Как определить нерабочий гидрокомпенсатор: Как определить неисправность гидрокомпенсаторов?

Содержание

Как определить неисправность гидрокомпенсаторов?

Как определить неисправность гидрокомпенсатора? В данной статье мы поговорим на эту тему.

Как известно, гидрокомпенсаторы – это узлы, устанавливающиеся в механизме привода клапанов мотора для устранения их зазоров. В итоге пропадает необходимость периодического их регулирования. Однако, они также могут выходить из строя. Посмотрим, какие симптомы этого «заболевания» и как найти неисправную деталь?

Как определить неисправность гидрокомпенсаторов? 


Неисправность гидрокомпенсаторов обычно проявляется в виде постороннего стука при работе силового агрегата. Посторонние звуки локализируются в области клапанной крышки и появляются сразу после запуска мотора. Причем при изменении оборотов коленвала, изменяется и звук. Если же шум не появляется сразу после запуска агрегата или не изменяется при смене оборотов, то причина не в гидрокомпенсаторах.

Кроме прочего, уровень звука не должен меняться при изменении нагрузки на агрегат. Это можно проверить путем выключения сцепления или включения многих мощных электропотребителей (кондиционера, дальнего света и пр.). В случае если при прогревании мотора до рабочей температуры стук уменьшается или исчезает, то необходимо промыть гидрокомпенсаторы, так как стук вызван загрязнением масла.

Если после описанной простой диагностики оказалось, что стук вызывают именно гидрокомпенсаторы, необходимо определить, какие же из этих узлов вышли из строя.

Для этого потребуется выполнить некоторые действия:
{typography list_number_bullet_blue}1. Сразу же после остановки мотора необходимо снять крышку головки блока цилиндров;||2. Поршень первого цилиндра требуется установить в верхнюю мертвую точку такта сжатия;||3. Далее требуется осуществить нажатие на плечи коромысел впускных клапанов. Если в данном случае при закрытом клапане (профиль кулачка расположен затылочной областью к ролику коромысла) коромысло можно легко провернуть, то гидрокомпенсатор вышел из строя.{/typography}

Проверить работу гидрокомпенсаторов выпускных клапанов указанным методом не получится. Ведь при исправности хотя бы одного гидрокомпенсатора, не получится провернуть вилочное коромысло привода обеих клапанов. Однако для проверки можно использовать косвенный метод.

Необходимо без рывков и очень медленно проворачивать коленвал силового агрегата до момента начала открытия выпускных клапанов. При этом следует внимательно следить за движением тарелок пружин обоих диагностируемых клапанов. При неисправности гидрокомпенсатора тарелка пружины клапана двигается с опозданием относительно второй тарелки.

Стоит отметить, что описанная методика применительна для двигателей SOHC. В случае если необходимо продиагностировать мотор DOHC, нужно приложить усилие к плечу нажимного рычага, который опирается на гидрокомпенсатор. В случае если для перемещения рычага не требуется никаких усилий, то имеет место быть неисправность гидрокомпенсаторов.

Аналогичным способом необходимо проверить работоспособность всех гидрокомпенсаторов двигателя. При этом необходимо помнить, что порядок работы цилиндров – 1-3-4-2.

Напоследок отметим, что перед тем, как заменять неработающие гидрокомпенсаторы новыми, необходимо попробовать их промыть. Дело в том, что бывает неработоспособность данных деталей, вызванная загрязнением.

Как видим, определить факт неисправности гидрокомпенсаторов достаточно просто, просто прислушавшись к работе мотора. А вот выявить какие именно детали вышли из строя уже сложнее. Потребуется снятие крышки головки блока цилиндров и некоторые навыки. Однако и эту процедуру вполне можно освоить и определить неисправные узлы.

Неисправность гидрокомпенсаторов

Гидрокомпенсаторы Чери Амулет, как вычислить какой стучит гидрокомпенсатор

Технический прогресс на месте не стоит, о чём знает практически каждый.

Вместе с ним совершенствовались не только автомобили, но и силовые агрегаты их.

В частности, немало изменений произошло и в устройстве одного из главных узлов каждого двигателя – газораспределительного механизма (ГРМ).

Однако целью всех изменений и улучшений всегда являлось своевременное открытие и закрытие клапанов механизма, улучшение мощности двигателя, а также максимальное сокращение расхода топлива таким агрегатом.

И всего этого можно добиться только тогда, когда зазоры клапанов с распредвалом будут сокращены практически до минимума.

Собственно говоря, во все времена любые изменения в ГРМ преследовали на выходе лишь эту одну цель.  

Вполне понятно, что для того, чтобы добиться минимальных зазоров клапанов, требует постоянная регулировка их хода или этих самых зазоров.

Ещё не так давно такая регулировка осуществлялась вручную.

Но, сегодня прогресс дошёл до того, что в устройстве ГРМ появились гидравлические компенсаторы.

Это специальные механизмы, которые, используя давление масла и пружин, в автоматическом режиме регулируют зазоры клапанов.

Мало того, новые механизмы сделали работу силового агрегата намного тише, а значит и эксплуатация автомашин стала на порядок комфортнее.

Восьмиклапанный двигатель SQR-480, практически единственный, который устанавливался на автомобили Chery Amulet, также имеет в своём устройстве ГРМ с гидрокомпенсаторами.

Эти механизмы имеют много преимуществ, по сравнению с ранее используемыми шайбами, что подкладывались под клапана для регулировки зазора.

Но, наряду с ними гидрокомпенсаторы имеют и свои минусы.

Основным из них является то, что они требуют постоянное использование качественного масла и в достаточном количестве.

Если масло используется некачественное, то гидрокомпенсаторы быстро подгорают, масляные протоки их забиваются, и они начинают издавать неприятный и звонкий стук.

Само собой, что в это время в таком двигателе пропадает тяга и увеличивается расход топлива

Вычисляем самостоятельно гидрокомпенсатор, вышедший со строя на Chery Amulet

В этой статье мы поделимся одним секретом, как самостоятельно можно определить стучащий гидрокомпенсатор на Чери Амулет.

  • Не секрет, что каждый из любителей авто любит, когда двигатель его железного коня работает размеренно и тихо.
  • У нас же получилось так, что один из гидрокомпенсаторов начал стучать.
  • Это случилось после прохождения нашим двигателем 70 тыс. километров.

  • А кто слышал, тот знает, что стук его довольно неприятный и очень диссонирует с тихо работающим до этого силовым агрегатом.
  • Но, вот какой из них стучит, пойди попробуй, разберись.
  • Поэтому мы решили разобраться самостоятельно и попытаться определить, какой именно компенсатор начал стучать.
  • Нужно отметить, что стучать компенсатор начинает тогда, когда мотор прогревается примерно до 90 градусов.
  • На холодную таких нюансов не происходит.
  • Поэтому мы прогрели двигатель именно до 90 градусов. После этого сняли крышку клапанов с него.

  • Затем взяли небольшой кусок шланга.

  • Затем приставили этот шланг к шайбе одного из рокеров клапанного механизма Чери Амулет и через него послушали работу.

  • Таким вот образом прослушали в результате работу всех рокеровов.
  • Оказалось, что все они понемногу стучать, но один из них стучит слишком сильно.
  • И когда попробовали надавить на него рукой, то он легко довольно вдавился.

  • Остальные же рокера вдавливаются довольно трудно.
  • То есть, получается, что все рокера ходят туго или вообще не нажимаются, а один почему-то – легко.
  • Там, где рокер чуть-чуть вдавливается, гидрокомпенсатор немного стучит.
  • А там, где легко вдавливается рокер – гидрокомпенсатор стучит слишком громко. Значит такой компенсатор и следует заменить.
  • Для замены мы будем заказывать аналоговые гидрокомпенсаторы, причтом вместе с распредвалом.
  • Дело в том, что, покопавшись хорошенько в интернете, перелопатив немало различной литературы и пообщавшись со многими владельцами авто, мы пришли к такому выводу.
  • Оказывается, оригинальных гидрокомпенсаторов достать практически невозможно. И подобрать их точно по размеру не получится. Все они идут похожие, но не такие, как в нашем авто установлены.
  • На данном автомобиле стоят компенсаторы, которые имеют одну длину.

  • Гидрокомпенсаторы производства компании АЕ, которые все хвалят, изготавливаются на миллиметр или два длиннее.
  • Поэтому, если вы поставите именно такие изделия в свой двигатель с его распредвалом, то очень быстро они его, что называется «сожрут».
  • А чтобы этого не случилось, приходится покупать компенсаторы в комплекте с валом.
  • При подборе гидрокомпенсаторов главное обращать внимание на их дно.
  • В хороших изделиях дно должно быть зеркальным, то есть, чистое, ровное и отшлифованное.

  • В противном случае все шероховатости на дне компенсатора непременно отобьются на вашем распределительном вале.
  • И вы довольно быстро побегите всё равно покупать новый вал.
  • Вот таким нехитрым способом нам и удалось вычислить вышедший со строя гидрокомпенсатор и заменить его в последствии. Вообще, устройство двигателя не является слишком сложным, как многие считают.
  • Самым сложным в любом агрегате является его головка с клапанным механизмом.
  • А в остальном можно спокойно пробовать разбираться самому.
  • Также головку блока цилиндров, если вам приходилось сдавать в ремонт, после возврата стоит самому тщательно проверять.
  • Просто есть много недобросовестных или невнимательных мастеров, которые могут «забыть» поставить на место какую-то деталь или не закрутить что-то.
  • Пусть даже этот недостаток будет незначительным, но в дальнейшем он может привести к большим неприятностям.
  • А наш рассказ о самостоятельном вычислении гидрокомпенсатора, который сильно стучал на Чери Амулет на этом окончен.

как определить и впоследствии провести замену? ⚡ MAHINA

Содержание:

1. Что такое гидрокомпенсатор и как он работает на Чери Амулет? (за копирайтером)

2. Что влияет на работу гидрокомпенсатора? (за копирайтером)

3. Как понять, что стучит именно гидрокомпенсатор и как определить какой именно? (за копирайтером)

4. Причина стука гидрокомпенсаторов (за копирайтером)

5. Способы устранения стука гидрокомпенсаторов (за копирайтером)

6. Когда менять гидрокомпенсаторы Chery Amulet и какие ставить лучше? (за копирайтером)

Симптомом одной из самых частых поломок современных силовых агрегатов считается стук гидравлических компенсаторов. Причин, из-за чего начинают стучать механизмы, – множество, однако большинство из них связано с применением некачественного масла. Что такое гидрокомпенсатор в автомобиле, что влияет на его эксплуатацию и как самому произвести его замену – читайте далее в статье.

Что такое гидравлический компенсатор и как он работает на Чери Амулет?

Гидравлический компенсатор или «гидрик» – устройство, которое используется для предупреждения формирования просветов между клапанами и кулачками распредвала. Устройство гидрокомпенсатора включает:

  • плунжеры и втулки;

  • пружины;

  • клапан в виде шарика;

  • плунжерные пружины.

Во время активации мотора в пару плунжеров под давлением по спецканалу поступает масляный раствор. Он вместе с пружиной надавливает на поршень, который должен тесно примыкать к рокеру, а тот должен быть в связке с клапаном. Качественный «гидрик» препятствует появлению зазоров и образованию неестественного шума или звуков в системе газового распределения.

Что влияет на работу гидрокомпенсатора?

Работоспособность гидравлического компенсатора зависит от качества используемого масла. Помимо смазывающей функции, масло обладает способностью к сжатию, что дает возможность «гидрику» мгновенно реагировать на скачки давления в смазочном механизме и осуществлять работу правильно.

Также на работу устройства оказывает влияние степень изнашивания пары плунжеров и ее способность удерживать давление. Большую роль играет уровень износа внешнего стакана «гидрика», который монтируется в колодец ГБЦ.

При соблюдении требуемых размеров компенсаторов, применении высококачественного свежего смазочного материала в системе, регулярной смене фильтра сложностей с эксплуатацией механизма не возникает.

Как понять, что стучит именно гидрокомпенсатор, и как определить, какой именно?

Нерабочий «гидрик» легко распознать по резкому стуку и скрежету. Однако как выяснить, какой гидрокомпенсатор стучит? Устройство неисправно, если не перестает постукивать спустя пару минут после включения двигателя или продолжает стучать после полноценного нагрева мотора. При этом звуки прослушиваются в верхней части силовой установки и могут быть незаметными внутри салона авто.

Перед тем как найти стучащий гидрокомпенсатор, следует демонтировать крышку и надавить на плоскость «гидрика» твердым предметом. Если толкатель деформировался и просел, устройство необходимо менять.

Причина стука гидрокомпенсаторов

Как уже отмечалось, ключевыми причинами, почему стучит гидрокомпенсатор на Чери Амулет, считается засор каналов мотора, по которым проходит масло, изнашивание рабочей поверхности клапана «возвратки» и пары плунжеров.

Данные нарушения образуются при:

  • наличии воздуха в надплунжерной зоне, это может быть связано с недостаточным уровнем смазки в картере или при длительной стоянке авто на наклонной поверхности;

  • засорении «гидрика» шламом;

износе ключевых узлов в гидравлическом компенсаторе.

Стука устройства при прогретом моторе возникает в силу таких причин:

  • давний или некачественный смазочный раствор;

  • засоренные каналы;

  • загрязненный масляный фильтр;

  • неполадки в масляном насосе;

  • высокий или низкий уровень масла;

  • поломки механики и гидравлики компенсатора клапанов.

Независимо от того, какой стук у гидрокомпенсатора, и по какой причине он появился, его обязательно нужно устранить. Во большинстве случаев это можно выполнить в бытовых условиях.

Методы устранения стука гидравлических компенсаторов

Наиболее используемым методом устранения стука в «гидрике» своими усилиями является применение специальных присадок, поскольку они:

  • тщательно очищают каналы;

  • вымывают и удаляют загрязнения, мелкий мусор;

  • слегка сгущают масло, за счет чего компенсируют последствия естественного износа деталей.

Помимо применения присадок, ремонт гидрокомпенсаторов на Чери Амулет осуществляют путем очистки масляной системы спецсредствами. Такая чистка является достаточно эффективной и стоит недорого, однако обеспечивает непродолжительный результат. Гарантированно избавиться от стука позволяет только полная замена гидрокомпенсаторов на Chery Amulet. В таком случае владельцу авто следует быть готовым к дополнительным материальным расходам на покупку мелких запчастей, к примеру, герметика и прокладок.

Когда менять компенсаторы Chery Amulet и какие ставить лучше?

Многие автовладельцы задаются вопросом, что будет, если стучит гидрокомпенсатор, как это отразится на автомобиле? При такой неисправности можно эксплуатировать машину достаточно продолжительное время. Однако далее стук будет становиться более громким, двигатель начнет работать с вибрациями, а также с меньшей мощностью и большим расходом горючего, что повлечет за собой износ всей клапанной системы, в частности, распредвала.

Прежде, чем производить замену, важно знать, как проверить гидрокомпенсаторы на Чери Амулет. Существует два варианта:

  • Первый подразумевает демонтаж крышки клапана. Метод позволяет поставить диагноз, однако для его реализации требуются опыт и определенные навыки.

  • Второй – предполагает применение фонендоскопа, посредством которого следует прислушиваться к работе устройства на разных режимах.

Подобные методы того, как проверить исправность, обладают своими плюсами и минусами. Новичкам в подобной ситуации лучше обратиться к экспертам, которые подскажут, как определить неполадку на слух, и какой «гидрик» надо установить на ваше авто.

Ответ на вопрос: когда и как поменять гидрокомпенсаторы на Чери Амулет, – при появлении стука. Для начала следует прочистить масляные каналы, перепроверить уровень масла, и при надобности довести его до нормальных показателей. Если проблема не ушла, тогда нужно установить новые запчасти. Если вы не знаете, как правильно заменить «гидрик», не рискуйте это делать самостоятельно. Обращайтесь к профессиональным мастерам, которые выполнят работы качественно, оперативно и с гарантией.

Как определить нерабочий гидрокомпенсатор


Как проверить гидрокомпенсаторы клапанов на работоспособность

Всем доброго времени суток! Самостоятельный ремонт автомобиля многим доставляет удовольствие. Есть ряд автовладельцев, которые любит ковыряться в собственной машине. И у них вряд ли возникнут проблемы с тем, как проверить гидрокомпенсаторы.

Если вы не знаете, что это такое, где находятся эти компенсаторы и зачем вообще они нужны, заниматься ремонтом своими руками я вам не советую. Слишком много рисков.

Хотя в действительности проверка на работоспособность не сопряжена с какими-то сложными процедурами. Проверить можно и самому, а вот ремонт уже стоит доверить специалистам.

Предлагаю обсудить вместе со мной эту тему. Я расскажу, что удалось выяснить мне, а вы, при желании, добавьте, прокомментируете или поправьте меня, если вдруг найдете где-то ошибку. От них никто не застрахован.

Характерные неисправности

Прежде чем изучать снятый гидрокомпенсатор, нужно определить неработающий элемент. Компенсаторы стоят на клапанах, потому их количество равняется количеству предусмотренных на двигателе клапанов.

Проверку можно сделать, не снимая распредвал. Но сначала нужно понять, почему даже новые элементы выходят из строя. Выделяют 4 главных неисправности.

  • Увеличивается зазор, предусмотренный между самим плунжером и его втулкой. В итоге начнет утекать масла. Компенсатор не сможет, скажем так, выбирать тепловые зазоры;
  • Наблюдается негерметичное закрытие клапана. Такое происходит редко, но исключать не стоит. Из-за этого между плунжером и втулкой не сможет создаваться нужное давление;
  • Заклинивание плунжерной пары. Втулка работает так, что она должна перемещаться свободно относительно установленного плунжера. Если этой свободы нет, здравствуй заклинивание;
  • Засорения. Загрязняются масляные каналы. Потому гидрокомпенсаторы (ГК) работать не могут.

Есть достаточно обширный перечень видео и фото руководств, по которым можно выполнить проверку.

Автомобилисту важно сказать, какой стучит из имеющихся ГК, чтобы отремонтировать его, поменять и восстановить нормальную работу двигателя.

Стоит заметить, что на некоторых автомобилях гидрокомпенсаторы отсутствуют. Так предусмотрена несколько иная технология.

Чаще всего автомобилисты обращаются с такими вопросами, будучи владельцами следующих авто:

  • Газель;
  • Шевроле Ланос;
  • Фольксваген Поло;
  • Лада Приора 16 клапанов;
  • Дэу Нексия 8 клапанов;
  • Шевроле Нива;
  • ВАЗ 2110;
  • Лада Калина;
  • Ниссан Альмера и пр.

Не важно, какая у вас машина или двигатель. В распоряжении может оказаться мотор ЗМЗ 406, либо неисправность возникла на ВАЗ 2112. Несмотря на незначительную разницу в конструкциях, проверяются и ремонтируются ГК примерно одинаково. Существенных отличий нет.

Приступая к работе, предварительно убедитесь, что вы знаете, где находятся компенсаторы, и как следует поступить при выявлении неисправного элемента.

Методы проверки

Теперь перед автомобилистом стоит задача узнать, компенсаторы на его автомобиле рабочие или нет. Как лучше поступить в подобной ситуации?

Существует два варианта проверки.

  • Первый вариант предусматривает снятие клапанной крышки. Метод более наглядный и позволяет практически наверняка гарантировать правильный диагноз. Но выполнение более сложное из-за демонтажных работ;
  • Второй вариант не требует, чтобы демонтировались элементы. Но здесь понадобится хороший слух. Для его улучшения лучше воспользоваться фонендоскопом. Прислушиваясь к работе ГК на разных режимах, можно найти источник проблем.

На каком варианте остановиться? Тут решать вам.

Оба метода проверки имеют свои сильные и слабые стороны. Новичку в таких делах я бы рекомендовал начать с прослушивания гидрокомпенсаторов. Если прослушка ничего не даст, тогда откроете клапанную крышку, и более наглядно рассмотрите состояние элементов.

Проверка прослушкой

Подготовка в процедуре предельно простая. Нужно разместить автомобиль на ровной поверхности, открыть капот, запустить мотор и прислушиваться.

Даже идеальный слух не всегда позволяет четко распознать неработающий компенсатор. Лучше взять в помощь вспомогательный медицинский инструмент. Найти его не сложно.

И тут рассмотрим несколько ситуаций. В зависимости от результата проверки, будем делать соответствующие выводы.

  • После запуска мотора сначала шум появился, но через несколько секунд пропал. С компенсаторами все хорошо. Просто временно их полостей ГК вытекла смазка. Двигатель прокрутился и заполнил их;
  • Обороты холостые, а шум со стороны компенсаторов прерывистый. Стоит поднять обороты, шум уходит. Проблема есть. Она кроется во втулке или засорениях;
  • Двигатель прогрет, обороты холостые, шум непрерывный. Повысив обороты, шум пропадает. Это означает, что зазор увеличился;
  • Симптомы аналогичны предыдущему пункту, только на низких шума нет, а на высоких оборотах есть. Тут вы столкнулись со вспениванием масла;
  • Стучит один или сразу несколько шумов, вне зависимости от оборотов мотора. Тут возможна любая неисправность из перечисленных.

Прикладывая инструмент для прослушки поочередно к зоне, где располагается каждый из компенсаторов, можно понять, где конкретно есть проблема.

Если шум у одного ГК отличается от других, вы нашли источник неприятностей. Осталось лишь разобраться в причинах и устранить неисправности.

Проверка разборкой

Чтобы проверить эти элементы на предмет их работоспособности, можно демонтировать клапанную крышку. Далее придется отталкиваться от собственных ощущений при проверке упругости.

Вам придется прокрутить коленвал, используя для этого центральную гайку. Это приведет вал в движение.

Когда кулачок толкателя будет направлен в сторону, противоположную относительно ГК, поочередно проверьте элементы ан предмет их упругости, есть ли свобод

Как проверить и узнать, какой гидрокомпенсатор стучит

Автор Павел Александрович Белоусов На чтение 3 мин. Просмотров 228

Отечественные машины прельщают автовладельцев простотой ремонта. Большинство сервисных и ремонтных работ можно провести самостоятельно, не обращаясь на СТО и весомо экономя семейный бюджет. Но перед тем как перейти непосредственно к ремонту, нужно правильно диагностировать причину неисправности.

На примере автомобиля Шевроле-Нива мы расскажем, как узнать, какой гидрокомпенсатор стучит в ГРМ мотора.

Проверяем стучащий гидрокомпенсатор

Предварительно определите, каким гидрокомпенсатором нужно заняться вплотную, можно простым способом. Те гидрокомпенсаторы, которые выставлены в верхней мертвой точке, нужно слегка придавить отверткой, которая используется как рычаг.

Если под легким нажатием гидрокомпенсатор «проваливается», значит, он не отрегулирован и издает стук. Можно даже для «чистоты эксперимента», быстро нажимая на рычаг-отвертку, постучать гидрокомпнсатором.

Вот где расположены на моторе метки.

Проверив одни гидрокомпенсаторы, проверните звездочку распредвала на 180°, чтобы коленвал провернулся на 360° соответственно. И приступайте к проверке следующей группы. «Правильные» гидрокомпенсаторы «мертво» стоят на месте и не реагируют на легкое надавливание отвертки-рычага.

После предварительного определения неотрегулированных гидрокомпенсаторов, убедитесь, что нет ошибки. Проверить это легко, существует давний, «дедовский» способ. После того как сняли крышку коробки распредвала, на «расхлябанные» гидрокомпенсаторы надавите пальцем. Если ошибки нет, то они легко нажмутся.

Ещё кое-что полезное для Вас:

Регулировка гидрокомпенсаторов не всегда дает желаемый результат. Бывает такое, что они оказываются сильно стертыми, и регулировки попросту не хватает. Выход в данной ситуации — их замена на новые.

После регулировки или замены гидрокомпенсаторов проверьте работу мотора. Для этого его надо завести. После запуска двигателя, какое-то время слышится стук. Не стоит сразу пугаться, гидрокомпенсатор должен «прокачаться». Если все прошло правильно, стук скоро прекратится.

Чтобы перестраховаться и окончательно убедиться, что все сделано правильно, заглушите мотор. Немного подождите и заведите снова, стук повториться не должен. Если стука мы не услышали, значит «плохие» гидрокомпенсаторы определены правильно.

Как бы далеко ни продвинулась автомобильная индустрия, сколько бы электронных устройств, определяющих автомобильные поломки, ни было изобретено, для отечественных автомобилей мы часто применяем старые, проверенные, «дедовские» способы диагностики. Они гораздо доступнее, не требует дорогостоящей аппаратуры и не уступают по точности инновационным способам.

А применимо к отечественной автомобильной технике, которая часто производится по устаревшим технологиям, «дедовские» способы диагностики автомобилей являются самыми правильными и доступными рядовым автолюбителям.

 

Как проверить гидрокомпенсаторы на работоспособность, их неисправности

Гидрокомпенсаторы выполняют работу по устранению зазоров, которые образуются в приводе. Когда в них попадает воздух, вода либо другие виды загрязнений, возникает стук в клапанах во время работы силового агрегата. Для устранения этого неприятного эффекта необходимо произвести его промывку. Как проделать эту процедуру, далее в этой статье мы и расскажем

Изначально удостоверьтесь в том, что причиной перебоев и неприятных шумов являются именно гидрокомпенсаторы. Для этого запустите двигатель и прислушайтесь. Должен появиться шум, который только будет усиливаться с изменением частоты вращения коленчатого вала. Запомните, что в случае отсутствия этих признаков причина стука заключается уже не в двигателе.

Подготовка к процессу промывки гидрокомпенсаторов

Как же проверить и промыть гидрокомпенсаторы, не обращаясь к помощи квалифицированных мастеров автомобильного сервиса? Особенно если Ваш автомобиль достаточно немолод и заводская гарантия уже давно вышла, в противном случае это посчитается вмешательством в целостную работу силового агрегата автомобиля и тогда не выйдет никакой компенсации. Повозиться, конечно, придётся. Но если соблюдать пошаговые инструкции и следовать советам, то это станет вполне исполнимым делом. Итак, начнём?

Этот достаточно неприятный эффект вполне устраняется путём промывки гидрокомпенсаторов с соблюдением чёткого порядка действий. Во-первых, Вам необходимо убедиться в том, что источником этих неприятных шумов и частых перебоев являются именно гидрокомпенсаторы. Достаточно лишь запустить двигатель и прислушаться к нему. Сразу после того, как Вы запустили силовой агрегат, можно услышать усиливающийся шум, который возникает при изменении частоты вращения коленчатого вала.

Если указанные признаки отсутствуют, значит причину стука искать нужно не в двигателе. Если же всё подтвердилось, тогда откройте капот, зафиксируйте его и произведите отсоединение воздушного фильтра и крышки блока цилиндров. Кроме всего этого, необходимо снять также и оси коромысел, на которых и располагаются гидрокомпенсаторы, которые вышли из строя. Аккуратно извлеките их из гнёзд, в которых они находятся. Перед тем как начинать самостоятельную промывку гидрокомпенсатора, нужно подготовить три ёмкости одинакового объёма, примерно вмещающих около пяти литров.

Перед проведением подобных процедур автомобиль следует оставить в гараже хотя бы на сутки, чтобы дать максимально стечь с гидрокомпенсаторов всему маслу. Работы лучше проводить в закрытом помещении без ветра и пыли. И, конечно же, соблюдайте технику безопасности! Откройте капот и зафиксируйте его. Если крепление слабовато, что присуще автомобилям, которые уже давно в употреблении, потребуется дополнительная распорка-фиксатор, чтобы не упала крышка капота в самый неподходящий момент. Обесточьте автомобиль, сняв массу с аккумуляторной батареи. Затем получите свободный доступ непосредственно к самим гидрокомпенсаторам. На различных марках и моделях это достигается, как правило, по-разному, но уж точно разбирать половину автомобиля не придётся.

Главное, снимите воздушный фильтр и крышку блока цилиндров. На некоторых моделях, например, нужно будет снять ремень генератора и повернуть генератор в сторону радиатора для получения доступа к болту крепления. Также нужно демонтировать и убрать в сторону всё, что мешает доступу: провода и подводящие шланги.

Прежде чем начинать промывку гидрокомпенсаторов, нужно убедиться в их работоспособности. В противном случае придётся промыть нефункционирующую запчасть, а после ещё и менять её на новую. Выходит просто лишняя двойная работа. Проверка гидрокомпенсаторов осуществляется достаточно просто, народным методом. На каждый гидрокомпенсатор следует надавить с определённым усилием. Если он легко утапливается внутрь с минимальными усилиями, тогда он скорее всего сломан. Значит промывать его нет никакой необходимости, а следует просто поменять на новый. Все остальные можете с чистой совестью промывать.

Процесс промывки гидрокомпенсаторов

1) Снимите оси коромысел.

2) Гидрокомпенсаторы из гнёзд извлеките максимально аккуратно.

3) Подготовьте ёмкости для погружения компенсаторов. Они должны быть достаточно глубоки, чтобы компенсаторы полностью погружались в наполнитель.

4) А чем же их промывать? Многие делают это обычным 92-ым бензином, дизельным топливом либо керосином. Здесь играет важную роль качество самой промывки. Наполните подготовленные ёмкости.

5) Каждый гидрокомпенсатор окуните в первую ёмкость с бензином и прочистите.

6) Далее окуните в промывочную жидкость, но не до конца, подожмите шарик клапана. Подвигайте плунжер, пока его ход не будет достаточно лёгок.

7) Всю вышеописанную процедуру повторите и в ёмкости номер два, окончательно промыв гидрокомпенсатор в более прозрачной жидкости для промывки.

В последней ёмкости промытый гидрокомпенсатор наполните бензином, либо любой другой промывочной жидкостью, удерживая шар клапана в нажатом положении.

9) Извлеките деталь и проверьте плунжер.

10) Проведите эту процедуру со всеми гидрокомпенсаторами, тщательно их промывая и проверяя, но плунжеры должны оставаться в неподвижном состоянии. После соберите всё в обратной последовательности. Затяните и подключите питание, шланги и провода.

11) Заведите двигатель и оставьте его поработать некоторое время на холостых оборотах.

Инструменты для промывки гидрокомпенсаторов

Для осуществления процесса промывки гидрокомпенсаторов Вам понадобятся: рассухариватель, пинцет, а также три емкости для промывочного топлива вместимостью примерно 5 литров каждая, отрезок закаленной проволоки диаметром 0,5 мм и длиной примерно 10 см.

На этом наша статья о том, как проверить и промыть гидрокомпенсаторы своими руками, может считаться оконченной. Что должно случиться после того, как Вы провели эту процедуру? Во-первых, должно пройти это неприятное постукивание при работе силового агрегата во время холодного запуска. Во-вторых, промытые и исправно работающие гидрокомпенсаторы, сами клапаны и двигатель смогут вдохнуть свежего воздуха, а автомобиль заработает более стабильно и равномерно.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Повышенная шумность двигателя может свидетельствовать о наличии серьёзных неисправностей, которые могут привести к полной неработоспособности агрегата.

Стук гидрокомпенсаторов на холодную, не относится к такой категории, но если эта деталь не отрегулирована, то двигатель будет потреблять большее количество топлива, развивать меньшую мощность и комфортность управления машиной резко снизится. Также увеличится износ поршневой группы из-за неправильно выбранных зазоров в системе газораспределительного механизма.

В этой статье будет подробно рассказано о том, как убрать стук гидрокомпенсаторов, а также как сделать эту работу качественно и с минимальными временными и финансовыми затратами.

Гидрокомпенсаторы и их работа

Чтобы гидрокомпенсаторы работали стабильно, им потребуется постоянная подача масла. Для этого в головке блока есть канал с шариком (клапаном), который не дает маслу сливаться после того, как мотор будет остановлен. Аналогичный клапан есть и в нижней части подшипника, по которым и подводится масло к шейке клапанов для смазки.

Рекомендованное масло для мотора автомобиля ВАЗ 2112

Сразу следует отметить, что эти детали чувствительны к качеству масла. Если в нем будут какие-то примеси, то из строя на протяжении короткого времени выйдет плунжерная пара гидрокомпенсатора. Это отразится на работе мотора. Появится шум и интенсивно будут изнашиваться кулачки распредвала. Если гидроконденсатор вышел из строя, то его ремонтировать нельзя. Он только меняется на новый.

Гидрокомпенсаторы в головке блока цилиндров

Когда стук в моторе будет слышен постоянно, то следует выявить причину его появления. Для этого надо придерживаться правил, приведенных ниже.

Гидрокомпенсаторы всегда проверяют при замене клапанов!

Какой гидрокомпенсатор стучит: определение

Чтобы определить, какой из гидрокомпенсаторов стучит, надо на него нажать отверткой. Если состояние толкателя нормальное, то он должен прижиматься с усилием. Когда прилагаемое усилие будет невелико, то такую деталь следует заменить. Подробнее о замене гидрокомпенсаторов мы уже писали в материале: замена гидрокомперсаторов на 16-ти клапанной ВАЗ-2112 своими руками.

Блок головки цилиндров. Определение, какой из гидрокомпенсаторов вышел из строя

Устранить шум можно также при незначительном повороте клапана или прижимной пружины вокруг оси.

Для этого следует заглушить мотор и произвести такие действия:

  1. Повернуть коленвал так, чтобы клапан, который стучит, начал немного открываться.
  2. Повернуть немного пружину (клапан при этом тоже провернется).
  3. Запустить мотор.

Если стук не прекратиться, то следует процедуру повторить. Когда и это не поможет, надо проверить зазор между втулками и стержнями клапанов. Также следует проверить и состояние самой пружины.

Приспособление

Фонендоскоп при помощи которого можно выявить неисправный гидрокомпенсатор

Также определить, какой из гидрокомпенсаторов стучит, можно при помощи фонендоскопа. Его следует приложить к головке блока цилиндров в месте расположения каждого из компенсаторов. В том месте, где деталь вышла из строя, будет слышен звук, напоминающий клапанный стук.

Причины стука гидрокомпенсаторов

Устройство гидрокомпенсатора

Гидрокомпенсаторы стучат из-за неправильного функционирования, когда в них не создается нужное давление масла. Это может происходить по разным причинам:

Гидрокомпенсаторы стучат из-за неправильного функционирования, когда в них не создается нужное давление масла.

  • износ плунжерной пары;
  • заклинивание гидрокомпенсатора в сжатом состоянии из-за нагоревшего масла;
  • загрязнение окалиной, накипью, хлопьями сгоревшего масла, другими посторонними предметами масляного канала, как в самом гидрокомпенсаторе, так и перед ним;
  • попадание инородного тела под шариковый клапан.

Диагностика гидрокомпенсатора

Иногда возникает ситуация, когда гидрокомпенсаторы стучат на холодную. Причины такой проблемы могут заключаться в следующем:

Несоответствие марки масла рекомендованной, часто бывает причиной стука гидрокомпенсаторов на холодную.

  • несоответствие вязкости масла рекомендованной;
  • неисправность редукционного клапана;
  • износившийся, либо неисправный гидрокомпенсатор;
  • не замененный вовремя либо засорившийся масляный фильтр;
  • низкий уровень масла в двигателе;
  • попадание иной жидкости в масло;
  • несвоевременная замена масла.

Также достаточно распространена проблема, если гидрокомпенсаторы стучат на горячую. Это происходит из-за следующих факторов:

  • несоответствие типа масла текущему сезону, так как в летнее время зимнее масло становится более жидким;
  • неисправность гидрокомпенсатора, его повреждение, износ;
  • отсутствие нужного давления в масляной системе из-за забитого фильтра, масляного насоса или неисправного редукционного клапана.

Стук гидрокомпенсаторов: причины

Чтобы понять, как избавиться от стука гидрокомпенсаторов, необходимо хорошо представлять принцип работы этих деталей. Тепловое расширение металла в результате нагрева стало причиной изобретения этого вида механизма.

В автомобилях старого образца вместо гидрокомпенсаторов устанавливались регулировочные болты, с помощью которых производилась ручная настройка теплового зазора. Такой метод устранения повышенных зазоров в системе газораспределительного механизма требовал от владельца машины значительных затрат времени и денег, ведь необходимость в ручной регулировке возникала каждый раз, когда авто проходило 10 – 15 тыс. км.

В современных автомобилях эта функция полностью автоматизирована с помощью небольших вставок между коромыслами и штоком клапана. Принцип работы этой детали довольно прост:

  1. Масло из системы смазки поступает внутрь цилиндрического конуса компенсатора под давлением, когда кулачёк распредвала не оказывает давление. Внутри детали имеется плунжерная пара, с помощью которой регулируется наполнение внутренней полости маслом до момента, когда нажимная часть механизма выдвинется на расстояние, которое полностью компенсирует имеющийся зазор между деталью и штоком клапана.
  2. В момент, когда распредвал проворачивается на необходимый для начала давления на клапан угол, подача масла перекрывается и учитывая тот факт, что масло является практически несжимаемой жидкостью, компенсатор сохраняет необходимую длину и передаёт без задержки усилие от распредвала на шток клапана.
  3. После того, как клапан вернётся в закрытое положения весь цикл работы гидрокомпенсатора повторяется вновь.

Кликните по картинке для увеличения

Учитывая тот факт, что внутренний объём заполненный маслом может изменяться в зависимости от величины зазора, удаётся полностью избежать задержки открытия клапана и как результат повышенной шумности газораспределительного механизма.

К сожалению, гидрокомпенсаторы, как и любая деталь автомобиля, может выйти из строя. Неисправность этой детали неминуемо приведёт к образованию характерного стука во время работы двигателя. Наиболее часто шум гидрокомпенсаторов вызывается следующими причинами:

  • Износ.
  • Заводской брак.
  • Заклинивание внутреннего клапана.
  • Воздух во внутренней полости детали.
  • Засорение клапанного механизма.

Износу подвергаются все детали автомобиля, в том числе и гидрокомпенсаторы. Поэтому, если машине уже много лет, возможно, потребуется полная замена всех элементов.

Заводской брак встречается не часто, но возникает такая неисправность в первые месяцы эксплуатации авто. В случае выявления этой причины неработоспособности гидрокомпенсаторов ремонт, как правило, осуществляется за счёт производителя.

Заклинивание внутреннего клапана может случиться, если применяются некачественное масло или была произведена установка несертифицированных деталей. Устранить такую неисправность можно заменой деталей или их прочисткой.

Воздух во внутреннюю полость гидрокомпенсатора может попасть, если масло в картере двигателя находится на слишком низком уровне. Также такая неприятность может ожидать водителя, если масляная магистраль, по которой осуществляется подача масла, забита различными отложениями.

Если гидрики стучат, то для устранения неисправности не обязательно обращаться в специализированные мастерские. Полностью избавиться от шума гидрокомпенсаторов можно самостоятельно, при наличии минимальных знаний и навыков ремонта и обслуживания двигателей внутреннего сгорания.

Видео:

После того как причины и последствия возникновения шума понятны можно приступать к устранению неполадки.

Методы устранения повышенной шумности гидрокомпенсаторов

Существует несколько эффективных способов, с помощью которых можно устранить стук гидрокомпенсаторов. Одним из самых бюджетных вариантов является прочистка этих деталей.

Для выполнения этой операции необходимо:

  1. Снять клапанную крышку двигателя.
  2. Удалить оси коромысел.
  3. Извлечь гидрокомпенсаторы.
  4. Почистить детали снаружи щёткой из ненатуральной щетины.
  5. Поместить поочерёдно каждую деталь в ёмкость с керосином и несколько раз проволокой нажать на шариковый клапан и плунжер.
  6. На следующем этапе гидрокомпенсаторы помещают во вторую ёмкость с чистым керосином, предварительно полностью удалив жидкость, оставшуюся от предыдущей промывки.
  7. На третьем этапе необходимо проверить работоспособность гидрокомпенсаторов путём набора в них промывочной жидкости. После чего деталь держат в вертикальном положении, при этому плунжер должен смотреть вверх. Если нажать на плунжер пальцем, то он не должен перемещаться, а из внутренней полости гидрокомпенсатора не должна выделяться промывочная жидкость.

После проверки работоспособности детали устанавливаются обратно, и после установки коромысел и клапанной крышки производится тестовый запуск двигателя.

Несмотря на кажущуюся простоту восстановления работоспособности гидрокомпенсаторов таким образом, временные затраты на выполнения такой операции будут очень значительными.

В некоторых случаях возможно устранение без разбора повышенной шумности работы гидрокомпенсаторов.

Для того, чтобы выполнить очистку деталей без снятия их с двигателя необходимо:

  • Снять впускной коллектор и залить в каждый цилиндр жидкость для раскоксовки.
  • Прокрутить двигатель стартером.
  • Снять клапанную крышку и облить гидрокомпенсаторы жидкостью для очистки карбюратора.
  • Оставить автомобиль на 2 часа.
  • Установить впускной коллектор и клапанную крышку.
  • Запустить двигатель.

В течение нескольких минут необходимо продержать обороты двигателя на высоком уровне, пока из трубы выходит дым тёмного цвета. Если стук гидрокомпенсаторов на горячую не проявляется, то автомобиль можно эксплуатировать в обычном режиме.

Этот способ устранения неисправности является самым простым, но восстановить работоспособность гидрокомпенсаторов позволяет только при слабом загрязнении деталей. Если в двигателе не была произведена вовремя замена масла, то прочистить гидрокомпенсаторы можно только первым способом с использованием специальных жидкостей.

Присадки и жидкости для промывки гидрокомпенсаторов

Замена гидрокомпенсаторов в автомастерской обходится слишком дорого, поэтому многие автомобилисты, стараясь предотвратить образование опасных отложений в масляной магистрали двигателя, применяют специальные присадки.

Наиболее популярные и недорогие средства, применяемые с этой целью:

1. LIQUI MOLY

Стоп стук гидрокомпенсаторов Ликви Моли, отзывы о котором размещают даже авторитетные автомобильные издания.

Представляет собой высотехнологичную добавку в масло, которая значительно улучшает его смазывающую способность, очищает мельчайшие каналы гидрокомпенсаторов, устраняет масляные отложения на стенках магистрали.

Присадку можно использовать как для бензиновых двигателей, так и для дизельных агрегатов с турбонаддувом или без него.

Видео:

2. Хадо

Реставрационные присадки от известного украинского производителя автомобильных масел. Средства по своей эффективности не уступают присадке Ликви Моли.

3. Wagner  Windigo

Немецкая присадка для гидрокомпенсаторов.

Средство отлично справляется со своей функцией при использовании в двигателях, в которых уже имеются проблемы в работе этих деталей, а также служит хорошим профилактическим средством.

Видео:

Любая из перечисленных добавок позволяет обойтись без сложной и продолжительной очистки способом промывания деталей, конечно при условии, что гидрокомпенсаторы пригодны для дальнейшего использования. Если неисправность вызвана чрезмерным износом деталей, то необходимо приобрести и установить новые изделия.

Присадка Ликви Моли для гидрокомпенсаторов: стоит ли пользоваться

Присадка в масло Стоп шум гидрокомпенсаторов Ликви Моли

Если после замены масла гидрокомпенсаторы застучали, то можно использовать присадку Стоп-шум Liqui Moly.

Современный производитель Liqui Moly выпускает специальную присадку для моторного масла, которая позволяет избавиться от шума гидрокомпенсаторов, который происходит из-за недостаточной смазки. Вещества, содержащиеся в присадке стоп-шум гидрокомпенсаторов Liqui Moly, позволяют очищать масляные каналы даже в труднодоступных местах. Смазывающие свойства моторного масла улучшаются, увеличивается его вязкость, что помогает избавиться от шума. Такую присадку вполне можно использовать, если после замены масла застучали гидрокомпенсаторы.

Таким образом, гидрокомпенсатор – это важная деталь в автомобиле, которая обеспечивает правильную работу двигателя. Автовладелец должен понимать, что при возникающем стуке необходимо сразу начинать искать его причины. Если самостоятельно не получается узнать, как определить стучащий гидрокомпенсатор, то следует обратиться в автосервис. Там специалисты быстро определят причины и устранят проблему. Иногда устранение стука гидрокомпенсаторов возможно без разбора, но в ряде случаев потребуется их замена или ремонт.

Как проверить гидрокомпенсаторы самостоятельно

Стук гидрокомпенсаторов явление довольно неприятное и опасное. В зависимости от частоты шума, режима работы двигателя, при котором проявляется шум, количества и расположения изношенных компенсаторов хороший мастер может определить общее состояние как ГРМ, так и всего двигателя.

Можно ли ездить, когда стучат гидрокомпенсаторы

При наличии сильного стука из-под клапанной крышки долго терпеть неисправность крайне не рекомендуется. Нужно понимать, что гидротолкатель напрямую влияет на работоспособность всего газораспределительного механизма. Если фазы ГРМ собьются, можно ждать многих неприятностей:

И это далеко не полный перечень бед, которые может принести гремящий гидрокомпенсатор, поэтому долго ездить с шумом в головке блока цилиндров нежелательно.

Почему изнашиваются гидрокомпенсаторы

Причины износа кроются как в общем состоянии двигателя и системы смазки в частности, так и в качестве масла. Неполадки с компенсаторами могут быть вызваны множеством причин, но среди основных и наиболее часто встречающихся выделяют следующие:

  1. Уровень масла. Масляное голодание гидрокомпенсатора однозначно приводит к его быстрому износу. Толкатель любого типа устроен так, что он может работать только в том случае, когда давление масла в системе не ниже номинального. В противном случае в плунжерную пару толкателя попадает воздух, и он теряет способность к компенсации теплового зазора. Это может быть следствием как низкого уровня масла, так и захватом воздуха маслоприемником в картере двигателя. Захват воздуха в свою очередь может произойти во время резкого маневрирования на высоких скоростях и при низкой пропускной способности системы смазки. Если двигатель исправен, но воздух проник в гидрокомпенсаторы, стук должен пропасть после автоматической естественной прокачки толкателей.

  2. Качество масла. В том случае, если масло подобрано неправильно по вязкости или составу, гидрокомпенсатор может застучать. К примеру, слишком жидкое масло не сможет создавать необходимого давления в системе и обеспечивать нормальную работу плунжерной пары. 

  3. Высокий уровень износа гидрокомпенсаторов, масляного насоса, редукционного клапана, который удерживает масло под давлением в каналах головки блока цилиндров. Большие зазоры между гнездом в головке блока и компенсатором, выработка плунжерной пары, естественный износ пружины гидрокомпенсатора или его шарикового клапана также способствуют падению давления масла и попаданию в плунжерную пару воздуха.

  4. Засорение системы смазки. Пыль, грязь, металлическая пудра, попадающие в масло, отложения и нагар на стенках системы смазки сильно снижают эффективность работы гидротолкателей. Из-за грязи, попавшей в механизм, компенсатор может потерять герметичность, начать травить и не выбирать тепловые зазоры. Основная причина — использование грязного масла, несоблюдение регламента замены масла и масляного фильтра.

Как найти неисправный гидротолкатель

Сложность при диагностике компенсаторов связана с тем, что работают они только под давлением масла. При этом стук может возникать как только на холодном двигателе, только на горячем или же в определенных режимах работы, чаще всего под нагрузкой или на высоких оборотах. 

В первом случае, когда стук проявляется непродолжительное время на холодном двигателе, можно сделать вывод о том, что редукционный клапан в самом компенсаторе пропускает масло и не держит давление. Если стук слышен на прогретом моторе в режиме средних оборотов, вероятнее всего, причина кроется в увеличенном зазоре между корпусом компенсатора и гнездом в головке блока. Также есть вероятность засорения масляных каналов или заклинивания плунжерной пары из-за засорения.

Тем не менее проверить их состояние и вычислить неисправный можно и на заглушенном двигателе. Точность такой диагностики невысока, но вероятность найти застучавший толкатель все же есть. Для диагностики снимем клапанную крышку и методично пальцами или отверткой будем стараться утопить каждый из толкателей, не нагруженный кулачком распредвала. Исправный компенсатор от такого усилия не просядет. Если он просел с характерным щелчком, компенсатор нужно пометить и заменить. Проворачивая коленвал, таким образом проверяются все гидротолкатели.

В некоторых случаях можно определить неисправный толкатель на слух, с помощью фонендоскопа. Явная неисправность будет слышна сразу, а расположение потекшего компенсатора вычисляется по громкости издаваемого им шума.

Менять или промывать

В большинстве случаев изношенный гидрокомпенсатор подлежит замене. Если же износ, определенный визуально, не настораживает, компенсатор можно попытаться промыть. Наша задача — удалить следы нагара и мусора, которые могут мешать работе шарикового клапана 5, его корпусу 3, пружине 4, а также плунжерной паре 6 и 8.

Для мойки и продувки гидрокомпенсатора можно использовать солярку, керосин или бензин. Также нам понадобится чистое масло. 

  1. Моем компенсаторы снаружи, насухо вытираем.

  2. Заливаем в емкость нужное количество чистой солярки (чтобы детали были покрыты жидкостью). Зубочисткой или любым другим тонким неметаллическим предметом несколько раз пытаемся утопить шарик клапана в корпус. Этим самым мы удаляем старое масло из полости компенсатора и закачиваем туда солярку.

  3. Повторяем предыдущую процедуру с чистой соляркой до полного вывода старого масла. Можно оставить детали в солярке на несколько часов.

  4. Прокачиваем чистые гидрокомпенсаторы чистым моторным маслом. Для этого надавливаем на шарик клапана и закачиваем масло внутрь с помощью шприца. Примерный объем масла в плунжере — 8-10 мл.

После закачки свежего масла проверяем работоспособность толкателя. Для этого деревянным бруском давим на плунжерную пару, исправный компенсатор не будет течь и не будет проседать под воздействием бруска. Малейший намек на течь масла скажет о том, что компенсатору светит замена.

Для чего нужны гидрокомпенсаторы в двигателе

Стучат гидрокомпенсаторы на холодную — что делать

Среди всех способов определения какого-либо повреждения или проблемы с транспортным средством, один из самых доступных является слуховой. Многие автолюбители давно заметили, что многие неприятности, возникающие при работе того или иного механизма, сопровождаются возникновением посторонних звуков. Иногда достаточно прислушаться к работе собственного автомобиля, чтобы иметь возможность понять — какой-то элемент, механизм или узел работает не правильно. Диагностируя на слух неприятность, можно оперативно устранить ее. Главное знать — что именно потребуется делать. Например, стучит гидрокомпенсатор на холодном двигателе — что делать?

Некоторые автолюбители совершают ошибку, сразу бросаясь заменять тот или иной гидрокомпенсатор. К сожалению, это не всегда устраняет стук, а значит, и саму проблему. Поэтому изначально следует знать возможные первопричины возникновения подобного явления.

Стучат новые гидрокомпенсаторы в двигателе — разбираемся в вопросе

Действительно, иногда замена этих элементов совершенно на новые изделия не дает требуемого результата. Чаще всего в этом случае есть две причины сохранения неприятного состояния:

  • Плохое качество применяемого масла;
  • Проблемы с масляным фильтром.

Важно отметить, что даже в совершенно новом транспортном средстве может возникнуть подобная ситуация, если изначально залито масло очень плохого качества

Почему стучат гидрокомпенсаторы на холодную

Если посторонние звуки возникают при работе силового агрегата на холодную, а после его нагрева исчезают, то причину следует искать именно в состоянии масляной системы и в качестве рабочей жидкости. В этом случае основными причинами может стать:

  • Засорение фильтрующего элемента, что не дает маслу оказывать нужное давление. При повышении температуры выходное отверстие фильтра расширяется и все приходит в норму — шумы исчезают;
  • Загрязнение клапанов. Опять же — повышение температуры изменяет вязкость рабочей жидкости, делая ее более жидкой, что временно устраняет проблему и система начинает работать так, как это надо.

Больший или меньший уровень масла также может стать причиной подобного. В первом случае происходит вспенивание жидкости, что нарушает работу гидрокомпенсаторов, во втором — насос банально начинает качать воздух, что тоже не есть хорошо.

Естественно, что и самом насосное оборудование может стать основной причиной подобного эффекта. Если оно функционирует не правильно, то не будет создавать требуемый уровень давления в системе.

Ищем причины стука

Проще всего начать поиск первопричин с определения уровня масла в системе. Для этого достаточно использовать специальный щуп:

  • Если жидкости больше, чем требуется по норме — слить лишнее;
  • Если меньше — долить.

Следующий шаг — осмотреть насосное оборудование и фильтрующую систему на предмет загрязнений и повреждений.

https://youtube.com/watch?v=vVS2c_LoD8s

Последний этап — проверка самих гидрокомпенсаторов.

Первый способ:

  • Нажать на каждое подобное изделие специальной выколоткой из мягкого металла;
  • Если для его прожимания не потребуется приложить значительных усилий, то с данным изделием явные проблемы — рабочий элемент прожимается с довольно серьезным усилием.

Второй способ:

  • Выставить распредвальные кулачки выступами вверх;
  • Визуально осмотреть их на наличие зазоров между ними и толкателями;
  • Наличие зазора сигнализирует о неисправности.

Чтобы окончательно удостовериться в неисправности, необходимо поочередно утопить с помощью деревянного клина каждый гидрокомпенсатор и сравнить скорость их перемещения. Наиболее скоростной (особенно при наличии зазора) явно функционирует не правильно.

Исправление ситуации

Довести начатое после выявления всех возможных причин становится очень просто:

  1. Если причиной того, что стучат гидрокомпенсаторы на холодную, являются сами изделия, то их придется банально заменить.
  2. При наличии неправильного объема масла — долить или, наоборот, слить лишнее.
  3. Фильтрующий элемент при засорении — меняется.
  4. Аналогично следует поступить, если были обнаружены повреждения насосного оборудования.

Если же автолюбитель не смог выявить каких-либо явных признаков возникновения подобных шумов при эксплуатации своей машины, то рекомендуется приобрести и использовать более качественное масло. Если же и это не принесет результата, то остается только один выход — отправка транспортного средства на хорошую станцию техобслуживания, где более опытные специалисты смогут подобрать «оптимальное лечение».

Гидрокомпенсаторы Приора Функции, принцип работы, признаки неисправности, этапы ремонта на промышленном портале Myfta.Ru

Гидрокомпенсаторы Приора являются невероятно важными деталями автомобиля, которые позволяют уменьшить уровень износа многих деталей авто и сделать их работу значительно мягче.

Гидроотекатели двигателя, которые могут устанавливаться на Приору, выполняются в виде специальных цилиндрических толкателей. Расположены они между клапанами и кулачковым валом. Такие детали совмещают в себе две очень важные функции: устранение возможных зазоров в приводе и передача усилия к клапанам от кулачкового вала.

Работа гидрокомпенсатора Приоры основана на известном принципе, предполагающем несжимаемость моторного масла, которое постоянно заполняет внутреннюю полость гидроотекателя при работе двигателя.

Также при появлении в приводе клапана зазора плунжер механизма перемещается, что обеспечивает постоянный контакт указанного толкателя с кулачком распредвала без зазора.

Благодаря работе ГК совершенно исчезает необходимость регулировки клапанов во время технического обслуживания.

Время, когда нужно проводить замену гидрокомпенсатора на Приоре, определить не сложно, ведь почти все неисправности могут быть диагностированы по достаточно характерному шуму, который издает газораспределительный механизм во время работы двигателя на различных режимах.

Итак, для того, чтобы устранить шум, нужно выполнить такие действия:

  1. Сначала нужно поставить коленчатый вал в такое положение, в котором издающий шум клапан начнёт медленно приоткрываться. Клапан непременно повернется при малейшем повороте пружины.
  2. Теперь можно запустить двигатель, если вам не удалось избавить от шума, то нужно снова повторить действие, описанное в первом пункте.
  3. Но, если желаемый результат всё же не достигнут, то нужно сначала проверить состояние пружины, а затем измерить зазоры между направляющими втулками и стержнями клапанов. Если вдруг вы нашли увеличенные зазоры, то их обязательно нужно устранить.

Если же и пружина, и клапан исправны, но стук всё равно присутствует, то нужно произвести замену гидрокомпенсаторов на Приоре.

Для того чтобы сделать это, нужно провести следующие манипуляции:

  1. Сначала отсоединяем от клеммы минус, которая находится на аккумуляторной батарее, провод, а затем извлекаем распределительные валы из опор головки блока, находящихся на цилиндре. Кстати, значительно удобнее извлекать ГК с помощью присоски или достаточно сильного магнита.
  2. Дальше нужно из гнезда головки блока цилиндров извлечь сам механизм, а после этого смазать гнездо моторным маслом, после чего установить его обратно.
  3. Все остальные гидроотекатели могут быть заменены аналогичным образом.
  4. Теперь осталось лишь установить распределительный вал и остальные детали, принадлежащие газораспределительному механизму. Устанавливать их нужно в обратном снятию порядке.

Среди них можно назвать такие:

  • появление повышенного шума сразу же после запуска двигателя;
  • прерывистый шум, проявляющийся в режиме холодного хода.
  • вытекающее масло во время стоянки.

Правда, стоит разбираться в том, какие признаки связаны с поломкой двигателя, а какие ничего не значат. Так, например, признаком неисправности не является шум, который исчезает спустя несколько секунд после запуска двигателя.

Когда стучат гидрокомпенсаторы на Приоре, их непременно нужно поменять. Можно провести и профилактические действия, которые заключаются в очистке различных загрязнений механизма. Кстати, чаще всего загрязнения являются причиной низкого качества масла или его несвоевременной замены

Очень важно, чтобы все детали механизма были тщательно очищены от любого рода загрязнений

Нарушить работу этого устройства может и попадание в него воздушно-пенной смеси. При этом снова становится актуальным вопрос, как поменять гидрокомпенсаторы на Приоре. Всё должно происходить согласно инструкции. Кстати, замена ГК занятие весьма сложное, требующее соблюдения всех правил. Да и менять нужно весь комплект, ведь только тогда можно обеспечить автомобилю работу без поломок.

Необходимость регулировки теплового зазора клапанов

Работа клапанного механизма происходит в крайне тяжелых условиях. К таковым относят постоянные ударные нагрузки и большую теплонагруженность. Также стоит отметить, что нагрев деталей ГРМ отличается значительной неравномерностью, а сам клапанный механизм постоянно страдает от естественного износа.

Нормальное открытие и закрытие клапанов в условиях высоких температур обеспечивается благодаря наличию обязательного термического зазора. Такие зазоры для впускных и выпускных клапанов отличаются, так как выпускные клапаны нагреваются намного сильнее впускных от контакта с раскаленными отработавшими газами. На большинстве легковых авто зачастую показатель величины зазора на впускных клапанах находится на приблизительной отметке 0,15-0,25 мм. Для выпускных клапанов данный показатель составляет в среднем 0,2-0,35 мм и более.

Выставленные зазоры клапанов могут постепенно сбиваться в результате естественного износа механизма, после проведения ремонта ДВС и т.д.

Зазоры, отличные от допустимой нормы в большую или меньшую сторону, вызывают ускоренный износ ГРМ. Появляется стук клапанов, наблюдается падение мощности агрегата и перерасход топлива. Токсичность выхлопа сильно увеличивается, из строя быстро выходят катализаторы и сажевые фильтры.

Как проверить и узнать, какой гидрокомпенсатор стучит

Отечественные машины прельщают автовладельцев простотой ремонта. Большинство сервисных и ремонтных работ можно провести самостоятельно, не обращаясь на СТО и весомо экономя семейный бюджет. Но перед тем как перейти непосредственно к ремонту, нужно правильно диагностировать причину неисправности.

На примере автомобиля Шевроле-Нива мы расскажем, как узнать, какой гидрокомпенсатор стучит в ГРМ мотора.

Проверяем стучащий гидрокомпенсатор

Предварительно определите, каким гидрокомпенсатором нужно заняться вплотную, можно простым способом. Те гидрокомпенсаторы, которые выставлены в верхней мертвой точке, нужно слегка придавить отверткой, которая используется как рычаг.

Если под легким нажатием гидрокомпенсатор «проваливается», значит, он не отрегулирован и издает стук. Можно даже для «чистоты эксперимента», быстро нажимая на рычаг-отвертку, постучать гидрокомпнсатором.

Вот где расположены на моторе метки.

Проверив одни гидрокомпенсаторы, проверните звездочку распредвала на 180°, чтобы коленвал провернулся на 360° соответственно. И приступайте к проверке следующей группы. «Правильные» гидрокомпенсаторы «мертво» стоят на месте и не реагируют на легкое надавливание отвертки-рычага.

После предварительного определения неотрегулированных гидрокомпенсаторов, убедитесь, что нет ошибки. Проверить это легко, существует давний, «дедовский» способ. После того как сняли крышку коробки распредвала, на «расхлябанные» гидрокомпенсаторы надавите пальцем. Если ошибки нет, то они легко нажмутся.

Регулировка гидрокомпенсаторов не всегда дает желаемый результат. Бывает такое, что они оказываются сильно стертыми, и регулировки попросту не хватает. Выход в данной ситуации — их замена на новые.

После регулировки или замены гидрокомпенсаторов проверьте работу мотора. Для этого его надо завести. После запуска двигателя, какое-то время слышится стук. Не стоит сразу пугаться, гидрокомпенсатор должен «прокачаться». Если все прошло правильно, стук скоро прекратится.

Чтобы перестраховаться и окончательно убедиться, что все сделано правильно, заглушите мотор. Немного подождите и заведите снова, стук повториться не должен. Если стука мы не услышали, значит «плохие» гидрокомпенсаторы определены правильно.

Как бы далеко ни продвинулась автомобильная индустрия, сколько бы электронных устройств, определяющих автомобильные поломки, ни было изобретено, для отечественных автомобилей мы часто применяем старые, проверенные, «дедовские» способы диагностики. Они гораздо доступнее, не требует дорогостоящей аппаратуры и не уступают по точности инновационным способам.

А применимо к отечественной автомобильной технике, которая часто производится по устаревшим технологиям, «дедовские» способы диагностики автомобилей являются самыми правильными и доступными рядовым автолюбителям.

Как проверить гидрокомпенсаторы на ВАЗ-2112 16 клапанов фото

В том случае, когда при запуске двигателя станет слышен характерный звук, это с большой вероятностью можно считать признаком того, что в моторе стучат гидрокомпенсаторы. Предназначены они для регулировки в автоматическом режиме зазоров, которые появляются у клапанов при нагревании и охлаждении двигателя.

На видео показаны вблизи гидрокомпенсаторы, можно увидеть особенности их конструкции:

Гидрокомпенсаторы и их работа

Чтобы гидрокомпенсаторы работали стабильно, им потребуется постоянная подача масла. Для этого в головке блока есть канал с шариком (клапаном), который не дает маслу сливаться после того, как мотор будет остановлен. Аналогичный клапан есть и в нижней части подшипника, по которым и подводится масло к шейке клапанов для смазки.

Рекомендованное масло для мотора автомобиля ВАЗ 2112

Сразу следует отметить, что эти детали чувствительны к качеству масла. Если в нем будут какие-то примеси, то из строя на протяжении короткого времени выйдет плунжерная пара гидрокомпенсатора. Это отразится на работе мотора. Появится шум и интенсивно будут изнашиваться кулачки распредвала. Если гидроконденсатор вышел из строя, то его ремонтировать нельзя. Он только меняется на новый.

Гидрокомпенсаторы в головке блока цилиндров

Когда стук в моторе будет слышен постоянно, то следует выявить причину его появления. Для этого надо придерживаться правил, приведенных ниже.

Гидрокомпенсаторы всегда проверяют при замене клапанов!

Какой гидрокомпенсатор стучит: определение

Чтобы определить, какой из гидрокомпенсаторов стучит, надо на него нажать отверткой. Если состояние толкателя нормальное, то он должен прижиматься с усилием. Когда прилагаемое усилие будет невелико, то такую деталь следует заменить. Подробнее о замене гидрокомпенсаторов мы уже писали в материале: замена гидрокомперсаторов на 16-ти клапанной ВАЗ-2112 своими руками.

Блок головки цилиндров. Определение, какой из гидрокомпенсаторов вышел из строя

Устранить шум можно также при незначительном повороте клапана или прижимной пружины вокруг оси.

Для этого следует заглушить мотор и произвести такие действия:

  1. Повернуть коленвал так, чтобы клапан, который стучит, начал немного открываться.
  2. Повернуть немного пружину (клапан при этом тоже провернется).
  3. Запустить мотор.

Если стук не прекратиться, то следует процедуру повторить. Когда и это не поможет, надо проверить зазор между втулками и стержнями клапанов. Также следует проверить и состояние самой пружины.

Приспособление

Фонендоскоп при помощи которого можно выявить неисправный гидрокомпенсатор

Также определить, какой из гидрокомпенсаторов стучит, можно при помощи фонендоскопа. Его следует приложить к головке блока цилиндров в месте расположения каждого из компенсаторов. В том месте, где деталь вышла из строя, будет слышен звук, напоминающий клапанный стук.

Если деталь застучала, то не стоит спешить разбирать сам мотор. Следует изначально попробовать заменить масло.

Конструкция и принцип работы гидромпенсаторов

Самый простой гидрокомпенсатор — это корпус с вмонтированной плунжерной парой, рассчитанной на работу с моторным маслом. Это простейшее устройство полностью сняло ударные нагрузки с распредвала и клапана, позволило сохранять оптимальный зазор, независимо от условий работы мотора, сняло вопрос о шумности работы двигателя. Плунжер представляет собой простую втулку и шариковый подпружиненный клапан, который компенсирует разницу в зазорах. В машинах массового производства гидрокомпенсатор может иметь несколько конфигураций — с корпусом в виде цилиндрического толкателя, как на двигателях ВАЗ 2108 и его многочисленных последователях, так и быть конструктивной частью головки блока цилиндров, как на заднеприводных автомобилях ВАЗ поздних лет выпуска, Нива 21214, на двигателях УМЗ 331.10 от Москвичей и ИЖей и ЗМЗ 406 от Газелей, Нива Шевроле. Кроме того, есть возможность купить и установить гидрокомпенсаторы на старые классические моторы 2106, 2107, 2101, но для этого необходима будет замена распредвала в паре с корпусом, нужно будет докупать сами гидрокомпенсаторы и устанавливать масляную рампу. Цена такого апгрейда — около сотни долларов с установкой, но эти деньги себя окупают.

Гидрокомпенсатор использует в своей работе свойства моторного масла, да и любой жидкости — несжимаемость. То есть тот объем, который заключен в плунжерной паре может быть практически постоянным. Если масло не сжимается и не вытекает из компенсатора. Но хитрость в том, что масло в плунжере постоянно меняется и поступает из системы смазки мотора через масляную рампу. При возникновении ударного усилия на компенсатор, масло способно передать его на клапан, в то же время объем масла регулируется постоянной циркуляцией, поэтому нет никакой необходимости регулировать зазор вручную, он выставляется автоматически при любой температуре мотора. Устройство может работать как угодно долго, но тоже иногда приносит проблемы в виде стуков.

Методы проверки

Теперь перед автомобилистом стоит задача узнать, компенсаторы на его автомобиле рабочие или нет. Как лучше поступить в подобной ситуации?

Существует два варианта проверки.

  • Первый вариант предусматривает снятие клапанной крышки. Метод более наглядный и позволяет практически наверняка гарантировать правильный диагноз. Но выполнение более сложное из-за демонтажных работ;
  • Второй вариант не требует, чтобы демонтировались элементы. Но здесь понадобится хороший слух. Для его улучшения лучше воспользоваться фонендоскопом. Прислушиваясь к работе ГК на разных режимах, можно найти источник проблем.

На каком варианте остановиться? Тут решать вам.

Оба метода проверки имеют свои сильные и слабые стороны. Новичку в таких делах я бы рекомендовал начать с прослушивания гидрокомпенсаторов. Если прослушка ничего не даст, тогда откроете клапанную крышку, и более наглядно рассмотрите состояние элементов.

Проверка прослушкой

Подготовка в процедуре предельно простая. Нужно разместить автомобиль на ровной поверхности, открыть капот, запустить мотор и прислушиваться.

Даже идеальный слух не всегда позволяет четко распознать неработающий компенсатор. Лучше взять в помощь вспомогательный медицинский инструмент. Найти его не сложно.

И тут рассмотрим несколько ситуаций. В зависимости от результата проверки, будем делать соответствующие выводы.

  • После запуска мотора сначала шум появился, но через несколько секунд пропал. С компенсаторами все хорошо. Просто временно их полостей ГК вытекла смазка. Двигатель прокрутился и заполнил их;
  • Обороты холостые, а шум со стороны компенсаторов прерывистый. Стоит поднять обороты, шум уходит. Проблема есть. Она кроется во втулке или засорениях;
  • Двигатель прогрет, обороты холостые, шум непрерывный. Повысив обороты, шум пропадает. Это означает, что зазор увеличился;
  • Симптомы аналогичны предыдущему пункту, только на низких шума нет, а на высоких оборотах есть. Тут вы столкнулись со вспениванием масла;
  • Стучит один или сразу несколько шумов, вне зависимости от оборотов мотора. Тут возможна любая неисправность из перечисленных.

Прикладывая инструмент для прослушки поочередно к зоне, где располагается каждый из компенсаторов, можно понять, где конкретно есть проблема.

Если шум у одного ГК отличается от других, вы нашли источник неприятностей. Осталось лишь разобраться в причинах и устранить неисправности.

Проверка разборкой

Чтобы проверить эти элементы на предмет их работоспособности, можно демонтировать клапанную крышку. Далее придется отталкиваться от собственных ощущений при проверке упругости.

Вам придется прокрутить коленвал, используя для этого центральную гайку. Это приведет вал в движение.

Когда кулачок толкателя будет направлен в сторону, противоположную относительно ГК, поочередно проверьте элементы ан предмет их упругости, есть ли свободный ход.

Использовать можно руки или подручные инструменты. Когда компенсатор болтается и имеет слишком мягкий ход, он неисправен. Требуется ремонт.

Стучат гидрокомпенсаторы причины, как определить, что делать чтобы не стучали

Если из-под капота при движении постоянно доносится надоедливый и размеренный стук, причина скорее всего в гидрокомпенсаторах. Эта проблема может появиться на любой машине вне зависимости от ее производителя. 

Стук гидрокомпенсаторов слышен как на холодную, так и на горячую, иногда они появляются после многолетней эксплуатации либо вскоре после приобретения новенького авто

Чтобы избавиться от этой проблемы, важно определить, почему стучат гидрокомпенсаторы

Причины

Гидравлический компенсатор – это специальное устройство, при помощи которого осуществляется регулировка зазоров клапанов мотора. Это небольшая туба, в которую помещается плунжерная пара, обратный клапан и пружина. С его помощью регулировку клапанов не нужно проводить вручную. Причин может быть несколько:

  • Износ плунжерной пары. С ходом времени кулачки распредвала образуют вмятины на этой детали;
  • Бракованные компоненты. Даже на лучших заводах, принадлежащих ведущим автопроизводителям, иногда допускают ошибки;
  • Засорение клапана подачи масла. Загрязнения приводят к его залипанию;
  • Воздушная подушка. Иногда в компенсатор проникает воздух, что может стать следствием недостаточной подачи смазывающих материалов;
  • Загрязнение компонентов. В систему может проникнуть пыль или нагар от масла.

В некоторых случаях воздух наличествует в самом масле, или причиной для поломки является выход из строя каналов подачи масла

Также важно подбирать качественные смеси, максимально подходящие именно для вашего авто. 

Стук на холодную и на горячую – что это такое?

Такими терминами часто пользуются автомеханики, и неопытные водители могут не разобраться в чем дело. Стук «на горячую» слышен при нагреве двигателя, чаще всего причиной для этого является выработка ресурса залитого масла. Помочь с решением этой проблемы поможет его замена, либо установка нового фильтра. Ни одна из указанных мер не помогла? Значит, причину следует искать в других узлах двигателя. 

Когда гидрокомпенсаторы стучат на холодную, звук проявляется сразу после запуска мотора. В результате неполадки масло не проникает в компенсатор, при этом водители очень часто игнорируют возникающий при запуске звук, что может привести к серьезным проблемам в будущем. 

Как выяснить, какой из гидравлических компенсаторов стучит?

Опытный специалист легко может определить стучащий гидрокомпенсатор, проводя акустическую диагностику. После локализации проблемы специалист промывает деталь, устанавливает ее назад, на место, а затем заново запускает двигатель. Если проблема сохранилась, значит, эту деталь нужно полностью заменить. 

Для того, чтобы убрать стук гидрокомпенсаторов методом замены масла, нужно правильно подобрать смазывающий материал, такой подход оправдан, когда стучат гидрокомпенсаторы на горячую. Также можно попытаться использовать специальную присадку от стука гидрокомпенсаторов, которая улучшит свойства смазочных материалов, делая их более подходящими для использования с данными компонентами. 

Если материал был для вас интересен или полезен, опубликуйте его на своей странице в социальной сети:

Как определить неисправность гидрокомпенсаторов?

Как определить неисправность гидрокомпенсатора? В данной статье мы поговорим на эту тему.

Как известно, гидрокомпенсаторы – это узлы, устанавливающиеся в механизме привода клапанов мотора для устранения их зазоров. В итоге пропадает необходимость периодического их регулирования. Однако, они также могут выходить из строя. Посмотрим, какие симптомы этого «заболевания» и как найти неисправную деталь?

Как определить неисправность гидрокомпенсаторов? 


Неисправность гидрокомпенсаторов обычно проявляется в виде постороннего стука при работе силового агрегата. Посторонние звуки локализируются в области клапанной крышки и появляются сразу после запуска мотора. Причем при изменении оборотов коленвала, изменяется и звук. Если же шум не появляется сразу после запуска агрегата или не изменяется при смене оборотов, то причина не в гидрокомпенсаторах.

Кроме прочего, уровень звука не должен меняться при изменении нагрузки на агрегат. Это можно проверить путем выключения сцепления или включения многих мощных электропотребителей (кондиционера, дальнего света и пр.). В случае если при прогревании мотора до рабочей температуры стук уменьшается или исчезает, то необходимо промыть гидрокомпенсаторы, так как стук вызван загрязнением масла.
Если после описанной простой диагностики оказалось, что стук вызывают именно гидрокомпенсаторы, необходимо определить, какие же из этих узлов вышли из строя.

Для этого потребуется выполнить некоторые действия:
{typography list_number_bullet_blue}1. Сразу же после остановки мотора необходимо снять крышку головки блока цилиндров;||2. Поршень первого цилиндра требуется установить в верхнюю мертвую точку такта сжатия;||3. Далее требуется осуществить нажатие на плечи коромысел впускных клапанов. Если в данном случае при закрытом клапане (профиль кулачка расположен затылочной областью к ролику коромысла) коромысло можно легко провернуть, то гидрокомпенсатор вышел из строя.{/typography}
Проверить работу гидрокомпенсаторов выпускных клапанов указанным методом не получится. Ведь при исправности хотя бы одного гидрокомпенсатора, не получится провернуть вилочное коромысло привода обеих клапанов. Однако для проверки можно использовать косвенный метод.

Необходимо без рывков и очень медленно проворачивать коленвал силового агрегата до момента начала открытия выпускных клапанов. При этом следует внимательно следить за движением тарелок пружин обоих диагностируемых клапанов. При неисправности гидрокомпенсатора тарелка пружины клапана двигается с опозданием относительно второй тарелки.

Стоит отметить, что описанная методика применительна для двигателей SOHC. В случае если необходимо продиагностировать мотор DOHC, нужно приложить усилие к плечу нажимного рычага, который опирается на гидрокомпенсатор. В случае если для перемещения рычага не требуется никаких усилий, то имеет место быть неисправность гидрокомпенсаторов.

Аналогичным способом необходимо проверить работоспособность всех гидрокомпенсаторов двигателя. При этом необходимо помнить, что порядок работы цилиндров – 1-3-4-2.

Напоследок отметим, что перед тем, как заменять неработающие гидрокомпенсаторы новыми, необходимо попробовать их промыть. Дело в том, что бывает неработоспособность данных деталей, вызванная загрязнением.

Как видим, определить факт неисправности гидрокомпенсаторов достаточно просто, просто прислушавшись к работе мотора. А вот выявить какие именно детали вышли из строя уже сложнее. Потребуется снятие крышки головки блока цилиндров и некоторые навыки. Однако и эту процедуру вполне можно освоить и определить неисправные узлы.

Неисправность гидрокомпенсаторов

Клапан, используемый для регулирования падения давления в гидравлической системе. компонент

Блок компенсатора давления моделирует поток через клапан, который сжимается, чтобы поддерживать заданный перепад давления между двумя выбранными гидравлические узлы. Клапан имеет четыре гидравлических порта, два из которых являются проточными (впускной, A , а выходное, B ) и два напорных датчики ( X и Y ). Нормально открытый клапан сокращается при падении давления с X до Y поднимается выше уставки давления клапана.Уменьшение площади проема является функцией падение давления — пропорционально ему в линейной параметризации (по умолчанию) или общая функция этого в табличной параметризации. Клапан служит своей цели пока он не достигнет предела своего диапазона регулирования давления — точки, в которой клапан полностью закрыты, и падение давления снова может неуклонно расти.

Открытие клапана

Расчет площади открытия зависит от параметризации клапана, выбранной для блок: либо Линейное отношение открытия площади , либо Табличные данные - Площадь vs.давление .

Linear Parameterization

Если параметр блока Valve parameterization находится в настройка по умолчанию Линейное соотношение открытия зоны , площадь проема рассчитывается как:

S (Δpxy) = SMax − k (Δpxy − ΔpSet),

где:

  • S Макс — значение указана в Максимальная площадь прохода блок параметр.

  • Δp Установить значение указанное в блоке Настройка давления клапана параметр.

  • Δp XY — давление падение с порта X на порт Y :

    , где p — избыточное давление. в порту, обозначенном нижним индексом ( X или Я ).

  • k — линейная константа пропорциональности:

    , где в свою очередь:

При заданном давлении клапана и ниже его площадь открытия соответствует полностью открытый клапан:

При максимальном давлении и выше площадь отверстия определяется внутренним только утечка:

где максимальное падение давления Δp Макс составляет сумму:

Зона проема в линейном проеме взаимосвязь параметризация

Табулированная параметризация

Если параметр блока Параметрирование клапана установлен на Табличные данные - Площадь vs.давление , открытие площадь рассчитывается как:

, где S XY — табличная функция построенный из вектора падения давления и Вектор области открытия параметров блока. Функция на основе линейной интерполяции (для точек в диапазоне данных) и экстраполяция ближайшего соседа (для точек вне диапазона данных). Утечка и максимальные площади открывания — это минимальные и максимальные значения Вектор площади открытия клапана параметр блока.

Область открытия в Табличные данные - Зависимость площади от давление параметризация

Динамика открытия

По умолчанию динамика открытия клапана игнорируется. Предполагается, что клапан мгновенно реагировать на изменение перепада давления без задержки во времени между началом нарушения давления и увеличением открытия клапана, возмущение производит.Если такие запаздывания имеют значение для модели, вы может захватить их, установив блок Открытие динамики параметр до Включить динамику открытия клапана . В затем клапаны открываются каждый со скоростью, определяемой выражением:

S˙ = S (ΔpSS) −S (ΔpIn) τ,

, где τ — мера необходимого времени для области мгновенного открытия (индекс в ) для достижения новое установившееся значение (индекс SS ).

Область утечки

Основная цель области утечки закрытого клапана — обеспечить ни разу не изолируется часть гидравлической сети от остальная часть модели. Такие изолированные части снижают числовую устойчивость. модели и может замедлить моделирование или привести к его сбою. Утечка обычно присутствует в мизерных количествах в реальных клапанах, но в модели это точное значение менее важно, чем небольшое число больше нуля.В Площадь утечки получается из одноименного параметра блока.

Расход клапана

Причины потерь давления в каналах клапана: игнорируется в блоке. Какой бы ни была их природа — внезапные изменения площади, отток потока искажения — при моделировании учитывается только их совокупный эффект. Этот Эффект фиксируется в блоке коэффициентом расхода, мерой расхода скорость через клапан относительно теоретического значения, которое он имел бы в идеальный клапан.Расход через клапан определяется как:

q = CDS2ρΔpAB [(ΔpAB) 2 + pCrit2] 1/4,

где:

  • q — объемный расход через клапан.

  • C D — стоимость Коэффициент расхода параметр блока.

  • S — зона открытия клапана.

  • Δp AB — перепад давления из порта A в порт B .

  • p Критерий — давление перепад, при котором поток переходит между ламинарным и турбулентным режимы течения.

Расчет критического давления зависит от настройки Спецификация ламинарного перехода параметр блока. Если это параметр имеет значение по умолчанию По степени сжатия :

pCrit = (pAtm + pAvg) (1 − βCrit),

где:

  • p Атм — атмосферный давление (как определено для соответствующей гидравлической сети).

  • p Среднее значение — среднее значение манометрическое давление на портах A, и Б .

  • β Критерий — значение Ламинарная степень перепада давления потока блок параметр.

Если параметр блока Спецификация ламинарного перехода равен вместо этого установлен на Число Рейнольдса :

pCrit = ρ2 (ReCritνCDDH) 2,

где:

  • Re Критерий — значение Блок критического числа Рейнольдса параметр.

  • ν — кинематическая вязкость, указанная для гидравлическая сеть.

  • D H — мгновенный гидравлический диаметр:

.

Engineering Essentials: основы гидравлических насосов

  • Войти
  • Регистр
  • Поиск
  • Fluid Power Basics
  • Гидравлические клапаны
  • Гидравлические насосы и двигатели
  • Цилиндры и приводы
  • H&P Connect
    • Ресурсы
    • Digital Arch5
    • Каталог дистрибьюторов
    • Блоги
    • Каталог продукции оборудования
    • Основы дизайна
    • Часто задаваемые вопросы по дизайну
    • Вебинары
    • Официальные документы
    • Настенные диаграммы
    • Электронная рассылка Подписка
    • 000
    • 000 Подписка на
    • 000
    • Рекламировать
  • Внести вклад
  • Политика конфиденциальности и файлов cookie
  • Условия использования
Значок Facebook Значок Twitter Значок LinkedIn .

Что такое компенсатор разгрузки | Гидравлика и пневматика

  • Войти
  • Регистр
  • Поиск
  • Fluid Power Basics
  • Гидравлические клапаны
  • Гидравлические насосы и двигатели
  • Цилиндры и приводы
  • H&P Connect
    • Ресурсы
    • Digital Arch5
    • Каталог дистрибьюторов
    • Блоги
    • Каталог продукции оборудования
    • Основы дизайна
    • Часто задаваемые вопросы по дизайну
    • Вебинары
    • Официальные документы
    • Настенные диаграммы
    • Электронная рассылка Подписка
    • 000
    • 000 Подписка на
    • 000
    • 000 Рекламировать
    • Внести вклад
    • Политика конфиденциальности и использования файлов cookie
    • Условия использования
    Значок Facebook Значок Twitter Значок Twitter LinkedIn

    Недавние

    .

    Используйте больше данных для определения срока службы гидравлического насоса

    • Войти
    • Регистр
    • Поиск

Почему троит двигатель? Не работает один из цилиндров

«Не работает один из цилиндров…» , — данная неисправность не относится к разряду слишком уж частых, но все-таки случается и иногда вызывает некоторые затруднения с ее диагностикой. Данное явление получило название «миссинг» ( «missing» ), что в «вольно-техническом» переводе может означать тоже самое, что и «двигатель троит» ( каждый волен называть данное явление так, как ему нравится).

В случае миссинга (если стоять около выхлопной трубы и прислушаться), мы услышим явно различимое и равномерное «бу-бу-бу…» .

А когда какой-то из цилиндров не работает – это вызывает дополнительные проблемы, потому что в этом случае ( кроме потери мощности и «некомфортной езды»…хотя надо еще, наверное , поискать такого безрассудного водителя, который при «троении» двигателя будет продолжать упорно ездить! ) сам двигатель начинает катастрофически быстро изнашиваться, и вот почему :

* бензин, который продолжает поступать в «нерабочий» цилиндр не сгорает, а оседает на стенках (зеркале) цилиндра, перемешивается с маслом и попадает в картер.Моторное масло начинает постепепенно «разжижаться», его качество ухудшается и через какое-то время уже во все цилиндры начинает поступать некондиционное масло. Из-за этого уменьшается компрессия двигателя, создаются «хорошие» условия для создания «задиров» на «зеркале» цилиндра, на поршнях, прецезионных плоскостях гидрокомпенсаторов и вообще на всем, что «движется» внутри двигателя и омывается маслом. Двигатель начинает работать уже в другом температурном режиме, начинает потихоньку перегреваться, потому что масло (нормальное по качеству масло) служит еще и для отвода тепла от движущихся частей, а то, что уже находится в картере трудно назвать «моторным маслом».

Вот неполный перечень того, какие «беды» нам может принести «нерабочий» цилиндр.

На первый взгляд определение этой неисправности довольно простое.

На первый взгляд…

Но иногда оказывается, что проверено, вроде все, и это «все» работает нормально, а двигатель все-равно «троит». Поэтому мы «по пунктам» постараемся разобрать порядок диагностирования систем электронного впрыска топлива на предмет «миссинга» в условиях «обыкновенной мастерской» или «просто в гараже» , где нет специальных приборов для того, что бы «заглянуть внутрь» двигателя при его работе и очень точно определить причину «миссинга».

Проверку, как обычно, можно и нужно начать с проверки искрообразования.То есть проверить и убедиться : «есть искра или нет ее».

Свечи зажигания

Для начала выкрутим свечу из цилиндра и внимательно осмотрим ее. Что мы увидим ?

Если двигатель работает (работал) нормально и «правильно», то цвет бокового электрода и изолятора будут светлыми и немного коричневыми.Такая свеча работать должна. Если же увидим закопченность электрода и изолятора – это «звоночек» нам : «что-то и где-то работает неправильно». Идет «обогащение» топливом или «закидывание» маслом. И из-за такой вот «закопченности» свеча зажигания тоже может не работать или работать крайне отвратительно, можно даже и так сказать – «нерегулярно», потому что такой нагар мешает нормальному протеканию искрообразования.Причинами нагара могут быть :

— длительная работа двигателя на холостом ходу и в режиме прогрева в случае, если в двигатель вкручена свеча зажигания «неправильного» калильного числа.

— неисправность «обратного» клапана

— пониженная компрессия в цилиндре

— смещение или нарушение фаз газораспределения

— неправильная работа инжекторов (форсунок) — «переливают»

— неправильная работа датчика кислорода ( Oxygen Sensor )

Далее переведем взгляд на корпус свечи зажигания. Он должен быть белым (мы не рассматриваем некоторые отдельные свечи зажигания с темным корпусом) и на нем не должно быть вертикальных черных полосок или черных точек. Наличие этого говорит о том, что свеча уже «пробивается» и нормально работать не будет. Такая свеча зажигания идет только «на выкид».

Ну а если визуальный осмотр нас удовлетворил, то далее проверим непосредственно саму искру при прокручивании стартером. Вставляем свечу зажигания в наконечник высоковольтного провода, кладем на «массу» двигателя и прокручивая двигатель стартером смотрим – «проскакивает» искра между электродами свечи или нет.

Проскакивает ? Хорошо. Но это еще не все. Вспомним, что свеча зажигания «работает» внутри цилиндра, где создается давление в пределах 10 кг\см2 ( в среднем). А мы проверяли «наличие искры» при нормальном атмосферном давлении. И что бы постараться приблизиться к тому давлению, что создается в цилиндрах двигателя нам надо отнести свечу зажигания на расстояние 15-20 мм от «массы» и так же прокрутить двигатель стартером. Если и при этом условии между свечой и «массой» проскакивает хорошая «здоровая» искра «насыщенного» синего цвета – все нормально.

Если же на таком расстоянии искра «не проскакивает» или «проскакивает», но еле-еле заметная, то можно сказать, что у нас на двигателе «искра слабая» и причинами здесь могут быть :

— повышенное сопротивление высоковольтных проводов

— неисправность катушки зажигания

— неисправность коммутатора

Высоковольтные провода

Снимем и так же внимательно рассмотрим каждый высоковольтный провод в отдельности. Сначала осмотрим наконечник провода вставляемый в свечу зажигания. Он должен быть однотонного (черного или красного, в зависимости от типа ) и не иметь:

— светло – серого налета на внутренней поверхности

— серо-коричневых точек снаружи (диаметром они могут быть от 1 до3 мм)

И первое и второе «говорит» нам о том, что данный высоковольтный провод «работал» в «экстремальном» режиме (неисправная свеча зажигания, увеличенный зазор в свече зажигания), что и послужило причиной вот такого светло-серого налета или серо-коричневых точек (пробоя). Из практики можно сказать, что сначала появляется светло-серый налет и уже только по нему «опытный взгляд» можно сразу же определить, что свеча работает в «нештатном» режиме. И если вовремя не обратить внимание на это изменение цвета внутри наконечника высоковольтного провода – далее высоковольтный провод просто «пробьет». Сопротивление высоковольтного провода – лучше всего его измерять цифровым мультиметром. Значения могут быть разными на каждом конкретном двигателе.

Для примера :

— «Mitsubishi» с двигателем 4G63 – от 5 до 9 Ком. С двигателем 6G73 – от 8 до 16 Ком.

— «Toyota» с двигателем 3S-FE – от 7 до 12 Ком, с двигателем 1G-FE – от 8 до 15 Ком

Сопротивление высоковольтных проводов зависит (естественно) от их длины, но не должно превышать (практически на любом двигателе) величины 20 Ком. Если же прибор показал нам сопротивление свыше 20 Ком – надо искать причину. Что может случиться с высоковольтным проводом ?

Для начала, конечно, его надо разобрать, то есть снять резиновый ( пластмассовый) наконечник и оголить тот самый металический наконечник, непосредственно одеваемый на свечу зажигания.

На приведенном выше рисунке все «детали» наконечника приведены немного с увеличенными расстояниями – что бы было немного понятнее. На самом же деле высоковольтный провод должен очень плотно прилегать к «пятаку» наконечника. Это и есть возможная причина №1 повышенного сопротивления высоковольтного провода. Из-за обыкновенного «старения» контакт внутренней жилы ВВ-провода с «упорным пятаком» окисляется и сопротивление провода в целом возрастает очень сильно, бывает, что и до 150-190 Ком.

Проверить данное утверждение просто : надо коснуться вторым щупом мультиметра не самого наконечника, а именно центральной жилы самого высоковольтного провода. В большинстве случаев мультиметр сразу же показывает нормальное и «правильное» сопротивление.

Если же этого не произошло и сопротивление высоковольтного провода у нас -«бесконечность», то далее надо осторожно проделать следующую процедуру : не знаю, как у кого, но у нас имеется комплект «плюсового» щупа с очень тонкой иголкой на конце. При проведении обыкновенных измерений мы им не пользуемся, а используем именно для таких случаев : начинаем прокалывать высоковольтный провод до центральной жилы через каждые пять-десять миллиметров и смотреть – появилось сопротивление или нет. Бывает такое, что эта самая «центральная жила» просто-напросто по своей длине «выгорает» и при помощи такой вот простой проверки мы и находим место обрыва. Далее все просто – отрезаем «пораженный» участок и восстанавливаем работоспособность нашего высоковльтного провода в целом. Однако, если длина провода у нас «на пределе» ( такое часто встречается на двигателях серии «3S-Fe», «4A-FE» и им подобных) — приходится сожалеть и менять провод целиком. Если же заменить ВВ-провод нечем, то можно временно поступить таким образом : срастить два ВВ-провода. Только надо очень тщательно соединять между собой центральные жилочки ВВ-проводов, все хорошо в завершении изолировать и стараться не бросать такой «новый» провод на металл при его установке.

Крышка распределителя зажигания

Так же внимательно и тщательно рассматриваем ее как снаружи, так и внутри.

Общая «болезнь» — «пробой» крышки распределителя вследствии повышенного напряжения создаваемого неисправной свечой зажигания или высоковольтного провода. Если он есть – мы увидим его в виде тонкой и извилистой полоски темного или сероватого цвета, обычно в «районе» контактов.

Обращаем внимание на так называемый «уголек» внутри крышки : сам он должен легко «ходить» в своем гнезде ( он подпружинен и можно для профилактики его вытащить и немного растянуть пружинку), и не иметь явно выраженных признаков «подгорания» — как на нем, так и около его посадочного места.

И последнее, что можно сделать для проверки крышки распределителя зажигания – на «рабочем», то есть заведенном двигателе проводом, который одним концом хорошо прикручен к «массе» поводить вблизи крышки распределителя на расстоянии не более 0.5мм – 1мм. В случае «пробоя» крышки мы увидим проскакивающую искру в месте этого «пробоя».

Распределитель с датчиками Холла

Посмотрим на рисунок :

 

 

 

На этом рисунке приведен разъем распределителя зажигания двигателя 6G73 «Mitsubishi».

Расположение: контакт №1 – тот, который находится ближе к салону, контакт №4 – ближе к радиатору. Цвета проводов :

1. Сине-красный

2. Сине-желтый

3. Красный (самый «толстый» из остальных)

4. Черный

Перебои в искрообразовании могут быть из-за «недобросовестной» работы данного распределителя. Углублять в эти причины не будем, потому что это отдельная тема, расскажем только, как правильно проверить работоспособность распределителей зажигания подобного типа.

1. При выключенном зажигании проверяем наличие «массы» ( или «минуса») на контакте №4. Обычно это тонкий провод черного цвета.

2. Включаем зажигание. Проверяем наличие +12v на контакте №3. Обращаем внимание, что на этом контакте должно быть напряжение АКБ, не менее и не более.

3. «Садимся» выводом («плюсовым») мультиметра на контакт №2 и при включенном зажигании начинаем медленно проворачивать двигатель, но не стартером, а «вручную» ( или за шкив генератора, или за шкив коленвала). Смотрим на шкалу прибора : при медленном проворачивании двигателя там будут чередоваться «0» и «+5вольт». Следует обратить внимание, что бы после, например, 5 вольт на шкале прибора следовал сразу же «0», а не было бы постепенного снижения напряжения.

4. На контакте №1 повторяем процедуру проверки, описанную в пункте №3.

Самое главное здесь – выяснить, что сигналы с датчиков Холла идут «правильные», то есть всегда за «логическим 0» идет «логическая 1», то есть наши 0 и 5 вольт.

После этого проверим надежность соединений как «плюсового», так и «минусового» проводов.Бывает, что из-за окисления данных контактов в «работе по созданию искрообразования» наступают перерывы.

«Бегунок» распределителя зажигания

Проверка его сводится к определению отсуствия «внутреннего пробоя» :

Для этого соберем «серьезную конструкцию», как показано на рисунке и, прокручивая двигатель стартером будем внимательно наблюдать – «проскакивает» искра между «проводом» и самим «бегунком» или нет. Если «проскакивает» — двигатель, естественно, будет работать неровно (спотыкаться) и иметь перебои на холостом ходу.

Форсунка ( инжектор)

Двигатель может «троить» из-за инжектора в случаях:

1. Неисправности самого инжектора (перегорела обмотка,например, но такое встречается довольно редко — надо «сильно постараться»).

2. Вследствии использования некачественного топлива или неправильного применения различного вида «очистителей топливной системы», особенно «СУПЕР-ОЧИСТИТЕЛЕЙ» инжектор через какое-то время просто-напросто «забивается» посторонними примесями (теми же самыми «ошметками» из топливного бака) и перестает пропускать топливо в цилиндры.

3. Оборваны или замыкают цепи питания или управления на данный инжектор.

На рисунке выше приведены две распространенные схемы соединения форсунок с блоком управления (ECU), которые применяются практически на всех машинах японского производства.

Только надо отметить, что схема с применением токоограничительного резистора использовалась на машинах выпуска до 1990 года ( «Toyota», например). Внешний вид форсунки представлен на следующем рисунке :

Что и как проверяется :

Поступающее «питание» и «управление» на форсунку

Собрав вышеприведенную схемку мы можем довольно легко и быстро проверить как и наличие «питания» на форсунке, так и поступление сигналов «управления» на форсунку.При прокручивании двигателя стартером лампочка должна мигать. Если здесь все нормально, переходим на следующий пункт :

— Медицинским стетоскопом на работающем двигателе «прослушать» каждую форсунку, обратить внимание на различие ( если они есть) звуков между форсунками. Если звуки (щелчки), издаваемые форсунками есть и практически одинаковые на всех, то смотрим следующий пункт :

— Выкрутить свечу зажигания на неработающем цилиндре и две соседних свечи, разложить на столе , внимательно осмотреть и попытаться найти различия между цветом нагара на свечах зажигания в работающих цилиндрах и на свече зажигания в неработающем цилиндре.Если будет заметно, что на свече зажигания в неработающем цилиндре цвет нагара светлее, чем на соседних (работающих) – надо снимать форсунку и проверять, в первую очередь фильтр на ее входе (см. рисунок вверху). Вполне вероятно, что он забит различного рода отложениями.

Есть еще и более длительная, но и более точная проверка работоспособности форсунок. Для этого надо полностью снять топливную рейку (рампу) и развернуть ее на 180 градусов таким образом, что бы распылители форсунок «смотрели» или вверх или в сторону.

Перепутаны высоковольтные провода

Бывает и такое, действительно, когда из-за этого не работает какой-то из цилиндров (или сразу же несколько), и вместо того, что бы сразу же обратить на это внимание и досконально все проверить, мастер ограничивается вопросом : «Провода не трогали?» и получив отрицательный ответ успокаивается на этом.

Довольно часто такая вот «беда» случается на «Mitsubishi» с двигателями 4G63 и 6G73, потому что на катушках зажигания хоть и есть «цифирки», обозначающие номер цилиндра на который «работает» данная катушка зажигания, но не все, во-первых об этом знают, а во-вторых, они иногда просто плохо читаются из-за грязи. Ниже приведены рисунки, на которых обозначены «какая катушка зажигания на какой цилиндр работает» :

На всех остальных машинах номера цилиндров написаны (выдавлены) на распределителе зажигания, надо только хорошенько очистить крышки от грязи и все сразу станет видно. И проблем станет меньше.

«Нарушение фаз газораспределения»

Как мы знаем, для нормальной и «правильной» работы двигателя впускные и выпускные клапана должны открываться и закрываться в определенный момент.

Если же этого не происходит,то ТВС (топливо-воздушная смесь) попадает в цилиндры двигателя в нерассчетном составе (неправильного количества и качества).

Какие причины могут «способствовать» этому :

— Ремень газораспределения неправильно установлен изначально или «перескочил» вследствии попадания моторного масла на поверхность ремня из-за выработки сальника или постепенного «выдавливания» сальника со своего «посадочного места» (повышенное давление картерных газов — характерно для сильно изношенных двигателей), …из-за выработки или «старения»гидравлического натяжителя (характерно для Mitsubishi)

— Шкив коленчатого вала «разболтался» из-за выработки в шпон-пазу,что вызывается неправильной установкой шкива при его непрофессиональной замене в случае переустановки, например, нового ремня газораспределения

— «выработка» распределительного вала ( характерно для двигателя 1G-E выпуска до 1990 года, вследствии чего один из цилиндров перестает работать на ХХ, причиной чему может являться некачественное моторное масло или естественный процесс «старения)

— «выработка» «постели» распределительного вала (часто встречается на «пожилых» моделях двигателей серии 1G-E, причиной чему так же может являться некачественное моторное масло или естественный процесс «старения»)

— износ гидрокомпенсаторов ( в случае поверхностного износа «тела» гидрокомпенсатора — это «лечится» только заменой, но если при визуальном осмотре износа не обнаружено, то имеет смысл полностью разобрать гидрокомпенсатор, все тщательно промыть, прочистить…).

— износ регулировочной шайбы «гидростаканов» ( если износ относительно небольшой, то «лечить» можно при помощи тщательной и внимательной «перемены мест слагаемых» — перестановкой регулировочных шайб с одного места на другое)

— прогорание прокладки головки блока цилиндров вследствии нарушения теплового режима работы двигателя ( спортивная и «безбашенная» гонка по каким-то причинам, отсутствие или пониженный уровень охлаждающей жидкости, неисправность редукционного клапана как в радиаторе, так и в расширительном бачке, неисправность водяной помпы, термостата…).

Причин еще можно назвать множество, выбраны только самые «яркие».

Рассогласование опорного сигнала датчика коленвала

Встречается на двигателе Mitsubishi серии 6G-73 и ему подобных. Смотрим на рисунок :

Опять же, данная неприятность случается только после проведения некачественного ремонта, невнимательности специалистов, проводивших ремонт и незнания ими назначения всего того, что они «откручивают или прикручивают».

На коленвалу находится так называемая «трехлопастная пластина» , которую можно еще назвать «задатчик сигналов» ( signal master ). Эта трехлопастная пластина при вращении двигателя формирует для компютера опорный сигнал вращения, который служит для рассчета и определения времени «подачи искры» и открывания — закрывания форсунок. При проведении работ по, например, замене ремня газораспределения, снимается так же и шкив коленчатого вала. Если не обратить внимание, в каком положении и при каких метках этот шкив прижимает «задатчик сигналов» и установить обратно шкив произвольно или неплотно, то «трехлопастная пластина» будет смещена, что повлечет за собой рассогласование сигналов

Источник: http://amastercar.ru/articles/engine_car_6.shtml

Троит двигатель Дэу Ланос. Что делать

Под троением двигателя принято понимать частичный или полный выход из строя одного из цилиндров, а поскольку подавляющее большинство современных моторов имеют четыре цилиндра, то термин «троит» как нельзя точно описывает эту проблему. Двигатели Daewoo Lanos тоже не исключение, хотя причина их троения может оказаться очень глубоко зарытой.

Признаки троения двигателя Ланоса

Ситуация усугубляется, когда мотор оснащен газобаллонной установкой. В этом случае причин троения может оказаться куда больше, но качественная диагностика расставит все точки над і.

Неравномерная работа двигателя в первую очередь на холостых оборотах явно показывает, что с одним из цилиндров возникли проблемы. Двигатель вибрирует, работает нестабильно, обороты постоянно плавают, а при увеличении оборотов вполне возможно возникновение провалов.

В результате имеем целый букет неприятностей:

  • высокий расход топлива;

  • серьезное падение мощности мотора;

  • снижение динамических показателей автомобиля;

  • высокий уровень износа двигателя;

  • увеличенное потребление масла;

  • радикальное изменение звука работы выхлопной системы;

  • рывки при разгоне или трогании с места.

Это только часть характерных неисправностей, которые может определить даже рядовой водитель. 

Опасность троения мотора заключается даже не столько в проявлении указанных симптомов, сколько в усиленном износе головки блока, цилиндро-поршневой группы, свечей зажигания, форсунок и газобаллонного оборудования. Если вовремя не принять мер, можно докататься до капитального ремонта двигателя.

Почему троит двигатель на Ланосе

У Daewoo Lanos есть своеобразные причины троения двигателя, но к ним мы еще вернемся, поскольку для их диагностики потребуется больше времени и сил. Основные же, классические причины троения двигателя выглядят следующим образом:

  1. Система зажигания. Независимо от того, на чем работает мотор (на газе или на бензине), в троении двигателя может быть виноват неправильно установленный момент зажигания. Очень часто в троении виноват пробитый высоковольтный провод или поломанный свечной колпачок.

    Нормальное сопротивление высоковольтного провода на Ланосе — около 6 кОм. Вполне логично, если на одну из свечей искра подается с перебоями, мотор будет троить.

  2. Свечи зажигания. На Ланосе свечи зажигания живут порядка 15 тысяч км, но их ресурс сильно зависит от качества самих свечей и качества применяемого топлива. После неполадок с системой зажигания, выход из строя свечей находится в зоне наибольшего риска.

  3. Потеря герметичности впускного тракта. В этой цепочке очень много звеньев.

    Для Ланоса это в первую очередь герметичность дроссельного блока, герметичность прокладок впускного коллектора, состояние корпуса воздушного фильтра, как и самого фильтра.

     

  4. Система газораспределения. Прогар клапана, высокий уровень износа направляющей клапана, состояние распределительного вала, жесткость пружин клапанов, а также состояние сальников обязательно будут иметь негативное влияние на работу двигателя.

     

  5. Проблемы с прокладкой головки блока. При малейшем повреждении прокладки цилиндр не будет работать в штатном режиме и двигатель будет троить. 

  6. Состояние поршневой группы. Прогар одного из поршней или высокий уровень износа поршневых колец также приведут к троению мотора.

В тех Daewoo Lanos, в которых установлено ГБО, троение двигателя может быть вызвано некорректной работой одной из бензиновых форсунок. В этом случае при переключении на газ, мотор будет троить, когда форсунка будет пропускать бензин.
 

Проверяется эта неисправность просто. Нужно завести автомобиль на бензине, и отключить бензонасос. Проще всего это сделать, если вынуть реле бензонасоса.

В подкапотном блоке предохранителей реле находится крайнем правом углу. Вынимаем реле и ждем до тех пор, пока двигатель не остановится.

После этого запускают мотор на газе. Если троение прекратилось, виновата одна из бензиновых форсунок, которая приводила к переобогащению топливной смеси в одном из цилиндров. Вычислить неисправную форсунку проще всего с помощью стенда с определением производительности форсунок и возможности бесконтрольной утечки топлива.

Как определить нерабочий цилиндр на Daewoo Lanos

Едва ли каждый владелец Ланоса имеет необходимое программное обеспечение, компьютер для диагностики и диагностический разъем. Процесс определения нерабочего цилиндра детально показан на видео в случае, когда под рукой есть нужное ПО, диагностический разъем и компьютер.

 

Если же этого в зоне доступа нет, можно поступить следующим образом:

  1. Снимаем поочередно свечные колпачки с каждой из свечей. Но для этого нужно убедиться, что контакта тела с кузовом автомобиля не будет, а тот, кто проводит диагностику, будет стоять на диэлектрической (деревянной или резиновой) основе.

  2. Доводим обороты двигателя до 1200-1300 об/мин.

  3. Поочередно снимаем каждый из высоковольтных проводов, аккуратно держась (в перчатках) не за колпачок, а за высоковольтный провод.

  4. Оцениваем работу двигателя. Если при снятии провода работа двигателя изменилась в худшую сторону, цилиндр можно считать рабочим. Если со снятым проводом и колпачком мотор не изменил характер работы, мы нашли нерабочий цилиндр.

Допустим, мы определили нерабочий цилиндр, теперь будем разбираться в причинах неисправности. Первое, на что нужно обратить внимание — компрессия в нерабочем цилиндре. Для Ланоса нормальная компрессия порядка 8,6, если ниже — ищем проблему дальше.

Повышенный расход масла обязательно будет сопровождаться появлением блестящей каймы в цилиндре. Ее можно без проблем увидеть, если выкрутить свечу и посмотреть в камеру сгорания.

 

Поршневые кольца не стоит сходу обвинять в масложоре. Дело может быть в сбитых фазах газораспределения, что характерно для многих восьмиклапанных моторов Daewoo Lanos. На вид распределительный вал может быть в норме. Но на деле фазы могут сбиваться, особенно на малых и холостых оборотах.

Естественно, при этом мотор будет троить, но на высоких оборотах система газораспределения приходит в норму и не будет выдавать признаков поломки. Проблема в том, что клапана на малых оборотах подвисают, что влияет как на степень сжатия, так и на расход топлива, мощность и стабильность работы мотора. Причиной этого может служить как осевое биение распредвала, так и работа гидрокомпенсаторов.

Чтобы убедиться в том, что причина троения Ланоса именно в этом, нужно снять рокеры с гидрокомпенсаторами, распустить последние (слить из них масло) и запустить двигатель. Если мотор перестанет троить, виновниками неисправности можно считать гидрокомпенсаторы.

В самых сложных случаях меняют распредвал, клапанные пружины, рокеры или сами клапана, но для этого придется снимать головку блока цилиндров.

 

отзывы, характеристики, рабочая температура, тюнинг Гидрокомпенсаторы к4м

Двигатель Renault K4M 1.6 16V применяется для установки на автомобили Рено Логан 1.6, Рено Сандеро 1.6, Рено Меган 2 и 3, Рено Лагуна, Рено Сценик.
Особенности. Основное отличие двигателя Renault K4M от и это головка блока цилиндров с двумя распределительными валами для впускных и выпускных клапанов (ГБЦ 16V). Блок цилиндров, коленчатый вал, маховик К4М и К7М идентичны. Двигатель выпускается с регулятором фаз (115 л.с.) и без него (102 л.с.). В отличие от восьмиклапанных двигателей К4М работает тише (в том числе из-за наличия гидрокомпенсаторов), эластичнее, он мощнее и экономичнее. Ресурс двигателя по-прежнему высок – 350-450 тыс. км. Стоит уделять больше внимания заливаемому топливу, из-за некачественного бензина плавают обороты на холостых оборотах, возникают провалы на ходу.

Характеристики двигателя Renault K4M 1.6 16V Логан, Сандеро, Меган, Альмера

ПараметрЗначение
КонфигурацияL
Число цилиндров4
Объем, л1,598
Диаметр цилиндра, мм79,5
Ход поршня, мм80,5
Степень сжатия9,8
Число клапанов на цилиндр4 (2-впуск; 2-выпуск)
Газораспределительный механизмDOHC
Порядок работы цилиндров1-3-4-2
Номинальная мощность двигателя / при частоте вращения коленчатого вала77 кВт — (105 л.с.) / 5750 об/мин
Максимальный крутящий момент / при частоте вращения коленчатого вала145 Н м / 3750 об/мин
Система питанияраспределенный впрыск топлива MPI
Рекомендованное минимальное октановое число бензина92
Экологические нормыЕвро 4
Вес, кг

Конструкция

Четырехтактный четырехцилиндровый бензиновый с электронной системой управления впрыском топлива и зажиганием, с рядным расположением цилиндров и поршнями, вращающими один общий коленчатый вал, с верхним расположением двух распределительных валов. Двигатель имеет жидкостную систему охлаждения закрытого типа с принудительной циркуляцией. Система смазки комбинированная: под давлением и разбрызгиванием.

Головка блока цилиндров

Головка блока цилиндров K4M изготовлена из алюминиевого сплава. Распределительные валы приводятся во вращение зубчатым ремнем. Клапаны двигателя К4М приводятся в действие от распределительных валов с помощью роликовых коромысел (рокеров) и гидротолкателей, которые автоматически обеспечивают беззазорный контакт кулачка распределительного вала с клапаном.

Впускной и выпускной клапаны

Диаметр тарелки впускного клапана двигателя K4M — 32,5 мм, выпускного – 28 мм. Диаметр стержня обоих клапанов – 5,5 мм. Длина впускного клапана –109,32 мм, а выпускного – 107,64.

Шатун

Шатуны применяются стальные кованные.

Поршень

Поршни K4M имеют, в отличии К7M, оригинальную конструкцию.

ПараметрЗначение
Диаметр, мм79,465 — 79,475
Компрессионная высота, мм31,7
Вес, г450

Поршневые пальца запрессованы с натягом в верхние головки шатунов, в бобышках поршней установлены с зазором. Наружный диаметр поршневого пальца — 20 мм, внутренний – 11,6 мм. Длина поршневого пальца – 62 мм.

Обслуживание

Замена маслав двигателе Renault K4М 1.6 16V. Замену масла на Рено Логан, Сандеро, Меган, Дастер с двигателем Renault K4М 1.6 необходимо раз в 15000. км или год эксплуатации.
Какое масло лить в двигатель: тип 5W-40, 5W-30, с завода в двигатель льют масло Elf Excellium 5W40.
Сколько масла лить в двигатель: с заменой фильтрующего элемента — 4,8 литра масла; без замены фильтра – 4,5 л.
Замена ремня ГРМ осуществляется раз в 60 тыс. км вместе с роликам натяжителем. При обрыве ремня клапана загнет и выльется в дорогостоящий ремонт.
Воздушный фильтр подлежит замене раз в 30 тыс. км пробега или 2 года эксплуатации. В условиях повышенной запыленности рекомендуется производить замену воздушного фильтра чаще.
Замена свечей. Оригинальные свечи зажигания носят каталожный номер 7700500155, либо EYQUEM RFC58LZ2E или SAGEM RFN58LZ, а также CHAMPION RC87YCL. Когда менять свечи зажигания – каждые 30 тыс. км пробега.

Это бюджетные внедорожники, которые сразу обрели достаточно большую популярность, несмотря на некоторые недостатки используемых в них моторов.

Отметим, что данный мотор новым не является. Он используется с 1999 года на различных автомобилях: Megane, Clio, Laguna и т.д. Однако в этом обзоре мы рассмотрим особенности мотора K4M на примере автомобиля «Рено Дастер». Так уж сложилось, что большинство отзывов автовладельцев именно об этой модели, что позволяет выделить слабые стороны мотора.

Автомобили представлены в разных комплектациях. Есть комплектация с бензиновыми моторами. В частности, покупатель может выбрать между версиями двигателей K4M и F4R. Ими могут комплектоваться автомобили с передним и задним приводами. Останавливаться на моторе F4R в этой статье мы не будем. Здесь будут рассмотрены характеристики, слабые места и недостатки Информация будет полезна покупателям, которые обратили внимание на «Рено Дастер», а также водителям, которые уже купили данный автомобиль или планируют приобрести любую другую машину с мотором K4M.

Модификации двигателей

Для французских двигателей «Рено» действует кодировка для разных типов мотора — XnY zzz. В этой кодировке:

  • X — серия мотора (в данном случае K).
  • n — архитектура. Цифра 4 соответствует бензиновым моторам с 4 клапанами на цилиндр. Двигатели с распределением впрыска и двумя клапанами на цилиндр обозначаются цифрой 7.
  • Y — обозначение объема двигателя.
  • zzz — число, которое указывает на конструктивные особенности двигателя и самого автомобиля, на котором он установлен. Например, четные числа обозначают модели с механическими коробками передач, нечетные — с автоматическими.

Отсюда следует, что двигатель K4M может иметь разные модификации. Рассмотрим их все:

  • Модификация K4M 690 применяется на автомобилях «Рено Логан» с 2006 года. Обладает мощностью 105 л.с.
  • K4M 710 ставился на автомобили «Рено Лагуна» c 2001 по 2005 г. Обладает мощностью 110 л.с.
  • K4M 782 — использовался на «Рено Сценик» с 2003 по 2009 г. Его мощность составляет 115 л.с.
  • K4M 848 — используется с 2008 года и по сей день в автомобилях «Рено Меган». Обладает мощностью 100 л.с.
  • K4M 788 — использовался в «Рено Меган» с 2002 по 2008 г. Мощность составляет 110 л.с.
  • K4M 812/813/858 — применяется в «Рено Меган» с 2001 года и по сей день.
  • K4M 606/696/839 — мощность 105 л.с. Устанавливается на «Рено Дастер» и «Рено Меган» с 2010 года.
  • K4M — используется с 2012 года на «Ладе Ларгус», обладает мощностью 105 л.с.

Характеристики двигателя K4M

Как вы уже поняли, разные модификации имеют разные параметры. Двигатель K4M 1.6 16v обладает мощностью 102 л.с., а его крутящий момент составляет 145 Нм. Мотор оснащается системой питания с распределенным впрыском топлива и электронным управлением. Норма токсичности мотора — «Евро 4». Это означает, что заливать можно бензин АИ 92 и выше. Также можно выделить электронную систему управления двигателем.

Автомобиль «Рено Дастер» с этим двигателем способен развивать скорость до 163 километров в час, а его расход топлива по городу составит 9.8 литра на 100 км и 6.5 литра на 100 км — по трассе.

Отметим, что тюнинг двигателя K4M возможен. Некоторые автовладельцы производят чиповку мотора с заменой выхлопа на безкатовый. В результате мотор получает прибавку в лошадиных силах (его мощность растет до 120 л.с.).

Правила эксплуатации

Любой мотор можно «убить» за день, если неправильно на нем ездить. нуждается в правильной эксплуатации и замене всех расходных материалов вовремя. Так, масло нужно менять через каждые 15 тысяч километров. Учитывая низкое качество бензина в России и вероятность купить подделку на рынке, его замену желательно производить через 8-10 тысяч километров. Заливать необходимо масло с классом SL, SM, а его вязкость в зависимости от условий эксплуатации (температуры в регионе) должна быть 5W30, 5W40, 5W50, 0W30, 0W40.

Ремень ГРМ необходимо менять один раз в течение четырех лет либо после каждых 60 тысяч километров. Воздушный фильтр меняется через каждый год либо 15 тысяч километров. Свечи зажигания нуждаются в замене через 30 тысяч километров. Последнее — это охлаждающая жидкость, которую нужно менять через каждые три года либо после 90 тысяч километров.

Ну и следует следить за оборотами, температурным режимом двигателя. Помните, что рабочая температура двигателя K4M — это 90 градусов. Допускается нагрев мотора до 120 градусов, однако ни в коем случае нельзя допускать, чтобы стрелка термометра доходила до красной зоны.

Слабые места автомобилей с двигателем K4M

О двигателе K4M отзывы могут быть противоречивыми. Из них мы выделим основные недостатки данного мотора:

  1. После пробега 70-100 тысяч километров крышка клапанов запотевает маслом.
  2. Генератор может быстро сломаться. Этот элемент является одним из самых ненадежных в системе.
  3. Механическая коробка передач шумит даже на новых автомобилях.
  4. Сальники коленвала.
  5. Ремень ГРМ.
  6. Зажигание.

Все это слабые места двигателя «Рено» K4M. На каждом из них остановимся подробнее.

Проблема с запотеванием крышки клапанов

В отзывах владельцы автомобилей с данным мотором жалуются, что подобная проблема имеет место. Она может возникать с разной периодичностью. Основная причина, которая ее вызывает, — это падение плотности герметика между головкой блока цилиндров и крышкой. Если видите, что крышка покрывается масляными пятнами, то необходимо снять крышку, старый герметик полностью удалить и установить головку уже с новым слоем герметика. Если автомобиль находится на гарантии, то эта проблема устраняется на сервисе в течение пяти минут.

Проблема ремня ГРМ

В инструкции по эксплуатации указано, что ремень ГРМ необходимо менять через каждые 60 тысяч километров. Обязательно нужно следовать этой инструкции, так как автовладельцы утверждают, что при слете или обрыве ремня клапаны двигателя гнутся. Это чревато установкой новых клапанов, что весьма проблематично.

Ремень вспомогательных устройств

У многих автовладельцев выходит из строя двигатель из-за износа ремня вспомогательных агрегатов. Причем он изнашивается раньше установленного времени. Это значит, что время от времени нужно заглядывать под капот и смотреть на состояние этого ремня. Если заметили, что он начинает пушиться, то его стоит заменить. Если вовремя его не поменять, то он может попасть под шкив коленвала, что приведет к клину двигателя.

Недостатки мотора K4M

Среди отзывов покупателей можно выделить слабые места мотора: высокая чувствительность к некачественному бензину. У многих владельцев мотор троит и наблюдается большой расход топлива. Также имеет место недостаточный уровень масла в КПП.

А теперь подробнее.

О некачественном бензине

Справедливости ради отметим, что большинство европейских, американских и японских автомобилей имеют высокую чувствительность к некачественному бензину. Скорее всего, это обусловлено тем, что в Европе и Японии бензин является более качественным, и производители автомобилей делают машины с учетом использования качественного топлива. На многих заправках России продают бензин, который по качеству уступает европейскому. Поэтому на двигателе K4M (он не стал исключением) можно наблюдать кратковременные провалы в работе при езде и плаванье оборотов на холостом ходу. Поэтому мало заливать 95-й или 98-й бензин. Необходимо еще заправляться на проверенных автозаправках.

Мотор троит

Часто выходит из строя одна из катушек зажигания, форсунка или свеча зажигания. Определить конкретную причину можно путем замера компрессии в каждом цилиндре. После выявления неисправности нерабочий элемент заменяется. Обычно ремонт обходится не очень дорого, но неприятность имеет место.

Слабость двигателя ощущается при езде

При использовании двигателя K4M 1.6 л 16 клапанов ощущается слабость мотора при обгоне или резком наборе скорости. Особенно это заметно, когда автомобиль нагружен пассажирами. Некоторые другие моторы с объемом 1.6 л и такой же мощностью работают «веселее» и позволяют быстро набирать скорость.

Прожорливость

Несмотря на то, что компания «Рено» активно рекламирует автомобили с данным мотором как экономичные, прожорливость мотора тоже имеет место в режиме городского цикла. Однако при езде на большие расстояния, когда стабильно держится высокая скорость и обороты, двигатель экономно «ест» бензин.

Поэтому можно сделать вывод, что автомобили с данным мотором слабо подходят для городских условий, где часто нужно останавливаться на светофорах, стоять в пробках и трогаться.

Недостаточный уровень масла в КПП

При покупке автомобиля с данным мотором желательно обращать внимание на уровень масла в коробке передач и раздатке. Часто в отзывах можно прочитать, что имеет место недолив.

Заключение

Несмотря на все слабые места, которые описаны выше, мотор K4M пользуется популярностью. К тому же описанные недостатки встречаются не на всех этих двигателях. Некоторые автовладельцы сообщают, что после 123000 километров пробега проблем с двигателем не было вообще никаких. Так что многое может зависеть от условий эксплуатации, манеры езды и технического обслуживания. Крайне важно вовремя менять все расходные материалы и заказывать только оригинальные запчасти. Они стоят дороже, но использование дешевых неоригинальных «расходников» может привести к серьезному ремонту.

Поэтому при должном уходе двигатель будет работать долго и эффективно. Да и в случае покупки нового автомобиля переживать за поломки не стоит, ведь всегда есть гарантийное обслуживание.

Производство моторов K4M началось в 1999 году на заводе Renault в Испании, и с некоторого времени на АвтоВАЗе, в частности, для автомобилей Лада Ларгус Кросс.

Двигатель К4М имеет следующие характеристики.

  • Материал блока цилиндров: чугун
  • Система питания: инжектор
  • Тип: рядный
  • Количество цилиндров: 4
  • Клапанов на цилиндр: 4
  • Ход поршня: 80,5 мм
  • Диаметр цилиндра: 79,5 мм
  • Степень сжатия: 9,5
  • Объем мотора: 1598 см. куб.
  • Мощность: 102 л.с. / 5750 об. мин
  • Крутящий момент: 145 Нм / 3750 об. мин
  • Топливо: АИ-95
  • Экологические нормы: Евро 4
  • Расход топлива: город — 11,8 л. | трасса — 6,7 л. | смешанный цикл — 8,4 л/100 км
  • Масла в двигатель K4M: 5W-30, 5W-40 .

Ресурс двигателя К4М на практике составляет более 400 тыс. км.

К4М 16 клапанный двигатель Лада Ларгус Кросс: общая информация.

Двигатель Lada Largus Cross K4M 1,6 л. 102 л.с. является двигателем разработки Рено, причем разработки не самой последней. Целый ряд различных модификаций этого мотора используются концерном Renault-Nissan на автомобилях с 1999 года: Renault Megane, Scenic, Renault Logan, Sandero, Renault Kangoo 1 и 2, Renault Duster, Nissan Almera G11, Renault Clio 2, Renault Laguna 1 и 2, Renault Fluence. Теперь двигатель К4М устанавливается на ЛАДА Ларгус и ЛАДА Ларгус Кросс . Этот мотор является продолжением развития двигателя K7M серии, с новой головкой блока цилиндров и с 16 клапанами вместо 8.

Как уже было сказано, К4М — это 16 клапанный двигатель с чугунным монолитным блоком цилиндров. Недостатком чугунного блока являются более дорогие и несколько сложные работы по капитальному ремонту мотора, которые требуют расточки и хонингования блока цилиндров. Капремонт мотора с гильзами «в алюминии» производят без механической обработки, но запчасти на него стоят дороже, плюс ко всему, — нужно будет потратиться на покупку гильз. В итоге, суммарные расходы на капремонт двигателя для каждой конструкции примерно одинаковы.

И еще одно немаловажное замечание! Уровень сложности работ над двигателем с алюминиевым блоком, — снижает уровень требований к мастерству автомехаников! Это надо помнить.

Технологии, применяемые в двигателе K4M на Лада Ларгус Кросс.

ГБЦ с двумя распредвалами, сами распредвалы легкие. Легкости распредвалов добились за счет напрессовки кулачков на стальную трубу (ранее этот подход являлся уделом спорт-каров). Укрепленные поршни со стальными вставками возле верхних компрессионных колец (аналогично укреплены поршни у Mercedes с V-образными моторами).

В целом двигатель достойный, удобный в обслуживании и ремонте. Имеет хорошие отзывы о себе как от водителей, так и от мотористов.

Все же K4M наделен и недостатками. Минусы и неисправности мотора К4М.

Недостатками 16 клапанного двигателя К4М можно считать высокую стоимость запчастей. Случаются провалы в работе мотора. Из-за некачественного бензина плавают обороты.

Несколько слов о частых неисправностях двигателя K4M. Не редко мотор троит. Проблема обычно кроется в катушке зажигания, свечах, форсунках. Нестабильная работа двигателя К4М и плавающие обороты, обычно вызваны катушкой зажигания или же датчиком положения коленвала. Так же, причиной плавающих оборотов двигателя К4М является, как бы банально это не звучало, — бензин плохого качества.

При обслуживании K4M надо следить за состоянием роликов и ремня ГРМ, а так же многоручейкового ремня навесного оборудования. Замену ремня навесного оборудования, так же, как и ремня ГРМ, необходимо производить каждые 60 тыс. км пробега. Если «гонять» мотор дальше, ручейковый ремень начинает расслаиваться, и может неожиданно порваться, равно как и ремень ГРМ. Обрыв ремня ГРМ вызывает поломку механизма газораспределения со всеми выскакивающими последствиями. Ремонт газораспределительного механизма будет стоить куда больших денег, нежели стоимость замены ремней и роликов ГРМ. Следите за двигателем К4М своего Ларгуса Кросс, и он вас не подведет.

Тюнинг двигателя Largus Cross K4M 16 клапанов.

Чип тюнинг мотора, совместно с заменой выхлопной системы на безкатализаторную способна немного улучшить показатели двигателя. Вполне можно получить около 120 л.с. Дополнить модернизацию мотора можно установкой валов: — подъем клапана 10, ширина фаз 270. Фаза немного шире стандарта — добавится несколько «лошадок», и авто поедет веселее. Для дальнейшего тюнинга К4М необходимо что-то иное. Например…

Компрессор на двигатель К4М.

При огромном желании, на мотор К4М можно присовокупить компрессор ПК-23, который позволит надуть примерно 140-150 л.с. Степень сжатия стандартных двигателей К4М не слишком высокая, поэтому 0,5 бар мотор легко выдержит.

Для реализации задуманного тюнинга двигателя понадобятся форсунки от Волги, валы с фазой 270-280, прямоточный выхлоп. Ну и само-собой, для настройки и управления двигателем необходим блок управления, например — Абит.

Турбина на двигатель К4М 16 клапанов.

Система аналогична системе с компрессором, но вместо ПК-23 устанавливается турбина TD04. В реальности, такие конфигурации двигателя выжимают чуть более 150 л.с.

Выдающихся динамических показателей получить будет сложно, но то, что автомобиль поедет быстрее это точно.

Двигатель Рено Меган 1.6 литра на российском рынке стал одним из самых популярных для данного автомобиля. Изначально для данной модели использовался хорошо известный 16 клапанный мотор Renault K4M мощностью 106 л.с. Сегодня его модификации можно встретить на семействе Logan/Duster. Чуть позже на новом поколении Renault Megan 1.6 стали устанавливать совершенно другой силовой агрегат мощностью 114 л.с. Renault h5M . Движки третьего поколения Мегана/Флюенс российской сборки являются полной конструктивной противоположностью.

Устройство двигателя Рено Меган 1.6 К4М

Изначально на всех российских Рено Меган ставили движок из серии Renault К4М . Это 4 цилиндровый 16 клапанный агрегат с распределенным впрыском топлива и ремнем в приводе ГРМ. В основе чугунный блок. Цилиндры расточены непосредственно в блоке. Порядок работы цилиндров: 1–3–4–2, отсчет – от маховика.

Головка блока цилиндров двигателя Рено Меган 1.6 К4М

Головка блока движка Renault Megan 1.6 литра алюминиевая с двумя распредвалами и гидрокомпенсаторами. То есть тепловой зазор клапанов регулировать в ручную не нужно. И все благодаря гидроопорам рычагов клапанов, которые установлены в гнездах головки блока цилиндров. Внутри корпуса гидроопоры установлен гидрокомпенсатор с обратным шариковым клапаном. Масло внутрь гидроопоры поступает из магистрали в головке блока цилиндров через отверстие в корпусе гидроопоры. Гидроопора автоматически обеспечивает беззазорный контакт кулачка распределительного вала с роликом рычага клапана, компенсируя износ кулачка, рычага, торца стержня клапана, фасок седла и тарелки клапана.

Привод ГРМ двигателя Рено Меган 1.6 К4М

Привод распределительных валов Renault Megan 1.6 осуществляется зубчатым ремнем от шкива коленчатого вала. На валу рядом с первой (отсчет от зубчатого шкива распределительного вала) опорной шейкой выполнен упорный фланец, который при сборке входит в проточки головки блока и крышки, препятствуя тем самым осевому перемещению вала. Шкив распределительного вала не фиксируется на валу с помощью шпонки или штифта, а – только за счет сил трения, возникающих на торцевых поверхностях шкива и вала при затяжке гайки крепления шкива. Разрыв ремня или перескакивание на несколько зубьев обычно приводит к плохим последствиям, ведь этот движок однозначно гнет клапана . Замена ремня ГРМ осуществляется через каждые 60 тыс. км пробега или через 4 года, что наступит раньше, независимо от его состояния.

Технические характеристики двигателя Рено Меган 1.6 К4М

  • Рабочий объем — 1598 см3
  • Количество цилиндров — 4
  • Количество клапанов — 16
  • Диаметр цилиндра — 79,5 мм
  • Ход поршня — 80,5 мм
  • Мощность л.с. — 106 при 6000 оборотах в минуту
  • Мощность кВт — 78 при 6000 оборотах в минуту
  • Крутящий момент — 145 Нм при 4250 оборотах в минуту
  • Система питания двигателя — распределенный впрыск с электронным управлением
  • Степень сжатия — 9,8
  • Привод ГРМ — ремень
  • Максимальная скорость — 183 км/ч
  • Разгон до первой сотни 11.7 секунд
  • Расход топлива по городу 8,8 литра
  • Расход топлива в смешанном цикле — 6,7 литра
  • Расход топлива по трассе — 5,4 литра

Устройство двигателя Рено Меган 1.6 h5M

Новый двигатель Renault Megan 1.6 мощностью 114 л.с. является совместной разработкой концерна Рено-Ниссан и устанавливается на все массовые модели обоих производителей. Правда почти для каждой модели своя модификация, из-за чего мощность агрегата плавает. К сожалению гидрокомпенсаторов двигатель не имеет.

Новый мотор имеет алюминиевый блок цилиндров и цепь ГРМ , 16 клапанный механизм газораспределения, по две форсунки на цилиндр и систему изменения фаз газораспределения на впускном валу. Собирают двигатель на «Автовазе» с большой долей локализации. Хотя изначально оба мотора поставляли с испанского завода Рено.

Привод ГРМ двигателя Рено Меган 1.6 h5M

Цепной привод ГРМ нового движка Рено Меган 1.6 пожалуй главное достоинство нового агрегата. Цепь очень долговечна и практически не требует обслуживания. Правда в случае необходимости её замены, это процедура существенно дороже, чем заменить ремень. Кроме того, мало кто знает, но цепей в новом движке Megan две. Одна вращает звездочки распредвалов, а вторая небольшая цепь вращает звездочку масляного насоса мотора. На нашем фото, чуть выше, это можно хорошо рассмотреть.

Технические характеристики двигателя Рено Меган 114 л.с.

  • Рабочий объем – 1598 см3
  • Количество цилиндров – 4
  • Количество клапанов – 16
  • Диаметр цилиндра – 78 мм
  • Ход поршня – 83.6 мм
  • Мощность л.с. – 114 при 5500 оборотах в минуту
  • Мощность кВт – 84 при 5500 оборотах в минуту
  • Крутящий момент – 156 Нм при 4000 оборотах в минуту
  • Степень сжатия – 10,7
  • Привод ГРМ – Цепь
  • Максимальная скорость – 186 км/ч
  • Разгон до первой сотни – 10.6 сек.
  • Расход топлива по городу – 8,7 л.
  • Расход топлива в смешанном цикле – 6,7 л.
  • Расход топлива по трассе – 5,5 л.

На европейском рынке можно встретить Рено Меган разных поколений с огромным количеством модификаций силовых агрегатов. В нашей стране такого разнообразия нет. В последнее время официальные дилеры прекратили продажу хэтчбеков Меган, за то в наличии всегда есть седан Рено Флюенс, который по сути и является Megan с багажником. Конструктивно модели идентичны, особенно что касается двигателей и трансмиссии.

АвтоВАЗ несколько лет назад задался целью создать хороший автомобиль. Этакую рабочую лошадку для народа. Уже тогда вовсю чувствовалась работа альянса ВАЗа с Рено. Ларгус — это прямое отражение совместной работы. Разрабатывали машину на базе Логана. Платформа настолько удачная, что на ней выпускают кроссовер Дастер, хэтчбек Сандеро и множество моделей автомобилей Ниссан.

Переработок в Логане, чтобы тот стал Ларгусом было немного. Хорошо переработали лишь подвеску, да немного поменяли внешний вид.

Двигатели для Ларгуса

Кузов кузовом, но автомобиль что-то должно приводить в движение. Производитель не стал изобретать велосипед и установил на Ларгус движки от Логана:

  • K7M с 8 клапанами — 86 л.с;
  • K4M с 16 клапанами — 105 л.с.

Но, существуют отечественная разработка, движок от Весты — ВАЗ 11189. Его тоже ставят на Ларгус. По сути это двигатель от Гранты, только переделанный под нормы Евро 5.

Нас интересуют последние 2 двигателя: французский на 16 клапанов и наш, на 8 клапанов. Интересно узнать, какие отзывы пишут автолюбители на Ларгус с двигателем от ВАЗа. Ну и конечно же сравнить их с отзывами на 16 клапанный мотор иностранного производства.

Отзывы

Александр Татищев, Ярославль, Сравнение Калины и Ларгуса с 16-клапанным мотором

Мне повезло быть владельцем 2- автомобилей нашего производства: Калины 2 с 8 клапанным двигателем и Ларгуса с новым 16 клапанным мотором. Ну как новым — заимствованным. Поэтому для интереса я решил провести сравнение 16 клапанного мотора и Ларгуса с вазовским двигателем и написать отзыв о своих ощущениях.

К сведению! На Калину тоже устанавливается двигатель ВАЗ 11189 на 8 клапанов.

Калина часто ездит у меня полностью загруженной, поскольку род моих профессиональных занятий — это стройка. Бывает, что и полтонны приходится ей таскать. Дак вот Калина на движке 11189 с 8 клапанами довольно резвая. Даже при подъёме легко идёт на обгон. Наши инженеры построили превосходный 8 клапанный двигатель, по-моему.

У Ларгуса грузоподъёмность будет больше, но и вес авто тоже больше. Я даже сделал небольшой тюнинг, но не помогает. Машина тупо не едет, нет резвости даже при порожняке. Поэтому двигатель К4М на Ладу Ларгус с 16 клапанами заслуживает не самых лестных отзывов.

Я всерьёз подумываю о том, чтобы сменить Ларгус на другой автомобиль. Можно даже Калину, только новее.

Иван Кульба, Лада Калина 2 с мотором ВАЗ 11189, Нижний Новгород

Последние 2 года я езжу на Калине 2. Живу в сельской местности, поэтому грузов вожу много, как бытовых, так и по работе. В общем автомобиль всегда загружен. Никаких проблем при эксплуатации я не испытывал. Периодически правда приходилось регулировать клапана в фирменном сервисе. Ну и стандартное ТО. Накатал я за 2 года 20 тыс. Знаю, что даже при поломке 11189 с 8 клапанами его ремонт не будет дорогим. Масло использую полусинтетику.У соседа стоит Лада Ларгус с двигателем ваз 11189 и его отзывы не такие лестные. Как-то давал он мне проехать на своём автомобиле, пустом. Дак у Ларгуса совсем нет динамики. Не знаю даже как люди терпят такой тупой отклик на газ. Возможно сказалась переработка мотора под стандарт Евро 5, но не должен же автомобиль так сильно потерять в динамике. Хорошо, что сумма ремонта если что будет такой же. А что же на 16 клапанном Ларгусе? Там ремонт в копейку обойдётся.

К сведению! Простота конструкции — вот главная отличительная особенность двигателя ВАЗ 11189, по сравнению с 16 клапанным двигателем иностранного производства. При поломке последнего ремонт будет значительно дороге. Правда французский двигатель современнее нашего.

Николай Последний, Лада Ларгус 1.6 (105 л.с.) 2014 г, Ульяновск

В принципе автомобиль неплохой, довольно вместительный. Но есть одна неприятная особенность. Конструкторы словно сговорились с нефтяниками, либо инженеры не умеют делать расчёты! Дело в том, что расхода топлива в 6 л. на 100 км за городом можно достичь только при скорости в 60 км/ч. Но найдутся ли желающие, чтобы тащиться с такой черепашьей скоростью? У нас есть убитые дороги, но не до такой же степени. Такой расход должен быть на этом авто только при 90 км/ч.Хотя производитель заявляет, что 16 клапанный двигатель экономичен, но это на практике выходит не так. Не знаю, какой чип-тюнинг двигателя нужен Ладе Ларгус, чтобы наработать на положительные отзыв. А динамика — её словно нет. При включённом кондиционере летом и без того не резвый автомобиль ещё теряет в динамике. Что касается стандартной скорости в 90 км/ч, то на ней двигатель есть 8,5 литров на сотню. Не годится!

К сведению! Компрессор кондиционера имеет привод через муфту от двигателя и может съедать часть его мощности, что ведёт к увеличению расхода топлива.

Александр Кислый, Лада Ларгус на 5 мест, 8-клапанный двигатель, Астрахань

Новый автомобиль — это хорошее приобретение. Всяко лучше должно быть старой иномарки. Но после неё в родной Ладе не хватает в салоне полезных мелочей. К этому приспосабливаешься. В принципе Ларгус — это неплохой компромисс между стоимостью и качеством.

Что касается отзыва на двигатель Лады Ларгус ВАЗ 11189, то меня пугает большой расход топлива. Данные несколько расходятся с теми, что заявляет производитель. На скорости в 130 км/ч на шоссе выходит аж 10 литров на сотню. Это многовато. А ведь машину я не загружал под завязку. А что же будет при полной загрузке. К части мотора стоит отметить, что 8 клапанная версия слабовата для Ларгуса. Сюда нужен мотор мощнее. Но по слухам даже 16 клапанного мотора не хватает для динамичной езды.

Про 5-ю ступень. Мол пишут, что двигатель на ней ревёт, а скорости нет. У меня на 3 тыс. на тахометре скорость 100 км/ч. При 4 тыс. — 120 км/ч.

К сведению! Производитель заявляет, что на трассе у двигателя ВАЗ 11189 с 8 клапанами расход должен составлять чуть ниже 7 л. В городе 9-10 л. Что же, данные немного расходятся с реальностью выходит.

Никита Храпский, Лада Ларгус 2013 г, мотор — 16-клапанный, Архангельск

При покупке машины побаивался. Все же за жигулями дурная слава. Но машина уже на протяжении 2,5 лет служит верой и правдой строительных делах. Помогает перевозить грузы и не лёгкие. Под завязку особо не нагружаю, но и не балую машину.

16 клапанный двигатель К4М на моей Ладе Ларгус заслуживает хорошего отзыва, поскольку поломок за время эксплуатации не было. Я проехал на ней не так много — всего 43 тыс. км. Начитавшись историй про ремень ГРМ уже готовлюсь менять его. Все-таки не хочется попасть на дорогостоящий ремонт клапанов из-за его обрыва. Ну а так всё ТО у меня по мануалу. Даже прохожу обслуживание несколько раньше всегда, чтобы 2-3 тысячи машина не доезжала до срока ТО. Так я предостерегаю её от поломок. Всё же езжу не мало.

Что касается динамики, то я привык. Хотя после иномарки первое время было не легко. Но что поделать — таким создали инженеры этот автомобиль. Остаётся только пользоваться. Своих денег он стоит.

Иван Сытько, Лада Ларгус 2014 г, 16-клапанный мотор, Новосибирск

Автомобиль у меня 2 года. Нарекания? Отечественное же. Есть недочёты в многих областях, но они мелкие, да и как-то привык уже. Грешно хаять производителя, который предлагает новый автомобиль за такие деньги, да ещё и своего.

Что касается динамики 16 клапанного мотора, то в городском трафике его на Ларгусе хватает. В принципе комфортно ехать и на трассе, но до 115 км/ч. Хочешь ехать выше — нужно менять передаточное соотношение 5-й передачи. 92-й бензин идёт Ларгусу на ура, хотя в мануале написано использовать 95. Но в последнем много присадок — не хочу портить топливную систему и лучше поберегу форсунки. Один раз залил в каком-то захолустье бодяжный 95, вспоминать об этом не хочу. Не знаю, как мотор выдержал. Наверное, другой бы уже сломался от таких вибраций. В общем чистил я всю топливную систему.

Что касается плюсов:

  • высокая ремонтопригодность;
  • масса запчастей и они дешёвые;
  • надёжный двигатель.

Недостатки:

  • расход топлива выше, чем заявляет производитель;
  • слышен шум мотора на средних и высоких оборотах.

В общем расход маленько бьёт по кошельку, к эргономике привыкаешь, а в остальном нет нареканий.

Михаил Прокопьев, Ларгус 2012 г с 16-клапанным мотором, Тамбов

Я был в числе первых покупателей Ларгуса в городе. Выбрал 16 клапанную версию поскольку нужен был мощный и надёжный мотор. Езжу много. Тружусь в лесном хозяйстве, поэтому приходиться преодолевать большие расстояния.

Отечественный автомобиль не жалко ушатать — его всегда можно починить. Это качестве перенялось Ларгусом. Двигатель хорош, но не хватает тяги на трассе. Да и в городе слабоват. Но там я езжу редко, поэтому быть может его придушенность мне лишь кажется. Почитал отзывы — не кажется.

Ремень ГРМ поменял на 60 тыс. А ведь шум был слышен уже на 20 тыс. Не знаю, как я не попал на ремонт клапанов. Повезло мне, ведь о нём я прочитал позднее.

Подводя итоги

Представленные отзывы об основных двигателях Ларгуса — 8-клапанном ВАЗ 11189 и иностранном 16-клапанном, говорят о том, что для полноценной динамики для машины нужен чуть более мощный мотор. Быть может, инженеры задумывали спокойный и послушный автомобиль, но на деле очень уж вялый он вышел.

О слабости моторов, даже 16-клапанной версии говорит тот факт, что они потребляют топлива чуть больше заявленного. Практически все на это жалуются. Для сравнения можно взять Калину 2 из первого отзыва с таким же 8-клапанным мотором. По сообщению пользователя, он идёт уверенно и динамично, чего Ларгусу не хватает.

Можно применить тюнинг к обоим моторам, но это дополнительные затраты. К тому же на новом автомобиле слетит гарантия. Проще купить иную машины и не мучатся. Хотя некоторым нравится поковыряться в железе. 8-клапанный мотор можно раздушить от экологического контроля, а у 16-клапанного, вообще, широкие возможности чип-тюнинга, которые позволяют поднять мощность до 150 л. с.

4 вещи, которые должен знать каждый специалист по устранению неполадок гидравлического оборудования

Клапаны, расположенные в стеке, могут быть одинаковыми, но выполнять совершенно разные функции.

Философия на многих заводах заключается в том, что если гидравлическая система управляет машиной, не связывайтесь с ней. Часто единственное когда-либо выполнявшееся техническое обслуживание гидравлической системы — это замена фильтров, проверка уровня масла и выполнение анализа масла.Недавно я проконсультировался с заводом по производству гофроящиков, на котором возвратный фильтр не менялся с момента запуска завода 17 лет назад.

Когда на заводе возникает проблема с гидравликой, она обычно устраняется путем замены деталей. Это дорого с точки зрения стоимости деталей и простоя оборудования. Весь обслуживающий персонал должен обладать знаниями и навыками для поиска и устранения неисправностей и обслуживания заводских систем. Ниже приведены четыре вещи, которые должен знать каждый специалист по устранению неисправностей гидравлики.

1.Функции компонентов

Когда возникает проблема с гидравликой, машина осматривается на предмет повреждения шлангов, давления на манометре, низкого уровня масла и отключения электродвигателя. Если ничего очевидного не обнаружено, начинается процесс замены деталей. Угадайте, какой компонент обычно меняют первым? Если вы сказали «гидравлический насос», вы были бы правы.

Одно из самых больших заблуждений заключается в том, что насос подает давление. Насосы обеспечивают объем или поток. Давление создается только тогда, когда в системе есть сопротивление.Многие хорошие насосы были заменены из-за того, что манометр показывал низкое давление или его отсутствие. Это прекрасный пример того, как специалист по устранению гидравлических неисправностей не знает функции насоса в системе.

Перед тем, как начать поиск и устранение неисправностей, обслуживающий персонал должен понимать функции всех компонентов системы. Их не всегда можно определить, просто взглянув на них. Один клапан может выглядеть как другой, но выполнять совершенно другую функцию.

Многие клапаны имеют символ на бирке корпуса, обозначающий тип.Это самый простой способ отличить клапаны, но он бесполезен, если обслуживающий персонал не знаком с гидравлическими символами.

2. Процедуры поиска и устранения неисправностей

Специалист по диагностике гидравлических систем должен знать надлежащую процедуру проверки исправности компонента или неисправности. В большинстве случаев можно выполнить быструю проверку или тест.

Аккумуляторы обычно используются для обеспечения дополнительного объема, поглощения ударов и поддержания давления в системе.Обычно они предварительно заправляются сухим азотом.

Чтобы аккумулятор работал надлежащим образом, предварительная заправка азотом должна быть правильной. Есть три простых метода проверки правильности работы аккумулятора.

Первый способ — выключить гидравлический насос и дать давлению спуститься до 0 фунтов на квадратный дюйм (psi). Установите зарядную установку с манометром на клапан Шредера гидроаккумулятора. Предварительная заправка азотом будет отображаться на манометре.

Другой метод — следить за манометром, как азот выталкивает масло из корпуса аккумулятора при выключенном насосе. Давление будет постепенно падать, а затем быстро упадет до 0 фунтов на квадратный дюйм. Давление, при котором игла быстро опускается до 0, является давлением предварительной зарядки.

Последний метод — это снимать стенки корпуса аккумулятора с помощью термопистолета или инфракрасной камеры. При правильной предварительной зарядке снаряд должен быть теплее в нижней половине или на две трети.

Недавно я проконсультировался с заводом, на котором было обнаружено, что несколько аккумуляторов недозаряжены. Когда аккумулятор недозаряжен, в систему поступает меньший объем. После правильной загрузки линейная скорость машины была увеличена для достижения более высокого уровня производительности. Эти примеры насоса и гидроаккумулятора указывают на быстрые тесты, которые можно провести, чтобы определить, правильно ли работает компонент.


На
может быть установлена ​​зарядная установка с манометром. гидроаккумуляторный клапан Шредера.

3. Как настроить систему

Одна из основных проблем, если не самая большая проблема, заключается в том, что в систему вносятся случайные корректировки с целью ускорить работу машины или решить проблему. Часто выполняется регулировка, но если никаких изменений в работе машины не наблюдается, предполагается, что в системе ничего не изменилось.

На одном заводе местный «ручник» посчитал, что гидравлический насос слишком шумный, поэтому он повернул регулировку компенсатора по часовой стрелке и приоткрыл ручной клапан на линии, расположенной непосредственно ниже по потоку.Уровень шума насоса несколько снизился, поэтому он ушел, думая, что решил проблему.

Через несколько часов машина остановилась, потому что температура масла поднялась до 160 градусов по Фаренгейту. Был вызван электрик, который быстро отключил выключатель при высокой температуре. Примерно через 24 часа температура масла поднялась до 300 градусов по Фаренгейту. Затем машину пришлось остановить и промыть дорогим растворителем для удаления лака и шлама из системы.

Поворачивая компенсатор по часовой стрелке, поворотная ручка устанавливает компенсатор выше значения предохранительного клапана.Это позволяло насосному объему возвращаться в резервуар под высоким давлением, выделяя тепло, когда оно не требуется в системе. Открытие ручного клапана позволяло некоторой части объема насоса всегда возвращаться в резервуар под высоким давлением, выделяя еще больше тепла.

Весь обслуживающий персонал должен быть обучен точной настройке насос-компенсаторов, предохранительных клапанов, регуляторов расхода, редукционных клапанов и аккумуляторов предварительной зарядки. Если этого не сделать, это может привести к удару, утечке, перегреву, отказу компонентов и повреждению машины.


Распространенный распределитель


Гидравлическое обозначение гидрораспределителя

4. Как читать гидравлические символы

Схема должна использоваться для эффективного устранения гидравлических проблем. Поэтому обслуживающий персонал должен знать, как читать гидравлические символы, чтобы найти неисправность на схеме.

Обычно используемый распределитель показан слева вместе с символом клапана.Этот символ указывает на пять характеристик клапана: он нормально открытый (с трубной заглушкой в ​​порту «A»), имеет два положения, четырехходовой, с электромагнитным управлением и гидравлическим управлением, а также с пружинным возвратом.

Не читая символа, единственное, что можно определить, глядя на клапан, — это то, что он управляется соленоидом. Незнание пяти атрибутов клапана значительно затруднило бы поиск и устранение неисправностей.

Клапан часто устанавливается на машину просто потому, что он выглядит так же, как и оригинальный клапан.Если хотя бы одна буква или цифра отличается, это необходимо обнаружить до замены клапана. Когда на одном заводе заменялся клапан, который имел однозначное различие между исходным и новым клапаном, это привело к восьми часам простоя при затратах 12 000 долларов в час.

Если ваша бригада технического обслуживания не обучена этим четырем вещам, они, вероятно, сделают все возможное, когда возникнет проблема, что обычно означает замену деталей до тех пор, пока проблема не будет решена. Часто меняют многие детали и ремонтируют машину, но никто ничего не узнает.

Правильно обучая обслуживающий персонал, вы будете меньше тратить на детали оборудования, сократите время простоя, связанного с гидравликой, и получите более безопасную рабочую силу.

Устранение неисправностей гидравлических насосов

Когда возникает проблема с гидравликой, насос обычно заменяется одним из первых компонентов, но на самом деле он должен быть последним.Почему? Потому что помпа — самая трудоемкая и самая дорогая деталь для замены. Его никогда не следует менять до проведения нескольких тестов. Сначала следует провести самые простые тесты и проверки.

Визуальные тесты

Электродвигатель работает? Звучит легко, но не следует упускать из виду. Несколько лет назад я преподавал на заводе в Кентукки, когда однажды утром пришел студент и сказал, что накануне вечером у них возникла проблема с перегревом пресса.Он сказал, что поменяли насос фильтрации и охлаждения, чтобы только потом узнать, что двигатель был выключен.

Вращается ли вал насоса? Во многих случаях это трудно сказать из-за кожухов муфты и С-образных креплений. Я знаю одну установку, на которой давление на выходе насоса колебалось. Они заменили насос и обнаружили, что изношенная шпонка на валу повредила шпоночную канавку на муфте.

Проверить уровень масла. Это также должно быть очевидно, поскольку часто это единственное, что проверяется перед заменой насоса.Уровень масла должен быть на 3 дюйма выше всасывания насоса. В противном случае в резервуаре может образоваться водоворот, позволяющий воздуху попасть в насос.

Если уровень масла низкий, определите место утечки в системе. Утечки бывает сложно найти. Гидравлическая система прижимных валков на бумажной фабрике в Южной Каролине постоянно имела проблемы с низким уровнем масла, но утечку обнаружить не удалось. Гидравлический блок находился в подвале, а трубопровод проходил через палубу к рулону наверху. Чтобы помочь найти утечку, в резервуар был добавлен краситель.Затем использовали ультрафиолетовый фонарик и защитные очки, чтобы определить местонахождение утечки, которая находилась на высоте 30 футов чуть ниже второго уровня.


Насос с трещиной на монтажном кронштейне
привело к перекосу вала и износу уплотнения.

Проверка звука

Как звучит насос при нормальной работе? Пластинчатые насосы обычно тише поршневых и шестеренчатых насосов. Если помпа издает пронзительный воющий звук, скорее всего, это кавитация.Если он издает стук, как будто вокруг гремят шарики, то, вероятно, происходит аэрация.

Кавитация

Кавитация — это образование и схлопывание воздушных полостей в жидкости. Когда насос не может получить весь необходимый ему объем масла, возникает кавитация. Гидравлическое масло содержит приблизительно 9 процентов растворенного воздуха. Когда насос не получает достаточного объема масла на всасывающем патрубке, возникает высокое вакуумное давление.

Этот растворенный воздух вытягивается из масла на стороне всасывания, а затем сжимается или взрывается на стороне нагнетания.Имплозии производят очень устойчивый высокий звук. Когда пузырьки воздуха схлопываются, происходит повреждение внутри насоса.


Стрелка на шестеренчатом насосе
корпус указывает направление вращения.

Аэрация

Аэрация иногда называется псевдокавитацией, потому что воздух попадает во всасывающую полость насоса. Однако причины аэрации совершенно иные, чем причины кавитации. В то время как кавитация вытягивает воздух из масла, аэрация является результатом попадания наружного воздуха во всасывающую линию насоса.

Аэрация может быть вызвана рядом причин, в том числе утечкой воздуха во всасывающей линии. Это могло быть в виде неплотного соединения, трещин или неподходящего уплотнения. Один из методов поиска утечки — разбрызгать масло на штуцеры всасывающей линии. Жидкость на мгновение втягивается в линию всасывания, и звук стука внутри насоса прекращается на короткий период времени, как только будет обнаружен путь для воздушного потока.

В прошлом году мне позвонили для устранения неполадок с бумажной фабрики в Висконсине, где был заменен один из насосов для компенсации давления, поскольку он не создавал и не поддерживал давление.Когда новый насос также не создавал давления, ручной клапан на выпускной линии был закрыт, чтобы изолировать насос от системы.

Давление все равно не нарастало. Поскольку в выпускной линии не было других клапанов, проблема должна была быть в линии всасывания. При более внимательном осмотре на всасывающем трубопроводе была обнаружена трещина.

Плохое уплотнение вала также может вызвать аэрацию, если в систему используется один или несколько насосов с постоянным рабочим объемом. Масло, которое проходит внутри насоса постоянного объема, возвращается к всасывающему патрубку.Если уплотнение вала изношено или повреждено, воздух может пройти через уплотнение во всасывающую полость насоса.

Это недавно произошло на рафинере, где гидравлический насос использовался для поддержания точного зазора между дисками. Через несколько минут после включения системы из резервуара начала выходить пена.

После замены помпы в монтажном кронштейне была обнаружена трещина. Это привело к нарушению центровки вала и износу уплотнения. Несоосная муфта также может вызвать преждевременный износ уплотнения вала.

Как упоминалось ранее, если уровень масла слишком низкий, масло может попасть во всасывающую линию и перетечь в насос. Поэтому всегда проверяйте уровень масла, когда все цилиндры втянуты.

Если установлен новый насос и давление не нарастает, вал может вращаться в неправильном направлении. Некоторые шестеренчатые насосы можно вращать в любом направлении, но у большинства на корпусе есть стрелка, указывающая направление вращения.

Вращение насоса всегда следует смотреть со стороны вала.Если насос вращается в неправильном направлении, соответствующее количество жидкости не заполнит всасывающий патрубок из-за внутренней конструкции насоса.


Настройка компенсатора ограничивает
максимальное давление на выходе
насоса переменной производительности.

Испытание насоса постоянного рабочего объема

Насос постоянного рабочего объема подает постоянный объем масла для заданной скорости вала. После насоса должен быть установлен предохранительный клапан для ограничения максимального давления в системе.

Следующим шагом после визуальной и звуковой проверки является определение того, есть ли у вас проблемы с объемом или давлением. Если давление не достигает желаемого уровня, изолируйте насос и предохранительный клапан от системы.

Это можно сделать, закрыв клапан, закупорив линию ниже по потоку или заблокировав предохранительный клапан. Если при этом нарастает давление, то за точкой изоляции находится компонент, который идет в обход. Если давление не повышается, насос или предохранительный клапан неисправны.

Если система работает на более низкой скорости, проблема с громкостью. Насосы со временем изнашиваются, в результате чего подается меньше масла. Хотя расходомер может быть установлен на выпускной линии насоса, это не всегда практично, поскольку подходящие фитинги и переходники могут отсутствовать.

Чтобы определить, сильно ли изношен насос и работает ли он в режиме байпаса, сначала проверьте ток, подаваемый на электродвигатель. Если возможно, этот тест следует провести на новом насосе, чтобы установить эталон.Мощность электродвигателя зависит от гидравлической мощности, необходимой для системы.

Это показано в следующей формуле: мощность электродвигателя в лошадиных силах (л.с.) = галлонов в минуту (GPM) x фунтов на квадратный дюйм (psi) x 0,00067. Например, если используется насос на 50 галлонов в минуту и ​​максимальное давление составляет 1500 фунтов на квадратный дюйм, потребуется двигатель мощностью 50 л.с. Если насос подает меньше масла, чем был новым, сила тока, необходимого для привода насоса, упадет.

Двигатель мощностью 230 В и мощностью 50 л.с. имеет среднюю номинальную полную нагрузку 130 А.Если сила тока значительно ниже, насос, скорее всего, работает в режиме байпаса, и его следует заменить.

Также следует проверить температуру корпуса насоса и всасывающей линии. Сильное повышение температуры указывает на сильно изношенный насос.


Чтобы изолировать насос фиксированного объема и предохранительный клапан от системы, закройте клапан или заглушите линию ниже по потоку (слева) . Если давление нарастает, компонент за точкой изоляции проходит в обход (справа) .

Испытание насоса с регулируемым рабочим объемом

Наиболее распространенным типом насосов переменного рабочего объема является конструкция с компенсацией давления. Настройка компенсатора ограничивает максимальное давление на выпускном отверстии насоса. Насос должен быть изолирован, как описано для насоса постоянного рабочего объема.

Если давление не повышается, возможно, неисправен предохранительный клапан или компенсатор насоса. Перед проверкой любого компонента выполните необходимые процедуры блокировки и убедитесь, что давление на выпускном отверстии равно нулю фунт / кв. Дюйм.Затем предохранительный клапан и компенсатор можно разобрать и проверить на предмет загрязнения, износа и поломки пружин.

Если в системе существует проблема с объемом, выполните следующие тесты:

  1. Проверьте температуру в трубопроводе резервуара предохранительного клапана с помощью термометра или инфракрасной камеры. Линия бака должна быть близка к температуре окружающей среды. Если линия горячая, предохранительный клапан либо частично открыт, либо установлен слишком низко.

  2. Установите расходомер в сливную линию корпуса и проверьте расход.Большинство насосов с регулируемым рабочим объемом пропускают 1-3 процента максимального объема насоса через дренажную линию корпуса. Если расход достигает 10 процентов, насос следует заменить. Постоянная установка расходомера в сливную линию корпуса — отличный инструмент надежности и поиска неисправностей.

  3. Проверить ток на приводном двигателе.

  4. Убедитесь, что давление компенсатора на 200 фунтов на квадратный дюйм выше максимального давления нагрузки.Если установлено слишком низкое значение, золотник компенсатора сместится и начнет уменьшать объем насоса, когда система требует максимального объема.

Выполнение этих рекомендуемых тестов должно помочь вам принять правильное решение относительно состояния ваших насосов или причин отказов насосов. Если вы меняете насос, есть причина для его замены. Не делайте этого только потому, что у вас есть запасной.

Проведите оценку надежности каждой из ваших гидравлических систем, чтобы при возникновении проблемы вы могли проконсультироваться с текущими показаниями давления и температуры.

Подробнее об устранении неисправностей гидравлики:

Семь самых распространенных ошибок гидравлического оборудования

Симптомы общих гидравлических проблем и их первопричины

Как узнать, правильно ли вы используете гидравлическое масло?

Гидравлические насосы с компенсацией давления — Womack Machine Supply Company

Компенсатор давления — это устройство, встроенное в некоторые насосы с целью автоматического уменьшения (или остановки) потока насоса, если давление в системе, измеренное на выпускном отверстии насоса, должно подняться выше предварительно установленного значения. установить желаемое максимальное давление (иногда называемое давлением «зажигания»).Компенсатор предотвращает перегрузку насоса в случае перегрузки гидравлической системы.

Компенсатор встроен в насос на заводе и обычно не может быть добавлен в полевых условиях. Любым насосом, построенным с переменной производительностью, можно управлять с помощью компенсатора. К ним относятся несколько типов аксиально-поршневых насосов и неуравновешенных (однолопастных) лопастных насосов. Радиально-поршневые насосы иногда могут быть сконструированы с переменным рабочим объемом, но они не всегда поддаются этому действию.Большинство других поршневых насосов, включая внутренние и внешние шестеренчатые, сбалансированные (двухлепестковые) лопасти, героторные и винтовые типы, не могут быть построены с переменным рабочим объемом.

Рис. 1 представляет собой схему аксиально-поршневого насоса с обратным клапаном переменного рабочего объема, управляемого с помощью компенсатора давления. Поршни, обычно числом 5, 7 или 9, перемещаются внутри поршневого блока, который прикреплен к валу и вращается вместе с ним. Левые концы поршней прикреплены через шарнирные соединения к башмакам поршня, которые упираются в наклонную шайбу и скользят по ней при вращении поршневого блока.Сама тарелка автомата перекоса не вращается; он установлен на паре цапф, поэтому он может поворачиваться из нейтрального (вертикального) положения на максимальный угол наклона. Угол, который наклонная шайба образует к вертикали, заставляет поршни совершать ход, причем длина хода пропорциональна углу. Обычно при низких давлениях в системе наклонная шайба остается под максимальным углом, удерживаемая там силой пружины, гидравлическим давлением или динамикой конструкции насоса, а поток насоса остается максимальным. Компенсатор действует за счет гидравлического давления, поступающего из выходного отверстия насоса.Когда давление в насосе поднимается достаточно высоко, чтобы преодолеть регулируемую пружину за поршнем компенсатора, давление «срабатывания» было достигнуто, и поршень компенсатора начинает тянуть наклонную шайбу обратно в нейтральное положение, уменьшая рабочий объем насоса и выходной поток. Пружину компенсатора можно отрегулировать на желаемое максимальное или «срабатывающее» давление.

Рис. 1. Схема поршневого насоса с обратным клапаном переменного рабочего объема со встроенным компенсатором давления.

В рабочих условиях, при умеренной перегрузке системы, поршень компенсатора уменьшает угол наклонной шайбы ровно настолько, чтобы давление в системе не превысило давление «срабатывания», установленное на компенсаторе. При сильных перегрузках компенсатор может повернуть наклонную шайбу обратно в нейтральное (вертикальное) положение, чтобы снизить расход насоса до нуля.

Ограничители максимального смещения. Некоторые насосы доступны с внутренними ограничителями для ограничения угла наклона наклонной шайбы.Эти ограничители ограничивают максимальный расход и ограничивают потребление HP насосом. Они могут быть фиксированными, установленными на заводе и недоступными снаружи, или они могут регулироваться снаружи с помощью гаечного ключа.

Рычаг ручного управления. Некоторые насосы с компенсацией давления, особенно насосы с гидростатической трансмиссией, снабжены внешним рычагом управления, позволяющим оператору изменять угол наклонной шайбы (и расход) от нуля до максимума. На этих насосах компенсатор давления выполнен с возможностью обхода ручного рычага и автоматического уменьшения угла наклонной шайбы в случае перегрузки системы, даже если рычаг управления оператора все еще находится в положении максимального рабочего объема.

Где используются насосы с компенсацией давления
В основном компенсатор давления предназначен для разгрузки насоса, когда давление в системе достигает максимального расчетного давления. Когда насос разгружается таким образом, потребляется мало HP и выделяется мало тепла, даже если давление остается на максимальном уровне, потому что из насоса нет потока.

Насосы с регулируемым рабочим объемом обычно дороже, чем типы с постоянным рабочим объемом, но они особенно полезны в системах, где от одного насоса должны питаться несколько ответвленных контуров, и где полное давление может требоваться одновременно в нескольких ответвлениях и где насос должен быть выгруженным, когда ни одна из ветвей не работает плохо.Если в каждом ответвлении используются отдельные 4-ходовые клапаны, каждый клапан должен иметь золотник с закрытым центром. Впускные отверстия на всех 4-ходовых клапанах должны быть подключены параллельно на линии насоса. Однако, если все ответвленные контуры управляются от блока клапана параллельного типа, насос переменной производительности с компенсацией давления может не потребоваться; насос с фиксированным рабочим объемом, шестерня, лопасть или поршень могут служить одинаково хорошо, потому что клапан ряда будет разгружать насос, когда все рукоятки клапана находятся в нейтральном положении, но когда две или более рукояток перемещаются одновременно, их ответвленные цепи будут автоматически размещены при параллельном подключении.

Как и во всех гидравлических системах, в ответвление с наименьшей нагрузкой будет поступать больше масла из насоса. Ручки клапанов банка можно отрегулировать, чтобы уравновесить поток в каждое отделение. Когда отдельные 4-ходовые клапаны используются в каждом ответвлении, регулирующие клапаны могут быть установлены в ответвленных контурах и отрегулированы для обеспечения требуемого расхода в каждом ответвлении.

На рисунке 2 показана схема с несколькими ответвлениями, в которой с успехом используется насос переменной производительности. Отдельные 4-ходовые клапаны с электромагнитным управлением используются для каждого ответвления, и они имеют каналы с закрытым центром.Пожалуйста, обратитесь к листу технических данных 54 для получения информации о возможных проблемах дрейфа в системе коллектора давления. Клапан сброса давления обычно требуется даже с насосом с компенсацией давления из-за временного интервала, необходимого для того, чтобы наклонная шайба уменьшила угол наклона при внезапной перегрузке. Предохранительный клапан поможет поглотить часть скачка давления, возникающего в течение этого короткого интервала. Он должен быть отрегулирован на растрескивание примерно на 500 фунтов на квадратный дюйм выше, чем регулировка давления пружины поршня компенсатора, чтобы предотвратить вытекание масла через нее во время нормальной работы.

Во всех системах гидростатической трансмиссии используется насос переменной производительности с компенсатором давления, и часто компенсатор комбинируется с другими элементами управления, такими как ограничитель потребляемой мощности, определение нагрузки, определение расхода или регулирование постоянного расхода.

Рис. 2. Насосы переменной производительности с компенсацией давления полезны в системах
, где несколько параллельных цепей должны работать параллельно от одного насоса.

© 1990, компания Womack Machine Supply Co. Эта компания не несет ответственности за ошибки в данных, а также за безопасную и / или удовлетворительную работу оборудования, разработанного на основе этой информации.

Гидравлические системы с открытым и закрытым центром

В производстве грузовых автомобилей гидравлические системы используются практически ежедневно для выполнения гидравлических работ; они норма. Но для выполнения гидравлических работ требуются два условия — поток и давление. Хотя ни одно из условий не может быть устранено, можно контролировать поток или давление, а, следовательно, и гидравлическую работу.

Эта способность управлять потоком или давлением возможна благодаря двум различным системам: система с открытым центром, или , с закрытым центром, . Термины «открытый центр» и «закрытый центр» используются для различения двух конструкций системы, поскольку каждая из них описывает конструкцию гидрораспределителя, а также тип гидравлического контура, используемого в системе. В системе с открытым центром поток является непрерывным, а давление прерывистым — в отличие от системы с закрытым центром, где поток является прерывистым, а давление непрерывным.

Системы с открытым центром

В системе с открытым центром при повороте насоса создается поток, который затем направляется обратно в резервуар через центральный канал внутри гидрораспределителя. Когда один из золотников гидрораспределителя приводится в движение, поток фокусируется в направлении нагрузки и создается давление. Как только давление превышает нагрузку, груз перемещается, и гидравлическая работа выполняется.

Системы с закрытым центром

Поток в системе с закрытым центром также создается поворотом насоса; однако создается только поток, достаточный для поддержания смазки насоса и достижения резервного давления на гидрораспределителе.В системе с закрытым центром, когда золотник приводится в движение, открывается канал для входа потока, в то время как сигнал давления передается от гидрораспределителя к насосу. Этот сигнал давления сообщает насосу о необходимости создания потока, необходимого для завершения гидравлических работ.

Открытые и закрытые

Проще говоря, в системе с открытым центром масло непрерывно течет через распределитель с открытым центром независимо от того, используются его рабочие секции или нет.Однако в системе с закрытым центром направленный регулирующий клапан с закрытым центром сообщается с насосом, так что, когда рабочая секция не используется, насос разрушается, так что он перестает производить большое вытеснение масла.

Традиционно система с открытым центром менее дорога из-за используемого насоса постоянного рабочего объема, который стоит меньше, чем насос переменного рабочего объема, часто используемый для системы с закрытым центром. Система с закрытым центром, хотя, возможно, и более дорогая, обычно более эффективна, поскольку она не направляет масло постоянно через клапан, когда он не используется.Следовательно, используется меньше энергии и меньше топлива, что приводит к экономии затрат на топливо.

Преобразовательные системы

Системы с открытым центром могут быть преобразованы в системы с закрытым центром и наоборот; хотя часто с самого начала система проектируется как открытый или закрытый центр. Преобразование обычно не выполняется в действующей системе, особенно в системе с открытым центром, поскольку преобразование направленного регулирующего клапана с открытым центром в регулирующий клапан с закрытым центром требует дополнительных элементов, чтобы насос мог сбрасывать избыточный поток, когда он не нужен.

Для того, чтобы насос сбрасывал избыточный поток, ему потребуется перепускной клапан полного потока или что-то подобное, когда секционному клапану не требуется масло. Обычно электрический сбросной клапан используется в сочетании с электрическими рабочими секциями, чтобы клапан и насос могли взаимодействовать, когда поток не требуется; в противном случае насос всегда будет перекачивать больший объем масла, независимо от того, нужно ли выполнить какие-либо работы.

Насос с фиксированным рабочим объемом может использоваться в системе с закрытым центром; тем не менее, тем, кто создает систему, необходимо обладать соответствующими знаниями, чтобы правильно настроить систему с необходимыми элементами.С другой стороны, преобразование системы с закрытым центром в систему с открытым центром требует регулировки выпуска и открытия внутренних каналов внутри клапана, позволяя маслу свободно течь через клапан прямо в резервуар. Однако не все клапаны имеют встроенную опцию преобразования между открытым и закрытым центрами через выпускное отверстие.

При указании гидравлической системы тип конструкции системы должен в конечном итоге определяться на основе требований приложения или системы.Но для того, чтобы полностью понять, нужна ли система с открытым или закрытым центром, первым шагом будет знание различий между конструкциями, требований к гидравлическим работам и важности затрат по сравнению с эффективностью.

5 лучших способов создать охлаждающую гидравлическую систему

Роберт Феррара

10 ноября 2017 г.

Очень просто … лучший способ получить холодную гидравлическую систему — спроектировать ее так, чтобы она потребляла наименьшее количество энергии по возможности выполнить необходимые работы.Другими словами, сделайте это максимально эффективным.

Вот 5 лучших способов поддерживать гидравлическую систему в холодном состоянии в произвольном порядке

  1. По возможности минимизируйте давление в системе во время периодов простоя: Часто во время машинных циклов возникает период простоя гидравлической системы, когда детали загружаются или в процессе может происходить нагрев или охлаждение. В течение этого периода времени поток насоса высокого давления превращается в тепло, поскольку оно переливается через предохранительный клапан. Если используется насос с компенсацией давления, утечка насоса через дренаж корпуса создает тепло, которое больше при более высоких давлениях, чем при более низком давлении, часто для понижения давления в насосе может использоваться компенсирующий клапан сброса давления.
  2. Низкая скорость электродвигателя для соответствия потребности в потоке: Появление приводов с регулируемой скоростью и электродвигателей с инверторным режимом обеспечивает отличный способ «замедлить работу гидравлической системы» в периоды непиковой нагрузки, особенно при использовании насосов с фиксированным рабочим объемом. Кривые крутящий момент-скорость комбинации привод / двигатель должны быть изучены из-за того, что крутящий момент будет падать на более низких скоростях при использовании инверторов.
  3. Убедитесь, что предохранительные клапаны установлены правильно: .Распространенной причиной тепловыделения в контурах с закрытым центром является установка предохранительных клапанов ниже или слишком близких к настройке давления компенсатора давления насоса с регулируемым рабочим объемом. Это препятствует тому, чтобы давление в системе достигло настройки компенсатора давления. Вместо того, чтобы уменьшить рабочий объем насоса до нуля, насос продолжает создавать поток, который проходит через предохранительный клапан, выделяя тепло. Чтобы предотвратить эту проблему в контурах с закрытым центром, уставка давления предохранительного клапана (ов) должна быть на 250 фунтов на квадратный дюйм выше уставки давления компенсатора давления насоса.
  4. Используйте охлаждающий контур, который работает 100% времени: Иногда обратный поток не обеспечивает достаточного объема масла для прохождения через теплообменник. За счет разработки вторичного насоса постоянного объема с низким давлением, который 100% времени работает через теплообменник, отвод тепла может быть гарантирован как в периоды интенсивной эксплуатации, так и в периоды простоя.
  5. Минимизируйте падение давления в гидравлической системе: Когда масло высокого давления становится маслом низкого давления, это означает, что энергия была затрачена.Эта энергия либо превращается в работу (в идеально эффективной гидравлической системе, что невозможно), либо в тепло. Цель — больше энергии для работы и меньше энергии для обогрева. Все гидравлические системы выделяют тепло, гидравлическое масло и участки поверхности, на которых находится масло (резервуар) и передаются, хотя (шланг и трубки) помогают рассеивать тепло. Сведение к минимуму путей в гидравлической системе, где не выполняется никаких работ, и высокое давление масла падает до низкого давления масла, является ключом к охлаждению. Клапаны управления потоком, предохранительные клапаны, сливные отверстия на насосах / двигателях часто являются крупнейшими источниками падения давления.Передовые методы минимизации нагрева, связанного с падением давления, включают: Минимизация времени, в течение которого масло под высоким давлением переливается через предохранительный клапан, особенно во время простоя системы. Часто поток может быть сброшен или пропорциональные предохранительные клапаны могут быть установлены на минимум. В случае насосов с компенсацией давления давление часто можно снизить с помощью удаленного клапана от компенсатора, чтобы уменьшить мертвую мощность в лошадиных силах и, следовательно, тепло.

Определите причину отсутствия потока, низкого расхода, высокого расхода

Насосы прямого вытеснения обеспечивают поток, поскольку жидкость физически вытесняется насосной камерой от входа насоса к выходу насоса.На рис. 1 показано перекачивающее действие шестеренчатого насоса, когда шестеренчатая передача разделяет поток на входе и перемещает жидкость в зубьях вокруг внешней стороны шестерен, когда они вращаются. Жидкость из каждой шестерни присоединяется к выпускному отверстию и выходит из насоса. Количество жидкости, подаваемой насосом, приблизительно одинаково для каждого оборота входного вала, независимо от выходного давления, и хотя проскальзывание за плотно прилегающими частями меняется, фактическая измеренная подача будет в пределах от 5 до 10% от указанного объема, если насос в хорошем состоянии.

Если насос с постоянным рабочим объемом, работающий при номинальных оборотах, не обеспечивает подачу потока на выходе, то с насосом что-то не так. Это предполагает, что впускной канал принимает жидкость и не имеет препятствий и открыт для атмосферы, и что ведущая шестерня, которая обычно имеет шпонку на входном валу, не срезана. Это означает, что насосная камера не может быть герметизирована, и противодавление нагрузки заставляет насос просто перемешивать жидкость внутри корпуса.

Тот же симптом на лопастном или поршневом насосе переменного рабочего объема может быть вызван неисправным компенсатором насоса или насосом, который был неправильно настроен на давление ниже требуемого нагрузки, но если компенсатор работает правильно, проблема заключается в том, что тем же.Насосная камера не герметична.

Иногда насос обеспечивает расход, превышающий номинальный. наиболее вероятной причиной этого может быть то, что насос работает с частотой вращения выше номинальной. Вторая, но менее очевидная причина может заключаться в том, что насос был заменен на насос с большим рабочим объемом. прежде чем решить, что насос обеспечивает производительность выше номинальной, еще раз проверьте спецификацию на номинальные галлоны в минуту, а затем проверьте рабочие обороты насоса. Если насос по-прежнему обеспечивает расход больше номинального при номинальном давлении, проконсультируйтесь с поставщиком, чтобы определить, не был ли насос слишком большим в процессе производства.

«Низкий расход» насоса приводит к снижению частоты цикла. Это означает, что цилиндры под нагрузкой выдвигаются и втягиваются медленнее, чем время цикла, указанное производителем для машины. Причину «отсутствия потока» из насоса относительно легко найти, потому что что-то определенно не так. Проблему «низкого расхода» из насоса сложнее изолировать, потому что это вопрос определения допустимого проскальзывания через насос. То есть, сколько потока должно быть потеряно, прежде чем поток будет считаться «малым потоком» и насос должен быть заменен? Некоторые механики сообщают, что если насос будет подавать 70% номинального объема при давлении нагрузки, насос все еще считается годным к использованию.Однако это будет «низкий расход» по сравнению со спецификациями производителя. Так что во многих случаях замена насоса из-за «низкого расхода» — это вопрос суждения. В этих случаях следует соблюдать рекомендации производителя.

Стандартный тест для насоса «низкий расход» проверяет расход с шагом 500 фунтов на квадратный дюйм от 0 фунтов на квадратный дюйм до предохранительного клапана на квадратный дюйм при номинальной частоте вращения насоса. Это делается путем подключения комбинированного расходомера, манометра и датчика температуры на выходе из насоса. Ограничительный клапан после расходомера используется для создания противодавления на насос.Хороший насос будет обеспечивать номинальный расход во всем диапазоне давлений, тогда как изношенный насос может обеспечивать номинальный расход, когда система холодная при давлении ниже 1000 фунтов на кв. повысился. Чтобы сделать верное суждение о состоянии насоса и необходимости его замены, жидкость должна иметь рабочую температуру.

Убедитесь, что компенсатор давления на насосе с переменной производительностью поддерживает рабочий ход насоса для обеспечения полной подачи в пределах рабочего диапазона давления.Слабая пружина компенсатора, например, может позволить насосу прекратить ход и уменьшить поток насоса при более низком давлении, что приведет к недействительности показаний расходомера, поскольку давление насоса увеличивается с помощью ограничительного клапана.

Проверьте свои навыки

1. Что из перечисленного может вызвать «отсутствие потока» в хорошем гидравлическом насосе переменного рабочего объема?

а. Низкие рабочие обороты

г. Байпасный привод

г.Негерметичный предохранительный клапан

г. Высокая рабочая температура

e. Неправильная настройка компенсатора насоса

2. Что из следующего не будет контролироваться во время проверки потока гидравлического насоса?

а. Расход

г. Рабочие об / мин

г. Испытательное давление

г. Температура жидкости

e. Объем насоса

3. Что можно ожидать при испытании под давлением исправного насоса с постоянным рабочим объемом, если выходное отверстие ограничено?

а.Насос будет кавитировать

г. Расход насоса увеличится

г. Расход насоса значительно уменьшится

г. Давление в насосе снизится

e. Давление насоса увеличится

Каковы правильные решения?

Самый точный тест гидравлического насоса

Для определения состояния гидравлического насоса можно выполнить несколько тестов. Температура корпуса насоса, поток дренажа корпуса и потребление тока приводным двигателем — это обычные проверки, которые можно проводить регулярно и в течение определенного периода времени, чтобы отслеживать износ гидравлического насоса.

По мере износа насоса его внутренние допуски увеличиваются, поэтому увеличивается объем байпасирования; и чем больше он проходит, тем горячее будет корпус насоса. Однако износ насоса — не единственный фактор, который может определять температуру корпуса насоса. То же самое и с стоком через корпус. В насосе с регулируемым рабочим объемом масло, которое проходит через жесткие внутренние допуски, возвращается в резервуар, чтобы давление в корпусе не увеличивалось до достаточно высокого уровня, чтобы разорвать уплотнение вала. По мере износа насоса расход в корпусе увеличивается.Таким образом, регулярное измерение расхода в корпусе — еще один хороший способ отслеживать состояние насоса.

Однако, опять же, износ насоса — это только одна из возможных причин, по которой поток в корпусе может быть высоким. По мере износа насоса ток, потребляемый его электродвигателем, будет уменьшаться. Но какова «нормальная» температура корпуса вашей помпы? Или «нормальный» поток или текущее потребление? Конечно, существуют общие рекомендации, и документация производителя может дать вам общее представление о приемлемых параметрах, но то, что является нормальным для вашей машины, может отличаться для другой.

Хотя эти проверки должны выполняться на регулярной основе и регистрироваться, чтобы их можно было использовать в качестве справочной информации в дальнейшем, на большинстве промышленных предприятий такие записи не ведутся. Даже когда ведется надлежащий учет, во многих случаях все, что у вас есть, — это измеренная вероятность состояния насоса. Вы можете сравнивать результаты тестов за определенный период времени, но вы все равно не будете абсолютно уверены, пока не замените помпу и не увидите, исчезнут ли симптомы. Замена насоса во время простоя в производстве требует больших затрат времени и средств.Но есть одна проверка, которая может быть проведена для окончательного определения того, хорош ли насос или плохой, и это может быть сделано менее чем за одну минуту, если система настроена для этого. К сожалению, в большинстве систем нет.

Даже неисправный насос будет обеспечивать весь или почти весь свой поток, пока поток встречает небольшое сопротивление или его отсутствие, но только хороший насос может обеспечить свой номинальный поток при нормальном давлении в системе. Это легче всего определить, измерив расход через предохранительный клапан системы. Всего за несколько сотен долларов в систему можно постоянно установить расходомер для измерения расхода через предохранительный клапан всякий раз, когда вы хотите узнать состояние насоса.Это может показаться несерьезным, когда система работает нормально. В конце концов, расходомер вполне может оставаться в системе и не читаться годами. Скорее всего, пока система работает удовлетворительно, никто никогда не будет проверять счетчик. Но когда система не работает и вы сталкиваетесь с часами дорогостоящего простоя, пытаясь определить, что не так, вы внезапно желаете, чтобы у вас был лучший способ диагностировать проблему.

Для большинства промышленных предприятий, когда насос не заменяется без надобности в первый раз в результате наличия расходомера для его проверки, экономится достаточно денег, чтобы установить расходомеры в каждой системе на предприятии.Многие из этих насосов довольно дороги. Они могут стоить от 4000 до 40 000 долларов и более. Откровенно говоря, потратить пятизначную сумму на насос и не потратить еще несколько сотен, чтобы иметь возможность легко его тестировать и контролировать, все равно что пытаться сэкономить несколько сотен долларов на новой машине, пытаясь найти ее без спидометра или температуры. измерять.

В зависимости от конфигурации системы расходомер может быть установлен либо в напорной линии насоса перед предохранительным клапаном, либо в трубопроводе резервуара предохранительного клапана.Очевидно, что расходомер в линии резервуара с предохранительным клапаном является менее дорогим вариантом, поскольку используемый расходомер может быть рассчитан на более низкое давление. К сожалению, во многих системах нет открытой линии резервуара предохранительного клапана. В этом случае расходомер высокого давления должен быть установлен в напорной линии где-то между насосом и предохранительным клапаном, чтобы, когда источник питания системы изолирован от остальной части машины, расход через предохранительный клапан можно было измерить на расходомере. .

Если вы используете насосную систему с фиксированным объемом, закройте ручной запорный клапан, чтобы заблокировать поток из системы, чтобы единственный путь потока в резервуар проходил через предохранительный клапан.Включите систему и измерьте расход с помощью предохранительного клапана, настроенного на очень низкое давление. Даже если насос неисправен, он должен обеспечивать весь или почти весь свой номинальный расход. Теперь начните увеличивать регулировку давления, наблюдая за расходомером. Если вы можете полностью увеличить настройку до нормального давления в системе без значительного снижения расхода, нет никаких сомнений в том, что насос исправен. Ваша проблема в другом месте. Однако, если поток на расходомере падает при увеличении давления на предохранительном клапане, насос неисправен и его необходимо заменить.

В насосной системе с компенсацией давления перед запуском системы полностью поверните регулятор компенсатора по часовой стрелке. Это приведет к тому, что насос компенсации давления будет вести себя как насос с фиксированным рабочим объемом, поэтому он будет всегда обеспечивать максимальный объем потока и не сбрасывать ход, пока вы проводите это испытание. Независимо от типа насоса, перед запуском машины убедитесь, что предохранительный клапан установлен на очень низкое давление! Затем проведите испытание так же, как и с насосом с фиксированным рабочим объемом.При очень низком положении предохранительного клапана измерьте расход. Увеличьте настройку давления на предохранительном клапане, наблюдая за расходомером. Если поток остается стабильным вплоть до нормального давления в системе, вы можете быть абсолютно уверены, что насос исправен.

Основываясь на обзоре сотен промышленных предприятий в США, Канаде и других странах, на некоторых из них установлены расходомеры в сливных отверстиях насосов, но почти ни на одном из них не установлены счетчики, чтобы можно было провести эту проверку. .Редко бывает на складе даже расходомер, который можно было бы временно установить. Эти измерители могут быть чрезвычайно ценными инструментами для поиска и устранения неисправностей. Используйте их!