Количество спутников глонасс и gps – Сравнение глобальных систем позиционирования GPS и ГЛОНАСС

Содержание

Сколько спутниковых систем вращается вокруг Земли / Сервис ГдеМои corporate blog / Habr

Большинство навигационных спутниковых систем появилось в ответ на запросы военных и долгое время ограничивалось GPS и ГЛОНАСС. Однако после того, как стало понятно, что данные со спутников можно эффективно использовать в мирных целях, число систем принялось планомерно расти. Мы изучили наиболее значимые из существующих сегодня НСС.

GPS — начало глобальной навигации


Действующих спутников: 31
Всего спутников на орбите: 32
Средняя высота от Земли: 22180
Время полного оборота вокруг Земли: 11 ч 58 мин

Американская система появилась в 1974 году и сразу произвела фурор своей эффективностью. Правительству США пришлось даже искусственно понижать точность определения координат, чтобы сохранить преимущества для своих военных. От собственноручно созданных трудностей избавились только в 2000 году — после указа Билла Клинтона. Первоначально архитектура GPS подразумевала использование 24 спутников, однако для большей надежности на орбите находится сразу 32 слота, постоянно из которых используется 31. Каждый спутник огибает Землю дважды в день и управляется с военной базы Шривер радиосигналами частотой в 2000-4000 МГц. GPS была и остается бесспорным лидером среди подобных систем и найти НСС-устройство без чипа с поддержкой GPS довольно трудно — как минимум в западном полушарии. Несмотря на свою явную успешность, GPS не стоит на месте. Уже в 2017 году будет запущен аппарат третьего поколения, чья главная особенность — способность передавать гражданские сигналы нового типа: L2C, L1C и L5. Известно, что сейчас GPS-сигнал нередко теряется среди городских небоскребов. Запуск нового аппарата решает эту проблему и имеет важное значениедля интеграции с другими системами, так как сигнал L2C универсален и может работать не только с GPS.

«Русская ракета» ГЛОНАСС


Действующих спутников: 24
Всего спутников на орбите: 24
Средняя высота: 19400 км
Время полного оборота вокруг Земли: 11 ч 15 мин

О влиянии холодной войны на технический прогресс в США и СССР слышали все. Поэтому запуск советскими учеными собственного проекта в ответ на появление GPS — шаг логичный и ожидаемый. Несмотря на то, что работы над проектом ГЛОНАСС начались еще в 1976 году, а на развертывание программы было потрачено 2,5 миллиарда долларов, официальный запуск системы произошел лишь в 1993 году. Девяностые выдались для отечественной науки не самыми безоблачными, финансирование было урезано, потому догнать и обогнать американского брата нам не удалось. Однако само появление второй системы создало необходимую для развития конкуренцию, что наилучшим образом повлияло всю отрасль в целом. В 2018 году в космос планируется запустить спутники системы ГЛОНАСС-К2, так же способные передавать сигналы в диапазонах L1 и L2.

Европейская система Galileo


Действующих спутников: 10
Всего спутников на орбите: 30 (в планах)
Средняя высота: 23222 км
Время полного оборота вокруг Земли: 14 ч 4 мин

Первая из неглобальных навигационных систем была создана Европейским космическим агентством в рамках проекта Транс-Евразийской сети. Она финансируется правительствами стран ЕС (и примкнувших к ним Китая, Израиля, Южной Кореи), хотя многие из них имеют и собственные космические программы. Сейчас на орбите находится 10 спутников и к 2020 году это число планируется утроить. Только на запуск первых двух спутников Евросоюз потратил более 1,5 миллиардов долларов. Первый спутник был запущен с Байконура всего лишь в 2005 году, а всего месяц назад на орбиту вывели 9 и 10 спутники.

Очевидно, что за десять лет невозможно создать сколько-нибудь конкурентоспособную систему, но у Galileo уже появились первые успехи. Например, ей удалось самостоятельно обнаружить местоположение тестового самолета во время испытаний в 2013 году. В то же время Galileo «дышит в унисон» с GPS. Его архитектура позволяет улавливать сигналы от американской инфраструктуры и использовать его для собственной навигации. В ближайшее время европейцы намерены увеличить точность своей системы до невероятных 10 сантиметров во время работы в специальном режиме.

Самая быстрорастущая система Beidou


Действующих спутников: 20
Всего спутников на орбите: 35 (в планах)
Средняя высота: от 21500 до 36000 км
Время полного оборота вокруг Земли: 12 ч 38 мин

Эта *пока еще* локальная система навигации была запущена в октябре 2000 года в Китае и стала самым стремительно развивающимся проектом отрасли. Планируется, что к 2020 году Бэйдоу получит 5 спутников на геостационарной и 30 на среднеземной орибитах, что даст ей право именоваться глобальной системой навигации. В отличие от европейской, нацеленной на сотрудничество с американцами, китайская система активно дружит с российской ГЛОНАСС. В мае этого года президенты стран договорились о взаимной эксплуатации двух систем.

Дмитрий Рогозин, куратор космической программы РФ:
— Если, скажем, GPS и Galileo выступает здесь как некая пара навигационных систем, охватывающих страны — члены НАТО, то мы видим возможность активной кооперации российско-китайских навигационных систем. Тем более что Китай уже сейчас вышел на второе место в мире по обладанию орбитальной группировкой.

Мобильные японцы QZSS


Действующих спутников: 1
Всего спутников на орбите: 4 (в планах)
Средняя высота: от 32 000 до 42 164 км
Время полного оборота вокруг Земли: 23 ч 56 мин

Интересный проект представляет японское агентство аэрокосмических исследований JAXA. Он предполагает запуск на геосинхронную орбиту системы из четырех спутников, рассчитанных на работу в азиатском регионе. Первый из них запущен в космос в 2010 году, а завершить работу планируется к концу 2017. Главная особенность проекта — сосредоточенность на поддержке мобильных приложений, что для Японии с ее крупнейшим в мире мобильным рынком, выглядит как само собой разумеющийся факт. Навигационная система сосредоточена прежде всего на улучшении качества мобильной картографии, платного медиа-контента, информации о достопримечательностях для туристов и системы мониторинга общественного транспорта.

Индийский домосед IRNSS


Действующих спутников: 4
Всего спутников на орбите: 7 (в планах)
Средняя высота: 36 000 км
Время полного оборота вокруг Земли: 23 ч 56 мин

Удовлетворение потребностей более чем миллиарда индийцев — более чем амбициозная задача, поэтому индийская система в ближайшее время на мировое господство не претендует. Четыре из семи разработанных спутника уже вращаются вокруг Земли, чтобы обеспечить жителей страны всеми благами навигации. Сегодня IRNSS используется в наземной, воздушной и морской навигации, сервисе точного времени, управлении ликвидациями последствий катастроф, картографии и геодезии, логистике, мониторинге автотранспорта, туризме. И, конечно, активно интегрируется с мобильными телефонами — куда без них теперь.

Вместо итога еще раз обозначим

основные тренды спутниковой навигации:

  • Универсальность и интеграция. Все системы в большей или меньшей степени движутся к использованию сигналов одного и того же типа и взаимодействию друг с другом.
  • Консолидация. Политическая обстановка и военный бэкграунд дают о себе знать. Если формально «холодная война» осталась далеко в прошлом, то фактически мы сами видим четкое разделение космических программ на «наших» и «чужих».
  • Курс на мобильные технологии. Ориентация на поддержку мобильных приложений — самый свежий и самый перспективный на наш взгляд тренд, за развитием которого будем пристально наблюдать в дальнейшем. И, наверное, не раз к нему вернемся.

habr.com

ГЛОНАСС лишился трех спутников за месяц. Полное покрытие планеты невозможно

14960

, Текст: Эльяс Касми

Оператор российской системы ГЛОНАСС вывел на техобслуживание третий за месяц навигационный спутник ГЛОНАСС-М. Он, как и все спутники второго поколения из состава группировки, вышел за пределы своего семилетнего срока эксплуатации. Нехватка спутников привела к неполному покрытию системой поверхности планеты, и сроки возвращения двух из трех аппаратов в строй неизвестны.

ГЛОНАСС без спутников

Российская навигационная система ГЛОНАСС лишилась третьего спутника в течение августа 2019 г. Из эксплуатации был выведен космический аппарат (КА) 745 (7-я рабочая точка), запущенный на орбиту восемь лет назад, в 2011 г.

По данным информационно-аналитического центра координатно-временного и навигационного обеспечения ГЛОНАСС, спутник был выведен из системы временно – ему необходимо провести техобслуживание. В итоге по состоянию на 30 августа 2019 г. из находящихся на орбите 27 КА ГЛОНАСС-М лишь 21 используется по прямому назначению.

Три спутника находятся на техобслуживании, один проходит летные испытания, а два оставшихся – резервные. По информации РИА «Новости», такого количества недостаточно для 100-процентного покрытия поверхности планеты – для этого в строю должно быть не меньше 24 космических аппаратов.

Негарантийные спутники

В настоящее время действующая система ГЛОНАСС наполовину состоит из спутников второго поколения ГЛОНАСС-М, которые пришли на смену первому поколению (запуски производись в период с 1982 по 2003 гг. включительно). Сроки техобслуживания спутника за номером 745 на момент публикации материала были неизвестны. Точные даты возвращения спутника 742, выведенного из системы несколькими днями раньше, тоже не называются. Космический аппарат 717 по плану должен вернуться в строй 1 сентября 2019 г., он находится на обслуживании с 1 августа 2019 г. а запуск его на орбиту Земли состоялся в 2006 г.

glo600.jpg

Спутник ГЛОНАСС-М, основа системы ГЛОНАСС

Второе поколение космических аппаратов ГЛОНАСС имеет определенные гарантийные сроки эксплуатации, установленные дочерним предприятием «Роскосмоса», «Информационными спутниковыми системами» им. М. Ф. Решетнева, и равные семи годам. Иными словами, половина из 27 спутников работают за пределами своего гарантийного срока. К тому же, новые ГЛОНАСС-М не производятся – их выпуск был прекращен в 2015 г.

Неполное покрытие и будущее ГЛОНАСС

Для российского аналога американской GPS неполноценное покрытие Земли в последние несколько лет стало регулярным явлением. Так, в апреле 2018 г. непродолжительное время отсутствовал сигнал от аппарата № 723, немного позже к нему присоединился и спутник 734, который был реанимирован лишь спустя месяц после выхода из строя, в мае 2018 г.

В сентябре 2018 г. в связи с проведением регламентных работ не работали аппараты ГЛОНАСС-М 730, 743 и 745. Однако на тот момент сроки выполнения работ составили ровно два дня – 9 и 10 сентября 2018 г., в отличие от ситуации с № 717, обслуживание которого затянулось на месяц.

Обновление находящихся на орбите спутников ГЛОНАСС, по данным РБК, выполняется исключительно по необходимости – в подобных ситуациях старый аппарат просто заменяют на новый. На смену всем спутникам ГЛОНАСС-М постепенно придет третье поколение космических аппаратов, получившее название ГЛОНАСС-К и 10-летний срок эксплуатации. Это на три года больше в сравнении с ГЛОНАСС-М и на семь лет больше, чем у первого поколения спутников. Первый ГЛОНАСС-К был запущен на орбиту 26 февраля 2011 г.

glo601.jpg

ГЛОНАСС-К могут использоваться 10 лет, вместо 7 у ГЛОНАСС-М

В июне 2019 г. российские власти констатировали факт невозможности серийного выпуска аппаратов ГЛОНАСС-К в рамках бюджета на 2019 г. Причиной стала нехватка импортных комплектующих, связанная введенными Западом санкциями против России в отношении электроники военного и двойного назначений.

История ГЛОНАСС

ГЛОНАСС (Глобальная навигационная спутниковая система) – изначально советская система навигации двойного назначения, гражданского и военного. Старт разработке был дан в 1963 г.

Система разрабатывалась в качестве отечественной альтернативы американской GPS, первый спутник был выведен на орбиту в 1982 г. (запуск первого космического аппарата GPS состоялся в 1978 г.). Изначально она имела исключительно военное назначение. Группировка спутников ГЛОНАСС движется в трех орбитальных плоскостях с высотой орбит 19,1 тыс. км. В отличие от GPS, у спутников ГЛОНАСС нет синхронности с вращением планеты, за счет чего достигается более высокая стабильность работы всей системы в целом. Это также упрощает обслуживание системы ввиду отсутствия необходимости проведения дополнительных корректировок спутников.



cnews.ru

GPS

GPS

О системе GPS

История создания Global Positioning System (GPS) ведёт своё начало с 1973 г., когда Управление совместных программ, входящее в состав Центра космических и ракетных исследований США, получило указание Министерства обороны США разработать, испытать и развернуть навигационную систему космического базирования. Результатом данной работы стала система, получившая первоначальное название NAVSTAR (NAVigation System with Time And Ranging), из которого прямо следовало, что система предназначена для решения двух главных задач – навигации, т. е. определения мгновенного положения и скорости потребителей, и синхронизации шкал времени. Поскольку инициатором создания GPS являлось Министерство обороны США, то в качестве первоочередных задач предусматривалось решение задач обороны и национальной безопасности. Отсюда ещё одно раннее название системы – оборонительная система спутниковой навигации (Defense Navigation Satellite System – DNSS).

Разработка концепции построения и архитектуры GPS заняла примерно 5 лет, и уже в 1974 году фирма Rockwell получила заказ на изготовление первых восьми космических аппаратов (КА) Block I для создания демонстрационной системы. Первый КА был запущен 22 февраля 1978, и в том же году Rockwell получила контракт на создание ещё четырёх КА.

Первоначально предполагалось, что орбитальная группировка GPS будет насчитывать 24 КА в трёх орбитальных плоскостях высотой 20200 км и наклонением 63°. К моменту начала серийного производства в 1989 году космических аппаратов модификации Block II было принято решение об изменении параметров орбиты GPS, в частности, наклонение было изменено на 55°, а количество орбитальных плоскостей увеличено до 6.

Выделяют два важных этапа развёртывания системы GPS – фазу первоначальной работоспособности (IOC) и фазу полной работоспособности (FOC). Этап IOC начался в 1993 году, когда в составе орбитальной группировки насчитывалось 24 КА различных модификаций (Block I/II/IIA), готовых к использованию по целевому назначению. Переход в режим FOC состоялся в июле 1995, после завершения всех лётных испытаний, хотя фактически система начала предоставлять услуги в полном объеме с марта 1994 года. Таким образом, GPS является полностью работоспособной уже в течение более чем двух десятилетий, при этом на протяжении всей своей истории GPS постоянно модернизировалась с целью удовлетворения требований различных категорий как гражданских, так и военных потребителей.

При проектировании GPS предполагалось, что точность навигационных определений при использовании C/A-кода будет в пределах 400 м. Реальная точность измерений по C/A-коду оказалась в 10 и более раз выше – 15-40 м (СКО) по координатам и доли метра в секунду по скорости. Возможность получения такой точности измерений с помощью несложной коммерческой АП вызвала в США опасения, что сигналы GPS могут быть использованы потенциальным противником, в том числе в системах высокоточного оружия. В качестве защитной меры, начиная с космического аппарата Block II, в GPS были реализованы два метода преднамеренной деградации (загрубления) точности навигационно-временного обеспечения гражданских потребителей – селективный доступ и одновременно принятые меры по защите от так называемых уводящих помех. Деактивация режима селективного доступа была осуществлена 2 мая 2000 г. около 4:00 (UT). Точность автономной навигации возросла почти в 10 раз, что дало гигантский импульс к развитию прикладных навигационных технологий.

Текущий третий этап модернизации GPS предполагает разработку и производство космических аппаратов следующего поколения Block III, которые в сочетании с усовершенствованным наземным комплексом управления и навигационной аппаратурой потребителей обеспечат улучшенные характеристики в части помехозащищённости, точности, доступности и целостности координатно-временного и навигационного обеспечения.

История развития GPS

Услуги системы GPS

Система GPS предоставляет два вида услуг:

  • услугу стандартного позиционирования (Standard Positioning Service – SPS) , доступную для всех потребителей,
  • услугу точного позиционирования (Precise Positioning Service – PPS) , доступную для санкционированных потребителей.

Каждый космический аппарат излучает навигационные сигналы на нескольких несущих частотах. Квадратурные составляющие сигналов, передаваемых на каждой из несущих частот, подвергаются фазовой манипуляции различными дальномерными псевдослучайными последовательностями (ПСП). Структура некоторых из этих ПСП опубликована, соответственно данный сигнал может приниматься всеми потребителями. Структура другой части ПСП закрыта, поэтому данный сигнал доступен для приёма только санкционированным потребителям, которым структура ПСП известна.

Услуга стандартного позиционирования SPS и временной синхронизации доступна для всех категорий потребителей безвозмездно и глобально и реализуется посредством излучения всеми космическими аппаратами GPS навигационных радиосигналов, модулированных дальномерным кодом C/A (Coarse/Acquisition – грубый приём). Код C/A представляет собой ПСП Голда длительностью 1 023 символа с тактовой частотой 1,023 МГц. Таким образом, ПСП C/A-кода имеет период повторения T = 1 мс, что соответствует интервалу однозначного измерения псевдодальности около 300 км. Программа развития GPS предусматривает предоставление гражданским потребителям услуги SPS с помощью сигналов L2C, L5 и L1C.

Услуга точного позиционирования PPS реализуется посредством излучения всеми космическими аппаратами орбитальной группировки GPS навигационных радиосигналов в диапазонах L1 и L2, модулированных дальномерным P(Y)-кодом. Услуга PPS предназначена для использования исключительно вооружёнными силами США, федеральными агентствами США и вооружёнными силами некоторых союзников.

Орбитальная группировка

Штатная орбитальная группировка GPS состоит из 32 основных космических аппаратов, расположенных на шести круговых орбитах, обозначаемых латинскими буквами от A до F. Дополнительно на некоторых орбитах может находиться один или два резервных КА, предназначенных для сохранения параметров системы при выходе из строя основных КА. Наклонение орбитальных плоскостей 55°, долготы восходящих узлов различаются на 60°. Высоте орбит 20 200 км соответствует период обращения 11 ч 58 мин, т. е. орбиты космических аппаратов GPS являются синхронными.

Орбитальная группировка GPS
ОРБИТАЛЬНАЯ ГРУППИРОВКА GPS
КОЛИЧЕСТВО ШТАТНЫХ КА32
ВЫСОТА ОРБИТЫ20 200 км
КОЛИЧЕСТВО ПЛОСКОСТЕЙ6
БОЛЬШАЯ ПОЛУОСЬ26 560 км
ПЕРИОД11 ч 58 мин
НАКЛОНЕНИЕ55°

Текущее состояние ОГ GPS

Типы космических аппаратов

В настоящее время восполнение орбитальной группировки осуществляется запуском космических аппаратов Block IIF («F» – follow on – продолжение). В соответствии с действующими планами КА Block IIF должны сменить на орбите КА Block IIA, КА Block III придут на смену Block IIR («R» – replacement – замена).

Основной задачей КА Block III является предоставление навигационных услуг с помощью нового навигационного радиосигнала L1C и повышение точности эфемеридно-временной информации, доступности навигационного радиосигнала, мощности излучения, а также увеличение срока активного существования.

Характеристики
КА GPS BLOCK IIA
КА GPS BLOCK IIR
КА GPS BLOCK IIR-M
КА GPS BLOCK IIF
КА GPS BLOCK III
Головной подрядчикRockwell InternationalLockheed MartinLockheed MartinBoeingLockheed Martin
Срок активного существования7,5 лет10 лет10 лет12 лет15 лет
Масса на орбите, кг9851126,71126,71465,12161
Габариты, м1,58×1,96×2,212,49×2,03×2,242,46×1,78×3,40
Солнечные батареи2 кремниевые панели мощностью 710 Вт2 кремниевые панели мощностью 1040 Вт2 кремниевые панели мощностью 1040 Вт3 трехпереходные арсенид-галлиевые мощностью 1900 Вт2 ультра трехпереходные (UTJ) мощностью 4480 Вт
Аккумуляторные батареи3 никель-кадмиевые2 никель-водородные перезаряжаемые2 никель-водородные перезаряжаемыеникель-водородные перезаряжаемые2 никель-водородные перезаряжаемые
СигналыL1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L2C
L1/2 M-Code
L1 C/A
L1/2 P(Y)
L5I
L5Q
L1M
L2M
L2C
L1 C/A
L1P(Y)
L1C
L2C
L2M
L5
L1/2 M-Code
БСУ2 Rb, 2 Cs3 Rb3 Rb2 Rb, 1 Cs3 Rb

Навигационные радиосигналы

Спектр навигационных радиосигналов системы GPS
Орбитальная группировка GPS
Характеристики навигационных радиосигналов системы GPS
ДиапазонНесущая частота, МГцСигналДлительность
кода ПСП, символы
Тактовая частота, МГцВид модуляцииСкорость
передачи ЦИ,
БИТ/С
L11 575,42C/A
P
M
L1CD
L1CP
1 023
~ 7 дней
нет данных
10 230
10 230·1 800
1,023
10,23
5,115
1,023
1,023
BPSK
BPSK
ВОС(10, 5)
ВОС(1,1)
ТМВОС(6, 1, 1/11)
50/50
50/50
нет данных
100/50
пилот-сигнал
L21 227,6P
L2C
M
~ 7 дней
М: 10 230
L: 767 250
нет данных
10,23
1,023
5,115
BPSK
BPSK
ВОС(10, 5)
50/50
50/25
нет данных
L51 176,45L5I
L5Q
10 230·10
10 230·20
10,23
10,23
BPSK
BPSK
100/50
пилот-сигнал
СТРУКТУРА ЦИ НАВИГАЦИОННЫХ РАДИОСИГНАЛОВ СИСТЕМЫ GPS

Внедрение новых навигационных сигналов GPS сопровождается совершенствованием структуры цифровой информации и применением новых видов модуляции, а также переходом от структуры навигационного сообщения типа NAV на структуры типа CNAV и CNAV-2.

Навигационные сообщение типа CNAV являются усовершенствованными версиями навигационного сообщения NAV, позволяющие точнее передавать оперативную и неоперативную информацию о состоянии GPS. В навигационном сообщении CNAV содержится информация того же типа, что и в сообщении NAV (текущее время, признаки состояния КА, эфемеридно-временная информация, альманах системы и т.п.), однако эта информация передается в новом формате. Вместо использования архитектуры суперкадров/кадров сообщение передается в виде пакетов различной длительности. Наиболее существенными изменениями структуры CNAV являются расширение количества космических аппаратов используемых по целевому назначению с 32 до 63, а также возможность оперативно передать данные о работоспособности конкретного аппарата (целостности) с задержкой менее 6 с.

Система координат и шкала времени

Система координат

В GPS используется Всемирная геодезическая система 1984 года (World Geodetic System – WGS-84). Очередное уточнение параметров системы WGS-84 (G1678) состоялось в 2012 году, при этом расхождения между действующей системой WGS-84 и ITRF 2008 составляет величину порядка 1 см, т. е. обе системы являются фактически идентичными.

Параметры земного эллипсоида системы WGS-84
ПараметрЗначение
Большая полуось a, м6 378 137, 0
Параметр сжатия эллипсоида1/298,257223563
Угловая скорость вращения Земли ω, рад/с7 292 115 * 10-11
Гравитационная постоянная Земли, м322 986 004,418 * 10-8

Система времени

Системное время GPS связано с координированным всемирным временем (UTC) в соответствии с наблюдениями морской обсерватории США (USNO). Номинально шкала времени GPS имеет постоянное, равное 19 с, расхождение с международным атомным временем TAI. Отсчёт времени ведётся в неделях GPS и секундах в рамках текущей недели, начало отсчёта – 00 ч 00 мин 06.01.1980. В системе GPS номер недели записывается с помощью 10-разрядного двоичного числа, максимальное значение номера недели равно 1 023. Нулевой номер недели повторился в полночь с 21 на 22 августа 1999 г.

Наземный комплекс управления

Управление орбитальной группировкой GPS осуществляет 2-ая оперативная космическая эскадрилья Космического командования ВВС США. В настоящее время управление орбитальной группировкой GPS осуществляет наземный комплекс управления 2 поколения (Operational Control Segment - OCS), который включает в себя:

Орбитальная группировка GPS

Главный центр управления системой GPS на базе ВВС Шривер

 

Орбитальная группировка GPS

Резервный центр управления системой GPS

 

Орбитальная группировка GPS

Станции мониторинга Национального агентства геопространственной разведки

 

Орбитальная группировка GPS

Глобальную сеть закладочно-измерительных станций

 

Орбитальная группировка GPS

Станции мониторинга GPS ВВС США

 

Орбитальная группировка GPS

Запросные станции GPS L-диапазона

Наземный комплекс управления GPS

Наземный комплекс управления GPS реализует беззапросную технологию эфемеридно-временного обеспечения. Глобальная сеть командно-измерительных станций позволяет производить закладку информации на борт с периодичностью 4 - 6 ч.

Интерфейсный контрольный документ

Интерфейсный контрольный документ GPS: www.gps.gov/technical/icwg/

Официальный сайт

Официальный сайт системы GPS: www.gps.gov

Пользовательский информационный центр GPS: www.navcen.uscg.gov

Наверх

www.glonass-iac.ru

Глобальная навигационная спутниковая система (ГЛОНАСС)

В 1976 году вышло постановление правительства СССР о ее разработке.

На основе проведенных многосторонних исследований отечественными специалистами была выбрана штатная орбитальная группировка из 24 спутников, находящихся на средневысотных околокруговых орбитах с номинальными значениями высоты — 19100 километров.

Летные испытания высокоорбитальной отечественной навигационной системы, получившей название ГЛОНАСС, были начаты 12 октября 1982 года с запуском первого космического аппарата серии "Глонасс" ("Космос-1413"). 24 сентября 1993 года система была официально принята в эксплуатацию в интересах министерства обороны РФ с орбитальной группировкой ограниченного состава из 12 спутников. В декабре 1995 года орбитальная группировка была развернута до штатного состава (24 спутника), который необходим для полного охвата территории всего земного шара.

Сокращение финансирования космической отрасли в 1990-х годах привело к деградации орбитальной группировки ГЛОНАСС. К 2002 году она насчитывала только семь космических аппаратов, что не могло обеспечить территорию России навигационными сигналами системы ГЛОНАСС хотя бы с умеренной доступностью. Точностные характеристики уступали более чем на порядок американской системе навигации GPS.

В целях сохранения и развития системы президентом и правительством РФ был утвержден ряд директивных документов, основным из которых являлась федеральная целевая программа "Глобальная навигационная система" на период 2002-2012 годы.

В результате ее реализации орбитальная группировка была полностью восстановлена. С 2012 года система развивается в рамках новой федеральной целевой программы "Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 годы" для обеспечения эффективности решения задач координатно-временного и навигационного обеспечения в интересах обороны, безопасности и развития социально-экономической сферы страны в ближайшей и отдаленной перспективе.

Система ГЛОНАСС состоит из подсистемы космических аппаратов, подсистемы контроля и управления и навигационной аппаратуры потребителей.

Основой системы ГЛОНАСС являются 24 спутника, которые движутся в трех орбитальных плоскостях по восемь аппаратов в каждой плоскости, наклоненных к экватору под углом 64,8°, с высотой орбит 19100 километров и периодом обращения 11 часов 15 минут 44 секунды. Выбранная структура орбитальной группировки обеспечивает движение всех космических аппаратов по единой трассе на поверхности Земли с ее повторяемостью через восемь суток. Такие характеристики обеспечивают высокую устойчивость орбитальной группировки системы ГЛОНАСС, что практически позволяет обходиться без коррекции орбит космических аппаратов в течение всего срока их активного существования.

По состоянию на 10 октября 2017 года в составе орбитальной группировки ГЛОНАСС находилось 25 космических аппаратов, из них 23 использовались по целевому назначению.

Космические спутники для ГЛОНАСС были спроектированы в конструкторском бюро НПО прикладной механики (ныне — АО "Информационные спутниковые системы" имени академика М.Ф. Решетнева") в городе Красноярск-26 (Железногорск).

С 1982 года по 2009 год в эксплуатации находились космические аппараты "Глонасс", со сроком активного гарантийного существования три года. В настоящее время основу орбитальной группировки составляют спутники модифицированной серии "Глонасс-М", первый из которых был запущен в декабре 2003 года. От спутников первого поколения они отличаются гарантийным сроком активного существования (семь лет) и использованием импортных комплектующих. Планируется замена "Глонасс-М" космическими аппаратами нового поколения "Глонасс-К" со сроком активного существования до 10 лет. Первый космический аппарат этого типа был выведен на орбиту в 2011 году, второй — 2014 году.

В настоящее время в АО "ИСС" также ведется создание усовершенствованных навигационных спутников — "Глонасс-К" второго этапа.

Подсистема контроля и управления (ПКУ) состоит из Центра управления системой ГЛОНАСС и сети станций измерения, управления и контроля, рассредоточенной по всей территории России. В задачи ПКУ входит контроль правильности функционирования космических аппаратов, непрерывное уточнение параметров орбит и выдача на спутники временных программ, команд управления и навигационной информации.

Навигационная аппаратура потребителей состоит из навигационных приемников и устройств обработки, предназначенных для приема навигационных сигналов спутников ГЛОНАСС и вычисления собственных координат, скорости и времени. Навигационной аппаратурой потребителей системы ГЛОНАСС выполняются беззапросные измерения до четырех спутников ГЛОНАСС, а также прием и обработка навигационных сообщений. В навигационном сообщении описывается положение спутника в пространстве и времени. В результате обработки полученных измерений и принятых навигационных сообщений определяются три координаты потребителя, три составляющие вектора скорости его движения, а также осуществляется "привязка" шкалы времени потребителя к шкале Госэталона координированного всемирного времени UTC (SU).

Система ГЛОНАСС позволяет обеспечить непрерывную глобальную навигацию всех типов потребителей с различным уровнем требований к качеству навигационного обеспечения путем использования сигналов стандартной (L1) и высокой точности (L2) с вероятностью 0,95 при 18 спутниках и 0,997 при 24 спутниках в группировке. Она отнесена к космической технике двойного назначения.

В настоящее время развитием проекта ГЛОНАСС занимается Государственная корпорация "Роскосмос" и министерства и ведомства России: Минобороны, МВД, Ростехнадзор, Минтранс, Росреестр, Минпромторг, Росстандарт, Росавиация, Росморречфлот, Федеральное агентство научных организаций (ФАНО).

Летом 2017 года руководитель Федерального агентства по техническому регулированию и метрологии (Росстандарт) Алексей Абрамов заявил, что российские ученые работают над увеличением точности навигаторов ГЛОНАСС до нескольких сантиметров. По его словам, пока достигнут метровый диапазон (при благоприятных условиях можно определять место нахождения того или иного объекта с точностью до 3-5 метров).

В сентябре 2017 года вице-премьер Дмитрий Рогозин отметил, что российская система ГЛОНАСС в два раза уступает американской GPS. Президент РФ Владимир Путин на заседании комиссии военно-промышленного комплекса поставил задачу сравнять эффективность GPS и ГЛОНАСС и к 2020 году выйти на конкурентные показатели. По словам Рогозина, это удастся сделать, благодаря запуску новых аппаратов.

В соответствии с указом президента РФ доступ к гражданским навигационным сигналам системы ГЛОНАСС предоставляется как российским, так и иностранным потребителям на безвозмездной основе и без ограничений.

С 1996 года по предложению правительства РФ ГЛОНАСС наряду с американской GPS используется Международной морской организацией и Международной организацией гражданской авиации.

Современные средства спутниковой навигации уже сейчас широко используются в различных областях социально-экономической сферы и позволяют выполнять навигацию наземных, воздушных, морских, речных и космических средств, управление транспортными потоками на всех видах транспорта, контроль перевозок ценных и опасных грузов, контроль рыболовства в территориальных водах, поисково-спасательные операции, мониторинг окружающей среды; геодезическую съемку и определение местоположения географических объектов с сантиметровой точностью при прокладке нефте- и газопроводов, линий электропередач, в строительстве; синхронизацию в системах связи, телекоммуникаций и электроэнергетике; решение фундаментальных геофизических задач; персональную навигацию индивидуальных потребителей.

Спутниковая навигация уже применяется и в сельском хозяйстве, где используется для автоматической обработки земельных угодий комбайнами, и в горнодобывающей промышленности. Круг применения технологий спутниковой навигации постоянно расширяется.

Материал подготовлен на основе информации РИА Новости и открытых источников

 

ria.ru

Разница ГЛОНАСС и GPS

навигация.jpgВ мире существует две навигационные системы - ГЛОНАСС и GPS.

ГЛОНАСС расшифровывается как Глобальная Навигационная Спутниковая Система, являющаяся системой спутниковой навигации планетарного масштаба. Она предназначена для определения координат пользователя на земной поверхности или в околоземном пространстве. Разработка ГЛОНАСС началась в далёком 1982г. в СССР, через несколько лет проект был заморожен и вновь введен в строй в двухтысячных годах. После 2009г. систему продолжили активно восстанавливать и популяризировать, причём очень успешно - сейчас покрытие охватывает почти всю территорию земного шара, хотя немного уступая GPS. Для гражданского использования, модули ГЛОНАСС устанавливаются не только на навигаторы, но и на смартфоны на android, в том числе недорогие. К примеру, система ГЛОНАСС применяется во всех новых мобильных телефонах марки Хайскрин (в сочетании с GPS).

GPS («Global Positioning System») – всемирная система позиционирования, разработкой которой занимается Министерство обороны Соединённых Штатов. Этот проект был запущен в 1993г. На сегодняшний день, сигналы сети GPS-спутников охватывают всю планету, это система навигации, которая является полностью общепланетарной. Модулями GPS оснащаются даже самые дешёвые смартфоны.
Таким образом, и GPS, и ГЛОНАСС призваны выполнять одни и те же функции – позиционирование объектов и определение скорости их движения. Они являются инструментом для навигации, картографии, спутникового мониторинга по всему миру и имеют некоторые различия между собой.

ГЛОНАСС


смартфон прокладка маршрута.jpgГЛОНАСС - спутники вращаются на орбитах высотой порядка 19 тысяч км., причем их вращение не синхронизировано с вращением Земли, поэтому они более стабильны, а их координаты определяются более точно и почти не требуют дополнительных корректировок. Зона покрытия их охватывает территорию РФ и большую часть территории земного шара. Предельная точность позиционирования высокая и составляет около 2-4 метров.
На 2019 год система насчитывает 24 спутника, она использует как открытые (гражданские) сигналы обычной точности, так и защищенные сигналы высокой точности позиционирования.

GPS


koordinaty.jpgВ GPS-систему входят три сегмента: управляющий, космический и пользовательский. Управляющий представляет собой главную станцию управления и сеть мониторинговых объектов, к космическому относятся выведенные на орбиту спутники, к пользовательскому – все эксплуатируемые GPS-приемники (и выполняющие научные задачи, и частные).
Группировка спутников в настоящее время насчитывает 32 аппарата, из них 31 действующий. Стандартная точность определения координат – 5-8м, при использовании корректирующих поправок точность увеличивается до 1-2м.

В настоящее время GPS-навигация более популярна в мире, чем ГЛОНАСС. Во многом это связано с тем, что активное внедрение и развитие GSM началось гораздо раньше, а ГЛОНАСС-работы были свернуты. Приемники GSM очень компактны, ими оснащаются практически все планшеты, недорогие смартфоны.

В некоторых регионах планеты можно наблюдать более точную работу спутников GPS, в некоторых спутников ГЛОНАСС, таким образом, для получения максимально точного позиционирования безусловно идеальным вариантом будет приобретение смартфонов с совместной поддержкой ГЛОНАСС и GPS, которыми и оснащаются мобильные телефоны Highscreen.

хайскрин макс 2.jpg
Каталог смартфонов Хайскрин
Официальный магазин производителя мобильных телефонов Highscreen hs-store.ru

hs-store.ru

Работает ли GPS+ГЛОНАСС в навигаторах Garmin?

До сих пор сложно поверить, что в наш век "дикой" коммерции существует абсолютно бесплатная (при наличии технических средств) возможность определения своего местоположения в любой точке земного шара. Это одно из величайших изобретений XX века! Эта многомиллиардная по своим капиталовложениям система (сегодня их несколько) задумывалась прежде всего в интересах обороны (и науки), но прошло совсем немного времени и ей ежедневно стал пользоваться почти каждый человек. Под gps навигатором будем понимать специальное радиоприёмное устройство для определения географических координат текущего местоположения (позиционирования).

К написанию этого поста меня подтолкнула фраза известного в узких кругах туриста про навигатор Garmin Etrex 30x.
Вот цитата из его статьи: "Спутниковая система: GPS/GPS+Глонасс/Демо режим. Не наводит ни на какую мысль то, что только Глонасс включить нельзя? Так вот его там и нету. В инструкции об этом ничего не сказано. Можете смеха ради взять в одну руку Garmin, а в другую смартфон с Глонассом, открыть экран отображения спутников и попытаться найти похожие. Это просто эмуляция, так что что вы поставите GPS или GPS+GLONASS не важно."
Как вам такое заявление? Только не кидайтесь тапками сразу проверять. Поскольку тут фигурируют понятия "GPS", "GLONASS" и "Garmin", то придется раскрыть тему полностью.

1 - GPS
Первой системой глобального позиционирования стала американская система NAVSTAR, которая берет своё начало в 1973 году. Уже в 1978 году был запущен первый спутник, что можно считать началом эры Global Positioning System (GPS), а в 1993 году орбитальная группировка насчитывала 24 космических аппаратов (КА), но только в 2000 году (после деактивации режима селективного доступа) началась штатная эксплуатация для гражданских пользователей.
Спутники NAVSTAR находятся на высоте 20200 км с наклонением 55° (в шести плоскостях) и периодом обращения 11 часов 58 минут. В GPS используется Всемирная геодезическая система 1984 года (World Geodetic System – WGS-84), что стало стандартом систем координат для всего мира. ВСЕ навигаторы определяют местоположение (показывают координаты) в этой системе по умолчанию.

Группировка на сегодняшний день состоит из 32 спутников. Самый ранний в системе от 22 ноября 1993 года, самый поздний (последний) - 9 декабря 2015 года.

(Источник)

2 - ГЛОНАСС
Отечественная навигационная система началась с системы "Цикада" в составе четырех спутников в 1979 году. Система ГЛОНАСС была принята в опытную эксплуатацию в 1993 году. В 1995 году развернута орбитальная группировка полного состава (24 КА «Глонасс» первого поколения) и начата штатная эксплуатация системы. С 2004 года запускаются новые КА "Глонасс-М", которые транслируют два гражданских сигнала на частотах L1 и L2.
Спутники ГЛОНАСС находятся на высоте 19400 км с наклонением 64,8° (в трех плоскостях) и периодом 11 часов 15 минут.

Группировка на сегодняшний день состоит из 24 спутников. Самый ранний в системе от 3 апреля 2007 года, самый поздний (последний) - 16 октября 2017 года.

(Источник)

Таблица с номерами спутников ГЛОНАСС. Есть номер ГЛОНАСС и номер COSMOS. В наших смартфонах совсем другие номера спутников. От 1 это GPS, от 68 - ГЛОНАСС.
Более того - они даже другие в навигаторе и смартфоне.

Теперь посмотрим на программу "Orbitron". Днём 4 апреля на небосводе в Ижевске "пролетало" 10 спутников системы ГЛОНАСС.

Или в другом представлении - на карте. Есть все данные о каждом спутнике.

[Вот эти же спутники на сайте информационно-аналитического центра КВНО ФГУП ЦНИИмаш в городе Королев.]

Основное отличие двух систем - это сигнал и его структура.
В системе GPS используется кодовое разделение каналов. Сигнал с кодом стандартной точности (C/A-код), передаваемый в диапазоне L1 (1575,42 МГц). Сигналы модулируются псевдослучайными последовательностями двух типов: C/A-код и P-код. C/A - общедоступный код - представляет собой PRN с периодом повторения 1023 цикла и частотой следования импульсов 1,023 МГц.
В системе ГЛОНАСС частотное разделение каналов. Все спутники используют одну и ту же псевдослучайную кодовую последовательность для передачи открытых сигналов, однако каждый спутник передаёт на разной частоте, используя 15-канальное разделение по частоте. Навигационные радиосигналы с частотным разделением в двух диапазонах: L1 (1,6 ГГц) и L2 (1,25 ГГц).
Структура сигнала так же различна. Для описания движения спутников по орбите используются принципиально разные математические модели. У GPS - это модель в оскулирующих элементах. Эта модель подразумевает, что траектория движения спутника разбивается на участки, на которых движения описывается кеплеровской моделью, параметры которой меняются во времени. В системе ГЛОНАСС используется дифференциальная модель движения.
Теперь к вопросу о возможности совмещения. 2011 год прошёл под эгидой поддержки ГЛОНАСС. При проектировании приёмников, важно было преодолеть проблемы несовместимости аппаратной поддержки ГЛОНАСС и GPS. То есть частотно-модулированный сигнал ГЛОНАСС потребовал более широкой полосы частот, чем сигналы импульсно-кодовой модуляции, используемые GPS, полосовых фильтров с разными центрами частот и разной скоростью передачи элементов сигнала. Для экономии энергии в навигаторах рекомендуется включить режим "только GPS".

3 - Garmin
Американская компания-производитель портативных навигационных устройств получила всемирную известность в первую очередь благодаря туристическим GPS навигаторам (серии GpsMap, eTrex, Oregon, Montana, Dakota) и автомобильным навигаторам, спортивным часам и эхолотам. Штаб-квартира находится в городе Олэт (штат Канзас). C 2011 года компания Garmin начала продажи навигаторов GPSMAP 62stc с возможностью приема и обработки сигнала от спутников GPS и GLONASS. Однако информация о используемых производителях чипов стала коммерческой тайной.

Применение двухсистемных приемников помогает повысить качество навигации в реальных условиях, на точности же определения координат двухсистемность никак не отражается. Недостаточный сигнал от спутников одной системы в данном месте и в данное время компенсируется спутниками другой системы. Максимальное число "видимых" спутников на небосводе в идеальных условиях: GPS - 13, ГЛОНАСС - 10. Именно по этой причине большинство обычных (не геодезических) приемников 24-х канальные.

Вот результаты теста от 2016 года. К сведению - НАП-4 и НАП-5 используют навигационные приемники ижевского радиозавода МНП-М7 и МНП-М9.1 соответственно.

Выводы. Лучшие результаты по точности позиционирования на маршруте эксперимента показали НАП-1, НАП-2, НАП-4. У всех НАП точность позиционирования достаточна для уверенной навигации во всех режимах. При этом точность позиционирования в режиме GPS и в совмещенном режиме несколько лучше, чем в режиме ГЛОНАСС.
Результаты НАП-3 с экспериментальным ПО по точности позиционирования в плане во всех режимах хуже, чем у такого же приемника с штатным ПО (НАП-2). В точности по высоте такой разницы не наблюдается. Исключением являются большие ошибки в совмещенном режиме, вызванные разовым сбоем в работе НАП, который привел к сильным отклонениям.
Результаты НАП-5 в целом хуже, чем у НАП того же производителя предыдущего поколения (НАП-4). Наблюдалось незначительное улучшение точности позиционирования в плане в режиме ГЛОНАСС. (источник)

Антенна навигатора принимает спутниковые сигналы и передаёт в приемник, который обрабатывает их. Чипы для навигационных устройств, поддерживающие работу с GPS+Глонасс, сегодня производят многие компании: Qualcomm (SiRFatlas V, SiRFstar V), MediaTek (MT3333/MT3332), ST Microelectronics (STM Cartesio, Teseo), Broadcom, u-blox и многие другие. Понять, какой именно чип (приемник) стоит в вашем навигаторе Garmin можно только после его "вскрытия". Обычно он расположен под дисплеем.

И напоследок фото моего Garmin eTrex20 внутри.

UPD: по проверенной информации drol_links в Гарминах стоит приёмник STA8088EXG от одной из крупнейших европейских компаний STMicroelectronics.

Выводы для пользователей навигатора Garmin:
1. В навигаторах и часах Garmin (после 2011 года) появилась возможность выбрать (включить приём и обработку сигнала) либо GPS, либо GPS+ГЛОНАСС. Отдельно ГЛОНАСС не предусмотрен по причине того, что это Garmin (ну как америкосы включат только что-то российское?)
2. В идеальных или близких к ним условиях (степь, равнина) вторая система не обязательна. В горах, городе и северных широтах - очень желательна. Но расход энергии будет больше.
3. Уж если производители смартфонов смогли "запихать" эту возможность в свои компактные девайсы, то почему это "не получилось" у Garmin?
Удачи!

stepandurnev.livejournal.com

Спутниковая навигация: GPS, ГЛОНАСС и другие

На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Первые предпосылки

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Навигационный радиомаяк LORAN в Канаде

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.

Сеть навигационных спутников вокруг Земли

В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.

ГЛОНАСС – изначально советская, а теперь российская альтернатива GPS

Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.
Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).

Для точного позиционирования нужно минимум три спутника и земной шар (либо четвертый спутник)

Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.

Навигационный чип производства компании Leadtek

Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.

Туристический навигатор Garmin eTrex 10

Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.

Автомобильный навигатор NAVIGON 3300 Max

Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.

Запущенный в этом году экспериментальный GPS-спутник USA-242 может похвастаться длительным временем работы (более 10 лет) и более точным позиционированием (до полуметра)

Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

itc.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о