Как работает генератор автомобиля: Генератор — Словарь автомеханика

Содержание

Генератор — Словарь автомеханика

Автомобильный генератор, в кругах автомехаников так называемый «гена» — это агрегат, который в результате своей работы преобразовывает механическую энергию, возникающую в результате вращения коленчатого вала двигателя авто, в электроэнергию. Автогенератор обеспечивает процесс подзарядки аккумулятора и питает энергией все ключевые системы машины. От его стабильной и бесперебойной работы зависит функционирование системы зажигания, приборов, всего светового оборудования и компьютерных систем, поэтому к надежности этого узла предъявляются самые жесткие требования.

Вращение ротора автогенератора обеспечивается за счет ремня, связывающего его со шкивом, закрепленным на коленчатом валу авто. Разница в диаметрах шкивов позволяет обеспечить достаточную скорость вращения для выработки энергии даже в режиме холостого хода.

Генератор первых автомобилей вырабатывал постоянный ток, в связи с чем, устройство генератора было сложным конструктивно, а сам узел требовал регулярного технического обслуживания. Современные автомобили оснащены генераторами переменного тока, которые более просты, надежны и обладают отличными техническими характеристиками. Подача энергии потребителям осуществляется через стабилизирующий и выпрямительный блоки, так как для работы электроприборов машины требуется постоянный ток.


Устройство генератора

  1. Корпус

    Узел укомплектован передней и задней крышкой. Обеспечивает крепление статора и самого генератора на двигателе, а также размещение подшипников ротора, служащих ему опорой. К корпусу крепится выпрямитель, блок щеток, регулятор напряжения, а также выводы для подключения к электросистеме.

  2. Шкив

    Посредством специализированного ремня обеспечивает вращение вала генератора.

  3. Ротор

    Вал, на котором закреплена обмотка возбуждения и контактные кольца, обеспечивающие передачу энергии.

  4. Статор

    Собранный из металлических листов соответствующей формы цилиндр, в его пазах размещена проволочная обмотка, вырабатывающая энергию.

  5. Выпрямительный блок

    Обеспечивает превращение переменного тока в постоянный.

  6. Регулятор напряжения

    Поддерживает заданный уровень напряжения в электросети автомобиля при изменении нагрузки, режимов работы генератора и внешних факторов.

  7. Блок щеток

    Съемная конструкция, в которой размещены щетки с пружинами, обеспечивающие контакт с роторными контактными кольцами. К щеткам обеспечивается свободный доступ для возможности их замены.


Распространенные неисправности автогенератора

Наиболее частыми поломками генератора автомобиля являются: щетки, подшипники, выпрямительный блок, регулятор напряжения.

Генератор шумит

Основная причина шумной работы агрегата – это износ опорных подшипников. Несвоевременная их замена может привести к повреждению посадочных мест, в таком случае ремонт будет более дорогостоящим из-за замены изношенных ключевых деталей.

Автогенератор не выдает ток зарядки

Обнаружить проблему позволяют контрольные лампы и приборы, которыми оснащен автомобиль. Наиболее распространенная причина – это износ контактных щеток, либо их залипание в держателе.

Замена щеток должна производиться своевременно, в противном случае, изношены будут контактные кольца, ремонт и замена которых более трудоемкие и затратные.

Также возможными причинами может быть загрязнение щеткодержателя, подгорание поверхности контактных колец и слабая натяжка ремня генератора.

Выход из строя обмоток ротора или статора

При такой неисправности автомобильный генератор также не вырабатывает ток. Определить неисправность иногда удается при разборке устройства и его осмотре, в основном для этого используется омметр. При выявлении обрывов в местах пайки, неисправность устраняется с помощью паяльника. При замыкании обмоток производится их замена.

Выход из строя выпрямительного блока

При отсутствии неисправностей в блоке щеток и обмотках генератора, необходимо обратить внимание на данный узел. При наличии обрыва в блоке ток может не проходить через устройство, при коротком замыкании прибор может пропускать ток в обе стороны. Неисправный выпрямитель необходимо заменить.

Выход из строя регулятора напряжения

Проявляется неисправность в нестабильной и неравномерной подаче напряжения в электросеть автомобиля. При излишне высоком зарядном токе систематически перезаряжается аккумулятор авто , в результате чего происходит «кипение» электролита. При низком токе или его отсутствии зарядка не производится или недостаточная. Неисправный регулятор подлежит замене.


Рекомендации по уходу за генератором:

  • необходимо обеспечить максимальную защиту агрегата от попадания пыли, грязи, дорожной соли;
  • все проводные соединительные крепления рекомендуется обрабатывать смазкой;
  • ремень привода генератора должен быть натянут в соответствии с требованиями, его замена должна производиться своевременно;
  • не рекомендуется продолжительная работа генератора при отключенной аккумуляторной батарее;
  • нельзя производить проверку корректности работы генератора путем пропускания искры между выходной клеммой и «массой» авто, так как это чревато выходом из строя выпрямителя.

Из всего выше упомянутого можно сделать один небольшой вывод: чтобы не пришлось прерывать весь интернет в поисках решения проблем с неработающим генератором нужно уделять ему должный уход. А именно: следить в каком состоянии находится электропроводка (в частности за контактами подходящих к генератору, регулятору напряжения), та как плохой контакта способствует выходу из нормы бортового напряжения. Так же уделять внимание натяжению ремня генератора и быстро определять причину загорания сигнальной лампы генератора на приборной панели.

Связанные термины

Бесщеточные генераторы. Почему они мало используются

Если автомобильный генератор выходит из строя, то самой распространенной причиной является износ щеточного узла. Однако давным-давно изобретены бесщеточные генераторы – почему же они до сих пор не вытеснили своих якобы менее продвинутых «конкурентов»?

Самая распространенная и массовая на сегодня конструкция автомобильного генератора – с использованием графитовых щеток, подающих напряжение на обмотку ротора (так называемую «катушку возбуждения») через пару вращающихся скользящих контактов в виде медных колец на валу ротора. Подобное решение применяется на большинстве автомобилей за редким исключением, ибо оно отработано и за десятилетия подтвердило свою практичность.

В такой конструкции крайне просто и эффективно реализовано поддержание стабильного напряжения в бортсети автомобиля на любых оборотах двигателя и, соответственно, генератора – электронный блок стабилизации напряжения (который по старинке принято именовать «реле-регулятором») отслеживает уровень напряжения на выходе и уменьшает или увеличивает ток в катушке возбуждения. Как только напряжение проседает, ток увеличивается. Как только оно приближается к верхнему пределу 14,2 вольта – уменьшается. Этот процесс идет быстро и непрерывно, и в результате мы имеем стабильное напряжение и на холостых оборотах, и на высокой скорости.

Щеточный узел – сухой и слабо защищенный от песка и влаги. А все, что открыто и трется без смазки, постепенно изнашивается и отказывает. Именно щеточный узел является наиболее частым источником выходов генератора из строя. Тем более что он обычно еще и неразборно совмещен с электронным блоком стабилизации напряжения («реле-регулятором»).

Однако в последние годы слово «БЕСщеточный» (или его аналог «бесколлекторный») на слуху у «широких народных масс» (с) – оно стало известно даже относительно далеким от техники людям. В самых разных сферах быта активно пропагандируются бесщеточные электромоторы – сегодня на них летают квадрокоптеры, крутятся шуруповерты, косят газоны триммеры и работают прочие механизмы и гаджеты. Даже откровенным гуманитариям уже успешно внушили, что «щетки – это плохо: они изнашиваются, отказывают, греются и вызывают потери тока». Почему же в автомобильном генераторе щеточный узел до сих пор не исчез, тогда как в последнее время от него все чаще отказываются даже в моторчиках дешевых детских игрушек?!

Может быть, потому, что на бесколлекторные (или же бесщеточные – как больше нравится) технологии массово переводятся электромоторы, а мы-то ведем речь про генератор? Нет, дело не в этом. Тут как раз никаких препятствий нет. Электромотор и электрогенератор – чрезвычайно похожие по своей сути электрические машины, вдобавок зачастую обратимые: мотор способен вырабатывать ток, если его вращать принудительно, а генератор может выполнять роль мотора, если на него опять же подать ток извне. 

Использовать бесщеточный генератор в автомобиле можно, это давно реализовано и практикуется. Однако выпускаются подобные генераторы весьма ограничено и массовыми почему-то не стали… Почему?

Сделать автомобильный генератор бесщеточным в принципе не так сложно. Для чего, собственно, нужны щетки? Чтобы подать через них питание 12 вольт на катушку возбуждения внутри вращающегося ротора. После чего сегментный ротор с катушкой, на которую подан постоянный ток от аккумулятора, становится многополюсным электромагнитом и порождает возникновение тока в неподвижной обмотке – в статоре. 

Убрать скользящий щеточный контакт в автомобильном генераторе возможно за счет особой конструкции ротора. Для этого ротор делают удлиненным, а катушку возбуждения выполняют в виде внешнего кольца и неподвижно закрепляют на статоре.

Ведь для работы генератора ротор должен стать магнитом, а как намагничивать ротор – катушкой внутри, или катушкой снаружи – непринципиально… 

Первые бесщеточные генераторы с неподвижной катушкой возбуждения встречались на автомобилях и полвека назад, и даже раньше. Как правило, ставили их на коммерческий транспорт (дальнобойные грузовики) и сельскохозяйственные и строительные машины (комбайны, трактора, бульдозеры и т. п.). Первым была важна увеличенная надежность и уменьшенная вероятность отказов на длинных перегонах пути, а вторым – защита от постоянно сопровождающих их при работе абразивной пыли и влаги, способных быстро убивать щеточный узел, проникая в генератор через вентиляционные щели. В принципе, в ограниченных объемах используются они в подобных машинах и по сей день. 

Однако, согласитесь: генератор, не боящийся воды и пыли, с увеличенным сроком службы благодаря отказу от трущихся насухую деталей – это весьма недурственно! Причем неплохо для любого генератора, а не только для установленного на грузовике или комбайне! Почему же технология не распространилась на массовый легковой сегмент? Причин тут несколько. 

  • Технология производства бесщеточных генераторов более многоэтапна, и генераторы в конечном итоге существенно дороже.
  • При сопоставимых технологиях производства (без дорогостоящих инноваций) бесщеточный генератор в итоге получается крупнее и тяжелее щеточного с теми же характеристиками.
  • Большинство грузовых и сельскохозяйственных «бесщеточников» имели относительно узкий диапазон рабочих оборотов, на которых они эффективны, и на холостом ходу и просто на пониженных передачах толком не заряжали аккумулятор.
  • Современные «бесщеточники» существенно усложнились, дабы сохранить компактность, одновременно получив возможность выдавать большие токи с малых оборотов и не бояться оборотов высоких. Вдобавок к неподвижной обмотке возбуждения в конструкцию добавились постоянные магниты, позволяющие увеличить токоотдачу на малых оборотах, специальные размагничивающие обмотки, нейтрализующие действие постоянных магнитов на высоких оборотах, многофазные статоры, усложненные диодные мосты.

Все это и ряд других факторов ограничивали и продолжают ограничивать распространение таких генераторов. А после эволюционной оптимизации генераторов со щетками (ставших мощнее, компактнее, линейнее и т. п.) преимущества «бесщеточников» оказались еще менее выраженными. Несмотря на явно изнашивающиеся пары трения медь-графит, реально щеточные генераторы ходят весьма долго и их не принято считать потенциально проблемным узлом автомобиля, требующим инновационных вмешательств.

Впрочем, в ряде случаев бесщеточные генераторы имеют актуальность не только на фурах и тракторах. К примеру, щеточного узла нет на некоторых генераторах ряда дизельных кроссоверов BMW и Mercedes. В их моторах применяются генераторы повышенной мощности (180-190 ампер) с водяным охлаждением, которые прикручиваются своей задней крышкой к крышке водяной рубашки двигателя с соответствующим отверстием, как бы «затыкая его своим задом», и, таким образом, частично омываются антифризом. В конструкции мощных водоохлаждаемых генераторов щетки сильно затрудняют компоновку и обслуживание, поэтому от них иногда отказываются. Также серийно встречаются такие генераторы в некоторых комплектациях серьезных рамных внедорожников типа Nissan Patrol. А уазисты любят внедрять в свои тюнингованные «котлеты» не боящиеся купания в болоте 110-амперные бесщеточные генераторы от автобусов ПАЗ. Ну а алтайский завод тракторного электрооборудования еще с советских времен (и, кажется, по сей день!) производит небольшими тиражами бесщеточный генератор для моделей ВАЗ классического (01-07) и раннего переднеприводного (08-099) семейств. 

Тем не менее в конечном итоге все решает экономика и отчасти инжиниринг. На сегодняшний день в массовом потребительском автопроме надежность простейшего щеточного генератора принята за образец баланса цены, живучести и ремонтопригодности. И отходят от этого канона лишь в относительно редких случаях, когда проектирование технически сложного, продвинутого и достаточно дорогого автомобиля неизбежно требует усложненных и недешевых решений…

Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.


Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная. Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.
Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Как работают генераторы и динамо-машины

Реклама

Криса Вудфорда. Последнее изменение: 10 августа 2020 г.

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно. Вы можете производить его различными способами, используя все, от угля и нефти до ветра и волн.Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя работа в обратном направлении, которая преобразует обычную энергию в электричество. Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20 века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова.Предоставлено фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с него его собственное название: электрическая энергия. Если вы хотите что-нибудь запустить электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам нужно обеспечить его постоянным запасом электроэнергии. Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как нельзя.Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразованы из какой-то другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветровые турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя высокая температура). Где бы ни была ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Как мы можем производить электричество?

Фото: Типичный электрогенератор. Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий реверсом.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь по кругу и питая что угодно из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволять батарее питать двигатель, который толкает щетку, что, если бы вы сделали напротив? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Изображение: такой простой генератор вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он генерирует односторонний ток; когда он движется вниз, ток течет в другую сторону.Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, которое создает магнит, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (читать краткая биография или длинная биография).Если вы перемещаете провод в противоположном направлении, вы генерируете ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы проводите провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто разместить провод рядом с магнитом: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив один или другой из них на колесо. Затем, когда вы повернете колесо, проволока и магнит будут двигаться относительно друг друга, и будет образовываться электрический ток.

А теперь самое интересное.Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и располагаете так, чтобы она постоянно вращалась — как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество будет течь в одну сторону; когда он движется вниз, ток будет течь в обратном направлении. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая получение постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходной сигнал просто повышается, падает и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора в таблице справа.

Генераторы переменного тока

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока.Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от автомобильных двигателей. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фото: Генератор переменного тока — это генератор, вырабатывающий переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим, как механик снимает генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной фары, работающие от колес: вам нужно крутить педали немного сильнее, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как действует сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает из топлива.И топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Сколько мощности вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем больше мощности он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Микро-ветряная турбина 500
Малый дизель-генератор 5000 (5 кВт)
Ветряная турбина 2 000 000 (2 МВт)

Переносные генераторы

Фото: переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем светильники, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. А вдруг вы работаете на открытом воздухе, в глуши, и нет источник электроэнергии, который можно использовать для питания бензопилы или электродрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, сжигая бензин, он толкает поршень взад-вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В виде пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторная технология быстро развивалась в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082 переиздание 8 141 Эдварда Уэстона, любезно предоставленного Управлением по патентам и товарным знакам США.

Узнать больше

На этом сайте

Вам могут понравиться эти другие статьи на нашем сайте по связанным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хара и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

статей

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Сохраните эту страницу на будущее или поделитесь ею, добавив в закладки:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работает электрический генератор для выработки электроэнергии?

Электрогенератор — это машина, которая используется для выработки электроэнергии, которую можно использовать в любом количестве приложений, от небольших электроинструментов до крупных промышленных приложений. Это популярная альтернатива использованию электросети, вырабатываемой ветряными турбинами или ископаемым топливом, и паровой турбины высокого напряжения на электростанции или электростанции.

Есть много типов генераторов, от бензиновых генераторов до портативных генераторов и инверторных генераторов. Для домашних генераторов, которые могут работать на природном газе, резервных генераторов на случай отключения электроэнергии и гораздо более крупных промышленных генераторов. Однако в этой статье мы будем конкретно говорить о дизельных генераторах, также известных как генераторы.

Здесь, в Advanced, наши высококвалифицированные отраслевые эксперты знают все, что нужно знать о дизельных генераторах.Итак, этот блог будет стремиться объяснить, как работает электрогенератор, и из каких основных рабочих компонентов они состоят.

Как вырабатывается электроэнергия?

Простое объяснение этому состоит в том, что дизельные генераторы работают как электрическая машина, которая преобразует один источник энергии в другую форму энергии. В этом случае генератор энергии работает за счет преобразования механической энергии в электрическую.

Вопреки тому, что многие могут предположить, на самом деле никакого реального «создания» электричества не существует.Один электрический генератор или несколько синхронных генераторов не могут создать электричество из воздуха. Все это связано с теорией электромагнитной индукции Майкла Фарадея, о которой мы поговорим подробнее, когда рассмотрим различные части генератора.

Основные части дизельного генератора

Каждый дизель-генератор состоит как минимум из девяти различных, но одинаково важных частей. Это:

  • Дизельный двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Система охлаждения и выхлопная система
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Рама или салазок основного узла

Чтобы лучше понять, как работает электрогенератор для преобразования механической энергии в электрическую, мы рассмотрим роли всех этих компонентов, начиная с дизельного двигателя.

Дизельный двигатель

Это простой дизельный двигатель, он ничем не отличается от двигателей автомобилей, фургонов, грузовиков или других больших транспортных средств. Это источник механической энергии, и размер двигателя имеет значение. Если вам нужна большая мощность генератора, вам нужен двигатель большего размера. Чем больше двигатель, тем большую электрическую мощность вы можете произвести.

Генератор

По сути, это компонент, который отвечает за выработку выходной мощности.Здесь мы видим, что в игру вступает концепция электромагнитной индукции.

Генератор переменного тока состоит из множества сложных компонентов, но одним из наиболее важных аспектов является ротор. Это вал, который вращается за счет механической энергии, подаваемой двигателем, и вокруг него закреплено множество постоянных магнитов. При этом создается магнитное поле.

Это созданное магнитное поле непрерывно вращается вокруг другой важной части генератора переменного тока: статора.Проще говоря, это разновидность различных электрических проводников, которые плотно намотаны на железный сердечник. Здесь все становится немного более научным. Согласно принципу электромагнитной индукции, если электрический проводник остается неподвижным, а магнитное поле движется вокруг него, возникает электрический ток.

Таким образом, генератор переменного тока использует механическую энергию, создаваемую дизельным двигателем, который приводит в движение ротор для создания магнитного поля, которое перемещается вокруг статора, которое, в свою очередь, генерирует переменный ток.

Топливная система

Топливная система в основном состоит из топливного бака с трубкой, соединяющей его с двигателем. Здесь дизельное топливо может подаваться непосредственно в двигатель, который затем запускает весь процесс, описанный выше. Размер топливного бака в конечном итоге определяет, как долго генератор может оставаться активным.

Наш ассортимент бесшумных генераторов с навесом обычно поставляется с топливными баками, включенными в базовую комплектацию электрогенератора.Если требуется больший объем топлива, мы можем спроектировать и изготовить индивидуальный расширенный базовый топливный бак, или агрегат можно прикрепить к дополнительному отдельно стоящему большому топливному баку.

Для проектов более крупных генераторов, требующих установки генератора в звукоизоляционном кожухе, отдельные топливные системы обычно устанавливаются или располагаются внутри кожуха, под кожухом, а иногда и в обоих случаях.

Регулятор напряжения

Вот самая сложная часть электрогенератора.Стабилизатор напряжения служит одной довольно очевидной цели: регулировать выходное напряжение. Здесь происходит слишком много всего, чтобы объяснить только в этой статье, нам, вероятно, понадобится отдельная часть, чтобы описать весь процесс регулирования напряжения.

Проще говоря, это гарантирует, что генератор вырабатывает электричество при хорошем стабильном напряжении. Без него вы бы увидели огромные колебания в зависимости от того, насколько быстро работает двигатель. Излишне говорить, что все используемое нами электрическое оборудование не сможет справиться с таким нестабильным энергоснабжением.Итак, эта часть творит чудеса, чтобы все было гладко и устойчиво.

Система охлаждения и выхлопная система

Оба эти компонента играют очень важную роль, и хорошая новость заключается в том, что их легко понять! Система охлаждения помогает предотвратить перегрев вашего генератора. В генераторе выделяется охлаждающая жидкость, которая уравновешивает всю дополнительную тепловую энергию, производимую двигателем и генератором. Затем охлаждающая жидкость забирает все это тепло через теплообменник и выводит его за пределы генератора.

Выхлопная система работает так же, как выхлопная система вашего автомобиля. Он забирает любые газы, производимые дизельным двигателем, направляет их через систему трубопроводов и выпускает их из генератора.

Система смазки

Этот компонент прикрепляется к двигателю и прокачивает через него масло, чтобы все детали работали плавно и не шлифуем друг о друга. Без него двигатель выйдет из строя.

Зарядное устройство

Все дизельные двигатели нуждаются в крошечном маленьком электрическом двигателе, чтобы заставить его работать.Для этого небольшого двигателя требуется аккумулятор, который необходимо зарядить. Зарядное устройство поддерживает его в хорошем состоянии и полностью заряжает от внешнего источника самого генератора.

Панель управления

Здесь просто управляют и управляют генератором. На генераторе с электрическим запуском (или автоматическим запуском) вы найдете здесь целый ряд элементов управления, которые позволяют вам выполнять разные действия или проверять определенные цифры. Это может быть что угодно, от кнопки запуска и переключателя частоты до индикатора топлива двигателя, индикатора температуры охлаждающей жидкости и многого другого.

Рама основного узла

Каждый генератор нужно как-то содержать, и это основная сборочная рама. В нем находится генератор, и на нем построены все его части. Он держит все вместе, и это может быть открытая конструкция или закрытая (с навесом) для дополнительной защиты и шумоподавления. Генераторы для наружной установки обычно помещаются в защитный каркас, устойчивый к атмосферным воздействиям для предотвращения повреждений.

Итак, вот как работает электрогенератор.Дизельный двигатель снабжает генератор механической энергией, которая затем преобразуется в электрический ток благодаря магнитному полю, создающему электромагнитную индукцию. Но теперь вы точно знаете, как это происходит, а также со всеми различными частями внутри электрогенератора.

ЛУЧШИЕ ЦЕНЫ на электрогенераторы в Великобритании
Магазин дизельных генераторов Магазин бесшумных генераторов Генераторы для дома

Блог, опубликованный Advanced Diesel Engineering 4 сентября 2018 г.

электрических генераторов | Как работают генераторы

Какие части у электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего необходима.Составные части генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит движущиеся и неподвижные части, которые вместе создают электромагнитное поле и движение электронов, генерирующих электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения гарантирует, что машина не перегреется. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для аккумулятора — это полностью автоматический компонент, который обеспечивает готовность аккумулятора к работе, когда это необходимо, путем подачи на него постоянного низкого напряжения.
  1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрогенераторов?

Современные электрические генераторы доступны во многих вариантах заправки топливом. Дизель-генераторы — самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, тогда как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива — как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить сгорание, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу при необходимости.

В зависимости от типа генератора и его применения, топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках различной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Наземные и подземные топливные баки для хранения генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения дороже в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать ряду требований и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.В случае кратковременных или редких отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно будет заполнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым отключениям электроэнергии.

Поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генератора снижают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, часто расположенным в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Пары, выбрасываемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо фильтровать и удалять из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному регулированию выбросов. Контролируемые выбросы генератора включают: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) — Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторные установки уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с продавцом или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический переключатель резерва (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка доступа и управления работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, АВР сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу, панель управления генератором предоставляет обширную информацию для менеджеров сайта:

  • Манометры двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель при обнаружении проблемы с уровнями жидкости или другими аспектами работы генератора.
  • Генераторные датчики предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какого рода техническое обслуживание требуется для генератора?

Генераторы

являются двигателями и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы обеспечивают резервное питание в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и инспекции своих генераторных установок, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

Самая лучшая программа обслуживания генератора — та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и удаление изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для выявления отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые, небольшие вложения со временем обязательно окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора — это не то, чем вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

Что такое система ГПМ на генераторе? Как это работает и зачем его использовать? — Welland Power

Что такое система генератора PMG?

Генератор переменного тока с ГПМ имеет АРН, который независимо питается от отдельного генератора с постоянными магнитами (ГПМ). Состоит из двух частей: ротора ГПМ и статора ГПМ. Ротор PMG установлен на валу ротора главного генератора переменного тока, и в статоре PMG индуцируется напряжение, когда ротор PMG перемещает постоянные магниты. Затем мощность статора ГПМ используется для питания АРН.

Диаграмма из Стэмфорда, показывающая генератор переменного тока с возбуждением от ГПМ.

Зачем использовать систему ГПМ, а не стандартный самовозбуждающийся генератор?

В стандартном генераторе переменного тока АРН питается от клемм генератора. В системах с высокими индуктивными нагрузками, которые вызывают большое переходное падение напряжения статора до того, как АРН сможет его компенсировать, АРН страдает, потому что его входное напряжение снижается. Это может привести к ситуациям, когда АРН не может вернуть напряжение к его предварительно установленному значению, потому что напряжение на клеммах упало слишком сильно и, следовательно, его источник питания недоступен.

Преимущество PMG заключается в том, что мощность, подаваемая на АРН, поддерживается почти постоянной, что позволяет АРН быстро восстанавливать напряжение генератора переменного тока до его номинального заданного значения. АРН быстрее реагирует, уменьшая провал переходного напряжения, связанный с приложением нагрузки к генератору переменного тока.

Система PMG также обеспечивает то преимущество, что не требуется остаточного намагничивания для запуска процесса возбуждения при запуске, в то время как для шунтирующих или вспомогательных машин, если остаточный магнетизм теряется, напряжение генератора не возрастает.

Каковы недостатки PMG?

Система PMG дороже, чем шунтирующая или вспомогательная система, она также увеличивает вес генератора на несколько килограммов, в зависимости от размера. Системы PMG также располагаются на задней части вала генератора и поэтому увеличивают длину.

Можно ли переоборудовать PMG? Как выглядит PMG?

Конечно! На большинстве генераторов переменного тока, где ГПМ является заводской опцией, ГПМ также можно модернизировать. Установка PMG увеличит длину генератора.

Итак, мы покажем вам разницу между генератором Stamford HCI544D1 и тем, как выглядит PMG. Итак, это неприводная сторона генератора переменного тока, когда он прибывает, без установленного PMG. Это сокращенные инструкции по установке, в которых опущены ключевые шаги, чтобы показать разницу между машинами. Всегда обращайтесь к полным инструкциям по установке перед установкой ГПМ и убедитесь, что у вас есть подходящие инструменты, чтобы избежать повреждения генератора.

Вот генератор без установленного PMG. При снятой задней крышке вы видите вал генератора в центре и четыре точки крепления ротора PMG.
Теперь мы подгоняем положение в валу:

Как работает генератор

всякий раз, когда электрический проводник движется относительно магнитного поля, в этом проводнике индуцируется напряжение (называемое электродвижущей силой, ЭДС ).В частности, если катушка вращается в магнитном поле, две стороны катушки движутся в противоположных направлениях, и напряжения, индуцированные на каждой стороне, складываются. Численно мгновенное значение результирующей ЭДС равно минусу скорости изменения магнитного потока «Φ», умноженной на количество витков: V = −N • ∆Φ / ∆t . Первоначально эта связь была обнаружена экспериментально. Он упоминается как закон Фарадея . Знак минус здесь обусловлен так называемым законом Ленца , который гласит, что направление ЭДС таково, что поле индуцированного тока противодействует изменению потока, который создает эту ЭДС.Закон Ленца объясняется сохранением энергии.

Для наглядности на анимации выше показана одиночная прямоугольная проволочная петля. Обычно это якорь с набором обмоток на железном сердечнике. Поскольку ∆Φ / ∆t через провод, который вращается с постоянной скоростью, изменяется синусоидально с вращением, напряжение, генерируемое на его выводах, также близко к синусоидальному. Если к этим клеммам подключена внешняя цепь, через нее будет протекать электрический ток, в результате чего энергия будет передана нагрузке.Обратите внимание, что этот ток, в свою очередь, создает «Φ», который противодействует изменению потока обмотки, поэтому он противодействует движению. Чем выше ток, тем большее усилие нужно приложить к якорю, чтобы он не замедлился. Таким образом, вращательная механическая энергия преобразуется в электрическую. Если вы используете коммутатор, такая система называется динамо . Его работа аналогична описанной выше, за исключением того, что выходное напряжение становится пульсирующим (униполярным). Приведенная выше анимация иллюстрирует основные концепции работы генератора.На самом деле такая конфигурация используется редко, кроме как в образовательных целях. На практике механическая энергия, которая вращает змеевик, производится турбинами или двигателями, называемыми первичными двигателями . В небольших генераторах переменного тока для бытового использования первичным двигателем является роторный двигатель внутреннего сгорания.

Обратите внимание, что создание напряжения зависит только от относительного движения между проводником и магнитным полем. ЭДС индуцируется одним и тем же законом физики независимо от того, движется ли магнитное поле мимо неподвижной катушки или катушка движется через стационарное поле.В нашем примере «Φ» создается неподвижным постоянным магнитом во время вращения обмотки. Его выводы соединены с контактными кольцами, которые контактируют с двумя щетками. Основным недостатком вращающегося силового якоря является то, что ток нагрузки должен проходить через контактные кольца и щетки, которые изнашиваются при использовании. Современные генераторы переменного тока обычно имеют вращающееся поле и стационарный якорь. Якорь состоит из набора катушек, образующих цилиндр. Кроме того, на практике магнитный поток обычно создается электромагнитом, а не постоянным магнитом.Электромагнит состоит из так называемых катушек возбуждения, установленных на железном сердечнике. Ток в этих катушках может управляться либо от внешнего источника, либо от собственного якоря системы. Многие современные источники переменного тока являются самовозбуждающимися, : ток возбуждения подается дополнительной обмоткой в ​​якорь. Теорию работы практических бытовых генераторов см. В этом руководстве.

4 причины, по которым нельзя использовать генератор озона

Появляется все больше письменных материалов об использовании генераторов озона для улучшения качества воздуха в помещениях.К сожалению, большая часть материала содержит утверждения и делает выводы без обоснования или достоверной науки. Есть даже некоторые производители, которые предполагают, что их устройства были одобрены федеральным правительством, несмотря на то, что в федеральном правительстве нет ни одного агентства, которое одобрило бы генераторы озона для использования в жилых помещениях. Агентство по охране окружающей среды опубликовало несколько документов, в которых подчеркиваются риски и опасности озона, а также причины, по которым следует избегать генераторов озона.

Давайте посмотрим, почему никогда не следует использовать генератор озона для улучшения качества воздуха в помещении.

Почему озон опасен?

Озон — это крошечная молекула, состоящая из трех атомов кислорода. Он обладает высокой реакционной способностью, что делает его нестабильным и потенциально токсичным газом. Приземный озон считается основным компонентом смога, который поражает большие города в летнее время и связан с множеством потенциальных рисков для здоровья.

Влияние озона на здоровье

EPA сообщило, что высокие уровни озона связаны с различными последствиями для здоровья.Это может включать снижение функции легких, раздражение горла, тяжелые симптомы астмы, кашель, боль в груди, одышку, раздражение легочной ткани и повышенную чувствительность к респираторным инфекциям. Далее они отметили, что существуют дополнительные факторы риска, которые могут увековечить побочные эффекты озона, такие как деятельность, которая увеличивает частоту дыхания (например, упражнения в помещении), некоторые ранее существовавшие заболевания легких и более длительное воздействие.

4 причины, по которым не следует использовать очистители воздуха, производящие озон

Озон не только потенциально опасен для вашего здоровья, он может вообще не работать.Ниже приведены четыре причины, по которым вам никогда не следует использовать очистители воздуха, производящие озон.

1. Генераторы озона могут вообще не работать

Некоторые производители предполагают, что озон сделает безвредными почти все химические загрязнители в доме, вызывая химическую реакцию. Это невероятно вводит в заблуждение, потому что тщательный обзор научных исследований показал, что для устранения многих опасных химикатов, обнаруженных в помещении, процесс химической реакции может занять месяцы или даже годы.Другие исследования также (PDF) отметили, что озон не может эффективно удалять окись углерода или извне. При использовании в концентрациях, не превышающих стандарты общественного здравоохранения, озон, применяемый для загрязнения воздуха внутри помещений, не эффективно удаляет вирусы, плесень, бактерии или другие биологические загрязнители.

2. Химическая реакция может быть опасной

Даже если бы было доказано, что генераторы озона эффективны в уничтожении этих химикатов, есть определенные побочные эффекты, о которых каждый должен знать.Многие химические вещества, на которые реагирует озон, приводят к образованию множества вредных побочных продуктов. Например, когда озон был смешан с химическими веществами из нового ковра в лабораторных условиях, озон уменьшил количество химических веществ, но создал множество опасных органических химикатов в воздухе. В то время как количество целевых химикатов было уменьшено, опасные побочные продукты заставили процесс двигаться.

3. Генераторы озона не удаляют твердые частицы

Третий фактор, который следует учитывать при рассмотрении генераторов озона, заключается в том, что они не удаляют из воздуха твердые частицы, такие как пыль или пыльца.Сюда входят частицы, которые в первую очередь ответственны за аллергические реакции. Для борьбы с этим некоторые генераторы озона включают ионизатор, который рассеивает отрицательно заряженные ионы в воздухе. Недавние исследования показали, что этот процесс менее эффективен для удаления переносимых по воздуху молекул пыли, дыма, пыльцы и спор плесени, чем фильтры HEPA и электростатические фильтры.

4. Невозможно предсказать уровни воздействия

EPA отмечает, что становится все труднее определять фактическую концентрацию озона, производимого генератором озона, потому что в игру вступает множество различных факторов.Концентрация будет выше, если более мощные устройства будут использоваться в небольших помещениях. То, будут ли внутренние двери закрыты, а не открыты, также повлияет на концентрацию. Дополнительные факторы, влияющие на уровни концентрации, включают количество материалов и мебели в комнате, которые вступают в реакцию с озоном, уровень вентиляции наружного воздуха и близость человека к устройству, генерирующему озон.

HEPA-фильтры: более безопасное и эффективное решение

Выбор HEPA-фильтра — значительно более безопасное и эффективное решение, чем генератор озона.Вместо того, чтобы выделять опасный озон, HEPA-фильтр улавливает загрязнители воздуха в помещении, а не пытается вызвать с ними химическую реакцию.

Фильтры

HEPA — это единственный тип воздухоочистителей, который соответствует определенным стандартам EPA по эффективности. Это означает, что при покупке очистителя воздуха, основанного на технологии этого типа, вы можете расслабиться, точно зная, какой будет уровень эффективности.

Во многих случаях этот тип фильтра часто сочетается с другими технологиями, такими как активированный уголь, для обеспечения еще лучших результатов.Используя предварительный фильтр и активированный уголь, очистители воздуха могут удалять из воздуха твердые, химические и газообразные загрязнители и значительно улучшать качество воздуха в помещении.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *