Роторно-поршневой двигатель описание фото видео история
Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.
Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель – механик-самоучка — стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.
Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве.
Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и различными частями корпуса. Вращательные движения ротор осуществляет помощью сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения. Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньше, чем обычный поршневой двигатель эквивалентной мощности.
Роторный двигатель имеет один главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса. С помощью этого контакта образуются камеры сгорания, или три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образованных камер сгорания все время меняется, напоминая действия обычного насоса. Все три боковых поверхности ротора работают, как поршень.
Внутри у ротора является шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубы в большей шестерни внутренние.
По той причине, что вместе с выходным валом ротор связан эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал.
Выходной вал станет делать оборот три раза за каждый из оборотов ротора.
Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучше. Меньше масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.
Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет гораздо лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.
Все из частей роторного двигателя осуществляют непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как в поршней традиционного двигателя. Роторные двигатели внутренне сбалансированы. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя кажется намного более гладким и равномерным образом.
Двигатель Ванкеля имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель «Мазда» является первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.
Что это такое РПД?
В классическом четырехтактным двигателем одно и то же цилиндр используется для различных операций — впрыск, сжатие, сжигание и выпуска. В роторном же двигателе каждый процесс выполняется в отдельном отсеке камеры. Эффект мало чем отличается от разделения цилиндра на четыре отсека для каждой из операций.
В поршневом двигателе давление возникает при сгорании смеси заставляет поршни двигаться вперед и назад в своих цилиндрах. Шатуны и коленчатый вал преобразуют этот толкательной движение во вращательное, необходимое для движения автомобиля.
В роторном двигателя нет прямолинейного движения которое надо было бы переводить во вращательное.
Давление образуется в одном из отсеков камеры заставляя ротор вращаться, это снижает вибрацию и повышает потенциальную величину оборотов двигателя. В результате всего большая эффективность, и меньшие размеры при той же мощности, что и обычного поршневого двигателя.
Функцию поршня в РПД выполняет трьохвершинний ротор , преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса) обеспечивается парой шестерен, одна из которых жестко закреплена на роторе, а вторая на боковой крышке статора. Сама шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора из зубчатым колесом как бы обкатывается вокруг нее.
Передаточное отношение шестерен 2: 3, поэтому за один оборот эксцентрикового вала ротор возвращается на 120 градусов, а за полный оборот ротора в каждой из камер происходит полный четырехтактный цикл. Газообмен регулируется вершиной ротора при прохождении ее через впускной и выпускной окно. Такая конструкция позволяет осуществлять 4-тактный цикла без применения специального механизма газораспределения.
Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаются к цилиндру центробежными силами, давлением газа и ленточными пружинами. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала Смесеобразование, воспаление , смазка, охлаждение, запуск — принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания
Смесеобразование
В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.
Из жидкого топлива смесь приготавливается следующим образом:
- Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
- В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.
Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их.
Технические характеристики роторно-поршневого двигателя
| параметры | ВАЗ-4132 | ВАЗ-415 |
| число секций | 2 | 2 |
| Рабочий объем камеры двигателя, куб.см | 1,308 | 1,308 |
| степень сжатия | 9,4 | 9,4 |
| Номинальная мощность, кВт (л.с.) / мин-1 | 103 (140) / 6000 | 103 (140) / 6000 |
| Максимальный крутящий момент, Н * м (кгс * м) / мин-1 | 186 (19) / 4500 | 186 (19) / 4500 |
| Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-1 | 1000 | 900 |
Масса двигателя, кг | 136 | 113 |
Габаритные размеры, мм | ||
высота | 560 | 570 |
ширина | 546 | 535 |
длина | 495 | 665 |
Минимальный удельный расход топлива (по ВСХ), г / кВт * ч (г / л. | 312.2 (230) | 312.2 (230) |
Расход масла в% от расхода топлива | 0,7 | 0,6 |
Ресурс двигателя до первого капитального ремонта, тыс. Км | 125 | 125 |
назначение | ВАЗ-21059/21079 | ВАЗ-2108/2109/21099/2115/2110 |
выпускаются модели
модель | двигатель РПД | Время разгона 0-100, сек | Максимальная скорость, км \ ч |
ВАЗ 21018 | ВАЗ-311 | — | 160 |
ВАЗ-411 | — | 178 | |
ВАЗ 21059 | ВАЗ-4132 | 9 | 180 |
ВАЗ 21079 | ВАЗ-4132 | 9 | 180 |
ВАЗ 2108-91 | ВАЗ-415 | 8 | 200 |
ВАЗ 2109-91 | ВАЗ-415 | 9 | 190 |
ВАЗ 21099-91 | ВАЗ-415 | 9 | 190 |
ВАЗ 2110-91 | ВАЗ-415 | 9 | 190 |
ВАЗ 2115-91 | ВАЗ-415 | 9 | 190 |
КПД роторно-поршневой конструкции
Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам.
Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.
Итоговый КПД работы мотора состоит из трех основных частей:
- Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).
Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.
- КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.
- Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).
На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.
Николай и Александр Школьники разработали перспективный двигатель роторного типа X1 с высоким КПД
Роторный двигатель X1
Компания LiquidPiston, занимающаяся разработкой двигателя роторного типа по новой технологии, получила финансирование от агентства передовых оборонных исследований DARPA. Новый двигатель получил кодовое название X1. Во главе исследований и разработки стоит два человека — отец и сын, Николай и Александр Школьники, работы ведутся в городе Блумфилд, штат Коннектикут.
По их заявлениям, разработанный новый тип роторного двигателя значительно превосходит КПД обычных двигателей внутреннего сгорания, так, тепловой КПД двигателя X1 достигает 50%, при том, что КПД двигателя внутреннего сгорания не превышает 20-30%.
Добиться 50-ти процентного КПД у двигателя внутреннего сгорания можно, для этого придется добавить в дизельный двигатель турбонаддув с промежуточным охлаждением, но такая система станет слишком габаритной для комерчесеского применения.
В своем анонсе Александр Школьник сравнивает размеры двигателей и их мощность, размер обычного дизельного генератора на 3 кВт составляет 100?60?60 см и весит более 70 кг, а разработанный ими генератор на основе роторного двигателя с такой же мощностью будет весить всего 15 кг при габаритных размерах 30?30 см.
Разработчики постарались взять лучшее от разных тепловых циклов и уменьшить потери энергии двигателя. Теоретический предел КПД нового двигателя — 75%, но пока инженеры трудятся над достижением реального показателя в 57%.
Работа двигателя X1 напоминает процесс работы известного роторного двигателя Ванкеля, вывернутый наизнанку. Ротор закреплён на эксцентрическом валу, и содержит в себе каналы для впуска газовой смеси и выпуска отработавших газов. Расположенные по углам равностороннего треугольника свечи отрабатывают по разу за один оборот вала. Двигатель работает на прямом впрыске и обеспечивает высокую степень сжатия — 18:1. Не меняющийся во время сгорания объём камеры позволяет сжигать топливо дольше и полнее.
Отработавшие газы достигают почти атмосферного давления перед выходом, в связи с чем успевают отдать почти всю свою энергию ротору.
Высокая эффективность также позволяет отказаться от водяного охлаждения двигателя. Работая под нагрузкой, двигатель может пропускать циклы зажигания и засасывать воздух, который будет охлаждать его. Рассматривается даже вариант впрыска в камеру сгорания воды, которая будет охлаждать двигатель, уменьшать выбросы отработавших газов и одновременно превращаться в пар, толкающий ротор.
Компактность и мощность двигателя заинтересовали военных, которым требуются портативные энергетические системы. В случае успешного внедрения двигатель найдёт множество применений — переносной электрогенератор, двигатель для беспилотных аппаратов, и многое другое.
Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале «Популярная механика». В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.
LiquidPiston мощностью 40 л.с. обеспечивает тепловой КПД 75 % — UAS VISION
Двигатель внутреннего сгорания (ДВС) имел удивительно успешную историю в течение полутора веков. К сожалению, он заведомо неэффективен, тратя впустую от 30 до 99 процентов производимой энергии и выбрасывая несгоревшее топливо в воздух.
На прошлой неделе Gizmag взял интервью у доктора Александра Школьника, президента и главного исполнительного директора LiquidPiston, Inc., о разработанном компанией LiquidPiston X2 — роторном двигателе мощностью 40 л.с., который работает на различных видах топлива и не требует клапанов, систем охлаждения, радиаторов или глушителей. но обещает термодинамическую эффективность 75 процентов. Соучредитель LiquidPiston со своим отцом Николаем, доктор Школьник считает, что двигатель внутреннего сгорания находится в конце своего цикла разработки.
По словам Школьника, за 150 лет ДВС сделал столько дополнительных улучшений, сколько смог.
Многие разновидности ДВС, такие как цикл Отто, используемый бензиновыми двигателями, и цикл Дизеля, имели свои успешные стороны, но все они не были настолько эффективными, насколько могли бы быть. Даже такие двигатели, которые кажутся очень эффективными, например дизельные, не так хороши, как может показаться. «На первый взгляд каждый скажет, что дизельный двигатель более эффективен (чем бензиновый). Правда в том, что если бы у вас были оба двигателя с одинаковой степенью сжатия, двигатель с искровым зажиганием имеет более быстрый процесс сгорания и более эффективный процесс. На практике это ограничивается более низкой степенью сжатия, иначе вы получите самовозгорание».
Подход LiquidPiston к проблеме заключался в том, чтобы вернуться к основам термодинамики и работать над развитием того, что Школьник называет «высокоэффективным гибридным циклом» (HEHC), который сочетает в себе черты циклов Отто, Дизеля, Ренкина и Аткинсона. .
Идея состоит в том, чтобы сжать воздух в двигателе LiquidPiston X2 до очень высокой степени, как в дизельном цикле, а затем изолировать его в камере постоянного объема.
Когда топливо впрыскивается, оно смешивается с воздухом и самовоспламеняется, как в дизельном двигателе, но топливно-воздушная смесь не может расширяться. Вместо этого он остается сжатым в постоянном объеме, чтобы он мог гореть в течение длительного периода времени, как в цикле Отто. Когда горящей топливно-воздушной смеси дают возможность расшириться, она перерасширяется до давления, близкого к атмосферному. Таким образом, все топливо сгорает, и почти вся высвобождаемая энергия используется в качестве работы. Школьник называет это использование сжигания постоянного объема «святым Граалем автомобильной техники».
Постоянное сгорание и перерасширение обеспечивают двигатель HEHC, такой как X2, рядом преимуществ. Школьник отмечает, что двигатель X2 исключительно тихий, потому что сжигает все свое топливо. В современных двигателях с ДВС через выхлопную трубу выходит угрожающее количество топлива. Это не только снижает эффективность использования топлива и загрязняет воздух, но и делает двигатель шумным.
Поскольку двигатель X2 полностью сжигает топливо, нет необходимости в сложном глушителе.
Перерасширение, используемое в цикле, также означает, что отработанного тепла очень мало. ДВС преобразует только 30 процентов своего тепла в работу, в то время как тепловой КПД двигателя X2 составляет 75 процентов, поэтому в системе водяного охлаждения нет необходимости. Воду можно впрыскивать в двигатель HEHC во время сжатия или расширения для охлаждения, но это также помогает смазывать и герметизировать камеру, а по мере того, как вода охлаждает двигатель, она превращается в перегретый пар, что повышает эффективность двигателя.
Школьник говорит, что двигатель X2 является роторным, потому что поршневые двигатели не подходят для HEHC, а роторный двигатель обеспечивает гораздо большую гибкость. Кроме того, использование роторной конструкции значительно упрощает двигатель, поскольку требуется всего три движущихся части и 13 основных компонентов. Это позволяет X2 быть одной десятой размера сопоставимого дизельного двигателя.
Когда его спросили, не является ли двигатель X2 просто обновленным двигателем Ванкеля, Школьник ответил, что, хотя оба двигателя являются роторными, двигатель Ванкеля сильно отличается. Во-первых, он использует простой цикл Отто, как поршневой двигатель, и работает с гораздо более низкой степенью сжатия, чем X2. Для сравнения, двигатель X2 почти противоположен двигателю Ванкеля. «Это почти как двигатель Ванкеля, вывернутый наизнанку», — сказал Школьник.
Двигатель X2 не только работает по принципу, отличному от принципа Ванкеля, но и не имеет тех же ограничений. Двигатель X2 имеет лучшее отношение поверхности к объему, у него нет термодинамических ограничений цикла Отто и у него нет проблем с выбросами, характерных для цикла Ванкеля. У Ванкеля есть верхние уплотнения, которые перемещаются вместе с ротором и нуждаются в смазке. Для этого на них необходимо распылить масло, а это означает, что двигатель Ванкеля сжигает масло во время работы, что приводит к высоким выбросам, которые в последнее время ограничивают его использование.
С другой стороны, двигатель X2 перемещает уплотнения от ротора к картеру, поэтому специальной смазки не требуется.
Источник: Гизмаг
Опубликовано в разделе «Движение и энергетика самолетов», «Применения, испытания и опыт» редактором. 5 CommentsSearch by Category
Search by CategorySelect CategoryAccident ReportingAerial PhotographyAgricultureAIAircraft Propulsion & EnergyAnti-DroneApplications & Testing & ExperienceBusiness NewsBVLOSConstructionConsumer DronesControl Stations & Remote Video TerminalsDataData Links & CommunicationsDrone Light ShowsDrone RacingElectronic Sub-SystemsEventseVTOLFirst RespondersFlying CarsGeologyHAPSInspectionsInsuranceLaunchers & Recovery SystemsLaw EnforcementLeisureLighter Than AirMilitary UASNational AssociationsNewsNon-Military & Коммерческий UASOPAPПатентыПолезная нагрузкаТрубопроводыЛинии электропередачПубликацииРадарНормативные вопросыУдаленный IDRИсследованиеРобототехникаПрограммное обеспечениеSPRSwarmsВзлет и посадкаЦелиТехнологииИспытательные полигоныПривязанныйОбучениеТранспортНЛОБез категорииБеспилотное воздушное таксиГородская воздушная мобильностьУтилитыUTMВидеоСВВПСистемы вооруженияРабочие группыFollow
Выворачивание роторного двигателя наизнанку
Команда разработчиков мультимедийных платформ
По мере того, как автопроизводители дополняют работающие гибридные двигатели, чтобы сделать их независимыми поршневыми двигателями, изобретатели и изобретатели модернизируют огромные автобусные поршневые двигатели.
базовый КПД двигателя внутреннего сгорания. Инновационные разработки появляются повсюду на инженерных выставках, и новейшие разработки производятся компанией LiquidPiston из Блумфилда, штат Коннектикут. Его двигатель X1 представляет собой простую машину, состоящую всего из трех движущихся частей и тринадцати основных компонентов, но он нацелен на повышение теплового КПД с 20 процентов по сравнению с обычным газовым двигателем до более чем 50 процентов при резком снижении веса и размера. Как? Тратя гораздо меньше энергии в ходе цикла сгорания.
До 80 процентов энергии ископаемого топлива выбрасывается обычными двигателями за счет тепла и давления выхлопных газов или выбрасывается в атмосферу через радиатор. Попытка дизайна LiquidPiston собрать все эти отходы в крошечном корпусе. «Мы расширили кривые производительности во всех направлениях, чтобы получить гораздо более высокую эффективность, — сказал Алек Школьник, президент и главный исполнительный директор LiquidPiston, — мы взяли лучшие части множества различных термических циклов и объединили их».
Теоретически конструкция обеспечивает 75-процентную тепловую эффективность, но группа нацелена на 57 процентов в реальных приложениях, что все еще является огромным скачком.
Основная идея аналогична ротору Ванкеля, но перевернута с ног на голову. Если в обычном двигателе Ванкеля ротор удерживает уплотнения, то в двигателе X1 эту работу выполняет корпус. Это позволяет значительно снизить расход масла по сравнению с обычным роторным двигателем. Другие усовершенствования включают непосредственный впрыск, высокую степень сжатия 18:1 и резкое изменение геометрии камеры сгорания, которая поддерживает постоянный объем во время воспламенения. Это изменение означает, что топливовоздушная смесь самовоспламеняется, как дизельное топливо, и может гореть намного дольше, чем обычно. Результатом является более полное сгорание с низким уровнем выбросов и очень высоким давлением в камере сгорания. Это высокое давление может воздействовать на ротор до тех пор, пока оно не достигнет почти атмосферного давления, поэтому почти вся доступная энергия извлекается до того, как выхлоп физически вытесняется.
Опять же, это отличается от обычного двигателя внутреннего сгорания, который выпускает очень энергичные выхлопные газы под высоким давлением.
Некоторые другие приятные особенности: Поскольку двигатель спроектирован так, чтобы преобразовывать гораздо больше тепловой энергии в механическую силу, от блока требуется отводить меньше тепла, поэтому на самом деле нет системы водяного охлаждения. В тех случаях, когда двигатель находится под нагрузкой и нуждается в охлаждении, он может пропустить впрыск топлива и просто всасывать холодный воздух, который затем нагревается блоком и выбрасывается. Другой вариант – впрыск воды в камеру сгорания. Это имеет три эффекта: охлаждение двигателя, снижение выбросов NOx и преобразование части воды в пар, что увеличивает мощность.
Компактная конструкция лабораторного двигателя LiquidPiston в настоящее время весит 80 фунтов для 40-сильной модели. По утверждению компании, в производстве он будет весить менее 50 фунтов, что намного меньше, чем сопоставимый 40-сильный дизель, который весит около 400 фунтов.

с. * Час)