Механизмы и узлы магистрали низкого давления: Механизмы и узлы магистрали низкого давления

Содержание

Механизмы и узлы магистрали низкого давления

В магистраль низкого давления входят топливный бак, фильт­ры грубой и тонкой очистки топлива, толливоподкачивающий насос низкого давления, насос для ручной под качки топлива (см. рис. 7.2, б) и топливопроводы.

Топливный бак* У автомобилей МАЭ-5335, -5432 топливный бак 14 (см. рис. 7.2, а) изготовлен из листовой стали, установлен на кронштейн рамы с правой стороны и закреплен хомутами. Запра­вочный объем бака — 200 л. Бак имеет выдвижную заливную гор­ловину с фильтрующей сеткой и герметичной пробкой. Пробка имеет двойной клапан для впуска и выпуска воздуха. В баке уста­навливается фильтр предварительной (грубой) очистки топлива и датчик указателя уровня топлива. В нижней части бака имеется сливное отверстие, закрываемое пробкой.

Фильтр грубой очистка топлива. Фильтр грубой очистки топ­лива предназначен для предварительной очистки топлива. В автомо­билях семейства МАЗ филыр 17 размещается в топливном баке 14 (см. рис. 7.2, а) и состоит из корпуса с топливозаборной трубкой 2/, крышки 16 и фильтрующего элемента 19

% представляющего со­бой металлический каркас 20 с отверстиями, на который навит хлопчатобумажный шнур. Насосом низкого давления топливо из топливозаборной трубки 21 подается к фильтрующему элементу и, пройдя его, через штуцер 15 поступает в топливопровод 13 низкого давления.

В отличие от дизелей ЯМЗ топливные фильтры грубой очистки дизелей КамАЗ-740 и ЗИЛ-645 имеют следующие конструктив­ные особенности.

Фильтр крубой очистки не имеет специального (хлопчатома- терчатого) фильтрующего элемента, а очистка топлива происхо­дит при помощи фильтрующей сетки со специальным успокоите­лем масла, которые установлены в корпусе-стакане и прикрепле­ны у автомобилей КамАЗ к лонжерону рамы, а у автомобилей ЗИЛ-4331 — к кронштейну топливного бака.

Фальтр тонкой очисчаи топлива. Фильтр тонкой очистки (рис. 7.3) служит для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Он состоит из корпуса 8, крышки 4 и фильтрующего элемента 3. Крышка с корпусом со­единена болтом 5, который ввертывается в стержень Р. Герметич­ность соединения обеспечивается уплотнительной прокладкой.

На входе в фильтр имеется жиклер б, через который часть (из­быток) топлива отводится по сливному топливопроводу помимо фильтрующего элемента. Это предотвращает излишнее загрязне­ние фильтра и способствует непрерывной циркуляции топлива в магистрали низкого давления, что исключает попадание воздуха в магистраль высокого давления.

Рис. 7.3. Филыр тонкой очистки топлива:

/ — пружина: 2— каркас; 3— фильтрующий элемент; 4— крышка; 5 — болт;б— жиклер; 7. 10— пробки; £ — корпус; 9 — стержень

Сменный фильтрующий элемент 3 выполнен в виде стального каркаса 2, имеющего большое число отверстий. Каркас обмотан слоем ткани, поверх которой располагается слой фильтрующей массы, пропитанной специальным связывающим веществом. На­ружная поверхность фильтрующего элемента обмотана марлевой лентой. К крышке 4 фильтрующий элемент поджимается пружи­ной /. При работе насоса высокого давления топливо через жик­лер б подастся к фильтрующему элементу, проходит через него и попадает в полость между каркасом 2 и стержнем 9, откуда оно, поднимаясь вверх через канал в крышке 4, по топливопроводу поступает к насосу высокого давления. Для выпуска воздуха, попавшего в топливо при заполнении и прокачивании системы питания, служит отверстие в крышке, закрываемое пробкой 7. Отстой из фильтра выпускается через нижнее отверстие с резьбо­вой пробкой 10.

Топливный фильтр тонкой очистки дизелей КамАЗ-740 и ЗИЛ-645 имеет следующие особенности. Фильтр тонкой очистки 36 (см. рис. 7.2) расположен выше других приборов системы пита­ния, что способствует концентрации в нем воздуха, проникаю­щего в фильтр при циркуляции топлива, и облегчает сбрасывание в бак по сливному топливопроводу через жиклер с дополнитель­но установленным в нем клапаном, открывающимся при избы­точном давлении 0,15…0,17 МПа.

Для повышения качества очистки топлива фильтр тонкой очи­стки снабжен двумя параллельно работающими сменными филь­трующими элементами, изготовленными из пакета специальной бумаги и установленными в одном сдвоенном корпусе.

Топливоподкачивающкй насос низкого давления. Насос пред­назначен для подачи топлива из топливного бака к насосу высо­кого давления. Топливоподкачивающий насос поршневого типа приводится в действие от эксцентрика кулачкового вала насоса высокого давления. На входе и выходе топлива в корпусе 1 (рис. 7.4, а) насоса установлены впускной 13 и выпускной 15 клапаны с пру­жинами 14 и 16. Поршень 19 приводится в движение через ролико­вый толкатель 39 состоящий из ролика 2, штока 5 и пружины 4, которая прижимает толкатель к эксцентрику 23 (рис. 7.4,6).

При движении поршня 19 вверх под давлением предваритель­но поступившего в насос топлива впускной клапан 13 закрывает­ся, а выпускной клапан 15 открывается. При этом топливо из по-

а Рис. 7.4. Топливоподкачивающий насос низкого давления дизелей семей­ства ЯМЗ:

 

а— устройство; б— схема перепуска топлива; в— схема всасывания и нагнета­ния; / — корпус; 2— ролик; 3— толкатель; 4, 14, 16, 18— пружины; 5, 9 — плоки; 6— дренажный канал; 7, 17— штуцеры; 8, 19— поршни; /0 — рукоят­ка: // — цилиндр; 12— прокладка; 13, 15— соответственно впускной и выпуск­ной клапаны; 20— направляющая втулка; 21— хвостовик; 22— перепускной канал: 23— эксцентрик; А, Б — нагнетательные полостил ости А через перепускной канал 22 поступает в полость Б, объем которой вследствие перемещения поршня вверх увеличивается.

При движении поршня 19 вниз (рис. 7.4, в) выпускной клапан 15 закрывается и топливо из полости Б нагнетается к выходному от­верстию насоса, откуда через выпускной штуцер 17 поступает в фильтр тонкой очистки и затем к насосу высокого давления.

При этом из-за увеличения объема в полости А возникает раз­режение, под действием которого открывается впускной клапан 13 (см. рис. 7.4,6) и в эту полость через отверстие впускного штуцера 7 (см. рис. 7.4, а) поступает новая порция топлива, и цикл работы насоса повторяется.

При различных режимах работы дизеля постоянное давление в перепускном канале 22 (см. рис. 7.4, 6) достигается переменным ходом поршня /Р, обеспечиваемым специально подобранной пру­жиной 18. На режимах частичных нагрузок дизеля при малых рас­ходах топлива в полости Б возникает давление и поршень 19 не совершает своего полного хода, поэтому шток 5 (см. рис. 7.4, а) толкателя частично перемещается вхолостую, вследствие чего подача топлива уменьшается.

Для предотвращения разжижения масла в картере насоса вы­сокого давления топливо, просочившееся между штоком 5 и стен­ками отверстия его направляющей втулки 20, поступает обратно в полость впускного клапана 13 через дренажный канал 6.

На корпусе насоса низкого давления установлен насос рунной подкачки топлива, который служит для заполнения системы пи­тания топливом и удаления из нее воздуха после проведения ре- монтно-профилактических работ или длительной стоянки авто­мобиля. Насос состоит из цилиндра //, поршня 8 со штоком 9 и рукоятки 10.

Для ручной подкачки топлива отвертывают рукоятку 10 с резь­бового хвостовика 21 (см. рис. 7.4, в) и, действуя ею, как штоком в обычном поршневом насосе, нагнетают в магистраль топливо или удаляют из нее воздух. После окончания ручной подкачки рукоятку 10 навертывают на хвостовик 21 до плотного прилега­ния поршня к прокладке 12 (см. рис. 7.4, а), чтобы не допустить подсоса воздуха в систему питания через насос ручной подкачки.

По сравнению с дизелями ЯМЭ-236М2 и -238М2 в дизелях КамАЗ-740, ЗИЛ-645 и Д-245.12 топливный насос низкого давле­ния при наличии конструктивных изменений в устройстве отдель­ных узлов не имеет существенных различий по принципу дей­ствия.

Насос низкого давления дизеля КамАЗ-740 (рис. 7.5) работает следующим образом. При опускании толкателя 1 поршень 2 под действием пружины J движется вниз. При этом в полости А созда­ется разрежение и впускной клапан сжимая пружину, перепус­кает топливо в эту полость по топливопроводу от фильтра грубой

Рис. 7.5. Схема топливоподкачиваю- шего насоса дизеля КамАЗ-740:

/ — толкатель; 2 — поршень;. 3 — пру­жина; 4— впускной клапан; 5— насос ручной подкачки; 6 — выпускной кла­пан; А, Б — полости соответственно всасывания и нагнетания

очистки. Одновременно топливо, находящееся в нагнетательной полости Б, вытесняется к топ­ливному насосу высокого давле­ния (ТНВД).

При движении поршня 2 вверх пол давлением предвари­тельно поступившего топлива за­крывается впускной клапан 4 и открывается выпускной клапан 6. В этом случае топливо из полос­ти А через перепускной канал по­ступает в полость Б и при последующем перемещении поршня 2 вниз описанный цикл работы насоса повторяется.

К фланцу насоса низкого давления крепится насос 5 ручной подкачки топлива. В системе питания дизелей КамАЗ установлен второй насос ручной подкачки топлива аналогичного типа, кото­рый крепится через кронштейн к картеру сцепления. Этот насос позволяет подкачивать тоапиво без опрокидывания кабины, что создаст значительные удобства при пуске двигателя, особенно в сложных условиях эксплуатации.

Лекция 20. Механизмы и узлы магистрали давления.

Лекция 20. Механизмы и узлы магистрали давления.

  1. Механизмы и узлы магистрали низкого давления

В магистраль низкого давления входят топливный бак, фильтры гру­бой и тонкой очистки топлива, топливоподкачивающий насос низко­го давления, насос для ручной под­качки топлива.(см. рис. 8.2, б) и топ­ливопроводы.

Топливный бак. У автомобилей МАЗ-5335 и МАЗ-500А топливный бак 17 (см. рис. 8.2, а) изготовлен из листовой стали, установлен на кронштейнах рамы с правой стороны и закреплен хомутами. Зап­равочный объем бака 200 л. Бак имеет выдвижную заливную горло­вину с фильтрующей сеткой и гер­метичной пробкой. Пробка имеет двойной клапан для впуска и выпус­ка воздуха. В- баке устанавливает­ся фильтр предварительной (грубой) очистки топлива и датчик указателя уровня топлива. В нижней части бака имеется сливное отверстие, закрыва­емое пробкой.

Фильтр грубой очистки топлива. Фильтр грубой очистки предназна­чен для предварительной очистки топлива. В автомобилях семейства МАЗ фильтр 20 размещается в топ­ливном баке (см; рис. 8.2, а) и сос­тоит из корпуса с топливозаборной трубкой 24, крышки 19 и фильтрую­щего элемента 22, представляющего собой металлический каркас 23 с от­верстиями, на который навит хлоп­чатобумажный шнур. Насосом низ­кого давления топливо из топливоза­борной трубки 24 подается к филь­трующему элементу и, пройдя его, че­рез штуцер 18 поступает в топливо­провод 13 низкого давления.

Топливный фильтр грубой очистки дизелей К.амАЗ-740 и ЗИЛ-645 име­ет следующие конструктивные осо­бенности. Фильтр грубой очистки не имеет специального (хлопчатоматер-чатого) фильтрующего элемента, а очистка топлива происходит при по­мощи фильтрующей сетки со спе­циальным успокоителем масла, уста­новленных в корпусе-стакане, при­крепленных у автомобилей КамАЗ к лонжерону рамы, а у автомобилей ЗИЛ-4331 — к кронштейну топлив­ного бака.

Фильтр тонкой очистки топлива. Фильтр тонкой очистки (рис. 8.3) служит для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Он состоит из корпуса 8, крышки 4 и фильтрующего элемента 3. Крышка с корпусом соединена болтом 5, который ввертывается в стержень 9. Герметичность соединения обеспечи­вается уплотнительной прокладкой.

На входе в фильтр имеется жик­лер 6, через который часть (избы­ток) топлива отводится по сливному топливопроводу, помимо фильтрую­щего элемента, что предотвращает излишнее загрязнение фильтра и способствует непрерывной циркуля­ции топлива в магистрали низкого давления; последнее исключает попа­дание воздуха в систему высокого давления.

Сменный фильтрующий элемент 3 выполнен в виде стального каркаса 2, имеющего большое число отверстий. Каркас обмотан слоем ткани, поверх которой располагается слой фильт­рующей массы, пропитанной спе­циальным связывающим веществом. Наружная поверхность фильтрующе­го элемента обмотана марлевой лен­той. К крышке 4 фильтрующий эле­мент поджимается пружиной 1. При работе насоса низкого давления топ­ливо через жиклер 6 подается к фильтрующему элементу, проходит через него и попадает в полость между каркасом 2 и стержнем 9, откуда оно, поднимаясь вверх через канал в крышке 4, по топливопро­воду поступает к насосу высокого давления. Для выпуска воздуха, по­павшего в топливо при заполнении и прокачивании системы питания, служит отверстие в крышке, зак­рываемое пробкой 7. Отстой из филь­тра выпускается через нижнее отвер­стие с резьбовой пробкой 10.

Топливный фильтр тонкой очистки дизелей К.амАЗ-740 и ЗИЛ-645 име­ет следующие особенности. Фильтр тонкой очистки расположен выше других приборов системы питания (см. рис. 8.2, поз. 36), что способ­ствует концентрации в нем воз­духа, проникающего в фильтр при циркуляции топлива, и облегчает сбрасывание топлива в бак по слив­ному топливопроводу через жиклер с дополнительно установленным в нем клапаном, открывающимся при избыточном давлении 0,15 — 0,17 МПа.

Для повышения качества очис­тки топлива фильтр тонкой очистки снабжен двумя параллельно рабо­тающими сменными фильтрующими элементами, изготовленными из па­кета специальной бумаги и уста­новленными в одном сдвоенном кор­пусе.

Топливоподкачивающий насос низ­кого давления. Насос предназначен для подачи топлива из топливного бака к насосу высокого давления. Топливоподкачивающий насос пор­шневого типа приводится в действие от эксцентрика кулачкового вала на­соса высокого давления. На входе и выходе топлива в корпусе 1 (рис. 8.4, а) насоса установлены впускной 13 и выпускной 15 клапаны с пружинами 14 и 16. Поршень 19 приводится в движение через роли­ковый толкатель 3, состоящий из ролика 2, штока 5 и пружины 4, которая прижимает толкатель к экс­центрику 21 (рис. 8.4, б).

При движении поршня 19 вверх под давлением предварительно пос­тупившего в насос топлива впускной клапан 13 закрывается, а выпускной 15 открывается. При этом топливо из полости А через перепускной канал 22 поступает в полость Б, объем которой вследствие перемещения поршня вверх увеличивается.

При движении поршня 19 вниз (рис. 8.4, в) выпускной клапан 15 закрывается, и топливо из полости Б нагнетается к выходному отвер­стию насоса, откуда через выпускной штуцер 17 (см. рис. 8.4, а) посту­пает в фильтр тонкой очистки и далее к насосу высокого давления.

При этом из-за увеличения объема в полости А возникает разрежение, под действием которого открывается впускной клапан 13 (см. рис. 8.4, б) и в эту полость через отверстие впус­кного штуцера 7 (см. рис. 8.4, а) пос­тупает новая порция топлива, и цикл работы насоса повторяется.

При различных режимах работы дизеля постоянное давление в пе­репускном канале 22 (см. рис. 8.4, б) достигается переменным ходом пор­шня 19, обеспечиваемым специально подобранной пружиной 18. На режи­мах частичных нагрузок дизеля при малых расходах топлива в полости Б возникает давление и поршень 19 не совершает своего полного хода, поэтому шток 5 (см. рис. 8.4, а) тол­кателя частично перемещается вхо­лостую, вследствие чего подача топ­лива уменьшается.

Для предотвращения разжиже­ния масла в картере насоса высо­кого давления топливо, просочившее­ся между штоком 5 и стенками от­верстия его направляющей втулки 20, поступает обратно в полость впус­кного клапана 13 через дренажный канал 6.

На корпусе насоса низкого давле­ния установлен насос ручной подкачки топлива, который слу­жит для заполнения системы пита­ния топливом и удаления из нее воз­духа после проведения ремонтно-профилактических работ или длитель­ной стоянки автомобиля. Насос сос­тоит из цилиндра 11, поршня 8 со штоком 9 и рукоятки 10.

Для ручной подкачки топлива от­вертывают рукоятку 10 с резьбового хвостовика 23 (см. рис. 8.4, в) и, действуя ею, как штоком в обычном поршневом насосе, нагнетают в ма­гистраль топливо или удаляют из нее воздух. После окончания ручной подкачки рукоятку 10 навертывают на хвостовик 23 до плотного прилега­ния поршня к прокладке 12 (см. рис. 8.4, а), чтобы не допустить под­соса воздуха в систему питания через насос ручной подкачки.

По сравнению с дизелями ЯМЗ-236 и -238 в дизелях КамАЗ-740 и ЗИЛ-645 топливный насос низкого давления при наличии конструктив­ных изменений в устройстве отдель­ных узлов не имеет существенных различий по принципу действия.

Насос низкого давления дизеля КамАЗ-740 (рис. 8.5) работает сле­дующим образом. При опускании толкателя 1 поршень 2 под действием пружины 3 движется вниз. При этом в полости А создается разрежение и впускной клапан 4, сжимая пружи­ну, перепускает топливо в эту по­лость по топливопроводу от фильтра грубой очистки. Одновременно топ­ливо, находящееся в нагнетательной полости Б, вытесняется к топливному насосу высокого давления (ТНВД).

При движении поршня 2 вверх под давлением предварительно поступив­шего топлива закрывается впускной клапан 4 и открывается выпускной клапан 6. В этом случае топливо из полости А через перепускной канал поступает в полость Б и при после­дующем перемещении поршня 2 вниз вышеописанный цикл работы насоса повторяется.

К фланцу насоса низкого давления крепится насос 5 ручной подкачки топлива. В системе питания дизелей КамАЗ установлен второй насос руч­ной подкачки топлива аналогичного типа, который крепится через кронш­тейн к картеру сцепления. Этот насос позволяет подкачивать топливо без опрокидывания кабины, что создает значительные удобства при пуске двигателя в условиях эксплуатации автомобилей.

  1. Механизмы и узлы магистрали высокого давления

К приборам питания магистрали высокого давления дизелей относятся топливный насос высокого давления, форсунки и топливопроводы.

Топливный насос высокого дав­ления. Для точного дозирования топ­лива и подачи его в определенный момент под высоким давлением к форсункам применяется топливный насос высокого давления. Наиболь­шее распространение на автомобиль­ных дизелях получили многосекци­онные насосы с постоянным ходом плунжера и регулировкой конца по­дачи топлива.

По расположению секций насосы делятся на рядные и V-образные. Каждая секция топливного насоса обеспечивает работу одного из ци­линдров дизеля, поэтому число сек­ций топливного насоса определяется числом его цилиндров. Топливный насос дизеля ЯМЗ-236 шестисекционный, дизелей ЯМЗ-238 и ЗИЛ-645— рядный восьмисекционный. дизеля КамАЗ-740 V-образный восьмисекци­онный. Конструктивно топливные секции рядных насосов дизелей ЯМЗ-236, -238 и ЗИЛ-645 существен­ных различий не имеют. Типичным примером конструкции рядного топливного насоса высокого давления является насос дизеля ЯМЗ-236 (рис. 8.6), состоящий из шести одинаковых секций. В ниж­ней части корпуса 1 насоса на двух радиально-упорных шарико­подшипниках 20, уплотненных само­поджимными сальниками, установ­лен кулачковый вал 12 с шестер­ней 11.

На кулачковом валу имеются про­филированные кулачки 19 для каж­дой насосной секции и эксцентрик 14 для приведения в движение насоса низкого давления, который крепится к привалочной плоскости 13 насоса высокого давления.

В перегородке корпуса против каждого кулачка установлены роли­ковые толкатели 18. Оси роликов 15 своими концами входят в пазы корпуса насоса, предотвращая про­ворачивание толкателей.

Насосные секции установлены в верхней части корпуса и крепятся винтами 29. Основной частью каж­дой насосной секции является плун­жерная пара, состоящая из плун­жера 6 и гильзы 35. Плунжерную пару изготовляют из хромомолибде-новой стали и подвергают закалке до высокой твердости. После окон­чательной обработки подбором про­изводят сборку плунжеров и гильз так, чтобы обеспечить в соединении зазор, равный 0,0015—0,0020 мм. Этим достигается максимальная плотность сопряжения взаимодейст­вующих деталей, обеспечивающих давление впрыскивания топлива до 16 МПа.

Топливо к плунжерным парам подводится по каналу 36, а отво­дится по каналу 30, в переднем конце которого под колпаком уста­новлен перепускной клапан 5. Если давление в каналах превышает 0,16—0,17 МПа, клапан открывается и перепускает часть топлива в бак. Попавший в каналы насоса воздух выпускается через отверстие, за­крываемое пробкой 8. На торец гильзы 35 притертой торцовой по­верхностью опирается седло 34 на­гнетательного клапана 33. Седло прижато к гильзе плунжера шту­цером 7 через уплотнительную про­кладку.

Нагнетательный клапан 33 состоит из головки с запорной конической фаской, разгрузочного пояска и хвос­товика с прорезями для прохода топлива. Сверху на клапан установ­лена пружина 32, которая прижи­мает его к седлу. Верхний конец пружины упирается в выступ упо­ра 31.

При вращении кулачкового вала 12 насоса выступ кулачка 19 набе­гает на роликовый толкатель 18, который через болт 40 воздействует на плунжер 6 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина 38, упирающаяся в тарелки 39 и 28, возвращает плунжер в первоначальное положение. Рейка 3 входит в зацепление с зубчатым венцом 4 поворотной втулки 16, надетой на гильзу, а в вертикальные пазы нижней части втулки входят вы­ступы 17 плунжера.

При перемещении рейки 3 вдоль ее оси втулка 16 поворачивается на гильзе и, действуя на выступы 17 плунжера, поворачивает его, в результате чего изменяется количест­во топлива, подаваемого к форсун­кам. Ход рейки ограничивается сто­порным винтом 37, входящим в ее продольный паз. Задний конец рейки соединен с тягой 10 регулятора частоты вращения коленчатого вала, установленного в корпусе 9.

Выступающий из насоса передний конец рейки закрыт запломбирован­ным колпачком, в который ввернут винт 2 ограничения мощности дви­гателя при обкатке автомобиля. v

Для опережения впрыскивания топлива в цилиндры дизеля в зави­симости от частоты вращения его коленчатого вала в передней части насоса установлена центробежная муфта. Она состоит из ведущей 23 и ведомой 26 полумуфт. На ведомой полумуфте закреплены две оси 27 с установленными на них центробеж­ными грузами 25, в вырезах кото­рых размещены пружины 22, опи­рающиеся с одной стороны на оси 27, а с другой — на опорные пальцы 21 ведущей полумуфты 23. Меха­низм муфты в сборе закрыт крышкой 24, которая навернута на резьбу ведомой муфты.

На дизеле ЗИЛ-645 топливный на­сос высокого давления рядный восьмисекционный, создаю­щий давление впрыскивания до 18,5 МПа, установлен в развале блока цилиндров. Привод насоса осуществляется от коленчатого вала через две пары зубчатых колес, упругую муфту привода и автома­тическую муфту опережения впрыс­кивания.

Насосные секции топливного на­соса так же, как у насоса дизелей ЯМЗ, плунжерного (золотникового) типа с постоянным ходом плунжера. Наряду с отдельными конструктив­ными отличиями насоса работа его секций принципиально не отличается от работы секций насоса дизелей ЯМЗ-236, -238.

На дизелях семейства КамАЗ устанавливают V-o бразные на­сосы высокого давления. Они рас­полагаются в развале блока цилинд­ров и приводятся в действие от шестерен газораспределения через шестерню привода. В корпусе 1 насоса (рис. ) установлен ме­ханизм 20 поворота плунжеров, соединенный с правой и левой рей-

ками, которые действуют на плун­жеры нагнетательных секций, распо­ложенных в два ряда. В каждом ряду расположено по четыре нагне­тательных секции, давление впрыски­вания которых по сравнению с дав­лением впрыскивания дизелей ЯМЗ-236, -238 увеличено и составля­ет 18+0’5 МПа. Секции насоса расположены под углом 75°, что по­вышает прочность кулачкового вала за счет уменьшения его длины, позволяет увеличить давление впрыс­кивания и повысить работоспособ­ность плунжерных пар.

Каждая секция насоса состоит из корпуса 15, гильзы 14 с плунже­ром 9, поворотной втулки 6, нагне­тательного клапана 17, прижатого штуцером к гильзе плунжера через уплотнительную прокладку 16. Положение гильзы 14 относительно корпуса 15 фиксируется штифтом 12. В нижней части гильза и корпус уплотняются прокладками 10 и 11.

Так же как и у дизелей ЯМЗ, топливные секции насоса плунжер­ного типа с постоянным ходом плун­жера. Плунжер приводится в дви­жение от кулачкового вала насоса, через ролик 2 толкателя, ось кото­рого крепится в сухаре 3. Пружина 7 толкателя в верхней части упирается в шайбу 8, а через тарелку 5 постоянно прижимает ролик 2 к кулачку. Толкатель от поворота фиксируется сухарем 3, выступ кото­рого входит в паз корпуса насоса.

Начало подачи топлива регулиру­ется установкой пяты 4 определенной толщины. При установке пяты боль­шей толщины топливо будет пода­ваться раньше, меньшей толщины — позднее. Чтобы изменить количество подаваемого топлива плунжер 9 поворачивается относительно гильзы 14 при помощи рейки 13 насоса, которая связана с поворотной втул­кой 6.

Управление подачей топлива осу­ществляется из кабины водителя педалью, воздействующей с помощью трех тяг и рычага 18 на всережимный регулятор 19 частоты вращения коленчатого вала, расположенный в развале топливного насоса. На крыш­ке регулятора 19 закреплен топлив­ный насос 22 низкого давления и на­сос 21 ручной подкачки топлива.

Работа насоса высокого давления плунжерного типа, установленного на дизелях ЯМЗ-236, -238, КамАЗ-740 и ЗИЛ-645, состоит из наполнения надплунжерного пространства топ­ливом с частичным его перепуском, подачи топлива под высоким давле­нием к форсункам, отсечки и пере­пуска его в сливной топливопровод. При работе двигателя рейка топлив­ного насоса перемещается в соот­ветствии с изменением подачи топли­ва, при этом одновременно пово­рачиваются плунжеры всех сек­ций.

В виду того что все секции ра­ботают одинаково, рассмотрим ра­боту насоса на примере одной из секций дизеля ЯМЗ-236 (рис. 8.8). При движении плунжера 1 вниз (рис. 8.8, а) внутреннее пространст­во гильзы 12 наполняется топливом, и одновременно оно подается насо­сом низкого давления в подводящий канал 10 корпуса 11 насоса. При этом открывается впускное отверстие 9, и топливо поступает в надплун-жерное пространство 8. Затем под действием кулачка плунжер начи­нает подниматься вверх (рис. 8.8, б), перепуская топливо обратно в под­водящий канал 10 до тех пор, пока верхняя кромка плунжера 1 не пере­кроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при 1,2—1,8 МПа топливо, пре­одолевая усилие пружины 5, подни­мает нагнетательный клапан 6 и по­ступает в топливопровод.

Дальнейшее перемещение плунже­ра вверх вызывает повышение давле­ния до 16,5+0’5 МПа, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и проис­ходит впрыскивание топлива в каме­ру сгорания. Подача топлива про­должается до тех пор, пока винто­вая кромка 13 (рис. 8.8, в) плунже­ра не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко па­дает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъе­диняется с топливопроводом высо­кого давления. При дальнейшем дви­жении плунжера вверх топливо пере­текает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.

Нагнетательный клапан 6 разгру­жает топливопровод высокого дав­ления, так как он снабжен цилиндрическим разгрузочным пояском 7, который при посадке клапана на седло обеспечивает увеличение объема топливопровода примерно на 70—80 мм3. Этим достигается резкое прекращение впрыскивания топлива и устраняется возможность его подтекания через распылитель фор­сунки, что улучшает процесс смесе­образования и сгорания рабочей смеси, а также повышает надеж­ность работы форсунки.

Перемещение плунжера во втулке с момента закрытия впускного от­верстия до момента открытия вы­пускного отверстия называется активным ходом плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера / зубчатой рейкой. При различных углах поворота плунжера благодаря винтовой кромке смеща­ются моменты открытия выпускного отверстия. При этом чем позднее открывается выпускное отверстие, тем большее количество топлива мо­жет быть подано к форсункам.

На рис. 8.9 показаны следующие положения винтовой кромки плунже­ра за цикл работы топливной секции:

положение А — максимальная по­дача топлива и наибольший актив­ный ход плунжера 1. В этом случае расстояние h от винтовой кромки 5 плунжера до выпускного отверстия 2 будет наибольшим;

положение Б — промежуточная подача, так как при повороте плунжера по часовой стрелке рассто­яние h уменьшается и выпускное отверстие открывается раньше;

положение В — нулевая подача топлива. Плунжер повернут так, что его продольный паз 3 расположен против выпускного отверстия 2 (А = 0), в результате чего при пере­мещении плунжера вверх топливо вытесняется в сливной канал, пода­ча топлива прекращается и двига­тель останавливается.

Момент начала подачи топлива каждой секцией по углу поворота коленчатого вала изменяют регули­ровочным болтом 40 (см. рис. 8.6) с контргайкой, ввернутым в толка­тель. При вывертывании болта верх­ний торец плунжера раньше пере­крывает входное отверстие 4 (см. рис. 8.9) гильзы и топливо раньше подается к форсунке, т. е. угол начала подачи топлива увеличивает­ся. При ввертывании болта в тол­катель этот угол уменьшается и топ­ливо к форсунке подается с запазды­ванием.

1

ᐉ Дизельная топливная аппаратура

К системе питания дизелей относятся топливо- и воздухоподводящая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В четырехтактных дизелях широкое распространение получила топливоподводящая аппаратура разделенного типа, у которой топливный насос высокого давления и форсунки конструктивно выполнены отдельно и соединены топливопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

В настоящее время для питания дизельных двигателей легковых автомобилей применяются следующие топливные системы:

  • системы питания с топливными насосами высокого давления, имеющими рядное расположение плунжерных пар без электронного управления
  • системы питания с топливными насосами высокого давления, имеющими рядное расположение плунжерных пар с электронным управлением
  • системы питания с одноплунжерными распределительными топливными насосами высокого давления без электронного управления фирм
  • системы питания с одноплунжерными распределительными топливными насосами высокого давления с электронным управлением
  • аккумуляторные топливные системы с электронным управлением «коммон рейл»
  • топливные системы с насос-форсунками
  • топливные системы насос-форсунка-трубопровод
  • газодизельные топливные системы

Развитие систем питания дизельных двигателей с электронным управлением связано главным образом с экологическими нормами, принятыми в большинстве развитых стран мира. По европейским стандартам выбросы токсичных веществ и твердых частиц дизельными двигателями имеют тенденцию к резкому их снижению, что видно из таблице.

Таблица. Нормы выбросов токсичных веществ по Евростандартам.

Год

Нормы

Выбросы, г/км, автотранспортными средствами, работающими на дизельном топливе

суммар-

ный уг-

леводо-

родов и оксидов азота

оксидов

углерода

оксидов азота

твёрдых

частиц

2000

2005

«Евро-3»

«Евро-4»

0,56

0,30

0,64

0,50

0,50

0,26

0,05

0,025

В борьбе за снижение токсичности отработавших газов конструкторы столкнулись с серьезной проблемой: большинство изменений рабочего процесса дизеля снижает выбросы лишь одного из вышеназванных двух ком­понентов, и экологические нормы не могут быть выполнены регулировками или изменением параметров дизеля. Например, увеличение опережения угла впрыска  уменьшает эмиссию твердых частиц, но увеличивает выбросы окислов азота. Разрешить эту проблему позволили высокое давление впрыска и электронное управление системой подачи топлива. Благодаря повышению давления впрыска улучшается распыление топлива, что способствует более быстрому и полному сгоранию. Это поясняет  почему почти 60 лет (с 1927 по 1985) максимальное давление впрыска составляло 200…500 кгс/см2, а в последние 15 лет превысило 2000 кгс/см2.

Топливные системы с механически­ми регуляторами постепенно снимают с производства. Переход на новый уровень давления и электронное упра­вление потребовал пересмотра тради­ционных конструкций. В ряду распределительных насосов высокого давления самая популярная в мире модель «Бош-VE», ведущая ис­торию с 1976 года, вытесняется более современными электроуправляемыми ТНВД фирм «Бош», «Лукас», «Зексель», «Станадайн».

Уже сейчас ведущие производители заменили механические регуляторы Уатта электронными. Их характеризу­ет гибкость управления, самодиагно­стика, использование резервных программ. Появились и собственные опции  питание каждого цилиндра в соответствии с его техническим состоянием и особенностями изготовления, отключение цилиндров, управление параметрами впрыска и др. Фирма «Бош» уже к 2006 году сократила долю распределительных насосов до 15%; ранее не выпускавшиеся электроуправляемые насос-форсунки и индивиду­альные ТНВД имеют 19% всего объема  а 62% объема выпуска приходится на системы постоянного давления «коммон-рейл». Электронное управление позволяет на всех режимах работы дизеля гибко изменять характеристику, величину по­дачи, давление и опережение впрыска. В итоге снижаются вредные выбросы, шумность, расход топлива, улучшается пуск дизеля. Автомобиль становится бо­лее скоростным и динамичным.

В настоящее время критериями совершенства топливоподачи являются показатели экономичности, мощности и шумности работы, динамичности транспортного средства, надежности пуска, выбросов токсичных веществ, коэффициент приспособляемости, соблюдение ограничений по давлению в цилиндре, жесткости сгорания, тепловым нагрузкам, температуре газов перед турбиной и прочее.

Для обеспечения заданных показателей к системам питания предъявляется комплекс требований:

  • обеспечение гибкого регулирования цикловой подачи в соответствии с заданным скоростным режимом двигателя; обеспечение необходимой внешней скоростной характеристики (не обязательно жестко заданной)
  • обеспечение минимальной неравномерности подачи по цилиндрам или, напротив, оптимальная неравномерность подачи и угла опережения впрыска для каждого цилиндра в соответствии с его особенностями конструкции, изготовления и текущего технического состояния
  • оптимальное регулирование угла опережения впрыска в соответствии с режимом работы
  • автоматизация пуска, необходимое обогащение при пуске, выключение подачи на принудительном холостом ходу, регулирование на переходных режимах
  • отключение цилиндров и циклов на частичных режимах
  • диагностирование датчиков и исполнительных устройств и компенсация выбывших из строя с помощью резервных программ

Эти условия вызвали самое широкое применение достижений микроэлектроники и вычислительной техники для управления ДВС, что в ряде случаев позволило осуществить управление на программно-адаптивном уровне, т.е. реализовать регулирование с обратной связью. В качестве примера можно привести способность некоторых блоков управления поддерживать стабильными выходные параметры при изменении свойств системы в процессе эксплуатации.

Дальнейшее развитие автомобильной техники неизбежно движется по пути развития комплексных систем управления, причем не только различными системами автомобиля (например, антиблокировочная система тормозов, круизконтроль, управление двигателем и трансмиссией), но также их совокупностью, а в перспективе и автомобилем как единой системой.


Контрольные вопросы

  1. Для каких целей предназначен двигатель внутреннего сгорания?

  2. По каким признакам классифицируют поршневые ДВС?

  3. Описать общее устройство дизельного автотракторного двигателя и принцип его работы.

  4. Перечислить основные отличительные признаки карбюраторного и дизельного двигателей.

  5. Что понимают под порядком работы многоцилиндрового ДВС?

  6. Из скольких частей состоит остов двигателя? Назвать их.

  7. Для каких целей служит кривошипно-шатунный механизм?

  8. Перечислить основные детали КШМ и их назначение.

  9. Для каких целей служит газораспределительный механизм?

  10. Перечислить детали входящие в состав ГРМ и пояснить принцип его работы.

Работа № 3: основные системы двигателей

ВНУТРЕННЕГО СГОРАНИЯ

Содержание работы:

  1. Назначение, устройство и принцип работы системы питания дизельного и карбюраторного двигателей.

  2. Назначение, устройство и принцип подготовки горючей смеси простейшим карбюратором.

  3. Назначение, устройство и принцип работы смазочной системы.

  4. Назначение, устройство и принцип работы системы охлаждения ДВС.

Система питания дизеляп р е д н а з н а ч е н а для подачи в цилиндры очищенного воздуха и распыленного топлива.

1–топливный бак; 2 – расходный кран; 3 – топливопровод низкого давления;

4 – фильтр грубой очистки 5 – топливоподкачивающий насос; 6 – сливная трубка;

7 – топливный насос высокого давления; 8 – регулятор; 9 – топливопровод высокого

давления; 10 – фильтр тонкой очистки; 11– воздухоочиститель; 12 – электрофакельный подогреватель; 13 – сливная трубка; 14 – впускной коллектор; 15 – форсунка;

16 – выпускной коллектор; 17 – глушитель

Рисунок 9 – Схема системы питания дизельного двигателя

В с о с т а в системы питания тракторного дизеля (рис. 9) входят:

  • топливный насос высокого давления (ТНВД) 7 и топливоподкачивающий насос низкого давления (ТННД) 5;

  • топливные фильтры грубой 4 и тонкой 10 очистки;

  • воздухоочиститель 11;

  • форсунка 15;

  • топливный бак 1;

  • топливопроводы 3, 9;

В дизельном ДВСв такте впуска воздух из атмосферы под действием разрежения, создаваемого поршнем двигателя, засасывается в воздухоочиститель 11, где очищается от механических примесей и далее по впускному коллектору 14 и через открытый впускной клапан заполняет надпоршневое пространство. Одновременно топливо из бака 1 самотеком поступает на очистку в фильтр грубой очистки 4, где от него отделяются крупные примеси. Предварительно очищенное топливо затем с помощью насоса низкого давления 5 поступает на вторую ступень очистки – фильтр тонкой очистки 10. Затем очищенное топливо с помощью насоса высокого давления 7 по топливопроводу высокого давления 9 подают к одной из форсунок 15 (в соответствии с порядком работы ДВС).

Мощность дизеля в зависимости от нагрузки путем увеличения или уменьшения количества топлива, подаваемого в цилиндры, автоматически изменяет механический всережимный регулятор 8.

1 – электрический датчик указателя уровня топлива в баке; 2 – топливный бак;

3 – заливная горловина; 4 – фильтр грубой очистки; 5 – диафрагма топливного насоса;

6 – впускной клапан; 7 – выпускной клапан; 8 – рычаг дроссельной заглушки;

9 – карбюратор; 10 – масляная ванна воздухоочистителя; 11 – фильтрующий элемент воздухоочистителя; 12 – выпускной коллектор; 13 – фильтр-отстойник грубой очистки; 14 – топливопровод; 15 – выпускная труба; 16 – эксцентрик; 17 – пружина диафрагмы; 18 – глушитель

Рисунок 10 – Схема системы питания карбюраторного двигателя

Система питаниякарбюраторного двигателя п р е д н а з н а ч е н а для приготовления горючей смеси из топлива и воздуха в пропорции, соответствующей режиму работы, и в количестве, зависящем от нагрузки двигателя.

В состав системы питания карбюраторного двигателя (рис. 10) входят: топливный бак 2, топливный насос 5, карбюратор 9, являющийся основным узлом системы, воздухоочиститель 11.

Р а б о ч и й п р о ц е с с: в такте впуска карбюраторного ДВС атмосферный воздух, пройдя очистку в воздухоочистителе 11, поступает в смесительную камеру карбюратора 9. Одновременно топливо из бака 2 через фильтр-отстойник 13 всасывается насосом 5, а оттуда нагнетается в карбюратор 9, где перемешивается с воздухом, образуя горючую топливовоздушную смесь.

Карбюратор п р е д н а з н а ч е н для приготовления (карбюрации) горючей смеси вне цилиндра двигателя. Схема простейшего карбюратора представлена на рис 11.

1 – главный жиклер;

2 – поплавок;

3 – игольчатый клапан;

4 – распылитель;

5 – воздухоочиститель;

6 – воздушная заслонка;

7 – диффузор;

8 – впускной трубопровод;

9 – впускной клапан;

10 – поршень;

11 – дроссельная заслонка

Рисунок 11 – Схема простейшего

карбюратора

Р а б о ч и й п р о ц е с с простейшего карбюратора заключается в следующем. При такте впуска в цилиндре двигателя создается разрежение, которое передается в смесительную камеру карбюратора, в результате чего в нее засасывается воздух.

Поступающий в карбюратор воздух проходит узкое сечение диффузора 7, вследствие чего увеличивается скорость его движения. По этой причине в узкой части диффузора еще более увеличивается разрежение, благодаря чему топливо распыляется, вытекая из поплавковой камеры через распылитель 4 в смесительную камеру, где перемешивается с воздухом. Количество горючей смеси регулируют дроссельной заслонкой 11.

Состав горючей смеси, приготавливаемой в карбюраторе, можно изменять системой открытия воздушной заслонки 6. Смесь в пропорции 1г бензина к 15г воздуха называют нормальной. При избытке воздуха смесь в пропорции 1:15…17 называютобедненной. При недостатке воздуха смесь 1:13…15 называютобогащенной.

Однако простейший карбюратор не может обеспечить требуемый состав горючей смеси на различных эксплуатационных режимах работы двигателя, так как он готовит нормальную смесь только при постоянной частоте вращения коленчатого вала и открытой дроссельной заслонке. Поэтому на двигатели устанавливают карбюраторы, дополненные специальными устройствами и приспособлениями – дозирующими системами.

Смазочная системадвигателя – это совокупность механизмов и устройств, предназначенная для непрерывной подачи чистого и охлажденного масла в необходимом количестве к трущимся поверхностям деталей. Основное н а з н а ч е н и е смазочной системы:

  • уменьшение трения;

  • снижения износа;

  • отвод тепла от деталей.

В большинстве двигателей применяют комбинированную смазочную систему с «мокрым» картером, когда к наиболее нагруженным деталям масло подается под давлением, а к остальным – разбрызгиванием и самотеком.

Под давлением смазывают коренные и шатунные шейки коленчатого вала, детали ГРМ, втулки шестерен распределителя.

В с о с т а в смазочной системы двигателя входят (рис. 12): поддон картера 1, шестеренный насос 3, масляные фильтры 14, маслоохладитель (масляный радиатор) 7, главная масляная магистраль в блок-картере 10; приборы и датчики, регистрирующие температуру 15 и давление масла 16.

П р и н ц и п р а б о т ы смазочной системы заключается в следующем: моторное масло или рабочая жидкость (РЖ), находящееся в поддоне картера 1, с помощью шестеренного масляного насоса 3 нагнетается в сдвоенный фильтр тонкой очистки – две параллельно включенные полнопоточные центрифуги 14, откуда очищеннаяРЖпоступает в масляный радиатор 7 для охлаждения. Затем охлажденное масло под давлением поступает в главную магистраль 10, идущую вдоль блок–картера. Из нее смазочная жидкость нагнетается в коренные подшипники коленчатого вала и к опорам распределительного вала. От коренных подшипниковРЖпо наклонным каналам в коленчатом валу поступает в полости шатунных шеек, где происходит дополнительная (центробежная) его очистка, и выходя на поверхность шеек смазывает шатунные подшипники. По каналу в одной из шеек распределительного вала масло пульсирующим потоком подается к деталям механизма газораспределения. Стенки цилиндров, поршни, поршневые пальцы, распределительные шестерни смазываются разбрызгиванием. Дело в том, что моторное масло, вытекающее из зазоров между подшипниками и шейками коленчатого вала, разбивается вращающимся коленчатым валом на мелкие капли в виде тумана. Капельки масла, оседая на поверхности цилиндров, поршней и кулачков распределительного вала, смазывают их и стекают в поддон картера.

1 – поддон; 2, 5 — редукционные клапаны; 3, 4 – основная и радиаторная секция

насоса; 6 – переключатель «Зима-Лето»; 7 – радиатор; 8, 9 – каналы; 10 – главная

масляная магистраль; 11 – канал оси толкателя; 12, 13 – каналы соответственно

в штанге и коромысле; 14 – центрифуга; 15, 16 – датчики соответственно

температуры и давления масла; 17 – сливной клапан; 18, 19 – указатели

соответственно температатуры и давления масла

Рисунок 12 – Принципиальная схема смазочной системы двигателя А-41

Работу смазочной системы контролируют по манометру, показывающему давление в главной масляной магистрали, и по сигнализатору аварийного падения давления масла.

Система охлаждения, представляющая совокупность механизмов, устройств и приборов, п р е д н а з н а ч е н а для поддержания нормального температурного режима работающего двигателя.

Перегрев двигателя вызывает сгорание масляной пленки между трущимися деталями, что обуславливает их повышенный износ и возможность заклинивания сопрягающихся деталей.

Излишний отвод теплоты (переохлаждение) приводит к ухудшению процесса смесеобразования, потере мощности и топливной экономичности двигателя.

В зависимости от вида рабочего тела, осуществляющего теплоотвод от головок и цилиндров, системы охлаждения автотракторных двигателей делят на два вида:

В качестве охлаждающей жидкости используют: воду, антифриз, тосол. В зависимости от способа циркуляции охлаждающей жидкости различают системы охлаждения: термосифонную и принудительную.

Термосифонная системаохлаждения проста по устройству. Циркуляция жидкости происходит в результате разности плотностей нагретых и холодных ее слоев. Недостаток термосифонной системы – сравнительно медленная циркуляция охлаждающей жидкости и вследствие этого недостаточный отвод теплоты от нагретых деталей двигателя. Термосифонной системой охлаждения оборудуют в настоящее время лишь пусковые двигатели (ПД-10У, П-350, П-23) и предпусковые подогреватели (ПЖ-300, ПЖБ-300). Основные же двигатели, как правило, оснащают принудительной жидкостной системой охлаждения.

Принудительная жидкостная закрытая система охлаждения(рис. 13) с о с т о и т из рубашки охлаждения 16, радиатора 1, центробежного насоса 17, вентилятора 2, термостата 14, сливных кранов, указателя температуры 15, патрубков и паровоздушного клапана 13.

1 – радиатор; 2 – вентилятор; 3 – шторка; 6 – пароотводная трубка;

13 – паровоздушный клапан; 14 – термостат; 15 – термометр;

16 – водораспределительный канал с рубашкой

охлаждения; 17 – центробежный насос; 18 – водоотводная трубка

Рисунок 13 – Двигатель с жидкостной системой охлаждения

П р и н ц и п р а б о т ы : при холодном ДВС, когда термостат закрыт, жидкость движется принудительно по малому кругу: рубашка охлаждения – насос – рубашка охлаждения. На прогретом ДВС, когда термостат открыт, жидкость движется принудительно по большому кругу: рубашка охлаждения – радиатор – насос – рубашка охлаждения. Проходя из верхнего бачка радиатора в нижний по его сердцевине, жидкость охлаждается, в том числе и потоком воздуха, создаваемым вентилятором.

Для уменьшения потерь жидкости на испарение заливная горловина радиатора герметично закрыта крышкой, в которой зачастую вмонтированы паровой и воздушныйклапаны. При повышенном давлении в системе охлаждении (когда жидкость кипит) открывается паровой клапан, и пары выходят в атмосферу. При охлаждении жидкости, когда объем ее уменьшается и внутри системы образуется разрежение, срабатывает воздушный клапан, который впускает атмосферный воздух в систему.

Термостат(рис. 14) п р е д н а з н а ч е н для автоматического регулирования температуры жидкости в системе охлаждения. Рабочая часть термостата представляет собой гофрированный латунный цилиндр 2 (сильфон), заполненный легкокипящей жидкостью – смесью воды и этилового спирта. Цилиндр соединен стержнями с двумя клапанами, перекрывающими отверстия для прохода охлаждающей жидкости.

1 – корпус;

2 – сильфон;

3 – клапаны;

4, 5 – выпускные окна;

6 – впускное окно

Рисунок 14 – Технологическая схема двухклапанного термостата

На двигателях также применяют двух – и одноклапанные термостаты с твердым наполнителем – церезином (нефтяным воском с медным порошком).

При температуре жидкости выше 70°С (в новых моделях двигателей выше 80°С) сильфон термостата растягивается вверх и штоки клапанов тоже выдвигаются вверх, закрывая окно 5 и открывая окно 4. Жидкость начинает проходить в радиатор и циркулировать по большому кругу. При температуре ниже 70°С сильфон сжимается, штоки с клапанами вдвигаются, закрывая окно 5 и открывая окно 4. Жидкость циркулирует по малому кругу, минуя радиатор.

Водяной насос центробежного типав жидкостной системе охлаждения во многих случаях находится в одном корпусе с вентилятором и приводится в действие от коленчатого вала через клиноременную передачу. Под действием лопастей рабочих колес жидкость с большой скоростью выбрасывается в спиральный канал (улитку) и под давлением 0,15…0,25 МПа нагнетается в рубашку охлаждения двигателя.

У двигателей ЯМЗ-240Б, КамАЗ-740 вентилятор приводится во вращение посредством гидромуфты, которая при температуре охлаждающей жидкости ниже 75°С (для новых моделей автомобилей 80°С) автоматически выключает вентилятор, а при температуре выше 90°С (95°С) включает его. У двигателей ВАЗ привод вентилятора осуществляется от электродвигателя.

Двигатели с воздушным охлаждением. Систему воздушного охлаждения применяют на двигателях Владимирского (Д-21А, Д-120, Д-130,Д-144) и Челябинского (Д-160, 8ДВТ-330) тракторных заводов. В систему воздушного охлаждения (рис. 15) входят: оребренные цилиндры 5 и их головки, вентилятор 9, 10, съемный кожух 2, задний, средний и передний дефлекторы 4, 7, 8 и контрольно-измерительные приборы.

1– масляный радиатор; 2 – кожух; 3 – защелка; 4, 7, 8 – соответственно задний,

средний и передний дефлекторы; 5 – цилиндр; 6 – шпилька; 9, 10 – соответственно

ротор и направляющий аппарат осевого вентилятора; 11 – сетка

Рисунок 15–Схема системы воздушного охлаждения двигателя

Воздух, нагнетаемый вентилятором, направляется кожухом в межреберное пространство цилиндров и головок. Дефлекторы распределяют поток воздуха по поверхности цилиндров и головок, что способствует равномерному охлаждению деталей двигателя.

Работу системы воздушного охлаждения контролируют с помощью термометра по температуре масла в картере двигателя и по сигнальной лампе, загорающейся при обрыве ремня вентилятора.

Тепловое состояние двигателя с воздушным охлаждением регулируют, изменяя положение дроссельного диска, установленного на входе вентилятора под защитной сеткой 11, а также включением и отключением масляного радиатора.

Основные достоинства системы воздушного охлаждения – простота и надежность в эксплуатации, более быстрый прогрев двигателя до рабочей температуры, меньшие габаритные и массовые характеристики двигателя.

Диагностика и ремонт топливных насосов (ТНВД)

Краткий обзор современных систем

ТНВД

Основная задача топливных насосов высокого давления (ТНВД) — подача топлива через форсунки в камеру сгорания цилиндра под высоким давлением в нужном количестве в нужный момент. История развития ТНВД началась с двадцатых годов прошлого столетия, а предпосылкой для их создания явилось бурное развитие высокоточных (прецизионных) технологий обработки материалов. В настоящее время существует большое количество конструкций ТНВД, которые условно можно разделить на четыре основных вида:
— ТНВД с механическим регулированием
— ТНВД с электронным регулированием
— Индивидуальные ТНВД и насос-форсунки
— ТНВД системы Common Rail

ТНВД с механическим регулированием

Рядные ТНВД (Рис.1) комплектуются плунжерными парами, состоящими из плунжера 4 и гильзы 1, по числу цилиндров двигателя. Плунжер смещается вверх, встроенным в ТНВД кулачковым валом 7, приводимым от двигателя. Возвратная пружина 5 отжимает плунжер обратно.

Рис. 1. Принцип работы рядного ТНВД a – стандартный рядный ТНВД типа PE 1. Гильза плунжера 2. Впускное окно 3. Регулирующая кромка плунжера 4. Плунжер 5. Возвратная пружина плунжера 6. Траектория поворотов плунжера вокруг своей оси (установка цикловой подачи) 7. Кулачковый вал привода плунжеров 10. Подача топлива к форсунке X- активный ход плунжера

Когда верхний торец плунжера при движении наверх перекрывает впускное окно 2, давление начинает повышаться. Этот момент называется началом нагнетания. При дальнейшем движении плунжера вверх создается избыточное давление, которое открывает форсунку и топливо впрыскивается в камеру сгорания. Когда регулирующая кромка плунжера 3 совмещается с окном 2, топливо начинает перетекать обратно, давление падает, и форсунка закрывается. Ход плунжера между открытием и закрытием впускного окна называется активным ходом плунжера — Х. Положение регулирующей кромки плунжера относительно впускного окна меняется поворотом плунжера 6 с помощь ю рейки ТНВД. Изменение активного хода позволяет регулировать величину цикловой подачи (необходимое количество топлива). Рейка управляется механическим регулятором.

Распределительные ТНВД, в отличие от рядных ТНВД оснащаются единым нагнетающим элементом высокого давления для всех цилиндров двигателя.

Рис. 2. Принцип действия распределительного ТНВД с аксиальным движением плунжера и распределения топлива с помощью регулирующей кромки 1. Траектория поворотов роликового кольца 2. Ролик 3. Кулачковая шайба 4. Аксиальный плунжер-распределитель 5. Регулирующая втулка 6. Камера высокого давления 7. Подача топлива к форсунке 8. Распределительный паз X- активный ход плунжера

Кулачковая шайба 3 (Рис.2), жестко соединенная с плунжером-распределителем 4, приводится во вращение от двигателя. Число кулачков, выполненных в виде выступов на рабочей поверхности шайбы, соответствует числу цилиндров двигателя. Шайба обкатывается по роликам 2, при наезде на которые кулачки приводят вращающий плунжер –распределитель в дополнительное возвратно- поступательное движение. По мере вращения приводного вала плунжер- распределитель совершает столько ходов, сколько требуется по числу цилиндров двигателя. При этом топливоподкачивающий насос нагнетает топливо в камеру 6 высокого давления, которое создается плунжером- распределителем. Вращаясь он открывает и закрывает распределительные отверстия, направляя топливо через распределительный паз 8 к отдельным форсункам. Продолжительность впрыскивания и цикловая подача изменяются путем перемещения регулирующей втулки 5, которая управляется механическим регулятором.

Роторные ТНВД или ТНВД с радиальным движением плунжеров (Рис.3) также снабжен кулачковой шайбой 3, только в отличие от распределительных насосов с аксиальным движением плунжера она имеет кольцевую форму. Кроме того, роторные ТНВД имеют от двух до четырех радиальных плунжеров 4, создающих высокое давление топлива. Данные ТНВД могут создавать более высокое давление топлива, чем аксиальные ТНВД.

Рис. 3. Принцип работы роторного ТНВД 1. Регулировка момента впрыскивания сдвигом кулачковой шайбы 2. Ролик 3. Кулачковая шайба 4. Радиальный плунжер 5. Электромагнитный клапан высокого давления 6. Камера высокого давления 7. Подача топлива к форсунке

Регулировка момента впрыскивания может осуществляться сдвигом кулачковой шайбы. Момент начала впрыскивания и продолжительность впрыска у этих ТНВД регулируется электромагнитным клапаном.

Все вышеуказанные типы ТНВД имеют одно общее-встроенный механический регулятор частоты вращения. Он автоматически изменяет цикловую подачу топлива воздействуя на рейку рядного ТНВД или на регулирующую втулку распределительного насоса, поддерживая заданную частоту вращения коленчатого вала. Кроме того, регулятор ограничивает максимальную и поддерживает минимально устойчивую частоту вращения.

Регуляторы подразделяются на пневматические, гидравлические и центробежные. Наибольшее распространение получили центробежные регуляторы, которые имеют несколько разновидностей в зависимости от их предназначения.

Механические ТНВД в своем составе также имеют:
— топливный насос низкого давления (ТННД), предназначенный для подачи необходимого количества топлива с необходимым давлением к контуру высокого давления.
— механизм опережения впрыскивания служит для управления моментом начала подачи и для компенсации времени прохождения волны давления через магистраль высокого давления. Механизм изменяет угол опережения впрыска на более ранний, с ростом частоты вращения коленчатого вала.
— механические корректирующие устройства служат для изменения цикловой подачи топлива с целью оптимизации работы дизеля. Существуют корректоры по давлению во впускном трубопроводе, по атмосферному давлению, по нагрузке, корректоры холодного пуска и демпфирования впрыскивания.

ТНВД с электронным регулированием

В отличие от механических ТНВД, топливные насосы с электронными регуляторами реагируют не только на изменение частоты вращения в зависимости от нагрузки, но и на многие другие характеристики дизеля, что позволяет более точно формировать цикловую подачу на всех рабочих режимах. Наличие электронного блока управления (ЭБУ), датчиков и электромеханических исполнительных позволяет увеличить скорость регулирования, мощность двигателя, уменьшить расход топлива и эмиссию отработанных газов (ОГ).

Рис.4. Системные блоки электронного управления работой дизеля 1. Датчики и задающие устройства (входные сигналы) 2. Электронный блок управления 3. Исполнительные механизмы 4. Взаимодействие с другими системами дизеля 5. Диагностика

Датчики и задающие устройства предназначены для регистрации условий эксплуатации, к ним относятся:
— Задающее устройство регулировок
— Индуктивный датчик частоты коленчатого вала (датчики оборотов)
— Датчик частоты распределительного вала и распознавания цилиндра двигателя
— Датчики температуры (охлаждающей жидкости, воздуха, топлива, масла)
— Датчик давления воздуха во впускном коллекторе
— Переключатель ограничения цикловой подачи и максимальной частоты коленчатого вала
— Датчик начала впрыскивания (датчик хода иглы распылителя)

ЭБУ обрабатывает сигналы датчиков и задающих устройств по определенным программам и алгоритмам управления. Он управляет исполнительными механизмами с помощью электрических выходных сигналов.
ЭБУ способен обрабатывать входные сигналы от датчиков в аналоговой, цифровой и импульсной формах, ограничивать их допустимыми напряжениями и проводить проверку на достоверность. ЭБУ рассчитывает момент начала и продолжительность впрыска топлива, учитывая параметры загруженных в него характеристик и сигналы датчиков. Затем расчетные величины преобразуются в выходные сигналы, которые генерируются в виде сигналов широтно-импульсной модуляции (ШИМ), при помощи которых исполнительные механизмы приводятся в любое рабочее положение.
Рис.5 иллюстрирует принцип работы исполнительного механизма (ИМ) на основе ШИМ. Сигналы постоянной частоты с варьируемым временем включения имеют прямоугольную форму. Сила тока при подаче сигналов всегда постоянна. Эффективная же сила тока, влияющая на работу якоря ИМ, зависит от соотношения включенного и выключенного состояния электромагнита ИМ. Малое время включения создает меньшую эффективную силу тока, а большее время — большую.

Рис.5. График сигнала широтно-импульсной модуляции
a) постоянная частота сигнала
b) переменное время включения

Исполнительные механизмы преобразуют выходные сигналы в действие электромеханических узлов, например, электромагнитов, передвигающих рейку ТНВД или регулирующую втулку в заданное положение.
На (Рис. 6) показан исполнительный механизм электронного регулятора частоты вращения рядного ТНВД.

Рис.6. Исполнительный механизм электронного регулятора частоты вращения рядного ТНВД 1. Рейка ТНВД 2. Возвратная пружина 3. Контактное кольцо датчика пути регулирования 4. Электромагнит 5. Якорь электромагнита 6. Датчик частоты вращения 7. Импульсное кольцо датчика частоты вращения 8. Кулачковый вал ТНВД

В ТНВД, оснащенными подобными регуляторами величина цикловой подачи, определяется положением рейки ТНВД, которое зависит от частоты вращения коленчатого вала и от значений датчиков системы управления дизеля. Электромагнит 4 исполнительного механизма при подаче на него напряжения, перемещает якорь 5, преодолевая сопротивление возвратной пружины 2. С увеличением силы тока регулирования якорь сдвигает рейку 1 ТНВД в направлении большей цикловой подачи. Таким образом происходит соответствующая установка рейки в любое необходимое положение — от нулевой до максимальной цикловой подачи. Управление электромагнитом происходит на основе сигнала ШИМ. Распределительные ТНВД с регулирующей кромкой и ЭБУ оснащаются исполнительным механизмом регулировки величины цикловой подачи и электромагнитным клапаном регулирования момента ее начала.

Рис. 7. Электромагнитный исполнительный механизм распределительного ТНВД с ЭБУ 1. Полудифференциальный коротко-замкнутый кольцевой датчик 2. Электромагнитный поворотный исполнительный механизм регулировки цикловой подачи 3. Электромагнитный остановочный клапан 4. Плунжер-распределитель 5. Электромагнитный клапан регулирования момента начала подачи 6. Регулирующая втулка

Электромагнитный поворотный исполнительный механизм 2 (Рис.7) действует через валик на регулирующую втулку. Управляющий канал в зависимости от режима работы ТНВД может открываться раньше или позже.
Величина цикловой подачи постоянно изменяется в пределах между нулевым и максимальным значениями (например, при холодном пуске). Управление изменением этой величины происходит в зависимости от ширины сигналов ШИМ. В обесточенном состоянии возвратные пружины исполнительного механизма переводят его в «нулевое» положение. Угол поворота исполнительного механизма, и, следовательно, положения регулирующей втулки определяется датчиком 1. Его сигналы и частота вращения определяет необходимую цикловую подачу.
Давление внутри ТНВД, пропорциональное частоте вращения, действует на поршень установки момента начала подачи и регулируется электромагнитным клапаном5, который также управляется импульсными сигналами. При длительно открытом электромагнитном клапане, когда давление понижается, устанавливается более поздний момент подачи, а при закрытом клапане (повышение давления) более ранний.

Индивидуальные ТНВД и насос-форсунки

Индивидуальные ТНВД и насос-форсунки являются индивидуальными системами впрыска и комплектуются одной самостоятельной топливной системой высокого давления на каждый цилиндр. В насос-форсунке ТНВД и форсунка объединены в одну конструкцию и встроены в головку блока непосредственно над каждым цилиндром. Система индивидуальных ТНВД включает в себя индивидуальные насосы высокого давления (столбики), которые монтируются на дизеле как отдельные узлы, соединенные с форсунками короткими трубками высокого давления. Благодаря этому облегчается компоновка этих агрегатов на двигателе и упрощается их обслуживание. Именно эти факторы обеспечивают индивидуальным ТНВД широкое применение в дизелях от мелких строительных и сельхозмашин до тяжелых грузовиков, тепловозов и судов. На (Рис.8) изображена схема расположения индивидуальных ТНВД с электромагнитным клапаном на двигателе, управляемых общим ЭБУ.

Рис. 8. Схема расположения индивидуальных ТНВД с ЭБУ на двигателе 1. Ступенчатый корпус форсунки 2. Камера сгорания двигателя 3. Индивидуальный ТНВД 4. Распределительный вал двигателя 5. Штуцер магистрали высокого давления 6. Магистраль высокого давления 7. Электромагнитный клапан 8. Возвратная пружина 9. Роликовый толкатель

Каждый индивидуальный ТНВД приводится в действие непосредственно от собственного кулачка на распределительном валу 4 двигателя. Связь с плунжером осуществляется через возвратную пружину 8 и роликовый толкатель 9. Все ТНВД крепятся через фланцы к блоку цилиндров. На (Рис.9) изображена конструкция индивидуального ТНВД с электромагнитным клапаном.

Рис. 9. Конструкция индивидуального ТНВД с электромагнитным клапаном 1. Ступенчатый корпус форсунки 2. Штуцер магистрали высокого давления 3. Магистраль высокого давления 4. Накидная гайка ТНВД 5. Ограничитель хода иглы электромагнитного клапана 6. Игла электромагнитного клапана 7. Пластина 8. Корпус ТНВД 9. Камера высокого давления (в плунжерной паре) 10. Плунжер 11. Блок цилиндров дизеля 12. Ось роликового толкателя 13. Кулачок 14. Тарелка пружины 15. Пружина клапана 16. Корпус клапана с катушкой и магнитным сердечником 17. Пластина якоря 18. Проставка 19. Уплотнение 20. Канал подвода топлива (низкое давление) 21. Канал обратного слива топлива 22. Ловушка для возврата просачивающегося вокруг плунжера топлива 23. Пружина толкателя 24. Стакан толкателя 25. Тарелка пружины 26. Роликовый толкатель 27. Ролик толкателя

ТНВД системы Common Rail

Одной из самых перспективных систем впрыска является система Common Rail. Главное отличие этой системы от других систем-разделение процесса нагнетания давления и обеспечения впрыскивания топлива. В данной системе ТНВД отвечает только за процесс нагнетания топлива, но он лишен распределительной функции и необходим лишь для создания резерва топлива и быстрого повышения давления в топливном аккумуляторе.
С момента создания системы Common Rail конструкции ТНВД претерпели многочисленные изменения и способны развивать огромное давление до 2500 bar. В наиболее простой конструкции ТНВД СР-1 (Рис.10) три плунжера 3, радиально расположенные по окружности через 120 градусов, сжимают топливо внутри ТНВД. Три рабочих хода каждого плунжера за один оборот вала ТНВД позволяют обеспечить незначительную и равномерную нагрузку на вал привода 1 с эксцентриковыми кулачками 2.

Рис. 10. ТНВД системы Common Rail 1. Вал привода 2. Эксцентриковый кулачок 3. Плунжер с втулкой 4. Впускной клапан 5. Выпускной клапан 6. Подача топлива

Топливоподкачивающий насос через фильтр подает топливо к ТНВД (Рис.11). Пройдя через дроссельное отверстие защитного клапана 14 и открытый перепускной клапан 15, оно поступает к впускному клапану 5 и далее в камеру 4 над плунжером, движущимся вниз (режим впуска). После прохождения нижней мертвой точки впускной клапан 5 закрывается. Топливо в надплунжерном пространстве сжимается плунжером, идущим вверх. Когда возрастающее давление достигнет уровня, соответствующего тому, что поддерживается в аккумуляторе высокого давления, открывается выпускной клапан 7. Сжатое топливо поступает в контур высокого давления до тех пор, пока плунжер не достигнет верхней мертвой точки (режим подачи). Затем давление падает, выпускной клапан 7 закрывается и плунжер начинает движение вниз.

Рис. 11. Схема продольного разреза ТНВД системы Common Rail 1. Вал привода 2. Эксцентриковый кулачок 3. Плунжер с гильзой 4. Камера над плунжером 5. Впускной клапан 6. Электромагнитный клапан отключения плунжерной секции 7. Выпускной клапан 8. Уплотнение 9. Штуцер магистрали, ведущей к аккумулятору высокого давления 10. Клапан регулирования давления 11. Шариковый клапан 12. Магистраль обратного слива топлива 13. Магистраль подачи топлива к ТНВД 14. Защитный клапан с дроссельным отверстием 15. Перепускной канал низкого давления

Когда величина давления опускается ниже давления, создаваемого топливоподкачивающим насосом, впускной клапан 5 открывается и процесс повторяется.


Диагностика ТНВД

В условиях плотной компоновки агрегатов моторного отсека современного автомобиля экономически целесообразно до снятия ТНВД для проверки его параметров на безмоторном стенде провести диагностику основных систем двигателя, чтобы убедиться, что причина неисправности именно в ТНВД. Для двигателей не оснащенных электронной системой управления необходимо провести механическую диагностику, а для двигателей, оснащенных ЭБУ, компьютерную или комплексную диагностику. Исключение составляют случаи явных дефектов ТНВД, например, течи топлива или самопроизвольное изменение оборотов двигателя.

После проведения диагностики двигателя, при необходимости, ТНВД снимается с двигателя и проверяется на специальном безмоторном стенде или дефектуется методом частичной или полной разборки.

До установки ТНВД на безмоторный стенд он осматривается на предмет внешних повреждений, герметичности, отсутствия люфтов приводного вала, а для механических ТНВД, дополнительно, отсутствия люфтов рычага акселератора.

Методика проверки ТНВД, как отдельного агрегата, определяется специальным тест-планом, параметры которого индивидуальны для каждого типа дизельного двигателя.
В общем случае проверка ТНВД проводится по следующей схеме:
— проверка топливного насоса низкого давления(ТННД)
— проверка герметичности нагнетательных клапанов
— проверка момента начала подачи ТНВД
— проверка производительности ТНВД на основных режимах работы
— проверка неравномерности подачи ТНВД по секциям
— проверка устройства опережения впрыска
— проверка корректирующих устройств ТНВД

Для рядных, распределительных и роторных ТНВД с электронным управлением необходимо проверить параметры электромеханического исполнительного механизма.

При диагностике ТНВД системы Common Rail на безмоторном стенде осуществляется проверка:
— плунжерных секций при различной нагрузке
— впускных клапанов
— выпускных клапанов
— электронного клапана регулировки давления
— производительности ТНВД при давлениях, соответствующих основным рабочим режимам.


Ремонт ТНВД

Основной целью ремонта ТНВД является: 1. Ввод агрегата в рабочее состояние, обеспечивающее его длительную эксплуатацию. 2. Определение причин его выхода из строя. Основными причинами выхода из строя ТНВД могут являться:
— некачественное топливо, содержащее механические примеси, воду, инородные жидкости.
— естественный износ при длительной эксплуатации.
— некачественный ремонт или установка деталей сомнительного производства.
— нарушение технологических нормативов при снятии и установке ТНВД с двигателя, например, перетяжка приводного ремня.
— нарушение норм эксплуатации или слишком динамичные режимы условия эксплуатации, например, жесткая езда.
Главный экономический смысл ремонта ТНВД заключается в том, чтобы стоимость ремонта вместе с установленными запчастями, не превышала стоимости нового или проверенного ТНВД, приобретенного на разборке.
Хороший ремонт ТНВД требует высокой квалификации персонала, специального диагностического и технологического оборудования, наличие диагностических тест-планов и качественных запчастей.

Методы ремонта могут сильно различаться для каждых типов ТНВД, ввиду большого разнообразия их конструкций. Однако общая технология ремонта производится по следующей схеме:

1. Внешний осмотр и оценка комплектности агрегата. 2. Мойка ТНВД в собранном виде.
Производится различными способами:
— механическим способом
— специальными моющими жидкостями под давлением
— сжатым воздухом
— погружением в ультразвуковую ванну
3. Разборка и предварительная оценка внутреннего состояния.
Разборка проводится с помощью специальных приспособлений, без участия которых процесс становится трудоемким и может привести к дополнительным поломкам. Потом определяется наличие поломанных деталей, коррозии, продуктов износа трущихся поверхностей (металлической стружки). 4. Мойка всех деталей и узлов ТНВД. Лучше всего детали отмываются в ультразвуковой ванне, с применением специальных моющих средств. Процесс считается законченным, когда детали очищены от грязи и коррозии. 5. Дефектация и отбраковка деталей ТНВД.
Этот этап проводится путем осмотра, а также с применением оптических и высокоточных измерительных устройств. Операция выполняется с целью определения степени износа и пригодности деталей к дальнейшей эксплуатации. Измеряется износ, люфты, определяется наличие сколов, царапин, трещин, величина эрозии металла.
Важным условием дефектации является проверка электрических параметров электромеханических исполнительных механизмов и корректирующих механизмов. Далее детали сортируют на годные к эксплуатации, требующие ремонта и не подлежащие ремонту.

6. Ремонт деталей ТНВД.
Данная операция целесообразна, в случае, когда ее стоимость ниже стоимости новых деталей при условии длительной эксплуатации. Наиболее пригодными для ремонта считаются:
— корпус ТНВД
— детали топливоподкачивающего насоса
— нагнетательные клапана
7. Комплектация ТНВД новыми деталями.
Традиционно запчасти основных производителей ТНВД таких как Bosch, Zexel, Delphi, Denso, Siemens имеют высокую стоимость. Желание сэкономить и использовать запчасти производителей, не имеющих достойную репутацию, может привести к некачественному ремонту. Поэтому вопрос комплектации запчастями лучше отдать на откуп сервису, производящему ремонт ТНВД, при условии, что сервис предоставляет гарантийные обязательства. 8. Сборка ТНВД.
Ввиду того, что ТНВД является прецизионным устройством, вне зависимости от величины ремонтной организации, его сборка должна производиться на оборудованном рабочем месте, имеющим специальный инструмент, с соблюдением технологической дисциплины и чистоты. Вне зависимости от конструкции ТНВД, его сборка осуществляется по общим правилам:
— сборка ТНВД проводиться в обратном порядке к его разборке
— к сборке допускаются только новые, отремонтированные и годные к эксплуатации детали, прошедшие отбраковку
— при сборе используются только новые ремкомплекты сальников и уплотнений
— затяжка резьбовых соединений осуществляется динамометрическим ключом, в определенном порядке, с использованием технологических нормативов
— для смазки трущихся деталей используется чистое дизельное топливо и специальные смазочные материалы, рекомендованные производителем ТНВД
— на каждом этапе сборки ТНВД необходим контроль допустимых люфтов, подвижных соединений и плавности хода
— после сборки проводится проверка ТНВД на герметичность под необходимым давлением
— окончательный этап сборки ТНВД – его обкатка на безмоторном стенде. 9. Регулировка ТНВД.
Регулировка ТНВД осуществляется после сборки. Главная задача регулировки ТНВД- приведение его основных параметров (давление, цикловая подача, момент начала впрыскивания, неравномерность цикловой подачи) в соответствие с техническими характеристиками двигателя (мощность, крутящий момент, количество оборотов в минуту) на основных рабочих режимах.
Регулировка ТНВД проводится на специальном безмоторном стенде, по алгоритму аналогичному схеме диагностики ТНВД. При этом используются эталонные трубки высокого давления, и эталонные форсунки стенда, отрегулированные на давление открытия форсунок данного двигателя. Механические ТНВД регулируются с помощью специальных винтов (винта номинальных оборотов, винта максимальных оборотов, винта холостого хода). Электронные распределительные ТНВД типа VE регулируются путем смещения исполнительного механизма (централизации) относительно корпуса насоса. Регулировка давления ТНВД системы Common Rail производиться с помощью:
— клапана регулирования в зоне высокого давления
— дозирующего клапана в зоне всасывания
— комбинированного способа, сочетающего оба метода регулировки

На Рис.12 представлена блок-схема алгоритма ремонта ТНВД.

Рис.12. Блок- схема ремонта ТНВД


Установка ТНВД на двигатель

После ремонта и регулировки ТНВД устанавливается на двигатель, с которым он может быть связан ременным, цепным или шестеренчатым приводом. Для этого необходимо совместить установочные метки ТНВД с метками механизма газораспределения двигателя. Данные о взаимном расположении установочных меток можно подчерпнуть в справочной литературе и на электронных носителях информации, например, Autodata. Там же существуют данные о моментах затяжки присоединительных винтов ТНВД. Если ТНВД связан с двигателем ременной передачей необходимо установить ремень с заданным усилием. Нарушение этого условия может привести к серьезным поломкам ТНВД и двигателя.
После установки насоса на двигатель, для механических ТНВД и ТНВД с электронным регулятором требуется точная регулировка угла опережения впрыска (УОВ) на двигателе. Для механических ТНВД используется статический и динамический способы регулировки. Для рядных ТНВД статический способ осуществляется с помощью моментоскопа, а для распределительных применяется специальная индикаторная головка. Динамический способ установки угла впрыска производится на холостых оборотах двигателя с помощью специального стробоскопа. Данные об установочных углах для обоих способов определяются через программу Autodata. Для электронных ТНВД оптимальный метод установки УОВ осуществляется с помощью диагностических сканеров, например, KTS фирмы Bosch. При установке ТНВД системы Common Rail на двигатель точной регулировки угла опережения впрыска не требуется.


ООО «Дизель-Сервис» предлагает полный спектр услуг по снятию, установке, профилактике, диагностике и агрегатному ремонту ТНВД следующих типов:

  • VE фирмы BOSCH европейских автопроизводителей, а также фирм ZEXEL и DENSO азиатских автопроизводителей для легковых автомобилей, микроавтобусов, малогабаритных грузовиков и спецтехники;
  • рядных механических ТНВД для легковых автомобилей и микроавтобусов MERCEDES и др.;
  • электронных ТНВД типа VE BOSCH для европейских автомобилей и VE ZEXEL и VE DENSO для некоторых моделей японских и корейских автомобилей.
  • ТНВД для автомобилей, оснащенных системой Common Rail фирмы BOSCH.


ООО «Дизель-Сервис» имеет оборудование и специнструмент для снятия и установки большинства видов топливных насосов, а также свой топливный цех по агрегатному ремонту и диагностике ТНВД. Наши специалисты, имеющие огромный опыт по диагностике и ремонту ТНВД, в сжатые сроки и с хорошим качеством произведут ремонт топливной аппаратуры по умеренным ценам. На все виды работ имеются гарантийные обязательства.

Оплата может производиться по наличному и безналичному расчету.


Система питания дизельного двигателя

Система питания дизельного двигателя должна создавать высокое давление впрыска топлива в камеру сгорания цилиндра; дозировать порции топлива в соответствии с нагрузкой двигателя; производить впрыск топлива в строго определенный момент, в течение заданного промежутка времени и с определенной интенсивностью; хорошо распылять и равномерно аспределять топливо по объему камеры сгорания; надежно фильтровать топливо перед его поступлением в насосы и форсунки.

Дизельное топливо представляет собой смесь керосиновых, газойлевых и соляровых фракций после отгона из нефти бензина. К основным свойствам дизельного топлива относятся: воспламеняемость, оцениваемая октановым числом; вязкость; чистота и температура застывания, по которым различают дизельное топливо по сортам: ДЛ — летнее ДЗ — зимнее, ДА — арктическое.

Система питания дизельного двигателя состоит из:

  • топливного бака;
  • фильтров грубой и тонкой очистки воздуха;
  • топливоподкачивающего насоса;
  • топливного насоса высокого давления с регулятором частоты вращения и автоматической муфтой опережения впрыска топлива;
  • форсунок;
  • трубопроводов высокого и низкого давления;
  • воздушного фильтра;
  • выпускного газопровода;
  • глушителя шума отработавших газов.

Система питания дизеля разделяется на топливоподводящую и воздухоподводящую аппаратуру.

Топливоподача осуществляется по двум магистралям: низкого и высокого давления. Назначение магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к топливному насосу высокого давления. Назначение магистрали высокого давления состоит в обеспечении подачи и впрыскивания необходимого количества топлива в цилиндры двигателя в строго определенный момент.

Топливоподкачивающий насос дизеля подает топливо из бака через фильтры грубой и тонкой очистки по топливопроводам низкого давления к топливному насосу высокого давления (ТНВД), который в соответствии с порядком работы цилиндров по топливопроводам высокого давления подает топливо к форсункам. Форсунки, расположенные в головках цилиндров, впрыскивают и распыляют топливо в камеры сгорания двигателя. Так как Топливоподкачивающий насос подает к ТНВД топлива больше, чем необходимо, то его избыток, а с ним и попавший в систему воздух, по дренажным трубопроводам отводится обратно в бак.

Топливный насос высокого давления (ТНВД) служит для подачи в камеры сгорания двигателя через форсунки требуемых порций топлива. Состоит из одинаковых секций по количеству цилиндров двигателя.

Форсунки служат для впрыскивания и распыления топлива, а также для распределения его частиц по объему камеры сгорания.

Основным конструктивным элементом форсунки является распылитель, имеющий одно или несколько сопловых отверстий, формирующих факел впрыскиваемого топлива.

Существуют форсунки закрытого и открытого типа. В четырехтактных дизелях применяют форсунки закрытого типа, сопловые отверстия которых закрываются запорной иглой. Поэтому внутренняя полость в корпусе распылителей форсунок сообщается с камерой сгорания только в период впрыскивания топлива.

К системе питания дизелей относятся топливо- и воздухоподводя-щая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В четырехтактных дизелях наибольшее распространение получила топливоподводящая аппаратура разделенного типа, у которой топливный насос высокого давления и форсунки конструктивно выполнены отдельно и соединены топливопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

Рис. 8.2. Схемы систем питания дизелей:
а — ЯМЭ-236; б — КамАЗ-740; 1, 4, 6, 33,35,38, 39, 44— сливные топливопроводы; 7, 8, 13, 28, 31, 37, 41, 45— топливопроводы низкого давления; 9, 25— топливопроводы высокого давления; 2—муфта опережения впрыскивания топлива; 3, 36—фильтры тонкой очистки; 5, 30—форсунки; 10, 29—насосы высокого давления; 11 — крышка всережимного регулятора; 12, 27 — топливоподкачивающие насосы; 14 — перепускной клапан; 15 — вал; 16 — крышка подшипников; 17, 40 — топливные баки; 18 — штуцер; 19 — крышка фильтра; 20, 43 — фильтры грубой очистки; 21 — корпус фильтра; 22 — фильтрующий элемент; 23 — каркас фильтрующего элемента; 24 — топливозаборная трубка; 26 — насос ручной подкачки топлива; 32 — магнитный клапан; 34 — факельные свечи; 42 — тройник

Рекламные предложения на основе ваших интересов:

Основными механизмами и узлами топливной аппаратуры дизелей ЯМЗ-236 и -238 (рис. 8.2, а) являются: топливный насос 10 высокого давления, топливоподкачивающий насос низкого давления, муфта опережения впрыскивания топлива, форсунки, расположенные в головках цилиндров, топливный бак с фильтром грубой очистки топлива, фильтр тонкой очистки топлива, топливопроводы низкого давления, топливопроводы 9 высокого давления, сливные топливопроводы.

Привод насоса высокого давления осуществляется от распределительного вала дизеля посредством зубчатой передачи. Вал 15 привода установлен в подшипниках, закрытых крышкой. При помощи автоматической муфты опережения впрыскивания он соединяется с кулачковым валом насоса, на заднем конце которого под крышкой смонтирован всережимный регулятор частоты вращения коленчатого вала дизеля.

Взаимодействие механизмов и узлов топливной аппаратуры, а также циркуляция топлива в них происходят следующим образом. Топливоподкачивающий насос низкого давления через топливопровод засасывает топливо из бака через фильтр грубой очистки и нагнетает его под избыточным давлением по топливопроводу в фильтр тонкой очистки. Из этого фильтра по топливопроводу топливо поступает к насосу высокого давления, откуда оно под большим давлением по топливопроводам подается в соответствии с порядком работы дизеля к его форсункам, через которые впрыскивается в цилиндры.

Так как насос низкого давления подает больше топлива, чем это необходимо для работы двигателя, то часть топлива, не использованного в насосе высокого давления, через перепускной клапан по сливным топливопроводам отводится обратно в бак. Просочившееся через зазоры в деталях форсунок топливо сливается в бак по сливным топливопроводам. При этом не использованное топливо обеспечивает смазывание и охлаждение деталей насоса и форсунки.

В дизелях семейства КамАЗ-740 (рис. 8.2, б) топливо из бака под действием разрежения, создаваемого топливоподкачивающим насосом низкого давления, проходят фильтры грубой и тонкой очистки.

По топливопроводам магистрали низкого давления топливо поступает к насосу высокого давления и от него по топливопроводам высокого давления подается к форсункам в соответствии с порядком работы двигателя. Неиспользованное топливо и попавший в систему воздух отводятся через перепускной клапан насоса высокого давления и клапан-жиклер фильтра тонкой очистки по сливным топливопроводам. Из форсунок лишнее топливо по топливопроводам поступает в бак через тройник и топливопровод.

У дизелей автомобилей ЗИЛ-4331 и семейства КамАЗ к топливной системе присоединено электрофакельное устройство для облегчения их пуска в условиях отрицательных температур. В это устройство входят факельные свечи, устанавливаемые во впускном трубопроводе и служащие для подогрева воздуха, поступающего в цилиндры. Топливо к факельным свечам поступает из топливопровода через магнитный клапан. Электрофакельное устройство является эффективным средством облегчения пуска двигателя при температурах до — 25 °С, а также предохраняет аккумуляторные батареи от перегрузки в процессе пуска, ускоряет начало работы дизеля под нагрузкой и снижает дымность отработавших газов у непрогретого двигателя.

Работа системы питания дизельного двигателя

Классическая система питания дизеля

Систему питания дизельных двигателей, которая включает топливный насос высокого давления (ТНВД) и присоединенные к нему посредством толстостенных трубок высокого давления форсунок можно назвать классической, поскольку до последнего времени она имела наибольшее применение.
Рассмотрим, как работает такая система питания.

Итак, как мы уже знаем из предыдущей статьи, система питания дизеля включает топливный бак, систему топливопроводов низкого давления, систему фильтрации топлива, подкачивающий насос, насос высокого давления, трубки высокого давления, форсунки, а также элементы воздуховода и отвода отработавших газов.

От зубчатых колес газораспределения приводится в действие вал топливного насоса 19 высокого давления (ТНВД), который, в свою очередь, приводит в действие топливоподкачивающий насос 20. В результате из бака 2 по трубкам 23 и 21 через фильтр 22 грубой очистки топливо засасывается в полость подкачивающего насоса 20, откуда по топливопроводам 6 и 10 через фильтр тонкой очистки подается к ТНВД 19.
Топливный насос высокого давления через трубки высокого давления 15 подается к форсункам 17, при этом осуществляется строгое дозирование количества подаваемого к форсункам топлива, а также момент подачи каждой топливной порции.

Поступающее из ТНВД по топливопроводу 15 высокого давления топливо через форсунку 17 впрыскивается в цилиндр, где осуществляется его быстрое перемешивание с предварительно сжатым воздухом и самовоспламенение.

Впускная полость ТНВД снабжена перепускным клапаном 13, поддерживающим в ней давление 0,15…0,17 МПа вне зависимости от расхода топлива. Избыточное топливо по трубкам 11 и 4 возвращается в топливный бак 2.
Таким образом, данная система питания является проточной. Часть топлива перепускается также в трубку 4 из фильтра тонкой очистки через калиброванное отверстие, расположенное в штуцере 8.

Непрерывная циркуляция топлива в проточной системе в отличие от тупиковой выравнивает его температуру, освобождает топливную магистраль от возможных пузырьков воздуха и паровых пробок. Топливо, просачивающееся через зазоры в форсунках, отводится в бак по трубке 18.

Первоначальное заполнение системы осуществляется ручным насосом 12, который объединен в один узел с подкачивающим насосом 20. Воздух из системы при ее заполнении и в процессе эксплуатации удаляют в первую очередь через отверстия, закрываемые пробками 9 и 14, а отстой из фильтра сливают через отверстие, закрываемое пробкой 5.

Топливо тщательно очищают даже от мельчайших твердых частиц, которые могут повредить прецензионные (выполненные очень точно) сопрягаемые поверхности в насосе высокого давления и форсунках.
Топливо фильтруется не только фильтрами 7 и 22, но и при заливке в бак через сетку 3, установленную в его горловине, а также на входе и топливопровод 23 через сетку топливоприемника 1 и на входе в форсунку с помощью небольшого фильтра, установленного в штуцере 16.

Данную систему питания дизелей относят к системам с раздельной топливной аппаратурой. В последнее время широкое распространение получили и другие конструкции систем питания, в первую очередь – система впрыска посредством насос-форсунок и система питания, называемая Common Rail («Коммон Рейл»). Эти две системы имеют ряд существенных преимуществ перед классической раздельной системой питания, в первую очередь благодаря возможности значительного увеличения давления впрыска, а также применения компьютерного управления подачей топлива.

Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха.

Дизельное топливо

Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).

Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.

Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).

Требования к агрегатам и узлам системы питания

Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования:

  • герметичность
  • малые масса и габариты
  • надежность
  • коррозионная стойкость
  • малые гидравлические сопротивления
  • простота
  • низкая стоимость обслуживания

Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение.

Общее устройство системы питания

Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы. Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления.

При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия.

Рис. Схема системы питания топливом мощного дизеля:
1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос; 9 — фильтр грубой очистки; 10 — предпусковой топливоподкачивающий насос; 11 — топливораспределительный кран; топливные трубопроводы обозначены сплошной линией; трубопроводы для удаления воздуха из системы обозначены пунктиром

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса. После пуска этот насос не функционирует.

Если в ТНВД и трубопроводы высокого давления, соединяющие его с форсунками, попадает воздух, то подача топлива в цилиндры нарушается. Следовательно, нарушается и нормальный режим работы двигателя. С целью предотвращения попадания воздуха в ТНВД на пути топлива к нему помещают воздухоотстойник, расположенный в самой высокой точке системы. Обычно воздухоотстойник размещают в крышке фильтра тонкой очистки. Перед пуском двигателя в случае необходимости скопившийся в воздухоотстойнике воздух отводят в воздушные полости топливных баков 1 через кран (клапан) 2 для выпуска воздуха. Для этого при неработающем двигателе открывают кран (клапан) и с помощью предпускового насоса прокачивают систему. В этом случае топливо вытесняет воздух из воздухоотстойника в воздушную полость топливного бака через топливораспределительный кран (как показано на рисунке) или напрямую.

Топливный бак

Топливо, просочившееся в форсунках между иглой и распылителем, отводится по сливным трубопроводам в специальный бачок 7 или в какой-либо основной топливный бак.

Топливные баки служат для хранения топлива. Они могут иметь различную конфигурацию и вместимость в зависимости от конструкции конкретного ТС. Общая вместимость топливных баков определяется запасом хода машины (обычно не менее 500 км). Чаще всего баки изготавливает из листовой стали или высокопрочного пластика, стойкого к воздействию химически активного топлива. Для предотвращения коррозии внутренние поверхности стальных баков покрывают бакелитовым лаком, оцинковывают или лудят. С целью увеличения жесткости баков на их стенках иногда выштамповывают желоба, а внутри устанавливают несплошные перегородки, которые к тому же уменьшают площадь свободной поверхности топлива и ослабляют его колебанияbqвремя движения ТС.

Наливные горловины топливных баков обычно снабжают сетчатыми фильтрами. В нижней части баков размещают отстойники. Если бак имеет значительную вместимость, то слив топлива осуществляется через отверстие с пробкой и шариковым клапаном, расположенное выше отстойника. В этом случае используется специальный ключ-трубка со шлангом. Воздушное пространство баков соединяется с атмосферой через дренажные трубки или другие специальные устройства, которые должны исключать возможность попадания огня во внутреннюю полость бака и вытекания топлива при резких толчках ТС, а также (по возможности) обеспечивать очистку воздуха, поступающего в баки. Для замера количества топлива в баках раньше применялись измерительные стержни. В настоящее время для этой цели чаще всего используются электрические датчики поплавкового типа, посылающие электрический сигнал, пропорциональный уровню топлива, к соответствующему указателю на приборной панели ТС.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Рис. Схема плунжерного топливоподкачиваюгцего насоса:
1 — нагнетательный клапан; 2 — корпус насоса ручной подкачки топлива; 3 — поршень насоса ручной подкачки топлива; 4 — впускной клапан; 5 — корпус топливоподкачивающего насоса; 6, 9 — пружины; 7 — плунжер; 8 — шток; 10 — толкатель; 11 — ролик; 12 — эксцентрик кулачкового вала

Рис. Схема коловратного топливоподкачивающего насоса:
1 — пружина редукционного клапана; 2 — редукционный клапан; 3 — перепускной клапан; 4 — пружина перепускного клапана; 5 — плавающий палец; 6 — пластина; 7 — ротор; 8 — направляющий стакан; А—В — камеры насоса

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Предпусковой топливоподкачивающий насос

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.

Фильтры грубой и тонкой очистки топлива

Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.

В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:

  • сетчатые
  • ленточно-щелевые
  • пластинчато-щелевые

У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.

В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.

Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.

Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.

В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.

В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.

ТНВД. Устройство и принцип работы

Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент. В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.

Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами. В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.

Рис. Топливный насос высокого давления:
1, 4 — продольные каналы; 2 — штуцер; 3 — нагнетательный клапан; 5 — корпус насоса; 6 — роликовый толкатель; 7 — кулачковый вал; 8 — плунжер; 9 — зубчатая рейка; 10 — поворотная втулка; 11 — возвратная пружина

Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.

Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.

Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.

Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки. При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.

Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.

Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.

Механизм всережимного регулятора

С ТНВД соединен механизм всережимного регулятора. Он автоматически поддерживает заданную водителем частоту вращения коленчатого вала, устанавливает минимальную частоту на холостом ходу, а также ограничивает максимальную частоту. Механизм регулятора представляет собой систему тяг, пружин и упоров, связанных с зубчатой рейкой ТНВД, перемещение которых зависит от частоты вращения кулачкового вала.

Форсунка

Форсунка служит для подачи топлива в цилиндр двигателя под высоким давлением в мелкораспыленном виде.

Типичная форсунка включает в себя корпус 5 с распылителем 3, направляющим штифтом 4 и накидной гайкой 2, иглу 1 распылителя со штоком б, пружину 7 с опорной шайбой, регулировочным винтом 9 и втулкой 8, колпачковую гайку 10 и топливоприемный штуцер 12 с сетчатым фильтром 11. Распылитель и игла должны быть очень точно подогнаны друг к другу. В верхней части распылителя имеются один кольцевой и несколько (чаще всего три) вертикальных топливных канала, а в нижней части — центральные входной и выходной каналы с распыляющими отверстиями. Диаметр этих отверстий составляет 0,2…0,4 мм. Игла своим нижним конусным концом закрывает выходной канал. Распылитель плотно прикрепляется к корпусу-форсунки с помощью накидной гайки. Топливный канал корпуса соединяется с кольцевым каналом распылителя через его вертикальные каналы. Правильное положение распылителя относительно корпуса обеспечивает направляющий штифт.

Рис. Форсунка:
1 — игла распылителя; 2 — накидная гайка; 3 — распылитель; 4 — направляющий штифт; 5 — корпус форсунки; 6 — шток; 7 — пружина; 8 — втулка; 9 — регулировочный винт; 10 — колпачковая гайка; 11 — сетчатый фильтр; 12 — топливоприемный штуцер

Топливо, подаваемое к форсунке по топливоприемному штуцеру, проходит через сетчатый фильтр и по топливным каналам корпуса в верхней части распылителя поступает в его кольцевую полость. По достижении необходимого давления в этой полости, действующего кроме прочего на конический поясок иглы, она поднимается вверх, преодолевая сопротивление пружины. В это время открывается выходной канал, и топливо через него и распыливающие отверстия поступает в камеру сгорания цилиндра двигателя.

После прекращения подачи топлива насосной секцией ТНВД и падения давления игла снова садится в свое седло, прекращая впрыскивание топлива. Просочившееся через неплотности топливо поступает в верхнюю часть форсунки и через отверстия в винте 9 и гайке 10 по специальному трубопроводу сливается в бачок 7 для сбора топлива.

Аккумуляторная система питания топливом

Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.

Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.

Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.

Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.

Техническое обслуживание и ремонт автомобилей

Техническое обслуживание и ремонт системы питания дизелей

Техническое обслуживание системы питания дизельного двигателя

При ЕО очищают приборы системы питания от грязи и пыли, проверяют уровень топлива в баке и при необходимости заправляют автомобиль топливом. Отстой из топливного фильтра-отстойника сливают в холодное время года ежедневно, а в теплое — с периодичностью, не допускающей образования отстоя в количестве более 0,10…0,15 л.

При ТО-1 проверяют осмотром герметичность соединений топливопроводов, приборов системы питания и резинового патрубка воздушного фильтра. Проверяют состояние и действие приводов останова двигателя и привода ручного управления подачей топлива. При необходимости приводы регулируют. Сливают отстой из фильтров грубой и тонкой очистки топлива, при необходимости промывают колпак фильтра грубой очистки топлива, после чего пускают двигатель и дают ему поработать 3…4 мин для удаления воздушных пробок.

При ТО-2 проверяют исправность и полноту действия механизма управления подачей топлива (при полностью нажатой педали рычаг управления рейкой ТНВД должен упираться в ограничительный болт). Заменяют фильтрующие элементы фильтров тонкой очистки топлива, промывают фильтр грубой очистки топлива, очищают бумажный фильтрующий элемент второй ступени воздушного фильтра. Заменяют масло в муфте опережения впрыска топлива Г и в ТНВД.

При СО дополнительно к работам ТО-2 снимают форсунки и регулируют на стенде давление подъема иглы, проверяют и при необходимости регулируют при помощи моментоскопа угол опережения впрыска топлива. Один раз в 2 года снимают ТНВД, проверяют его работоспособность на стенде и при необходимости регулируют. При подготовке к зимней эксплуатации промывают топливные баки.

Ремонт узлов и приборов систем питания

Ремонт топливных баков и топливопроводов

Топливные баки изготавливают из стали 08. Основными дефектами топливных баков являются пробоины или сквозная коррозия стенок, разрушение сварного шва в месте приварки наливной трубы, вмятины стенок и наливной трубы, нарушение соединения перегородок со стенкой, нарушение герметичности в местах сварки и пайки, повреждение резьбы.

При общей площади пробоин и сквозных коррозионных разрушений более 600 см2 топливный бак бракуют. При меньшей площади повреждений бак ремонтируют постановкой заплат с последующей их приваркой или припайкой высокотемпературным припоем. При ремонте баков сваркой их обязательно выпаривают в течение 3 ч до полного удаления паров топлива.

Незначительные вмятины на стенках бака устраняют правкой. Для этого к центру вмятины приваривают стальной пруток, на другом конце которого имеется кольцо. Через кольцо пропускают рычаг и с его помощью выправляют вмятину. Затем прут отрезают, а место заварки зачищают. При значительных вмятинах на противоположной стенке бака против вмятины вырезают прямоугольное окно с трех сторон, и вырезанную часть отгибают так, чтобы обеспечить доступ инструмента к дефекту. Затем в образованное окно вводят оправку и при помощи молотка выправляют вмятину, после чего металл отгибают на место и по периметру с трех сторон заваривают.

Нарушение соединения перегородок со стенками заваривают сплошным швом проволокой Св-08 или Св-08ГС диаметром 2 мм. Небольшие трещины, а также нарушение герметичности устраняют пайкой низкотемпературным припоем. Значительные трещины устраняют пайкой высокотемпературным припоем, а в некоторых случаях и постановкой ремонтных накладок из листовой стали толщиной 0,5… 1 мм, перекрывающих места повреждений на 10… 15 мм. Накладки приваривают проволокой Св-08 или Св-08ГС диаметром 2 мм сплошным швом по периметру. После ремонта сварные швы зачищают от брызг и окалины, а баки испытывают на герметичность путем опрессовки в водяной ванне под давлением 0,3…0,35 кгс/см2 в течение 5 мин.

Топливопроводы низкого давления изготавливают из медных или латунных трубок или из стальных трубок с противокоррозийным покрытием. Трубопроводы высокого давления изготавливают из толстостенных стальных трубок.

Техническое состояние топливопроводов характеризуется их пропускной способностью. Основные дефекты трубопроводов: вмятины на стенках, трещины, переломы или истирания, повреждения развальцованных концов трубок в месте нахождения ниппеля. Перед ремонтом трубопроводы промывают дизельным топливом или горячим раствором каустической соды и продувают сжатым воздухом.

Топливопроводы, имеющие трещины и вмятины глубиной более 3 мм, истирания глубиной до 2 мм, радиус изгиба менее 30 мм и смятый конусный наконечник, подлежат замене или ремонту. Накидные гайки, имеющие срыв резьбы более одного витка; а также смятие граней под ключ, подлежат выбраковке.

Вмятины на трубопроводах устраняют правкой (прогонкой шарика). При наличии трещин или переломов, а также истирания трубок дефектные места либо заваривают латунью Л63 с последующей зачисткой, либо вырезают, а затем соединяют топливопроводы низкого давления при помощи соединительных трубок, а высокого давления — сваркой встык. Если при этом длина трубопровода уменьшилась, то вставляют дополнительный кусок трубки.

Изношенные соединительные поверхности топливопроводов низкого давления восстанавливают с помощью развальцовочного приспособления ПТ-265.10Б (рис. 24). Для этого отрезают неисправный конец трубки с изношенной поверхностью, отжигают трубку, надевают на нее ниппель с гайкой, вставляют трубку 4 в отверстие зажимного устройства 2, соответствующее ее диаметру, так, чтобы торец трубки выступал примерно на 2… 3 мм над верхней кромкой отверстия, и зажимают трубку. Развальцовку трубок производят легкими ударами молотка по бойку 1.

Рис. 24. Приспособление ПТ-265.10Б для развальцовки трубопроводов низкого давления: 1-боёк; 2-зажимное устройство; 3-тиски; 4-трубка

Для высадки уплотняющего конуса на топливопроводах высокого давления используют приспособление ПТ-265.00А (рис. 25). Перед высадкой уплотняющего конуса неисправный конец топливопровода отрезают и отгибают на длину 15 мм. Надев на топливопровод накидную гайку, устанавливают сухарики и кольцо. Топливопровод с сухариками устанавливают в стяжную гильзу 4, при этом торец пуансона должен упираться в упорное кольцо, а топливопровод в пуансон 2. Приспособление устанавливают на пресс и производят высадку конусной головки. По окончании высадки внутренний канал топливопровода рассверливают сверлом соответствующего диаметра на глубину 20 мм и снимают заусенцы на наружной поверхности топливопровода в месте разъема сухариков. Топливопровод промывают дизельным топливом и продувают сжатым воздухом. В накидные гайки ввертывают защитные пробки.

Отремонтированные топливопроводы проверяют на герметичность, а трубопроводы высокого давления и на пропускную способность путем пролива на стенде с контрольной секцией топливного насоса и эталонной форсункой. При этом замеряют количество топлива, которое перетекает через топливопровод в течение 1…2 мин. По результатам полученных значений производят комплектование топливопроводов на группы по пропускной способности. Различие в пропускной способности топливопроводов одного комплекта не должно превышать 0,5% от средней величины пропускной способности топливопроводов, входящих в комплект.

2.972 Как работает компрессионная холодильная установка


ОСНОВНОЕ ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ: Уберите тепло из замкнутого пространства.

ПАРАМЕТР ДИЗАЙНА: Компрессионные холодильные системы.


ГЕОМЕТРИЯ / СТРУКТУРА:

Хладагент, компрессор, расширительный клапан (устройство регулирования расхода), испаритель, конденсатор, трубы и трубки.

Скематика сжатия Система охлаждения

ОБЪЯСНЕНИЕ, КАК ЭТО РАБОТАЕТ / ИСПОЛЬЗУЕТСЯ:

Хладагент проходит через компрессор, который повышает давление хладагент. Затем хладагент проходит через конденсатор, где он конденсируется из из пара в жидкую форму, при этом выделяя тепло. Излучаемое тепло — вот что делает конденсатор «горячим на ощупь».«После конденсатора хладагент проходит через расширительный клапан, где испытывает падение давления. Наконец, хладагент попадает в испаритель. Хладагент забирает тепло из испарителя, который вызывает испарение хладагента. Испаритель отбирает тепло из области, которая охлаждаться. Испаренный хладагент возвращается в компрессор для перезапуска цикла.

Подробнее:

Компрессор: Поршневой, роторный и центробежные компрессоры, самые популярные среди бытовых или коммерческих охлаждение возвратно-поступательное.Поршневой компрессор похож на автомобильный двигатель. Поршень приводится в движение двигателем, чтобы «всасывать» и сжимать хладагент в баллоне. По мере того, как поршень опускается в цилиндр (увеличивая объема цилиндра), он «засасывает» хладагент из испарителя. В впускной клапан закрывается, когда давление хладагента внутри цилиндра достигает давление в испарителе. Когда поршень достигает точки максимального падения смещения, он сжимает хладагент при движении вверх.Хладагент выталкивается через выпускной клапан в конденсатор. Как впускной, так и выпускной клапаны спроектирован так, чтобы поток хладагента проходил только в одном направлении через система.

Схема компрессора (ремень Управляемый в этом случае)

Деталь клапана компрессора Функция


Компоненты компрессионного охлаждения в общежитии
Конденсатор: конденсатор отводит тепло, выделяемое при сжижении парообразного хладагента.Нагревать испускается, когда температура падает до температуры конденсации. Затем еще тепла (в частности, скрытая теплота конденсации) выделяется при сжижении хладагента. Существуют конденсаторы с воздушным и водяным охлаждением, названные в честь их конденсирующей среды. В более популярен конденсатор с воздушным охлаждением. Конденсаторы состоят из трубок с внешним плавники. Хладагент проходит через конденсатор. Чтобы отвести как можно больше тепла возможно, трубы расположены так, чтобы максимально увеличить площадь поверхности.Вентиляторы часто используются для увеличения поток воздуха, нагнетая воздух по поверхности, тем самым увеличивая способность конденсатора к выделять тепло.

Испаритель: Это часть холодильного оборудования. система, которая осуществляет фактическое охлаждение. Поскольку его функция заключается в поглощении тепла в система охлаждения (откуда она вам не нужна), испаритель помещается в охлаждаемую зону. Хладагент впускается и измеряется устройство управления потоком и, в конечном итоге, попадает в компрессор.Испаритель состоит из оребренных трубок, которая поглощает тепло из воздуха, продуваемого вентилятором через змеевик. Плавники и трубки изготовлены из металлов с высокой теплопроводностью для максимальной теплопередачи. В хладагент испаряется из-за тепла, которое он поглощает в испарителе.

Устройство регулирования расхода (расширительный клапан): Это контролирует поток жидкого хладагента в испаритель. Устройства управления обычно термостатические, что означает, что они реагируют на температуру хладагента.


ДОМИНАНТНАЯ ФИЗИКА:

Все переменные выражены в единицах на единицу массы.

Переменная Описание Метрическая система Английские единицы
h 1 , h 2 , h 3 , h 4 , h i Энтальпии на ступенях i кДж / кг БТЕ / фунт
q дюйм Тепло в систему кДж / кг БТЕ / фунт
q из Тепло вне системы кДж / кг БТЕ / фунт
работа работа в системе кДж / кг БТЕ / фунт
б КПД

Термодинамика

От ступени 1 до ступени 2 энтальпия хладагента остается примерно постоянной, таким образом,

ч 1 ~ ч 2 .

От ступени 2 к ступени 3 в систему подается тепло, таким образом,

q дюйм = h 3 — h 2 = h 3 — h 1 .

От ступени 3 до ступени 4 работа включается в компрессор, таким образом,

работа = h 4 — h 3 .

От ступени 4 к ступени 1 тепло отводится через конденсатор, таким образом,

q из = h 4 — h 1 .

Коэффициент полезного действия описывает эффективность испарителя. поглощать тепло по отношению к выполненной работе, таким образом,

b = холодопроизводительность / трудозатраты = q дюйм / работа = (h 3 — h 1 ) / (h 4 — h 3 ).


ОГРАНИЧИТЕЛЬНАЯ ФИЗИКА:

Теплопередача зависит от свойств хладагента. Разные Очевидно, что хладагенты будут иметь разные значения энтальпии для данного состояния.В деле с одним конкретным хладагентом значения энтальпии зависят от температуры и давления в теплых и холодных регионах. Окружающая Температура влияет на то, насколько хорошо холодильная система может охлаждать замкнутую область. Понятно, что если наружная температура очень высокая (т.е. намного выше комнатная температура), система может не так успешно снизить температуру замкнутой области, как при комнатной температуре.


УЧАСТКИ / ГРАФИКИ / ТАБЛИЦЫ:

Не отправлено


ГДЕ НАЙТИ КОМПРЕССИОННЫЕ ХОЛОДИЛЬНЫЕ СИСТЕМЫ:

Холодильники и кондиционеры.


ССЫЛКИ / ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:

Моран, Майкл Дж. И Шапиро, Хоавард Н., Основы инженерии Термодинамика, Нью-Йорк: John Wiley & Sons, Inc., 1992.

Лэнгли, Билли С., Холодильное оборудование и кондиционирование воздуха, Рестон, Вирджиния: Reston Publishing Company, Inc., 1982 г.


4 типа механизмов теплопередачи для охлаждения электрических шкафов

Охлаждение электрического шкафа включает в себя процессы передачи тепла изнутри шкафа и отвода его в окружающий воздух.Существуют различные механизмы теплопередачи, включая конвекцию, теплопроводность, тепловое излучение и испарительное охлаждение.

Механизмы теплопередачи

Охлаждение корпуса включает комбинацию механизмов теплопередачи. Основные механизмы, используемые для охлаждения электрических шкафов, следующие:

  • Проводимость: Это передача тепла через твердое тело. Например, тепло, генерируемое внутри корпуса, передается на внешнюю поверхность посредством теплопроводности.
  • Конвекция: Конвекция — это передача тепла от поверхности с помощью жидкости, например воздуха. Естественная конвекция возникает при нагревании воздуха: он расширяется, поднимается вверх и заменяется более холодным воздухом. Степень конвекции можно увеличить, используя вентилятор для увеличения потока воздуха.
  • Излучение: Это процесс, при котором энергия излучается через воздух посредством электромагнитного излучения. Хотя он эффективен для источников высокой температуры, таких как солнце, он менее эффективен при температуре окружающей среды на Земле.
  • Испарение: Скрытая теплота жидкости может использоваться для передачи тепла путем поглощения энергии, необходимой для испарения этой жидкости. Поглощенное тепло высвобождается, позволяя жидкости конденсироваться за пределами корпуса.

Эти формы теплопередачи используются для охлаждения электрических шкафов несколькими способами.

Пассивное охлаждение

Пассивное охлаждение, основанное на естественной теплопроводности, конвекции и излучении, подходит для малонагруженных шкафов с относительно большой площадью поверхности и хорошей вентиляцией.Температура окружающего воздуха должна быть ниже температуры корпуса. Этот метод не подходит для термочувствительных компонентов при высоких температурах окружающей среды.

Принудительная вентиляция

Эффективность конвекции можно повысить за счет использования вентиляторов, которые увеличивают поток воздуха через шкаф. Холодный воздух втягивается в нижнюю часть шкафа, а горячий воздух выходит в верхнюю часть. Вентиляторы должны быть оснащены фильтрами, чтобы ограничить попадание грязи, которая может повредить компоненты.Чтобы электрические компоненты не сильно нагревались, температура окружающей среды должна быть значительно ниже максимальной желаемой температуры корпуса.

Технология тепловых труб

Тепловые трубки, впервые разработанные в 1960-х годах, представляют собой практически безэнергетический метод охлаждения корпуса. Тепловая трубка состоит из вакуумированной медной трубки, частично заполненной жидкостью, например спиртом или водой. Из-за низкого давления жидкость на дне трубы закипает, когда она поглощает тепло из воздуха внутри помещения.Пар поднимается к верху трубы, где он охлаждается воздухом за пределами камеры и конденсируется. Затем конденсированная жидкость возвращается на дно трубки, и цикл повторяется.

В теплообменниках «воздух-воздух» компании Thermal Edge

используется эта новая технология для охлаждения герметичных электрических шкафов. Единственная энергия, необходимая маленьким вентиляторам, — это циркуляция воздуха вокруг горячих и холодных концов тепловой трубы.

Кондиционер в шкафу

В кондиционировании воздуха также используется испарение, но немного по-другому.Жидкий хладагент под давлением пропускается через расширительное устройство. Падение давления вызывает испарение жидкости в змеевике испарителя кондиционера и поглощение тепла, охлаждая воздух внутри помещения. Затем горячий газ сжимается и проходит через змеевик конденсатора, где газ сжижается, передавая свое тепло воздуху за пределами камеры. Комбинированный кондиционер представляет собой чрезвычайно эффективный метод охлаждения шкафа и будет работать эффективно, даже если температура окружающей среды намного выше, чем температура воздуха в шкафу.

Чтобы узнать больше о продуктах Thermal Edge и о том, как выбрать подходящий метод охлаждения для вашего электрического шкафа, свяжитесь с нашим отделом продаж сегодня.

Общие сведения об управлении производительностью судовой системы кондиционирования воздуха и охлаждения

Судовая система кондиционирования и охлаждения помогает снизить температуру в помещении и поддерживать желаемую температуру для скоропортящихся пищевых продуктов и охлаждаемых грузов.

Как обсуждалось в нашей статье об основах холодильной установки — Конструкция и работа судов Холодильная установка на судах, рефрижераторы и системы кондиционирования воздуха устанавливаются для работы с колеблющимися нагрузками i.е. они отвечают за поддержание низкой температуры одновременно в нескольких помещениях или грузовых трюмах.

Эффективность контрольного растения зависит от его способности поддерживать разные температуры в разных помещениях или помещениях. Каждая комната будет иметь свою собственную нагрузку, поэтому производительность холодильной установки необходимо контролировать для достижения необходимого охлаждения.

Что такое управление производительностью?

Управление производительностью холодильной установки можно определить как систему, которая отслеживает и контролирует производительность установки в соответствии с нагрузкой по запросу.Когда нагрузка (температура) одного помещения будет достигнута до требуемой температуры, хладагент больше не понадобится для охлаждения. Следовательно, электромагнитный клапан, подающий хладагент в эту комнату, закроется.

Холодильный компрессор состоит из различных блоков, работающих параллельно, чтобы справляться с нагрузкой. По мере уменьшения нагрузки система управления производительностью отключает один или несколько блоков (в зависимости от нагрузки) и поддерживает эффективность установки за счет снижения нагрузок на различные части.

Самыми простыми формами управления температурой в помещении являются:

  1. Использование двигателя с регулируемой скоростью (обычно используется в небольших блоках переменного тока)
  2. Управление циклическим включением и выключением компрессора
  3. Использование метода разгрузки цилиндра для удержания всасывающего клапана в открытом положении. Это достигается путем установки в компрессор клапана регулятора производительности, который приводится в действие давлением смазочного масла (гидравлического типа), или с помощью управляющих клапанов с электромагнитным приводом

При использовании первых двух методов возникают следующие механические проблемы:

  • Перегрев двигателя: слишком высокая частота коммутации вызовет чрезмерный нагрев двигателя
  • Повреждение подшипника: на этапе запуска давление масла низкое, а смазка подшипников не оптимальна, что приводит к сокращению срока хранения подшипников и соединяемых деталей
  • Возврат масла в прерывистом режиме: во время запуска в цикл хладагента поступает больше масла, чем во время непрерывной работы; частые переключения не обеспечивают достаточного возврата масла

Клапан регулировки производительности — работает на смазочном масле

Компоненты и работа системы регулирующих клапанов

  1. Подача насоса смазочного масла компрессора
  2. Клапан регулировки производительности
  3. Клапан регулировки производительности
  4. Разгрузчик в сборе

Насос смазочного масла компрессора подает масло ко всем подшипникам, и одно соединение предусмотрено для клапана регулирования производительности.

В клапан регулирования производительности подается масло под высоким давлением из насоса подачи смазочного масла компрессора. Этот клапан имел несколько канавок, просверленных по периферии и соединенных с разгрузочным механизмом различных узлов.

Имеется пружинный поршень, который контролирует распространение масла под высоким давлением в расточную камеру. Пружинный поршень сжимается маслом, подаваемым через отверстие, которое толкает поршень и выравнивает отверстия разгрузочного устройства, обеспечивая подачу масла под высоким давлением к разгрузочному узлу.

Узел разгрузчика состоит из поршня разгрузчика, удерживаемого пружиной. Поршень разгрузчика соединен с вращающимся кулачковым кольцом, имеющим подъемные штифты, прикрепленные к всасывающему клапану. Подъемные штифты всегда воздействуют на всасывающий клапан, т.е. разгружают агрегат в состоянии остановки.

Когда отверстия на регулирующем клапане совпадают с отверстиями разгрузочного устройства, масло будет проходить и нажимать на поршень разгрузчика, вращая кулачок и высвобождая штифты разгрузчика из всасывающего клапана.

Регулирующий клапан регулирования производительности отвечает за управление давлением (открытие и закрытие портов клапана регулирования производительности с портами разгрузки).Один его конец соединен с картером, а другой конец — с клапаном регулирования производительности.

Когда давление в картере падает из-за уменьшения нагрузки, масло из клапана регулирования производительности сливается в картер, что приводит к закрытию портов разгрузки, поднятию всасывающего клапана и отключению блока цилиндров. Это также означает, что все такие цилиндры разгружаются при запуске, освобождая ненужную нагрузку на двигатель во время периода запуска.

Клапан регулирования производительности — с электромагнитным управлением

В этом типе электромагнитные клапаны используются вместе с сервоклапаном для управления открытием и закрытием всасывающего клапана. Он установлен в верхней части цилиндра (рядом с всасывающим клапаном). В состоянии под напряжением соленоид закрывает доступ между двумя цилиндрами или ступенями компрессора, удерживая всасывающий клапан открытым и пропуская горячий нагнетаемый газ непосредственно во всасывающую линию, делая давление в агрегате равным нулю и уменьшая производительность. компрессора вдвое.

Когда электромагнитный клапан обесточен, газовые порты в пластине клапана и головке блока цилиндров открыты.

Единственным недостатком этого типа является то, что пружина в электромагнитном клапане может выйти из строя, и на ее работу влияют сильные колебания температуры.

Теги: судовая техника

Как работают портативные кондиционеры? (Легко объяснимо)

Портативные кондиционеры, прежде всего, просты в использовании и эффективны.

Во многих аспектах внутреннее устройство портативных кондиционеров аналогично работе стандартного холодильника.

Переносные блоки переменного тока

намного проще установить, чем любые другие блоки переменного тока (готовятся прямо из коробки) . Очевидно, что они намного сильнее влияют на кондиционирование воздуха, чем простые вентиляторы.

Портативные кондиционеры хорошо оборудованы для двух основных задач:

  1. Охлаждение одного или нескольких помещений (основная функция).
  2. Удаление влаги из воздуха в помещении (осушение — второстепенная функция).

Посмотрим, как работают переносные кондиционеры по адресу:

  • Понизьте температуру в помещении
  • Осушает воздух.

Что касается осушения, между устройствами существуют существенные различия (самоиспарение, слив под действием силы тяжести или удаление воды вручную).

Мы также рассмотрим различия в том, как работают переносные блоки переменного тока с одним и двумя шлангами.

Кроме того, здесь вы также можете ознакомиться с лучшими и наиболее энергоэффективными портативными блоками переменного тока.

Основной принцип охлаждения и осушения каждого портативного кондиционера

Каждый скажет вам, что установить портативный кондиционер относительно несложно.

Распакуйте устройство, подключите его к электросети, вытащите выхлопной шланг (аналогично шлангу сушильной машины) из окна и включите его.

Если у вас нет портативного блока переменного тока мощностью 15 000+ БТЕ, стандартной электросети 115/120 В будет более чем достаточно. Также стоит упомянуть, что самые маленькие портативные блоки переменного тока имеют мощность 8000 БТЕ.

Тем не менее, термодинамические принципы , лежащие в основе блоков переменного тока, во многом такие же, как и для всех других кондиционеров.

Цель состоит в том, чтобы извлекать тепло из комнаты (или двух, в зависимости от размера) и передавать это тепло наружу. Вот почему каждый портативный кондиционер состоит из трех основных компонентов:

.
  1. Хладагент (для охлаждения воздуха).
  2. Компрессор (для сжатия хладагента).
  3. Вентилятор (для перемещения воздуха).

Каждый переносной кондиционер работает на основе холодильного цикла. Вот краткий набросок того, как холодильный цикл выглядит в теории:

Это самое простое представление о том, как работает портативный кондиционер:

  1. Вентилятор всасывает горячий и влажный воздух из внутреннего помещения внутри портативного кондиционера.
  2. Внутри блока горячий и влажный воздух охлаждается за счет конденсации на холодных змеевиках.Это охлаждает воздух и удаляет влагу (влага воздуха конденсируется на змеевиках). Здесь тепло от воздуха передается хладагенту в змеевиках. Это превращает хладагент в газ; , поэтому это «змеевики испарителя» .
  3. Холодный воздух возвращается назад в комнату.
  4. Влага собирается из воздуха и может быть выпущена наружу, или вам придется снимать ведро вручную.
  5. Компрессор сжимает хладагент в виде газа на так называемых «змеевиках конденсатора» .Тепло, выделяемое в результате этого процесса, выводится из выпускного отверстия, установленного через окно / раздвижную дверь.
  6. Этот цикл продолжается и продолжается.

Exotic Пример: Портативный блок переменного тока с батарейным питанием Zero Breeze Mark 2 — хорошее представление о том, как можно уложить цикл охлаждения в как можно меньшем помещении. Вот как может работать портативный кондиционер с батарейным питанием, несмотря на его небольшие размеры:

Пример того, как холодильный цикл может быть реализован даже в небольшом масштабе.На фото: Zero Breeze Mark 2.

Есть два немного разных подхода к работе портативных блоков переменного тока. У вас есть одно- и двухшланговые агрегаты. Оба они основаны на одном принципе, но воздушный поток немного отличается.

Переносной одношланговый блок переменного тока

Переносные кондиционеры с одним шлангом — самые распространенные. В среднем они также дешевле, чем агрегаты переменного тока с двойным шлангом.

У них есть одинарный шланг , обычно устанавливаемый через окно или даже через стену.У этого шланга только одна цель: служить выпускным отверстием для горячего воздуха.

По сути, портативный кондиционер с одним шлангом всасывает горячий воздух из помещения и выводит его на улицу через единственный шланг.

Хотя это самый простой способ работы портативного кондиционера, вы, очевидно, можете видеть, что кондиционер с одним шлангом буквально всасывает воздух из комнаты, не заменяя его.

Следствием этого является более низкое давление в помещении. Вы не почувствуете его барабанными перепонками; падение давления воздуха не такое сильное.

Однако более низкое давление необходимо как-то компенсировать. На практике воздух из других помещений будет засасываться в комнату, в которой работает переносной кондиционер с одним шлангом.

Простой совет для переносного блока переменного тока с одним шлангом — ограничить доступ к другому горячему воздуху. На практике это означает, что вы должны закрыть дверь в комнате, где работает установка.

Переносной двухшланговый блок переменного тока

Переносные кондиционеры с двойным шлангом встречаются реже, сложнее в установке и дороже.Однако они могут достичь более высокого рейтинга энергоэффективности (рейтинг EER) и заменить воздух в помещении свежим наружным воздухом.

Принцип работы переносного кондиционера с двойным шлангом заключается в использовании:

  1. Первый шланг для подачи свежего воздуха в снаружи.
  2. Второй шланг для отвода горячего воздуха из помещения (только у переносных кондиционеров с одним шлангом).

Имея один шланг для подачи воздуха в помещение, вы не испытываете более низкого давления, которое может вызвать переносные блоки переменного тока с одним шлангом.Это означает, что воздух лучше кондиционируется в помещении, где находится двухшланговый агрегат.

Кроме того, вы получаете дополнительные преимущества при использовании переносного блока переменного тока с двумя шлангами:

  1. Повышенная энергоэффективность. Поскольку блок не должен работать против низкого давления, рейтинг EER переносных блоков переменного тока с двумя шлангами может быть выше 10.
  2. Более быстрое охлаждение. Очевидно, что два шланга могут кондиционировать воздух намного быстрее, чем один шланг.

Что удивительно, так это то, что вы не видите так много агрегатов с двойным шлангом. Основная причина, вероятно, в том, что их гораздо сложнее сделать. Тем не менее, более высокий рейтинг EER делает его гораздо более экологичным, чем одинарные шланги, и вы можете использовать свежий наружный воздух.

Например, Whynter ARC-14S (выбор №1) — один из лучших, если не лучший, портативный кондиционер с двумя шлангами.

Whynter ARC-14S имеет два дефлектора. Один для втягивания воздуха, а другой для вывода горячего воздуха.

Обладая рейтингом EER 11,20, это также самый энергоэффективный портативный кондиционер, который вы можете найти.

Переносные кондиционеры забирают воздух извне? (Wildfire; блоки с 1 или 2 шлангами)

Во время сезона лесных пожаров у многих людей в голове возникает один очень разумный вопрос:

«Переносные блоки переменного тока забирают воздух снаружи?»

Очевидно, что если горит лесной пожар, наружный дым будет заполнен дымом лесного пожара. Этот дым может быть опасен даже при длительном вдыхании.Меньше всего вам понадобится портативный кондиционер, втягивающий воздух снаружи.

Вот краткий ответ:

  1. Переносные кондиционеры с одним шлангом не забирают воздух снаружи . Они просто рециркулируют существующий воздух в помещении.
  2. Двухшланговые переносные кондиционеры до втягивают воздух снаружи. Забор свежего воздуха делает портативные кондиционеры с двумя шлангами бесполезными в сезон лесных пожаров.Когда вы видите дым в воздухе, вам следует отключить переносные блоки переменного тока с двумя шлангами; это главный недостаток портативных устройств переменного тока такого типа.

3 способа удаления влаги портативные кондиционеры Собрать

Самая большая разница между работой портативных кондиционеров заключается в том, как вы удаляете воду из самого кондиционера.

На самом деле, большинству людей, продающих портативные кондиционеры, не нужен осушитель. Тем не менее, все портативные кондиционеры являются осушителями.Удаление влаги из воздуха — это побочный эффект охлаждения воздуха.

Более того, осушение — это действительно очень выгодная вещь. Вот 3 причины, почему:

  1. Летний воздух влажный. Слишком высокая влажность способствует росту плесени и грибка.
  2. На легче дышать , если воздух не влажный.
  3. Чем выше относительная влажность воздуха, тем ниже энергоэффективность переносных блоков переменного тока.

Переносные блоки переменного тока отлично справляются с ролью осушителя воздуха.Одно устройство может удалять более 30 литров воды каждый день.

Однако эта вода должна куда-то уходить. Ключевая часть работы портативных кондиционеров связана с тем, как они избавляются от воды, собранной из влаги воздуха.

По сути, есть 3 способа:

  1. Самоиспарение (лучший вид) . Вода испаряется и вымывается горячим воздухом через выпускное отверстие. Эта система используется в большинстве современных портативных кондиционеров.
  2. Самотечной слив с дополнительным встроенным насосом (все еще в хорошем состоянии) .Собранная вода откачивается через шланг.
  3. «Ковш» (не рекомендуется) . У некоторых портативных кондиционеров старой школы есть ведро. Там вода собирается, и вам нужно вручную опорожнить ведро, когда оно наполнится. Покупка такого портативного переменного тока, если не сказать лучшего слова, плохая идея .

На основе спецификации мы создали несколько ранжированных списков:

Резюме: Внутренняя работа портативного блока переменного тока сложна, но проста в обращении

Переносные кондиционеры очень похожи на холодильники.У них есть хладагент, компрессор и внутренние механизмы расширения газа и его сжатия снова и снова.

Тем не менее, такой же уровень технических знаний необходим для эксплуатации переносного кондиционера для холодильника.

После того, как вы включите его в розетку, им будет легко управлять и он сохранит прохладу в доме.

Что такое влажный / поплавковый выключатель кондиционера?

Кондиционер — это удобство, на которое мы рассчитываем в самые жаркие дни лета и — для тех из нас, кто живет на юге Соединенных Штатов — в течение многих месяцев в году.Хотя эти полезные устройства обычно не доставляют нам никаких проблем, также известно, что они протекают, что может нанести значительный ущерб вашему дому. В этом руководстве мы научим вас, как легко предотвратить эту потенциально катастрофическую ситуацию с помощью простого, доступного и легко устанавливаемого устройства, называемого поплавковым выключателем переменного тока или предохранительным выключателем.

Как работают кондиционеры?

Большинство кондиционеров выполняют две основные функции — отвод тепла из воздуха и осушение этого воздуха.Мы кратко опишем каждую из этих функций ниже:

1. Охлаждение

Кондиционеры удаляют тепло из воздуха в помещении, используя замечательный закон физики. Когда жидкость превращается в газ — процесс, известный как фазовое превращение, — она ​​поглощает тепло. Блок кондиционирования воздуха использует этот закон, заставляя определенные химические соединения испаряться и конденсироваться снова и снова в системе змеевика.

Химические соединения, используемые в этом процессе, называются хладагентами, которые обладают свойствами, позволяющими им испаряться при довольно низких температурах.Установки кондиционирования воздуха оснащены вентиляторами, которые забирают относительно теплый воздух из окружающей среды и перемещают его по змеевикам, заполненным холодным хладагентом, которые известны как змеевики испарителя. Центральные кондиционеры содержат целые системы воздуховодов, по которым воздух направляется к этим змеевикам и из них.

Этот цикл охлаждения состоит из двух основных этапов:

  1. Хладагент превращается в газ: Когда теплый воздух проходит мимо этих холодных змеевиков испарителя низкого давления, тепло из воздуха поглощается хладагентом внутри змеевиков по мере того, как хладагент превращается из жидкости в газ.
  2. Сжатие и обратное преобразование в жидкость: Для продолжения эффективного охлаждения кондиционеры должны преобразовывать эти газообразные хладагенты обратно в жидкость, что они и выполняют с помощью компрессора. Этот компрессор подвергает газообразный хладагент под высоким давлением, что создает нежелательное тепло. Тепло, возникающее при сжатии этого газа, затем выводится за пределы здания с помощью другого вентилятора и другого набора змеевиков, известных как змеевики конденсатора. Это вызывает охлаждение газообразного хладагента и обратную конденсацию в жидкость, а затем цикл начинается заново.

2. Удаление влаги

Помимо отвода тепла от воздуха в помещении, большинство кондиционеров также выполняют вторую функцию — удаляют влагу из воздуха, проходящего через змеевик испарителя. Как вы теперь знаете, когда теплый воздух перемещается по змеевикам испарителя и жидкий хладагент внутри испаряется, окружающий воздух охлаждается. По мере охлаждения воздуха влага из воздуха будет конденсироваться на внешней стороне змеевиков испарителя. Чтобы избавиться от этой влаги и обеспечить контроль влажности во всем доме, в оборудовании для кондиционирования воздуха есть дренажные трубы, по которым вода, собранная внутри устройства, может стекать.Вода стекает по змеевику испарителя в поддон, который временно содержит воду, пока она не сойдет в канализацию.

Что такое мокрый выключатель / поплавковый выключатель ?

Однако время от времени сливные трубы забиваются мусором и грязью, и в этом случае они больше не могут эффективно удалять воду. Учитывая, что один блок HVAC может собирать до 20 галлонов конденсированной воды в день, нетрудно представить себе ущерб, который может произойти, если вода не сможет быть должным образом слита.

Мокрый выключатель / поплавковый выключатель HVAC, также известный как выключатель переполнения конденсата, служит для предотвращения переполнения поддона, если слив переменного тока перестает работать должным образом. Переключатель активируется, когда уровень воды в поддоне поднимается выше определенной точки, в результате чего механизм переключателя срабатывает / поплавок поднимается. Когда это произойдет, переключатель отправит сообщение блоку переменного тока, и он отключится, остановив преобразование фазы и образование конденсата. На этом этапе техник может определить местонахождение и устранить источник утечки до того, как произойдет повреждение водой.

Где находится выключатель мокрого / поплавкового выключателя?

Расположение мокрого выключателя / поплавкового выключателя зависит от ориентации вашего оборудования HVAC. Горизонтальные агрегаты обычно имеют вторичный поддон для сбора капель, который находится под агрегатом, чтобы предотвратить повреждение избыточного конденсата. К этому вторичному поддону прикреплен мокрый выключатель / поплавковый выключатель.

Для вертикальных агрегатов или горизонтальных агрегатов, у которых нет вторичного поддона, вы можете установить поплавковый выключатель на дренажной трубе из ПВХ агрегата, который сработает, если поток воды станет препятствием.Некоторое оборудование HVAC имеет установленный конденсатный насос, в который конденсат стекает из оборудования переменного тока и откачивается, а не самотеком. Эти насосы также оснащены механизмом, который напоминает поплавковый выключатель и работает таким же образом, отключая оборудование и тем самым предотвращая серьезное повреждение водой.

Зачем мне мокрый выключатель / поплавковый выключатель? Какие преимущества это дает?

Независимо от расположения вашего кондиционера крайне важно иметь мокрый выключатель / поплавковый выключатель или, в зависимости от типа блока, конденсатный насос.Мокрый выключатель переменного тока / поплавковый выключатель обеспечивает следующие преимущества:

  • Уменьшение или предотвращение повреждения водой: Этот предохранительный выключатель отключает компрессор, который, как вы узнали выше, отвечает за процесс конденсации конденсата в кондиционере. Установив мокрый выключатель переменного тока / поплавковый выключатель, вы избежите катастрофического события.
  • Предотвращение опасного роста плесени: Как известно любому домовладельцу, места, где скапливается влага, восприимчивы к образованию плесени.Если не предотвратить утечку, влага может попасть в незаметные участки, а споры микробов могут разрастаться и распространяться на другие близлежащие участки, например на стены. Плесень — это не только бельмо на глазу, она также может иметь неприятный запах и подвергать опасности здоровье тех, кто ее вдыхает. Если ваше оборудование переменного тока негерметично, удаление плесени является проблемой, с которой вам, возможно, придется столкнуться. Конечно, установив мокрый выключатель переменного тока / поплавковый выключатель, вам больше не придется беспокоиться об этом.
  • Сэкономьте деньги: Вода может нанести больший ущерб, чем вы можете себе представить.Протекающий поддон или дренажная труба могут привести к серьезным повреждениям конструкции. Он может просочиться в ближайшую стену, что также приведет к повреждению вашего блока переменного тока и стены. Установка этого простого и доступного переключателя может сэкономить вам тысячи долларов ущерба.

Чтобы вы лучше понимали, насколько разрушительным может быть ущерб от воды, имейте в виду, что средняя стоимость просушки вашей собственности от протечки воды, которая является «чистой», что означает отсутствие другого ущерба, составляет 2700 долларов. Средняя стоимость просушки дома и устранения повреждений коврового покрытия, гипсокартона и других поверхностей составляет около 7500 долларов.Затраты могут быть даже выше в зависимости от того, сколько воды задействовано и насколько велик ущерб.

Хотя утечка может показаться просто неудобством, утечка может серьезно повредить дом, если ее не устранить быстро. Помимо повреждения таких участков, как гипсокартон и ковровое покрытие, это также может в конечном итоге привести к:

  • Пожар, вызванный контактом воды с электрическими источниками
  • Гниение или размягчение древесины и различных других органических материалов
  • Окрашивание в результате попадания в воду частиц или минералов, проникающих в дерево, камень и другие пористые материалы.

Выключатель мокрого типа или поплавковый выключатель?

Распространенной альтернативой поплавковому выключателю является «мокрый» выключатель, который также обнаруживает перелив конденсата. Однако он делает это по-другому. В отличие от поплавковых выключателей, мокрые выключатели обычно помещаются во вторичный дренажный поддон, который обычно является сухим. Если в основной посуде произойдет перелив, она перетечет на вторую. Мокрый выключатель, обнаружив эту влажность, выключит устройство, чтобы предотвратить повреждение водой.

Свяжитесь с Summers & Zim’s по вопросам ремонта или установки кондиционера

Если вы являетесь домовладельцем в округах Ланкастер, Честер или Делавэр в Пенсильвании, вы можете приехать в Саммерс и Зимс по любым вопросам, связанным с охлаждением, отоплением или водопроводом. Мы предлагаем широкий спектр услуг для вашей системы переменного тока, в том числе:

1. Ремонт и замена системы

Правильно функционирующая система кондиционирования воздуха имеет решающее значение для вашего комфорта и, если очень жарко, — для вашей безопасности.Саммерс и Зимс позаботятся о том, чтобы ваш дом оставался надежным убежищем, в котором вы нуждаетесь, когда температура на улице достигает 100 градусов. Не стесняйтесь записаться к нам для обслуживания, замены или ремонта кондиционера.

2. Текущее обслуживание и очистка

Мы часто отвечаем на вызовы службы экстренной помощи, чтобы устранить проблемы с центральным кондиционированием воздуха, которых домовладельцы могли бы избежать, если заранее запланировали техническое обслуживание. Услуги по техническому обслуживанию позволяют профессиональным техническим специалистам исследовать вашу систему и определять возможные проблемные области до того, как они вызовут аварийную ситуацию.

3. Обслуживание термостатов и систем домашнего комфорта

Хотя вы можете мало задумываться о термостатах или управлении комфортом, если что-то из этого выйдет из строя, вы, безусловно, захотите, чтобы их починили очень быстро. Summers and Zim’s предлагает услуги по ремонту, техническому обслуживанию и замене термостата и системы домашнего комфорта.

4. Обслуживание раздельных бесканальных систем охлаждения и нагрева

Хотя раздельные бесканальные системы не являются одним из наиболее распространенных методов отопления и охлаждения, они хорошо работают во многих конкретных ситуациях, в том числе в домах без каналов, в многоквартирных домах и в небольших пристройках и квартирах.Несмотря на высокую надежность, эта система со временем потребует обслуживания, ремонта или замены. У нас есть инструменты и опыт, чтобы удовлетворить любые ваши потребности в бесканальных раздельных системах.

5. Установка оборудования для очистки воздуха

При создании идеальной домашней среды часто упускается из виду общая эффективность, которая относится к тому, насколько хорошо ваше оборудование HVAC может удерживать нагретый или охлажденный воздух в вашем доме. Тестирование домашней эффективности, которое мы проводим, включает:

  • Тест на угарный газ: Мы заботимся о том, чтобы воздух в вашем доме был безопасным для дыхания и не подвергал опасности здоровье вашей семьи или ваших гостей.
  • Осмотр окон и изоляции: Мы также проверяем ваши окна и изоляцию, чтобы узнать, платите ли вы за охлаждение и отопление больше, чем необходимо. Мы ищем участки с недостаточной изоляцией, включая те крошечные, незаметные места, которые снижают энергоэффективность вашего дома и увеличивают ваши счета за коммунальные услуги.
  • Испытание на проникновение воздуха: Мы также проводим испытания на проникновение воздуха, которые могут выявить места с утечками, в том числе неэффективные двери, окна и световые люки.
  • Тестирование системы воздуховодов: Воздуховоды в вашем доме также могут значительно снизить энергоэффективность вашего дома и могут привести к резкому увеличению ваших счетов за коммунальные услуги. Наша система тестирования может определить, есть ли в ваших воздуховодах утечки и сколько воздуха выходит.

Наша 5-балльная гарантия

Более 80 лет мы обеспечиваем этот район качественным ремонтом и профилактическим обслуживанием. Однако отличное обслуживание оборудования — не единственная причина, по которой мы так долго работаем. Мы также предлагаем превосходное обслуживание клиентов, следуя нашей 5-балльной гарантии HVAC, которая включает в себя следующие обещания:

  • Гарантия конструкции: Предлагая и проектируя идеальную систему для вашего дома, независимо от того, водопровод, отопление или охлаждение, мы гарантируем, что она будет работать по назначению.Если решение, которое мы рекомендуем, и конструкция окажется неподходящей, мы произведем все необходимые замены и исправления совершенно бесплатно.
  • Гарантия без лимонов: Для большинства домовладельцев система отопления, охлаждения или водопровода — это большие инвестиции, и мы считаем, что вам никогда не стоит беспокоиться о том, что она сломается. По этой причине мы предлагаем нашим клиентам гарантию отсутствия лимонов, что означает, что в случае выхода из строя вашего оборудования мы установим новое. Если ваш котел выйдет из строя в течение 10 лет, мы его заменим.И если водонагреватель выйдет из строя в течение первых шести лет или ваш скважинный насос выйдет из строя в течение первых пяти лет, мы заменим и эти агрегаты.
  • Гарантия отсутствия разочарований в размере 500 долларов США: Существует несколько случаев, когда домашнее хозяйство более раздражает, чем отказ новой системы, которая может оставить вас без горячей воды, отопления, охлаждения или других удобств, от которых вы зависите для комфорта. По этой причине мы также предлагаем щедрую гарантию отсутствия разочарований в размере 500 долларов США. Это означает, что, если ваша система выйдет из строя в течение первых двух лет и оставит вас на 24 часа без воды, тепла или горячей воды из-за проблем с насосом, бойлером или водонагревателем, мы выплатим вам 500 долларов за причиненные неудобства. вызванный.
  • Гарантия защиты дома: В то время как большинство гарантийных услуг систем отопления и сантехнических работ включают оплату труда и запчастей, наша гарантия защиты дома предлагает даже больше, защищая весь ваш дом. Это означает, что все стены, полы, ковровое покрытие, дверные коробки и мебель полностью защищены. А если мы случайно повредим какое-либо ваше имущество, мы отремонтируем или заменим его. Технические специалисты Саммерса и Зима используют защитные чехлы для обуви и бегунов там, где это необходимо.
  • 100% гарантия возврата денег: На все наши гарантии на сантехнику, а также на услуги кондиционирования и отопления распространяется 100% гарантия возврата денег. Если вас не устроит наша установка, мы снимем оборудование и вернем вам 100% ваших денег.

Независимо от того, какие услуги мы оказываем, вы можете быть уверены, что мы всегда будем соблюдать данную 5-балльную гарантию HVAC. Если вам нужен качественный ремонт, установка или текущее обслуживание кондиционеров, свяжитесь с нами через нашу онлайн-форму или подпишитесь на план членства.

Как подзарядить кондиционер в автомобиле

Если кондиционер вашего автомобиля не дует холодным воздухом, вам может потребоваться перезарядить блок переменного тока. Вы можете отвезти свою машину к механику, но вы легко заплатите за услугу более 100 долларов. Используя подходящие инструменты и проявив осторожность, вы можете самостоятельно зарядить кондиционер в своем автомобиле и сэкономить деньги. В этом руководстве показано, как это сделать.

Перед началом работы

Мэтт Райт

Во-первых, вам нужно выяснить, какой хладагент используется в вашем автомобиле.Лучший способ определить это — обратиться к руководству по эксплуатации или по ремонту вашего автомобиля.

Если ваш автомобиль был произведен после 1994 года, в нем используется хладагент R134. В старых автомобилях используется хладагент R12, который больше не производится. Чтобы кондиционер работал на автомобиле до 1994 года выпуска, вам сначала нужно отнести его в ремонтную мастерскую и переоборудовать для использования R134.

Вы также должны проверить свою систему переменного тока на предмет утечек перед началом работы. Негерметичная система кондиционирования не может охлаждать так эффективно; его работа без достаточного количества охлаждающей жидкости может привести к необратимому (и дорогостоящему) повреждению.

Покупка хладагента

Мэтт Райт

Чтобы заправить систему кондиционирования воздуха, вам понадобится хладагент под давлением (иногда называемый фреоном) и манометр, чтобы отслеживать его количество в системе. Вы можете купить множество различных инструментов для подзарядки переменного тока, но большинство из них предназначены для профессиональных механиков и стоят довольно дорого. Для подзарядки вашего семейного автомобиля вполне достаточно универсального комплекта для подзарядки переменного тока. Эти комплекты состоят из баллона с хладагентом R134 и встроенного манометра.Они работают хорошо и их легко понять даже тем, кто не имеет опыта работы с AC. Вы можете приобрести комплекты для подзарядки переменного тока в местном автомобильном магазине.

Подготовка комплекта для зарядки

Мэтт Райт

Распаковав комплект, вы найдете баллончик с хладагентом, гибкий резиновый шланг и манометр. Следуйте инструкциям на упаковке, чтобы собрать часть комплекта для манометра. Обычно шланг уже прикреплен к манометру. Перед тем, как ввинтить манометр в канистру с хладагентом, обязательно поверните манометр против часовой стрелки до упора.Внутри узла есть штифт, который протыкает банку с хладагентом, когда все плотно соединено. Этот штифт контролируется поворотом манометра по часовой стрелке, пока он не проткнет банку. Но вы не хотите делать это до тех пор, пока не будете готовы, поэтому обязательно полностью вытащите его, прежде чем собирать все.

Сборка комплекта для подзарядки

Мэтт Райт

Надежно втянув прокалывающий штифт, соберите манометр и комплект. Накрутите резиновый шланг на манометр и затяните его.Это также хорошее время для калибровки манометра, что является базовой процедурой. На лицевой панели прибора вы увидите разные температуры. Все, что вам нужно сделать, это повернуть шкалу калибровки на внешнюю температуру, которую вы можете проверить с помощью старомодного погодного термометра или погодного приложения на вашем телефоне.

Расположение порта низкого давления

Мэтт Райт

Ваша система кондиционирования воздуха имеет два порта: низкого и высокого давления. Вы будете заряжать свой кондиционер через порт низкого давления.Вы должны проконсультироваться с руководством вашего владельца, чтобы быть уверенным, но ваш автомобиль будет иметь крышку над портами давления. Одна крышка имеет маркировку «H» (для высокого давления), а другая — «L» (для низкого). В качестве дополнительной меры безопасности порты имеют разные размеры, поэтому вы физически не можете прикрепить манометр или шланг к неправильному порту.

Очистите порт низкого давления

Мэтт Райт

Мусор, попавший в компрессор, может вызвать его преждевременный выход из строя, что может быть дорогостоящим в ремонте.В целях безопасности очистите внешнюю часть порта низкого давления перед снятием крышки, а затем еще раз после снятия крышки. Это может показаться излишним, но одна песчинка может испортить компрессор.

Проверка давления

Мэтт Райт

Перед тем, как присоединить шланг, вам нужно повернуть манометр по часовой стрелке до упора. Это действие изолирует манометр, так что вы можете безопасно прикрепить его к порту переменного тока.

После очистки порта вы готовы присоединить резиновый шланг, соединяющий автомобиль с манометром.В шланге используется простой и быстрый фиксирующий механизм. Чтобы присоединить шланг к порту низкого давления, потяните за штуцер за внешнюю сторону, наденьте его на порт, затем отпустите.

Теперь запустите двигатель и включите кондиционер на максимальную мощность. Взгляните на манометр, и вы увидите, какое давление создает ваша система. Подождите несколько минут, чтобы давление поднялось и выровнялось, и тогда вы сможете снять точные показания.

Подготовка банки

Мэтт Райт

Снимите шланг с порта.Снова поверните калибр против часовой стрелки, чтобы втянуть пробойник. Плотно прикрутите блок манометра к баллону с хладагентом. Поверните манометр по часовой стрелке до упора, и вы услышите, как баллончик под давлением проткнется.

Добавление хладагента

Мэтт Райт

Подсоедините резиновый шланг к порту низкого давления на линии переменного тока. Запустите двигатель и увеличьте мощность переменного тока. Дайте системе минуту для повышения давления, затем поверните манометр против часовой стрелки, чтобы начать выпуск R134 в систему.Область манометра, соответствующая наружной температуре, сообщает вам, когда система заполнена. Добавляя хладагент, медленно вращайте баллончик вперед и назад.

Завершение работы

Мэтт Райт

Следите за манометром при заполнении, и вы заправите нужное количество хладагента. Не волнуйтесь, если вы похудели на несколько фунтов. Когда вы закончите заполнять, закройте порт низкого давления крышкой, чтобы не допустить попадания мусора. Даже если банка пуста, держитесь за манометр.Вы можете использовать его для проверки давления в вашей системе переменного тока, и в следующий раз, когда вы добавите хладагент, вам нужно будет только купить баллончик.

Руководство по выбору холодильных компрессоров и компрессоров кондиционирования воздуха

: типы, характеристики, применение

Холодильные компрессоры и компрессоры для кондиционирования воздуха обеспечивают кондиционирование, перекачку тепла и охлаждение для крупных объектов и оборудования. Они используют сжатие для повышения температуры газа низкого давления, а также для удаления пара из испарителя.Большинство холодильных компрессоров (компрессоров хладагента) представляют собой большие механические агрегаты, которые составляют основу промышленных систем охлаждения, отопления, вентиляции и кондиционирования воздуха (HVAC). Многие компрессоры для кондиционирования воздуха также являются крупногабаритными механическими устройствами; однако эти компрессоры разработаны специально для систем кондиционирования воздуха и не обеспечивают функций обогрева или вентиляции.

Компрессоры хладагента работают за счет всасывания газа низкого давления на входе и его механического сжатия.Компрессоры отличает разные типы механизмов сжатия (обсуждаемые ниже). Это сжатие создает высокотемпературный газ под высоким давлением — важный этап в общем холодильном цикле.

Холодильный цикл

Холодильный цикл или цикл теплового насоса — это модель, описывающая перенос тепла из областей с более низкой температурой в области с более высокой температурой. Он определяет принципы работы холодильников, кондиционеров, обогревателей и других «тепловых насосов».

На этой схеме представлен визуальный обзор холодильного цикла:

Буквы A – D обозначают различные компоненты системы. Цифры 1-5 указывают на различные физические состояния хладагента при его движении по системе.

  • Состояние 1 — это состояние после прохождения хладагента через испаритель (D), когда теплый воздух нагревает жидкость и полностью превращает ее в пар.

  • Состояние 2 — это состояние после прохождения жидкости через компрессор (A), который увеличивает давление и температуру жидкости до уровней перегрева.

  • Состояния 3 и 4 — это когда жидкость проходит через испаритель (B), который передает тепло в окружающую среду и конденсирует жидкость в жидкость.

  • Состояние 5 — это состояние после прохождения жидкости через расширительный клапан или дозирующее устройство (C), которое снижает давление жидкости.Это охлаждает жидкость и впоследствии превращает жидкость в смесь жидкость / пар.

Диаграммы температура-энтропия и давление-энтальпия часто используются для построения и описания этих систем. Они определяют свойства жидкости на разных этапах системы.

На приведенной ниже диаграмме показана энтропия температуры в типичном холодильном цикле:

На следующей диаграмме показано давление-энтропия типичного холодильного цикла:

Типы компрессоров

Есть несколько различных типов компрессоров, используемых для охлаждения и кондиционирования воздуха.Как и насосы, все «тепловые насосы» сначала можно отнести к категории поршневых или непрямых (центробежных). Компрессоры прямого вытеснения имеют камеры, объем которых уменьшается во время сжатия, в то время как компрессоры непрямого вытеснения имеют камеры фиксированного объема. Помимо этого различия, каждый тип отличается в зависимости от своего конкретного механизма сжатия жидкости. Пять основных типов компрессоров: поршневые, роторные, винтовые, спиральные и центробежные.

Поршневые компрессоры

Поршневые компрессоры

, также называемые поршневыми компрессорами, используют поршневую и цилиндровую компоновку для обеспечения сжимающей силы, как в двигателях внутреннего сгорания или поршневых насосах.Возвратно-поступательное движение поршня из-за внешней силы сжимает хладагент внутри цилиндра. Поршневые компрессоры имеют низкую начальную стоимость и простую и удобную в установке конструкцию. Они имеют большой диапазон выходной мощности и могут достигать чрезвычайно высоких давлений. Однако они имеют высокие затраты на техническое обслуживание, потенциальные проблемы с вибрацией и, как правило, не предназначены для непрерывной работы на полной мощности.

Роторные компрессоры

Роторные компрессоры имеют два вращающихся элемента, например шестерни, между которыми сжимается хладагент.Эти компрессоры очень эффективны, потому что всасывание хладагента и сжатие хладагента происходят одновременно. У них очень мало движущихся частей, низкие скорости вращения, низкие начальные затраты и затраты на техническое обслуживание, и они легко справляются с работой в грязной среде. Однако они ограничены меньшими объемами газа и производят меньшее давление, чем другие типы компрессоров.

На следующей схеме показана работа пластинчато-роторного компрессора.

Винтовые компрессоры

В винтовых компрессорах

используется пара спиральных роторов или винтов, которые сцепляются вместе для сжатия хладагента между ними.Они могут создавать высокое давление для небольшого количества газа и потреблять меньше энергии, чем поршневые компрессоры. У них низкие или средние начальные затраты и затраты на техническое обслуживание, а также небольшое количество движущихся частей. Однако они испытывают трудности в грязной среде, имеют высокие скорости вращения и более короткий срок службы, чем другие конструкции.

Спиральные компрессоры

В спиральных компрессорах

используются два смещенных спиральных диска, вложенных вместе для сжатия хладагента.Верхний диск неподвижен, а нижний диск движется по орбите. Спиральные компрессоры — это тихие, плавно работающие агрегаты с небольшим количеством движущихся частей и самым высоким коэффициентом полезного действия среди всех типов компрессоров. Они также более гибки при работе с хладагентами в жидкости. Однако спиральные компрессоры, будучи полностью герметичными, не подлежат ремонту. Они также обычно не могут вращаться в обоих направлениях. Спиральные компрессоры обычно используются в автомобильных системах кондиционирования воздуха и коммерческих чиллерах.

Центробежные компрессоры

Центробежные компрессоры используют вращающееся действие крыльчатки для приложения центробежной силы к хладагенту внутри круглой камеры (спиральной камеры). В отличие от других конструкций, центробежные компрессоры не работают по принципу прямого вытеснения, а имеют камеры фиксированного объема.Они хорошо подходят для сжатия больших объемов хладагента до относительно низкого давления. Сжимающая сила, создаваемая рабочим колесом, невелика, поэтому в системах, в которых используются центробежные компрессоры, обычно используются две или более ступеней (рабочие колеса), соединенные последовательно, для создания высоких сжимающих сил. Центробежные компрессоры желательны из-за их простой конструкции, небольшого количества движущихся частей и энергоэффективности при работе в несколько ступеней.

Хладагенты

Обычно компрессоры предназначены для работы с определенным типом хладагента.Для выбора подходящего холодильного компрессора или компрессора кондиционера необходимо найти компрессор, рассчитанный на требуемый хладагент для данной области применения. Хладагентам присвоены названия, такие как R-13 или R-134a, от Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE). Идеальные хладагенты обладают благоприятными термодинамическими свойствами и являются химически инертными (некоррозионными), экологически чистыми (разлагаемыми) и безопасными (нетоксичными, негорючими). Желаемая жидкость должна иметь точку кипения несколько ниже целевой температуры, высокую теплоту испарения, умеренную плотность жидкости, высокую плотность газа и высокую критическую температуру.

Технические характеристики

При выборе компрессора необходимо учитывать ряд технических характеристик. К ним относятся производительность, температура конденсации, температура кипения, расход и мощность.

Таблицы, подобные этой, предоставлены производителем компрессора, что позволяет инженерам правильно вносить эти корректировки в систему:

Таблица Кредит: Carlyle Compressor Company

  • Производительность (БТЕ / час) измеряет способность компрессора хладагента отводить тепло от газообразного хладагента.Номинальная мощность основана на стандартном наборе условий, который включает температуру конденсации (CT), температуру испарения (ET), хладагент и число оборотов двигателя в минуту (об / мин). Как правило, холодильные компрессоры и компрессоры кондиционирования воздуха могут работать при многих различных значениях этих параметров с соответствующими изменениями их холодопроизводительности. После использования компрессоры можно настраивать и настраивать на желаемую производительность и рабочие условия.

  • Температура конденсации — это диапазон температур конденсации, в котором компрессор рассчитан на работу.

  • Температура кипения — это диапазон температур испарения, в котором компрессор рассчитан на работу.

  • Скорость потока — это скорость (по массе), с которой жидкость проходит через компрессор, измеряется в фунтах в час (фунт / час) или килограммах в час (кг / час).

  • Мощность (Вт) — это входная мощность, необходимая для работы двигателя компрессора в определенной рабочей точке.

Холодильные компрессоры и компрессоры кондиционирования воздуха также имеют спецификации источников питания, определяемые напряжением / частотой / фазой.Обычные варианты: 12 В постоянного тока и 24 В постоянного тока, а также 115/60/1, 230/50/1, 208-230 / 60/1, 208-230 / 60/3, 380/50/3, 460/60 / 3 и 575/60/3.

Характеристики

Холодильные компрессоры и компрессоры для кондиционирования воздуха могут включать в себя ряд функций, которые могут быть важны для определенных применений.

  • Термическое отключение — компрессор оснащен элементами управления, которые выключают компрессор при высоких температурах, чтобы предотвратить его перегрев.Они также могут обеспечить перезапуск после того, как компрессор остынет ниже определенной температуры.

  • Уплотнение — описывает расположение компрессора и моторного привода относительно сжимаемого газа или пара. Герметичные компрессоры не позволяют газу выходить из системы. Компрессоры бывают трех типов: открытые, герметичные и полугерметичные.

    • Открытые типы имеют отдельный корпус для компрессора и двигателя.Они полагаются на смазочный материал в системе, который разбрызгивает детали насоса и уплотнения. Если не эксплуатировать часто, из системы может происходить утечка рабочих газов. Открытые компрессоры могут приводиться в действие неэлектрическими источниками энергии, такими как двигатели внутреннего сгорания.

    • Герметичные типы уплотняют компрессор и двигатель вместе в одном корпусе. Эти компрессоры герметичны и могут простаивать в течение длительного времени, но не подлежат техническому обслуживанию или ремонту.

    • Полугерметичные типы также содержат двигатель и компрессор в одном корпусе, но вместо цельного корпуса они включают крышки с прокладками / болтами.Их можно снять для обслуживания и ремонта компрессора или двигателя.

  • Низкий уровень шума — работа компрессора производит меньше шума для приложений, где требуется тихая среда.

  • Легкий вес — компрессор имеет компактную конструкцию или изготовлен из материалов с низкой плотностью для систем охлаждения, требующих компонентов с малым весом.

  • Регулируемая скорость — компрессор имеет регулировку скорости для работы при различных рабочих расходах и условиях.

Стандарты

Стандарты, относящиеся к компрессорам охлаждения и кондиционирования воздуха, включают:

BS EN 13771-1 — Компрессоры и компрессорно-конденсаторные агрегаты для холодоснабжения — Испытания производительности и методы испытаний — Часть 1: Компрессоры хладагента

DIN 51503-2 — Испытания смазочных материалов для холодильных компрессоров

ГОСТ 22502 — Агрегаты компрессорно-конденсаторные с герметичными холодильными компрессорами для торгового холодильного оборудования

.

Список литературы

Изображения

Bitzer US, Inc.| Руководство по кондиционированию и охлаждению | Кинан Пеппер (википедия)

Davey Compressor Company — Различные типы компрессоров


Читать мнения пользователей о холодильных компрессорах и компрессорах для кондиционирования воздуха .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *