вышла из строя электроника, блокирующая трансформатор, требуется профессиональная диагностика.
- Авто самопроизвольно останавливается при выходе из строя электроники, срезании шлиц, засорении клапана блокировки, бублик необходимо поменять.
- Уровень трансмиссионной жидкости снижается, если нарушена герметичность корпуса, агрегат чаще всего меняется.
В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно.
На автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы.
К преимуществам можно отнести:
- Плавное троганье с места, в том числе на сыпучем грунте и подъеме.
- Ход без рывков.
- Удобство управления в городе, в том числе в пробках.
- Снижение нагрузок и вибраций на трансмиссию при неравномерной работе двигателя.
- Избавление от прогорания сцепления.
- Отсутствие пробуксовываний.
- Гидротрансформатор предотвращает возникновение условий, способствующих изгибанию валов, поэтому на них можно ставить подшипники меньших размеров.
- ГДТ небольшие, поэтому узел с коробкой компактный.
Недостатки гидравлических трансформаторов:
- Низкий КПД из-за проскальзывания турбинного и насосного колес.
- Снижение динамики из-за затрат мощности на создание движения потока жидкости.
- Высокая стоимость узла.
- Дорогое обслуживание (жидкость стоит дорого, ее нужно много, причем охлажденной при помощи специальной системы, масло и фильтр необходимо часто менять).
- На грузовиках узлы коробок объемные из-за больших размеров колес.
- Дорогой ремонт и замена.
Заключение
Исходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании.
принцип работы, бублик в АКПП, схема
Гидротрансформатор АКПП (ГДТ) — элемент трансмиссии, расположенный между двигателем и механизмом переключения передач. Агрегат работает по закону гидромеханики, и является частью гидросистемы АКПП. Узел требует регулярного техобслуживания. Чтобы его починить, придется обращаться в сервис.
Содержание
- Устройство гидротрансформатора АКПП
- Описание конструкции гидротрансформатора
- Составные части гидротрансформатора
- Все рабочие механизмы размещенные в корпусе бублика
- Принцип работы гидротрансформатора
- Режимы работы
- Проскальзывание гидротрансформатора
- Блокировка гидротрансформатора АКПП
- Управление ГДТ
- Про масло АКПП
- Эффективность ГДТ
- Признаки неисправности
- Что в гидротрансформаторах ломается чаще всего
- Муфта блокировки
- Уплотнители
- Обгонная муфта
- Как влияет на АКПП
- Ремонт ГДТ
- Рекомендации по обслуживанию и эксплуатации ГДТ
Устройство гидротрансформатора АКПП
Что такое гидротрансформатор в АКПП или «бублик», как его называют механики? ГДТ — это гидропривод, который связывает двигатель и автомат без жесткого соединения.
Играет роль сцепления в аналогии с МКПП.
Гидроприводы бывают двух видов: гидромуфта и гидротрансформатор. Разница между ними заключается в возможности трансформатора преобразовывать крутящий момент. В то время как гидромуфта может только передавать. «Бублик» АКПП работает в обоих режимах с автоматическим переключением, поэтому его можно назвать гибридным агрегатом.
Для чего в АКПП нужен гидротрансформатор? Узел имеет несколько назначений:
- обеспечивает бесступенчатое переключение скоростей и плавное движение автомобиля;
- гасит вибрации и удары от работы двигателя и трансмиссии, продлевая их срок службы;
- позволяет работать двигателю на холостом ходу;
- способствует торможению двигателем;
- повышает проходимость автомобиля в тяжелых условиях, непрерывно передавая крутящий момент от двигателя к колесам.

Устройство гидротрансформатора АКПП основано на законах гидравлики. Механическая сила двигателя переходит в «бублик» и превращается в гидравлическую энергию за счет движения потока жидкости в полости ГДТ. Возникает давление и кинетическая энергия, которые заставляют вращаться вал трансмиссии. А от него крутящий момент переходит в планетарный механизм переключения передач.
В теории АКПП могла бы состоять только из гидротрансформатора. Но на больших скоростях его КПД сильно снижается. Передаточное отношение «бублика» ограничено. Он не может обеспечить движение задним ходом или достаточное количество передач. Поэтому в АКПП за гидротрансформатором устанавливают планетарный редуктор, который способен получить любое передаточное число в заданном диапазоне.
Одним из передовых разработчиков восьми скоростных коробок передач с гидротрансформатором является немецкая компания ZF. Высокотехнологичные трансмиссии этого производителя устанавливают в автомобилях Jeep, BMW, Volkswagen, Audi, Jaguar, Cadillac, Infinity.
Описание конструкции гидротрансформатора
Гидротрансформатор расположен в корпусе АКПП и соединен с масляным насосом через входной вал трансмиссии. С противоположной стороны «бублик» крепится к маховику двигателя через резьбовые бобышки.
Детали гидротрансформатора АКПП находятся в герметичном кожухе, где погружены в жидкость ATF. Из-за тороидальной формы корпуса гидротрансформатора его и прозвали «бубликом». Чтобы добраться до начинки, нужно аккуратно разрезать сварной шов по экватору кожуха.
В разрезе гидротрансформатор АКПП представляет собой набор лопастных колес и муфт, установленных на одной оси:
- насосное колесо;
- турбинное колесо;
- реакторное колесо;
- обгонная муфта;
- муфта блокировки.
Насосное колесо приварено к крышке корпуса, который соединяется с коленчатым валом двигателя. Турбинное колесо конструктивно похоже на насосное и установлено напротив с небольшим зазором. Турбина жестко связана с входным валом трансмиссии.
Между насосом и турбиной стоит реактор. Он зафиксирован на муфте свободного хода, которая крепится на втулке входного вала. Муфта блокировки находится за турбиной.
На кинематической схеме изображено, как расположены основные части гидротрансформатора, и показана траектория движения потока жидкости. Конструктивно гидротрансформатор АКПП представляет собой устройство прямого хода, когда лопастные колеса заставляют жидкость циркулировать в таком порядке: насос — турбина — реактор — насос.
Гидротрансформаторы с обгонной муфтой называют комплексными.
Составные части гидротрансформатора
Основу насосного и турбинного колес гидротрансформатора составляет чаша, отлитая из легкого сплава.
На внутренней и наружной поверхности чаши вырезаны пазы, между которыми расположены лопатки. Лопатки изготовлены штамповкой и соединены между собой торическим диском с помощью подгибных усиков. Дополнительно лопатки на чаше застопорены кольцом.
Кривизна чаши и сложная форма лопаток рассчитаны под требование увеличить эффективность циркуляции жидкости. Таким образом, конструкция колес обеспечивает необходимую скорость и направление движения масла.
Турбинное колесо опирается на вал посредством ступицы и подшипников скольжения или качения. Подшипник воспринимает радиальные и осевые нагрузки.
Ступица насоса обычно используется для привода масляного насоса, расположенного за гидротрансформатором. Привод срабатывает при заходе торцевых шлицев ступицы в соответствующие пазы ведущей шестерни насоса.
Реактор представляет собой 2 металлических кольца разных диаметров. Между кольцами приварены лопасти под заданным углом наклона. Окно лопатки реактора со стороны турбины шире, чем со стороны насоса. Это решение позволяет создавать необходимое давление жидкости.
Все рабочие механизмы размещенные в корпусе бублика
Реактор установлен на муфте свободного хода роликового типа. Муфта состоит из внешней и внутренней обоймы, между которыми находятся ролики и стопорные элементы. Внутренняя обойма зафиксирована на валу, а внешняя соединена с реактором. Когда ролики свободно перекатываются — обоймы вращаются независимо. При стопорении роликов пружинами обоймы сцепляются и могут двигаться только в направлении вала. Обгонная муфта обладает высокой нагрузочной способностью и износостойкостью
Для увеличения КПД и экономичности «бублика» в АКПП в конструкцию введена муфта блокировки. В ее состав входят: корпус, поршень с фрикционным диском и ступица. Корпус выполнен в виде диска с пазами, в которых установлены пружины.
Они выполняют роль демпфера крутильных колебаний. Поршень представляет собой круглую металлическую плиту с приклеенным фрикционным диском со стороны корпуса ГДТ.
В автоматах с 6 ступенями муфта блокировки гидротрансформатора может работать в трех состояниях: разомкнутом, с проскальзыванием и замкнутом. Режим зависит от включенной передачи, нагрузки двигателя и скорости автомобиля. Обычно при разгоне блокировка сначала работает с регулируемым проскальзыванием, а потом замыкается.
Принцип работы гидротрансформатора
Принцип работы гидротрансформатора АКПП основан на преобразовании и передаче крутящего момента от двигателя к трансмиссии через работу жидкости. Производитель подбирает ATF по вязкости, допуску на нагрузку двигателя, количеству присадок. Поэтому от рабочих свойств масла зависит качество работы «бублика» и всей АКПП.
С запуском двигателя начинает работать насосное колесо и масляный насос. В гидротрансформатор попадает масло АКПП. Под действием центробежной силы жидкость от насосного колеса захватывается из центральной оси и нагнетается лопастями к верхнему краю по часовой стрелке.
Оттуда масло перебрасывается на верхние лопатки турбинного колеса. Давление «толкает» их, заставляя турбину вращаться.
Под действием центростремительной силы ATF от верхней границы турбины переходит к центру, усиливая вращение. Происходит трансформация крутящего момента. Чем выше частота оборотов коленчатого вала, тем сильнее раскручивается турбина.
Жидкость от лопаток турбины движется против часовой стрелки и возвращается к насосному колесу. При этом, давление масла противодействует движению насоса, затормаживая его. Прекращается усиление крутящего момента. С этого момента АКПП работает без гидротрансформатора: он перешел в режим гидромуфты.
Для предотвращения торможения между колесами установлен реактор. Его задача — перенаправить поток жидкости от турбины в направление движения насосного колеса.
Кинетическая энергия масла турбины расходуется на увеличение частоты вращения насоса. Таким образом, реактор помогает двигателю вращать насос или гидротрансформатор в целом, усиливая крутящий момент.
Режимы работы
Изменение гидродинамической передачи в гидротрансформаторе обеспечивается установкой реактора на обгонную муфту. Это позволяет «бублику» автоматически переключаться в режим гидромуфта и гидротрансформатор.
В задачи обгонной муфты входит:
- удерживать реакторное колесо в неподвижном состоянии — режим муфты;
- приводить во вращение;
- обеспечивать свободное вращение — режим трансформатора.
Реактор свободно вращается, пока разница между скоростями насосного и турбинного колес не достигает предела. Тогда обоймы муфты стопорятся. Реактор блокируется.
Через лопасти реактора со стороны турбины проходит масла больше, чем выходит к насосу. Скорости колес выравниваются. Объем входного потока жидкости на реакторе совпадает с выходным, и муфта освобождает ректор.
Так гидротрансформатор снова превращается в гидромуфту.
Проскальзывание гидротрансформатора
При большой разнице частот вращения насосного и турбинного колес происходит их пробуксовка. В ГДТ АКПП этот эффект называется проскальзыванием. Жидкость ускоряется и быстро нагревается.
20% гидравлической энергии переходит в тепловую. Излишки тепла выбрасываются в радиатор охлаждения, т.е. деньги за топливо буквально вылетают на воздух.
Чтобы повысить экономичность «бублика» в АКПП, инженеры установили муфту блокировки. Она устраняет проскальзывание ГДТ и обеспечивает режимы работы:
- полное включение;
- регулируемое по пробуксовке включение;
- полное выключение.
КПД гидротрансформатора при включении блокировки достигает 90%. Чтобы увеличить показатель до 97%, для управления муфтой в схему включили клапан с электронным управлением. В некоторых моделях АКПП блокировка включается уже на 2 передаче.
Блокировка гидротрансформатора АКПП
Муфта является гидроуправляемой и работает по сигналу золотниковых клапанов, которые приводятся в действие давлением жидкости.
Трансмиссионное масло поступает в полость между кожухом «бублика» и поршневой плитой, а затем в полость турбины. Фрикционный диск не касается крышки ГДТ. Крышка работает со свободным скольжением. Когда давление в полостях равны, муфта отключена.
По сигналу из гидроблока клапан переключает контур движения масла. Давление жидкости передается к поршню со стороны турбины. В камере между поршнем и крышкой «бублика» стравливается давление. Жидкость сливается через канал. Давление со стороны турбины заставляет поршень сместиться в сторону кожуха. Муфта плавно включается.
Поршневая плита вибрирует относительно ступицы, пружины на крышке блокировочной муфты деформируются. Пружинный демпфер поглощает колебания, передавая их на вал гидротрансформатора. Трение между фрикционом и кожухом растет. В результате гидротрансформатор АКПП блокируется. Между валом двигателя и турбиной установлена жесткая связь.
Режим блокировки обеспечивает спортивные характеристики автомобиля с плавным переключением скоростей в АКПП.
За динамичность, комфорт и экономичность приходится платить снижением надежности и срока службы ГДТ.
При жесткой сцепке двигатель и коробка подвержены ударным нагрузкам, поскольку жидкость «бублика» не гасит удары и вибрации. Из-за высоких скоростей быстро истирается фрикцион, загрязняя масло абразивом. В результате ресурс АКПП снижается.
Управление ГДТ
Современные гидротрансформаторы АКПП находятся под управлением электронного модуля (ТСМ). Он собирает и анализирует информацию с датчиков давления, скорости вращения вала трансмиссии и других. Затем формирует импульсы, которые передаются на соленоиды в гидроблоке. Оттуда запускается алгоритм управления датчиками и клапанами.
Про масло АКПП
Рабочее тело гидротрансформатора сильно нагревается. Для охлаждения масло покидает полость «бублика» и проходит в сливной клапан. Оттуда жидкость под давлением попадает в распределительный клапан. Если датчики регистрируют повышение температуры, масло отправляется в радиатор АКПП.
Охлажденная жидкость переходит в масляный насос через регулятор давления.
Эффективность ГДТ
Работу гидротрансформатора в АКПП оценивают по:
- передаточному отношению угловых скоростей его колес;
- коэффициенту трансформации, который показывает степень увеличения крутящего момента;
- коэффициенту полезного действия, определяющему энергетические свойства и экономичность;
- коэффициенту прозрачности.
Трансформация Кт зависит от диаметра «бублика», плотности масла АКПП и крутящих моментов на колесах. Максимальное значение Кт=2,5—3,0 достигается, когда турбина неподвижна. Чем выше передаточное отношение, тем ниже коэффициент трансформации. В режиме гидромуфты крутящие моменты на валах колес равны, поэтому трансформации не происходит Кт=1.
КПД гидротрансформатора зависит от соотношения мощностей, подаваемых к турбине и насосу. Показатель может достигать 97% в режиме гидромуфты, когда передаточное отношение оптимально — 0,7—0,8.
В среднем КПД составляет 70—80%.
Коэффициент прозрачности П определяет, насколько ГДТ нагружает двигатель в момент изменения режима работы турбины. Для определения прозрачности нужно соотнести моменты насосного колеса при остановленной турбине и при трансформации Кт=1.
При П=1 гидротрансформатор непрозрачен. Крутящий момент турбины не влияет на работу двигателя, который находится в постоянном нагрузочном режиме. У прозрачного ГДТ П>1. Изменение нагрузки на турбинном колесе отражается на мощности двигателя. Прозрачность позволяет использовать тяговые характеристики мотора для улучшения динамики автомобиля.
Признаки неисправности
О проблемах в гидротрансформаторе сигнализирует быстрое потемнение масла после замены. Автомобиль может расходовать больше топлива и дергаться при спокойном движении. Другие признаки можно распознать по ощущениям, слуху и запаху.
| Симптом | Причина |
| Громкий металлический стук, скрежет при переключении передач | Разрушились лопасти колес |
| Легкий металлический звук, шуршание при переключении передач | Вышли из строя опорные подшипники |
| Вибрации, толчки при переключении скоростей, движение «по терке» | Проскальзывание гидротрансформатора из-за износа фрикционного слоя на муфте блокировки
|
| Вибрация на скорости 50 — 70 км/ч | Неравномерное истирание фрикциона, загрязнение жидкости, забитый масляный фильтр |
| Ухудшилась динамика автомобиля | Неисправна обгонная муфта |
| При проверке уровня масла обнаружены частицы металла | Возможно повреждение муфты свободного хода, износ деталей |
| Двигатель заглох при смене передач | Работа гидротрансформатора блокируется системой управления |
| Запах расплавленной пластмассы | Перегрев гидротрансформатора. Плавление пластиковых элементов. |
Обнаружение симптомов не всегда указывает на проблему в гидротрансформаторе, поскольку причина может скрываться и в других частях коробки. Диагностика гидротрансформатора поможет определить причину и характер поломки в АКПП.
Мастер автосервиса проводит проверку по такому алгоритму:
- Собирает информацию о побеге автомобиля, сроках замены ATF, проведенных капремонтах, симптомах.
- Снимает коды неисправности с бортового компьютера.
- Осматривает АКПП.
- Ставит диагноз или проводит дополнительные тесты: меняет масло, измеряет давление, прозванивает электрические цепи.
Предварительный диагноз можно поставить и самостоятельно. Для этого нужно изучить мануалы, устройство и особенности своей АКПП.
Что в гидротрансформаторах ломается чаще всего
Муфта блокировки
Неисправности в гидротрансформаторе чаще всего возникают из-за проскальзывания или трения муфты блокировки.
Фрикционный диск истирается, отслойки материала и клей попадают в масло. В результате жидкость АКПП загрязняется и перегревается. Повышается износ втулок и подшипников.
Неоднородное истирание фрикциона в ГДТ АКПП становится причиной появления вибраций при блокировке муфты. Сальники, подшипники, втулки бьются, что ведет к ускорению износа «бублика». Страдает и масляный насос, что ведет к масляному голоданию всей коробки.
Уплотнители
Другим «слабым местом» гидротрансформатора являются сальники и уплотнители. Детали изготавливают из тефлона или пластика. Они способны пройти 200 000 км. Но из-за агрессивного вождения или неудачной конструкции АКПП, уплотнители начинают протекать, быстрее стареют. Когда сальники истончаются, от них отрываются крупные фрагменты, которые засоряют масло.
Обгонная муфта
В редких случаях бывает неисправна обгонная муфта. Ролики изнашиваются, начинают проскальзывать или заклинивать. В результате муфта не может блокировать реактор.
ГДТ не перейдет в режим гидромуфты. Из-за чрезмерной нагрузки обойму муфты может провернуть, а металлические продукты износа попадут в масло.
Как влияет на АКПП
«Заболевания» гидротрансформатора отражаются на других узлах КПП, выводят их из строя. «Бублик» — главный «загрязнитель» и «нагреватель» АКПП. Масло разносит по коробке фрикционную и металлическую грязь. Забивает шлаками каналы гидроблока, соленоиды, клапаны, датчики. В результате переключение передач происходит с задержкой, растет расход топлива, истираются детали автомата. Поэтому при появлении посторонних звуков, вибраций в автоматической коробке, нужно сразу проверять состояние гидротрансформатора в АКПП. Это поможет его спасти с минимальными расходами.
Ремонт ГДТ
В ремонт гидротрансформатора АКПП в сервисном центре входит:
- съем и разбор автомата;
- слив жидкости из гидротрансформатора;
- разрез сварочного шва на токарном станке;
- мытье и очистка составных деталей от стружки и масляных пятен;
- проведение внешнего осмотра;
- замена фрикционного диска, уплотнителей, даже если они в целом состоянии;
- замена подшипников, обгонной муфты, ступицы при необходимости;
- сборка, сварка корпуса;
- проверка биения, давления, герметичности;
- установка ГДТ в АКПП;
- балансировка в сборе.

От качества и точности выполненных работ зависит дальнейший срок службы гидротрансформатора. Для ремонта нужны специализированные инструменты, станки, стенды, знания особенностей конкретной АКПП. В случае неполадок нужно обращаться в узконаправленный сервис, который «набил руку» на ремонте определенной модели.
Агрегат не всегда можно починить. Для особо редких экземпляров сложно найти замену. В этому случае принимают решение о восстановлении деталей ГДТ.
Средняя цена за ремонт «бублика» АКПП составляет 5000 р. Замена — от 50 000 р. Цены зависят от модели агрегата и сложности поломки.
Рекомендации по обслуживанию и эксплуатации ГДТ
Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях.
Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:
- низкий КПД без применения блокировки;
- расход топлива на 10% выше;
- малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
- сложность конструкции и обслуживания;
- высокая стоимость.
Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:
- как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
- никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.
Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП.
Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.
Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.
После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.
Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.
Как работают гидротрансформаторы?
Вы когда-нибудь задумывались, что у автоматической коробки передач вместо сцепления? Это называется гидротрансформатор, и он делает всю тяжелую работу за вас
Напомнить позже
Передача мощности от любой трансмиссии к трансмиссии может быть довольно сложным процессом с сотнями движущихся частей, которые необходимо синхронизировать одновременно. Из салона вы просто нажимаете на педаль и перемещаете рычаг переключения передач или, может быть, просто щелкаете лепестком, но все, что происходит под днищем, тщательно спроектировано и разработано, чтобы обеспечить плавное соединение длинного списка компонентов, чтобы вывести ваш автомобиль на трассу. шаг.
В автомобиле с механической коробкой передач у вас есть узел сцепления, который позволяет соединять и разъединять двигатель и трансмиссию и, следовательно, привод на колеса. У двигателей есть холостой ход, который устанавливается с помощью ограничителя дроссельной заслонки, что означает минимальную скорость двигателя, при которой двигатель может работать, прежде чем он заглохнет из-за отсутствия воздушно-топливной смеси, поступающей в цилиндры.
Таким образом, без сцепления при торможении до полной остановки двигатель глохнет, так как нагрузка от трансмиссии будет тянуть его ниже допустимого предела оборотов. Сцепление обеспечивает отключение, необходимое для поддержания работы двигателя, а затем повторное включение вместе с некоторым дросселем, чтобы снова запустить автомобиль.
Гидротрансформатор во всей красе Однако в автомобиле с автоматической коробкой сцепления нет — вместо него установлен гидротрансформатор. Он должен выполнять ту же работу, что и сцепление, — позволяя двигателю продолжать работать, в то время как трансмиссия и колеса замедляются до полной остановки, — но он делает это другим и довольно изобретательным способом. Преобразователь крутящего момента — это так называемая гидромуфта — устройство, используемое для передачи механической энергии вращения за счет движения жидкости от одной механической движущейся системы к другой.
Может заменить сцепление, поскольку позволяет двигателю свободно вращаться, значительно уменьшая передачу крутящего момента от трансмиссии к трансмиссии. Он никогда не отключается полностью, так как вы можете почувствовать «ползучесть», которая возникает, если вы снимаете ногу с тормоза автомобиля с автоматической коробкой передач с места.
Регулирование крутящего момента достигается за счет использования насоса, который направляет жидкость вокруг гидротрансформатора в зависимости от вращения коленчатого вала. Внутри гидротрансформатора находится турбина, которая вращается, когда перекачиваемая жидкость соприкасается с лопастями турбины, таким образом измеряя величину крутящего момента, который передается на трансмиссию через входной вал.
Koenigsegg Regera использует систему, аналогичную гидротрансформатору, для обеспечения плавного переключения между выходной электрической мощностью и двигателем внутреннего сгорания.
Корпус гидротрансформатора соединен с маховиком (который, следовательно, вращается с той же скоростью, что и коленчатый корпус представляет собой турбину, жидкостный центробежный насос (или рабочее колесо) и статор. Центробежный насос эффективно нагнетает трансмиссионную жидкость в ребра турбины, которая, в свою очередь, вращается и передает крутящий момент на трансмиссию. Статор выступает в качестве барьера для отбрасывания жидкости обратно в турбину, а не обратно в насос, что значительно повышает эффективность системы.
. Таким образом, на холостом ходу скорость подачи жидкости в турбину очень низкая, что означает очень небольшой крутящий момент. идет от двигателя к трансмиссии. Затем, когда коленчатый вал вращается быстрее с большим дросселем и, в свою очередь, вращает маховик, больше жидкости движется с большей скоростью от насоса в турбину.
После этого турбина вращается быстрее, что позволяет передавать больше крутящего момента на трансмиссию. К сожалению, передача энергии от насоса к турбине никогда не может быть эффективной на 100% — в этой системе происходят дополнительные потери энергии, которые усиливаются, когда крутящий момент двигателя также передается через коробку передач и из дифференциала.
Эта небольшая потеря энергии между насосом и турбиной означает, что турбина всегда вращается немного медленнее, чем насос, что является основной причиной того, что автоматические двигатели в целом имеют более низкий рейтинг эффективности использования топлива, чем их ручные аналоги. К счастью, недавно были разработаны преобразователи крутящего момента, которые содержат блокировочную муфту, которая на определенной скорости блокирует турбину и насос вместе, чтобы устранить падение энергии.
Компоненты гидротрансформатора, включая блокировочную муфту Итак, хотя автоматическая коробка передач может показаться простой из-за руля, технология, содержащаяся в трансмиссионном туннеле, на самом деле довольно сложна, но чрезвычайно эффективна.
Технологии, лежащие в основе системы гидротрансформатора, действительно впечатляют и, безусловно, заслуживают большого уважения, поскольку они способны подключать и модулировать привод от двигателя к колесам таким плавным образом, что большинство водителей, вероятно, воспринимают его полностью как предоставленный.
В наши дни подавляющее большинство трансмиссий полностью автоматические, дни простого сцепления с педальным приводом кажутся редкими и далекими, что делает гидротрансформатор одним из самых важных компонентов большинства выпускаемых сегодня автомобилей.
Блог AAMCO | Что такое гидротрансформатор [и как он работает]?
Вы когда-нибудь замечали, что ваша машина может прожить не неделю на одном баке бензина, а едва продержаться два дня? Ваша машина когда-нибудь ломалась и могла ехать куда угодно, несмотря на то, что двигатель, казалось бы, работал нормально? Во время любой из этих проблем ваш механик когда-либо поднимал гидротрансформатор?
Гидротрансформатор — это то, что приводит в движение автоматическую коробку передач легковых и грузовых автомобилей.
И хотя они являются неотъемлемой частью автомобиля с автоматической коробкой передач, многие люди не понимают, как они работают. Читайте дальше, чтобы узнать, что такое гидротрансформатор и как он заставляет вас катиться по дороге.
Что такое крутящий момент
Прежде чем мы перейдем к идее гидротрансформатора, давайте кратко рассмотрим, что такое крутящий момент. Проще говоря, крутящий момент — это потенциальная энергия, которую вы создаете, когда что-то скручиваете. Заводные игрушки, с которыми вы играли в детстве, и автомобили, которые катятся вперед после того, как вы их тянете назад, работают за счет крутящего момента.
В автомобилях вращение коленчатого вала двигателя создает крутящий момент. Это то, что позволяет вам разогнать свой автомобиль. Чем больше крутящий момент выдает ваш двигатель, тем быстрее он едет.
Значение гидротрансформатора
Преобразователь крутящего момента передает крутящий момент от двигателя на вращающуюся ведомую нагрузку.
В автомобиле с автоматической коробкой передач преобразователь крутящего момента соединяет источник питания с нагрузкой.
Анатомия
Преобразователи крутящего моментасостоят из пяти основных компонентов: крыльчатки, турбины, статора, муфты и жидкости. Статор — это то, что делает преобразователь крутящего момента преобразователем крутящего момента; без статора это просто гидромуфта.
Крыльчатка представляет собой деталь с наклонными лопастями, которая чем-то напоминает вентилятор. Эта часть вращается механически двигателем. При вращении крыльчатка проталкивает трансмиссионную жидкость через свои лопасти; чем быстрее он движется, тем быстрее движется жидкость.
Когда жидкость выходит из крыльчатки, она движется в турбину, почти идентичную пластинчатую деталь, которая находится напротив крыльчатки. Жидкость, попадая на наклонные лопасти турбины, заставляет турбину вращаться, что приводит к вращению трансмиссионного вала и насоса в вашем автомобиле.
Жидкость перенаправляется через центр турбины, где снова попадает на рабочее колесо.
Здесь вступает в действие статор; статор находится в центре гидротрансформатора. Это еще одна серия лопастей вентиляторного типа, которые расположены под таким углом, что, когда трансмиссионная жидкость течет в них, она снова меняет направление. Статор удерживает трансмиссионную жидкость, которая вращается в направлении, противоположном двигателю, от попадания в корпус гидротрансформатора и его замедления.
Гидротрансформатор также имеет корпус, который крепится к двигателю вместе с крыльчаткой. В большинстве гидротрансформаторов также используется муфта блокировки, которая блокирует крыльчатку и турбину вместе на высоких скоростях, чтобы повысить эффективность использования топлива автомобилем.
Фазы
Гидротрансформатор работает в три этапа: остановка, ускорение и сцепление.
Во время остановки двигатель продолжает вращаться, как и крыльчатка.
Но турбина не может крутиться, поэтому машина не едет. Вот что происходит, когда двигатель вашего автомобиля работает, коробка передач включена, а вы нажимаете на тормоз, чтобы машина не двигалась.
Ускорение — это когда в игру вступает сила умножения крутящего момента. По мере увеличения оборотов двигателя крыльчатка начинает двигаться быстрее, что заставляет турбину двигаться быстрее. Но в этот момент крыльчатка все еще движется быстрее, чем турбина.
Сцепление — это то, что происходит, когда вы едете на высокой скорости. На этом этапе скорости вращения крыльчатки и турбины почти идентичны, и именно в этот момент некоторые модели блокируют их вместе с помощью фрикционной муфты для повышения эффективности. Статор на самом деле в основном остается вне этого процесса, поскольку при достаточно высоких скоростях жидкость будет двигаться таким образом, что не будет риска удара о корпус преобразователя.
Эффективность
Одна из важнейших задач статора — сделать гидротрансформатор более эффективным.
Перенаправляя жидкость, выходящую из турбины, статор может собирать эту кинетическую энергию и возвращать ее в цикл. Это позволяет преобразователям крутящего момента многократно увеличивать крутящий момент для большего ускорения.
Но преобразователи крутящего момента не могут быть эффективными на 100 процентов, пока не произойдет блокировка; в процессе участвуют трение и некоторая потеря кинетической энергии. Преобразователи крутящего момента наиболее эффективны на очень низких скоростях. Хотя такие компании, как Buick, экспериментировали с добавлением дополнительных турбин к своим муфтам крутящего момента, эти модели никогда не были такими эффективными, как традиционные модели, состоящие из трех частей, и их производство было прекращено.
Общие проблемы
Существует несколько распространенных причин поломки гидротрансформатора, некоторые из которых могут быть опасными. Постоянные высокие уровни проскальзывания в гидротрансформаторе могут вызвать перегрев, что может привести к повреждению эластомерных уплотнений, удерживающих трансмиссионную жидкость в гидротрансформаторе.
Жидкость начнет вытекать, а когда в системе закончится жидкость, она может вообще перестать функционировать.
Муфта статора также может заклинить или сломаться. Во время заклинивания внутренние и внешние элементы сцепления могут быть заблокированы навсегда, что приведет к значительному снижению эффективности использования топлива. Если муфта статора полностью сломается, статор будет свободно вращаться, и ваш автомобиль может вообще не двигаться своим ходом.
В некоторых случаях вы можете увидеть деформацию и фрагментацию лезвия. В большинстве случаев это приведет к тому, что гидротрансформатор будет работать не так эффективно, что приведет к снижению расхода топлива. В некоторых экстремальных случаях преобразователь может самоуничтожиться.
Внутри корпуса гидротрансформатора движется большое давление и горячая жидкость. В некоторых случаях это давление может стать слишком высоким и привести к тому, что корпус вздуется или даже взорвется.
Если корпус разорвется, вам угрожает опасность разлетающихся осколков и горячего масла.
Узнайте больше о том, как работает ваш автомобиль
Гидротрансформатор — одна из самых важных и малоизученных частей автомобиля. Это то, что позволяет автомобилям с автоматической коробкой передач работать, и это большая часть того, что определяет эффективность использования топлива. Знание того, как работают эти детали, может помочь вам диагностировать проблемы, которые в противном случае можно было бы отнести к трансмиссии, и сэкономить много денег на ремонте.
Что такое гидротрансформатор? (с картинками)
`;
Автомобили
Факт проверен
Майк Хауэллс
Преобразователь крутящего момента представляет собой механическое устройство, используемое в основном в автомобилях, которое передает крутящий момент, создаваемый двигателем транспортного средства, на трансмиссию. Он является частью семейства механизмов, известных как гидромуфты , которые используют гидравлическую жидкость для передачи механической энергии. Преобразователь крутящего момента устанавливается в автоматических коробках передач и выполняет работу сцепления в механической коробке передач, позволяя распределять мощность, создаваемую двигателем, на колеса.
Гидротрансформатор состоит из трех механических частей — насоса, турбины и статора.
Насос крепится непосредственно к двигателю и вращается с той же скоростью, что и двигатель. Внутри насоса имеется множество ребер, которые при вращении насоса направляют гидравлическую жидкость к турбине. Затем турбина вращается почти с той же скоростью, что и двигатель, но в противоположном направлении. Вращение турбины заставляет трансмиссию вращаться и приводит в движение колеса. Гидравлическая жидкость выходит из турбины в ее центре, двигаясь в направлении, противоположном тому, в котором она была нагнетена насосом.
В этот момент статор, также расположенный в центре преобразователя, второй раз меняет направление потока жидкости на обратное.
Это значительно повышает эффективность всей конструкции, но происходит только на относительно низких скоростях. В зависимости от точных характеристик преобразователя крутящего момента статор начинает вращаться на выбеге с определенной скоростью, потому что насос и турбина начинают двигаться почти с одинаковой скоростью, и жидкость больше не меняет направление.
Одним из особых преимуществ гидротрансформатора по сравнению с обычной гидравлической муфтой, которое делает его идеальным для использования в автоматических трансмиссиях, является тот факт, что он может увеличивать крутящий момент, который он генерирует, по мере того, как двигатель выдает больше мощности.
Реальным примером этого является сравнение относительно легкого давления, которое необходимо приложить к педали тормоза, чтобы автомобиль оставался неподвижным на холостом ходу, по сравнению с увеличением давления, необходимого для удержания его на месте, когда также применяется газ. На очень низких скоростях крутящий момент может быть увеличен в два или три раза с помощью гидротрансформатора.
Одним из основных недостатков гидротрансформаторов по сравнению с обычными гидромуфтами является то, что, учитывая, что насос и турбина никогда не вращаются с одинаковой скоростью, часть мощности всегда теряется.

Плавление пластиковых элементов.