Многоточечный впрыск топлива что это
BMW 5 series 530D › Бортжурнал › Системы питания топливом дизельных двигателей. Различные виды.
Сегодня вот решил по больше узнать о видах питания дизельных двигателей. Вот информация которую удалось нарыть.
Различают следующие системы питания топливом: –
Одноточечный (центральный, моно) впрыск топлива (SPI)
Одноточечный впрыск – это электронно-управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой.
Многоточечный (распределенный) впрыск топлива (MPI)
Многоточечный впрыск создает условия для более оптимальной, по сравнению с одноточечным впрыском, работы системы смесеобразования.Для каждого цилиндра предусмотрена топливная форсунка, через которую топливо впрыскивается непосредственно перед впускным клапаном.
Механическая система впрыска топлива
В механической системе впрыска топлива масса впрыскиваемого топлива определяется топливо-распределительным устройством (дозатором), от которого топливо направляется к форсунке, автоматически открывающейся при определенном давлении.
Комбинированная электронно-механическая система впрыска топлива
Комбинированная система впрыска базируется на механической, которая для более точного управления впрыскиванием снабжена электронным блоком, управляющим режимом работы насоса и форсунок с топливо распределительным устройством.
Электронные системы впрыска топлива
Электронно управляемые системы впрыска обеспечивают прерывистый впрыск топлива форсунками с электромагнитным управлением. Масса впрыскиваемого топлива определяется временем открытия форсунки.Необходимость соблюдения жестких норм содержания вредных веществ в отработавших газах диктует высокие требования к регулированию состава топливовоздушной смеси и конструкции системы впрыска. При этом важно обеспечить как точность момента впрыска, так и точность дозировки массы впрыскиваемого топлива в зависимости от количества подаваемого воздуха.
Для выполнения этих требований в современных системах многоточечного (распределенного) впрыска топлива на каждый цилиндр двигателя приходится по электромагнитной форсунке, причем управление каждой форсунки осуществляется индивидуально.
Количество впрыскиваемого топлива и корректировка момента впрыска рассчитываются для каждой форсунки в электронном блоке управления (ECU). Процесс смесеобразования улучшается за счет впрыскивания точно отмеренного количества топлива непосредственно перед впускным клапаном (или клапанами) в точно установленный момент времени. Это, в свою очередь, в значительной степени предотвращает попадание топлива на стенки впускного трубопровода, что может привести к временным отклонениям коэффициента избытка воздуха от среднего значения в неустановившемся режиме работы двигателя. Так как в многоточечной системе впрыска через впускной трубопровод проходит только воздух, трубопровод может быть выполнен таким образом, чтобы в оптимальной степени соответствовать газодинамическим характеристикам наполнения цилиндров двигателя.
Непосредственный впрыск — системы с внутренним смесеобразованием
В таких системах, называемых >системами с непосредственным впрыском (DI)
, топливные форсунки с электромагнитным приводом, размещенные в каждом цилиндре, впрыскивают топливо непосредственно в камеру сгорания.
Смесеобразование происходит внутри цилиндра. Для обеспечения эффективного сгорания смеси существенную роль играет процесс распыления выходящего из форсунки топлива.
Во впускной трубопровод двигателя с непосредственным впрыском топлива, в отличие от двигателя с внешним смесеобразованием, подается исключительно воздух. Таким образом, исключается попадание топлива на стенки впускного трубопровода.
Если при внешнем смесеобразовании в процессе сгорания обычно присутствует однородная топливовоздушная смесь, то при внутреннем смесеобразовании двигатель может работать как с однородной, так и с неоднородной смесью.
Работа двигателя при послойном распределении смеси
Смесь при послойном распределении заряда воспламеняется только в зоне вокруг свечи зажигания. В остальных частях камеры сгорания содержатся свежая смесь и остаточные отработавшие газы двигателя без следов несгоревшего топлива. На режимах холостого хода и при малой нагрузке таким образом обеспечивается работа на обедненной смеси, что приводит к снижению расхода топлива.
Работа двигателя при наличии однородной смеси
Однородная смеси занимает полностью объем камеры сгорания (как и при внешнем смесеобразовании), и весь заряд свежего воздуха, поступившего в камеру, участвует в процессе сгорания. Поэтому этот способ образования смеси применяется в условиях работы двигателя при полной и средней нагрузках.
www.drive2.ru
Многоточечный распределенный впрыск топлива: что это за система
3187 ПросмотровСистема впрыска – основной составляющий элемент системы топлива в транспортном средстве, форсунка выступает в качестве основного рабочего «органа». На сегодняшний день не составит труда найти большое количество разнообразных устройств, их задача сводится к обеспечению впрыска. В статье будет рассмотрен многоточечный впрыск – его особенности, достоинства, а также основные отличия от некоторых других систем.
Особенности действия
Особенности деятельности и существования данной системы базируются на том, что необходимо обеспечивать бесперебойную подачу топлива в цилиндры с помощью форсунок, число которых равно количеству цилиндров.
Если рассматривать классификационные моменты по принципу работы, то можно выделить две основные группы систем – непрерывный впрыск и импульсную подачу. Есть электронный и механический варианты контроля их работы.
Разновидности
Рассматривая конструкции, которые предполагают распределенный впрыск топлива, можно выделить наиболее распространенные моменты:
- K-JETRONIC – механический элемент в непосредственной подаче топлива, используется часто.
- L-JETRONIC – система, в которой наблюдается импульсное действие элементов, находящихся под электронным управлением.
- KE-JETRONIC – механический элемент подачи топлива непрерывного типа.
Надо отметить, что все эти варианты уже устарели и являются очень капризными конструкциями.
Таким образом, система может иметь несколько разновидностей, зависящих от определенного набора факторов и характеристик работы.
Другой вариант классификации
Система может быть нескольких видов и вариантов.
- Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
- Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
- Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.
Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.
Устройство
Система в целом имеет в составе основные узлы.
- Бак топлива – является компактным элементом, который имеет насос, фильтр для чистки от механических частиц. Он предназначен для хранения топлива.
- Инжектор используется с целью образования смеси – эмульсии, а также для ее подачи в цилиндры.

- Блок управления – его установка осуществляется непосредственно на двигателях с инжектором.
- Топливный насос – используется обычно традиционный вариант. Он представлен электрическим двигателем с высокой мощностью.
Таким образом, рассматриваемый механизм является простым и прогрессивным, позволяет добиваться нужных результатов при его использовании и ездить с комфортом.
Особенности многоточечного механизма
Система впрыска используется почти всеми изготовителями авто.
Управление каждой форсункой производится в «личном» порядке. Время, когда это происходит, заложено программой управленческого блока. Если их активировать, происходит замена параллельным пуском.
Система по мере прогревания двигателя может демонстрировать должные качества работы на повышенных оборотах. Поломка датчика способствует иногда переходу устройства в полностью аварийный режим, его показания учитывает блок управления в процессе определения дозировки жидкости.
Управление таким механизмом сегодня производится посредством специального компьютера, который называется электронным управленческим блоком. Для вычисления нужного момента открытия форсунок важно получать информационные данные от датчиков. Важный показатель – объем потоков, которые поступают в двигатель и измеряются датчиком.
В процессе вычисления подачи определенного количества топлива, которое необходимо для бесперебойной работы агрегата, компьютер анализирует другую информацию – это температурные и влажностные режимы, набор прочих параметров.
Резюме
Таким образом, рассматриваемая система впрыска топлива является достаточно простой и оригинальной в своей работе, позволяя пользователям достигать комфортного результата и чувствовать себя за рулем безопасно.
portalmashin.ru
#10 Что такое впрыск топлива и как работает система впрыска? — DRIVE2
Что такое впрыск топлива и как работает система впрыска?
Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя.
Существует много разновидностей систем впрыска — механический, моновпрыск, распределенный, непосредственный. В данной статье мы расскажем про современные электронные системы подачи топлива на основе системы управления двигателем, как они работает и из каких датчиков состоят.
Как работает система впрыска топлива?
На рисунке схематично показан принцип работы распределенного впрыска.
Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.
Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.
Датчики системы впрыска топлива
Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков.
Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.
Датчик кислорода (ДК) — рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.
Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно.
Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.
Датчик положения дроссельной заслонки (ДПДЗ) — определяет положение дросселя (нажата педаль «газа» или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик детонации — служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики.
Датчик скорости (ДС) — определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы (ДФ) — определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.
Датчик неровной дороги — служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).
Исполнительные механизмы системы впрыска
По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ).
Форсунка — электромагнитный клапан с нормированной производительностью (встречаются пьезоэлектрические). Служит для впрыска вычисленного для данного режима движения количества топлива.
Бензонасос — предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.
Модуль зажигания — электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1-4 и 2-3 цилиндрах. То есть реализуется принцип «холостой искры». В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.
Регулятор холостого хода — служит для поддержании заданных оборотов холостого хода. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода (7-12 кг./час) при закрытой дроссельной заслонке.
Вентилятор системы охлаждения — управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.
Сигнал расхода топлива — выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более — менее соответствует истине на системах с ДК.
Адсорбер — является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.
Электронный блок управления
Электронный блок управления — по сути специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.
Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP (чип), отсюда и пошло название чип-тюнинг, то есть изменение программы управления двигателем. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.
Следует иметь ввиду, что для правильной работы любой системы впрыска необходимо наличие полностью исправных датчиков и исполнительных механизмов.
Спасибо, что прочитали статью до конца
Удачи на дорогах
www.drive2.ru
Системы впрыска топлива — DRIVE2
В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли выхлопные газы автомобилей. До этого времени состав продуктов сгорания двигателей внутреннего сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля.
В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха. В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывая слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в выхлопных газах остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединения в продуктах сгорания.
Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.
СИСТЕМЫ ВПРЫСКА ТОПЛИВА
Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска. Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий.
Выход был найден следующий. В систему впрыска ввели обратную связь — в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.
На сегоднящний день инжекторый (или, говоря по-русски, впрысковый) двигатель практически полностью заменил устаревшую карбюраторную систему. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).
Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:
точное дозирование топлива и, следовательно, более экономный его расход.
снижение токсичности выхлопных газов.
Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.
увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.
улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси.
легкость пуска независимо от погодных условий.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)
В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.
Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.
Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна.
Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).
Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.
Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.
Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др.
(все опять же зависит от конкретной модели)
Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.
ТИПЫ
В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).
Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.
Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.
Более совершенными являются системы многоточечного впрыска, в которых подача топлива к каждому цилиндру осуществляется индивидуально.
Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:
возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.
Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» моторы (в особенности при спокойной е
www.
drive2.ru
Каким бывает впрыск топлива. И как он влияет на характеристики мотора. — DRIVE2
На современных двигателях впрыск топлива полностью вытеснил карбюраторную систему питания. Но при этом, среди автопроизводителей до сих пор нет единого мнения, какая система впрыска предпочтительней, поскольку каждая из них обладает своими достоинствами и недостатками.
Одноточечный (или центральный) впрыск топлива: как альтернатива карбюратору стал широко применяться еще в 80-х годах прошлого века. Впрочем, особой разницы в принципе работы у этих систем питания не было: как и раньше воздух смешивался с топливом во впускном коллекторе, просто сложный и чувствительный к настройкам карбюратор заменила форсунка (поэтому такой впрыск и получил название одноточечного). Причем никакой электроники поначалу и в помине не было – управление подачей бензина осуществлялось механическими устройствами.
Тем не менее, впрыск обеспечивал мотору более высокие мощностные характеристики и лучшую экономичность.
Дело в том, что форсунка позволяла точнее дозировать количество топлива и распылять его на мелкие частицы. В результате, с воздухом образовывалась однородная смесь, состав которой мог практически мгновенно меняться в зависимости от условий движения и режима работы двигателя.
Правда, были у такой системы и существенные недостатки. Например, большое сопротивление поступающему в цилиндры воздуху. Ведь форсунку зачастую устанавливали в корпус бывшего карбюратора, да и громоздкие по тем временам датчики затрудняли дыхание мотору. Но все это теоретически можно было легко исправить. А вот плохое распределение топливной смеси по цилиндрам – нет. Ведь ей приходится проделывать долгий путь по трубопроводам, которые обладают разной длиной и сопротивлением. А значит, и резервов для улучшения показателей двигателя почти не остается. Поэтому сегодня центральный или одноточечный впрыск практически не встречается.
Распределенный (или многоточечный) впрыск: отличается от предыдущей схемы тем, что в данном случае во впускном патрубке каждого цилиндра установлена индивидуальная форсунка, которая подает топливо прямо на впускной клапан.
Таким образом, топливная смесь готовится непосредственно перед подачей в камеру сгорания. Поэтому она получается однородной по своему составу и примерно одинакова по качеству для каждого из цилиндров. В результате, это благотворно сказывается на мощности и экономичности мотора, а так же на токсичности выхлопных газов.
Распределенный впрыск постоянно совершенствовался. Поначалу он, также как и предыдущая схема, управлялся механическим путем. Но бурное развитие электроники позволило не только сделать систему питания более эффективной, но и скоординировать ее действия с другими компонентами двигателя. Поэтому современный мотор может не только сигнализировать водителю о неисправности, но даже в случае необходимости перейти на аварийный режим работы (он позволит добраться до дома или сервиса без эвакуатора) или исправить некоторые ошибки в пилотировании в сотрудничестве с системами безопасности.
Внедрение дополнительных датчиков позволило перевести распределенный впрыск с параллельной на последовательную схему подачи топлива.
В первом случае в определенный момент времени открывались все форсунки, топливо перемешивалось с воздухом, и получившаяся смесь ждала открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае время срабатывания каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность и точность такого впрыска несколько выше, но он и стоит дороже. Поэтому иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).
www.drive2.ru
Система Впрыска EFI(Electronic Fuel Injection). — DRIVE2
EFI — электронная система впрыска топлива(Electronic Fuel Injection).
Первым коммерческим электронным впрыском топлива (EFI) является система Electrojector, разработанная компанией Bendix, и которая была предложена компанией American Motors Corporation (AMC) на двигателе 327 объемом 5,4 литра установленном на автомобиль Rambler Rebel в 1957 году.
Впрыск Electrojector являлся опцией для 327 двигателя. Его мощность составила 288 л.с. (214,8 кВт). Пик крутящего момента сдвинулся на 500 оборотов в минуту вниз, чем аналогичный двигатель с карбюраторным впрыском. Стоимость опции EFI составляла $395 по состоянию на 15 июня 1957 года. С системой Electrojector было продано очень мало автомобилей и не одна из них не являлась серийной. Система EFI установленная в Rambler Rebel отлично зарекомендовала себя при положительных температурах, а при отрицательных наблюдались серьезные проблемы с пуском двигателя.
В 1958-м году компания Chrysler предложила свою систему Electrojector на автомобилях Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury. Это были первые серийные автомобили оснащенные системой EFI. Эта система EFI была совместно разработана компаниями Chrysler и Bendix. Большинство из 35 автомобилей изначально оборудованные электронной системой впрыска были переоборудованы с 4-карбюраторных систем. Патенты системы впрыска Electrojector впоследствии были проданы компании Bosch.
Компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600TL/E в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo. В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.
В 1975-м году на автомобиле Cadillac Seville появилась система EFI разработанная компанией Bendix и смоделированная практически аналогична Bosch D-Jetronic. Система L-Jetronic впервые появилась в 1974-м году на автомобиле Porsche 914, которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить «воздушную массу». L-Jetronic получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.
В Японии в январе 1974-м году Toyota впервые установила систему EFI на двигатель 18R-E, которым опционально оснащался автомобиль Toyota Celica. Система EFI установленная на двигатель 18R-E являлась многоточечной системой впрыска топлива. Nissan предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании Bosch L-Jetronic, установленной на двигатель Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria. Вскоре Toyota последовала той же технологии в 1978 году, которую опробовала на двигателе 4M-E, устанавливающимся на Toyota Crown, Toyota Supra и Toyota Mark II. В 1980 году в качестве стандартного оборудования Isuzu Piazza и Mitsubishi Starion оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году Mazda продемонстрировала систему EFI на автомобиле Mazda Luce с двигателем Mazda FE, а в 1983 Subaru оснастила ею свой двигатель EA81, установленный на автомобиль Subaru Leone. Honda в 1984 разработала собственную систему PGM-FI для Honda Accord и Honda Vigor (двигатель Honda ES3).
В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III. Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.
Основные типы электронного впрыска
SPFI (Single Point Fuel Ijection) − Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.
Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название «мокрый впрыск».
Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.
CFI (Continuous Fuel Injection) − Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.
Непрерывный впрыск может быть, как одноточечным так и многоточечный, но не может быть непосредственным.
Самая распространенная система непрерывного впрыска K-Jetronic производства Bosch, который появился в 1974-м году. Система K-Jetronic использовалась на протяжении многих лет с 1974-го до середины 1990-х годов такими авто-производителями, как BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, Volvo и Toyota.
CPFI (Central Port Fuel Injection) − Центральный впрыск топлива. Эту систему использовала General Motors с 1992-го по 1996-й год. В ней используются каналы с тарельчатыми клапанами от центрального инжектора для распыления топлива в каждый впускной канал, а не в корпус дроссельной заслонки, как в системе SPFI. Давление топлива аналогично системе SPFI.
MPFI (Multi Point Fuel Injection) − Многоточечный(Мультиточечный) впрыск топлива. Впрыск топлива осуществляется во впускной канал чуть выше от впускного клапана каждого цилиндра, а не в центральной точке впускного коллектора. Система MPFI (или MPI) может быть одновременной или последовательной, т.е. все форсунки работают ассинхронно, каждая из них управляется отдельно CPU двигателя и подает импульс в необходимый момент для каждой форсунки каждого цилиндра.
Многие современные системы EFI используют последовательную систему впрыска топлива MPFI. Но в новых бензиновых двигателях систему MPFI уверенно начинают заменять системы прямого(непосредственного) впрыска.
DFI (Direct Fuel Injection) − Прямой(Непосредственный) впрыск топлива. В двигатель с непосредственным впрыском, в отличие от всех других систем впрыска, топливо впрыскивается непосредственно в камеру сгорания.
Впервые система непосредственного впрыска топлива DFI была применена на двигателе Mitsubishi (GDI − Gasoline Direct Injection). Сегодня эта система впрыска активно применяется на новых двигателях автомобильных производителей Audi (TFSI), Volkswagen (FSI, TSI), Toyota D4 и т.д.
Использование непосредственного впрыска позволяет достичь 15% топливной экономичности и повысить экологичный класс двигателя.
Система DFI достаточно дорога относительно других систем электронного впрыска топлива за счет того, что для обеспечения ее нормальной работы требуется достичь большое давление в топливной магистрали. Для этого используется специальный топливный насос высокого давления(ТНВД). В свою очередь форсунки подвергаются более высокому давлению и температуре, из-за чего для их производства применяются более дорогостоящие материалы. А так же требуются высокоточные электронные системы, чтобы впрыск топлива в цилиндры происходил в строго определенное время. С такой системой весь впускной коллектор становится сухим, что позволяет содержать систему впуска в идеально чистом состоянии.
Общая Схема Инжектора
www.drive2.ru
Barik-CZ › Блог › Тонкости настройки форсированных двигателей работающих на современных ЭБУ.
Следующий аспект, который необходимо обсудить, это влияние фазы топливоподачи на эффективные показатели двигателя с искровым зажиганием.
Современные ЭБУ позволяют настраивать не только гоночные автомобили, но и открывают новые возможности при установке на обычные машины, и при этом не потеряв функционала всех основных бортовых систем
Распределённый впрыск, или многоточечный впрыск (Multi Point injection, MPi) — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:
Одновременный (Simultaneous, Batch Fire Injection) — все форсунки открываются одновременно.
Попарно-параллельный (Bank Fire Injection) — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (так называемой фазы).
Фазированный впрыск (Sequential Injection) — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.
Непосредственный впрыск (Direc Injection, DI) — впрыск топлива происходит прямо в камеру сгорания.
Одновременный или групповой тип распределенного впрыска (Simultaneous or Bank Fire Injection)
При групповом типе распределенного впрыска все инжектора впрыскивают топливо одновременно, один раз в течение одного оборота коленчатого вала, то есть два раза в течение полного рабочего цикла в четырехтактном двигателе (см. картинку выше). Таким образом, при групповом механизме организации подачи топлива, форсунки иногда впрыскивают бензин в уже закрытый клапан, и все же данный тип имеет свои преимущества в простоте.
Сверх того, тот факт, что впрыск топлива происходит дважды, это в свою очередь позволяет использовать инжектора меньшего размера, что уменьшает стоимость. Кроме того, использование форсунок меньшего размера имеет дополнительное преимущество при работе двигателя на не высоких частотах вращения, при малой нагрузке, и особенно на холостом ходу т.к. это позволяет увеличить длительность открытия форсунок и пропустить второй импульс т.е. впрыскивать только один раз за каждых два оборота коленчатого вала. Это в свою очередь улучшит точность измерения длительности открытия форсунок, потому что большинство инжекторов становятся неустойчивыми при длине импульса меньше 2 миллисекунд.
Видео Sequential Injection vs Batch Fire Injection
Фазированный впрыск (Sequential Injection)
Большинство современных автомобилей используют фазированную систему распределенного впрыска, которая позволяет осуществлять подачу топлива синхронно с открытием впускных клапанов индивидуально для каждого цилиндра.
Обычно, на серийных автомобилях фаза впрыскивания начинается около 40-50 градусах до начала открытия впускного клапана. Чтобы обойти трудности, вызванные использованием больших форсунок, распыляющих именно тогда, когда впускной клапан открыт, достаточно часто производители устанавливают малого размера инжектора. Поэтому в режиме круиз и малых нагрузках, форсунки заканчивают впрыск топлива еще до момента закрытия впускных клапанов. Это снижает вредные выбросы, уменьшает расход и улучшает реакцию на педаль газа.
Однако, с увеличение частоты вращения и нагрузки, сток форсунок уже не достаточно для впрыскивания топлива в столь короткий промежуток времени, пока впускной клапан открыт (в среднем около 250 градусах). Поэтому, для обеспечения подачи н
www.drive2.ru
О системах впрыска — DRIVE2
На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование — инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.
Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.
В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.
Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор).
☑ Системы впрыска бензиновых двигателей
В зависимости от способа образования топливно-воздушной смеси различают следующие системы впрыска бензиновых двигателей:
✔ система центрального впрыска;
✔ система распределенного впрыска;
✔ система непосредственного впрыска.
Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе.
Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели.
Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.
Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).
Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.
Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.
В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.
☑ Системы впрыска дизельных двигателей
Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.
Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.
Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).
На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска:
✔ система впрыска с рядным ТНВД;
✔ система впрыска с распределительным ТНВД;
✔ система впрыска насос-форсунками;
✔ система впрыска Сommon Rail.
Прогрессивные системы впрыска — насос-форсунки и система Сommon Rail.
В системе впрыска насос-форсунками функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Насос-форсунка имеет постоянный (неотключаемый) привод от распределительного вала двигателя, поэтому подвержена интенсивному износу. Это качество насос-форсунки направляет предпочтения автопроизводителей в сторону системы Сommon Rail.
Работа системы впрыска Common Rail основана на подаче топлива к форсункам от общего акку
www.drive2.ru
О нашем GDI — KIA Pro_Ceed GT, 1.6 л., 2014 года на DRIVE2
Стало интересно что же за двигатель и почему люди с презрение относятся к нему.
Итак, все по порядку…
У киа ставятся движки с надписями MPI, DOCH, DOCH CVVT, GDI более понятные обозначения, до новичков NU CVVL, theata CVVT MPI… Эти обозначения расшифровываются как например MPI (Multi Point Injection (многоточечный впрыск»)). Многоточечный тип впрыска означает, что в двигателе с такой системой горючее подается в каждый цилиндр через отдельную форсунку, причем форсунка изолирована. CVVT (Continuous variable valve timing(Система изменения фаз газораспределения)) Система регулирует параметры открытия клапанов в соответствии со скоростью вращения и нагрузкой на двигатель. DOCH (Double overhead cam-shafts(два распределительных вала)) Теперь надеюсь стало более понятно что это за буковки. Бывают и различные вариации DOCH CVVT например.
Теперь наш GDI и о нем подробнее.
GDI (Gasoline Direct Injection (бензиновый с непосредственным впрыском)) Для большинства ясно что не водородный, но все самое “интересное” заключено в DI.
Немного истории… Долгое время смесеобразованием в двигателе занимался его величество карбюратор, который с течением времени обрастал отдельным ХХ, добавлял камеры т.е. всячески обновлялся. Стоит заметить что принцип работы древнего карбюратора мало отличался от современных образцов. Важный момент заключается в том, что ТВС (топливно-воздушная смесь) должна быть идеальной(14 частей воздуха к 1 бензина(для карбулятора)). К этому собственно и стремились в 80-е. Только тяжело для карбюратора организовать такую смесь. С появлением MPI многоточечный впрыск ГРУБО ГОВОРЯ на каждый цилиндр стал использоваться 1-н инжектор, который обеспечивал идеальную ТВС.\\ ради справедливости добавлю что можно оснастить двигатель не 1-м карбюратом, а несколькими вплоть до 1 карба на цилиндр. Теперь самое основное. У карбюратора образование смеси происходит перед поступлением в камеру сгорания при этом расходуется мощность и падает КПД. При инжекторе топливо уже не засасывается, а впрыскивается под давлением и потери мощности уже нет. Естественно бывает одна форсунка в коллекторе на все цилиндры, или как MPI у каждого цилиндра свой коллектор с форсункой распределенный впрыск! Вроде бы все хорошо, но смесь образуется до поступления в цилиндры как и в случае с карбюратором) соответственно предел управления подачей топлива… Вот тут и появляется непосредственный впрыск. Впервые данная технология появилась аж в 1925 году! Изобретателем был Хессельман, двигатель Хессельмана так и назвали. Работать он мог на бензине, дизеле, керосине… на всем кроме поленьев))) Технология активно стала использоваться с 2000-х годов. Митсубиши каризма оснащалась 1.8 GDI в далеком 1997, а в 1999 технолгию лицензировали хундай и пежо. Как мы знаем киа и хундай являются концерном! Далее подключились рено и GM (с 2009 года камаро оснащается 3,6л непосредственный впрыск) Так же опеля, бмв и с недавнего времени мазда используют одно и тоже.
Вот такие дела… Теперь друзья подписчики или просто те кто интересуется… Введите в яндекс FSI (Fuel Stratified Injection (послойный впрыск топлива)) или TFSI добавление турбины. В целом тот же непосредственный впрыск. Скайактив DICI или DISI двигатели тоже непосредственный впрыск!
Погоня за топливной экономичностью, снижению выбросов и приводит нас к совершенствованию технологий. Турбины дело другое, не о них. Так что нечего тайного в GDI нет для нас.
Думаю количество презирающих GDI от кия снижается и происходит понимание что непосредственный впрыск это настоящее… Вот электрокары это забытое наше будущее(электрокары появились очень давно).
То что забыл написать в середине(пару технических моментов о GDI)…
В двигателях созданных по технологии GDI бензин впрыскивается непосредственно в камеру сгорания, воспламеняется свечой, синхрон
www.drive2.ru
Каким бывает впрыск топлива
Одноточечный..
ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.
Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.
Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.
Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.
Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.
Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.
Распределенный
ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.
Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).
Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.
Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.
Непосредственный..
“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.
ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.
В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.
Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.
Однако с развитием технологий все эти проблемы удалось решить, и многие автопроизводители вернулись к давно забытой схеме. Первой была компания “Mitsubishi”, в 1996 году установившая двигатель с непосредственным впрыском топлива (фирменное обозначение – GDI) на модель “Galant”, затем подобные решения стали использовать и другие компании. В частности, “Volkswagen” и “Audi” (система FSI), “Peugeot-Citroёn” (HPA), “Alfa Romeo” (JTS) и другие.
Почему же такая система питания вдруг заинтересовала ведущих автопроизводителей? Все очень просто – моторы с прямым впрыском способны работать на очень бедной рабочей смеси (с малым количеством топлива и большим – воздуха), поэтому они отличаются хорошей экономичностью. Вдобавок подача бензина непосредственно в цилиндры позволяет поднять степень сжатия двигателя, а следовательно и его мощность.
Система питания с прямым впрыском может работать в разных режимах. Например, при равномерном движении автомобиля со скоростью 90-120 км/ч электроника подает в цилиндры очень мало топлива. В принципе такую сверхбедную рабочую смесь очень трудно поджечь. Поэтому в моторах с прямым впрыском используются поршни со специальной выемкой. Она направляет основную часть топлива ближе к свече зажигания, где условия для воспламенения смеси лучше.
При движении с высокой скоростью или при резких ускорениях в цилиндры подается значительно больше топлива. Соответственно из-за сильного нагрева частей двигателя возрастает риск возникновения детонации. Чтобы избежать этого, форсунка впрыскивает в цилиндр топливо широким факелом, ко¬торый заполняет весь объем камеры сгорания и охлаждает ее.
Если же водителю требуется резкое ускорение, то форсунка срабатывает два раза. Сначала в начале такта впуска распыляется небольшое количество топлива для охлаждения цилиндра, а затем в конце такта сжатия впрыскивается основной заряд бензина.
Но, несмотря на все свои преимущества, двигатели с непосредственным впрыском пока еще недостаточно распространены. Причина – высокая стоимость и требовательность к качеству топлива. Кроме того, мотор с такой системой питания работает громче обычного и сильнее вибрирует, поэтому конструкторам приходится дополнительно усиливать некоторые детали двигателя и улучшать шумоизоляцию моторного отсека.
- Автор
- Юрий УРЮКОВ
- Издание
- Клаксон №4 2008 год
- Фото
- фото из архива “Клаксона”
www.motorpage.ru
Непосредственный впрыск. — DRIVE2
Любой работник автосалона с гордостью заявит вам, что двигатель предлагаемого вам автомобиля «оборудован новейшим непосредственным впрыском». Чаще всего, при этом, смысл и принцип работы нововведения объяснить затруднится, но зато посулит немыслимую экономию («до 30%») и «увеличение мощности».
Между тем, «новейший» непосредственный впрыск, это технология разработанная еще в середине 30-х и серийно применявшаяся в годы Второй мировой, например, на истребителях «Мессершмитт 109».
Вскоре после войны немецкая инженерия несколько раз пыталась применить этот принцип на мелкосерийных автомобилях, в числе которых был и культовый Mercedes 300SL c механическим непосредственным впрыском — по сути, настоящий «бензиновый дизель».
Количество поломок систем первого поколения оказалось решающим — про принцип в промышленном масштабе забыли на пяток десятилетий, несмотря на заметную экономию на фоне примитивного карбюраторного смесеобразования.
Идея распылять топливо непосредственно в цилиндр стала практически полезной только в начале 90-х. Причина проста — экология и ее нормативы. Значительное количество времени при городском режиме движения автомобиль работает в режиме малых и частичных нагрузок, иногда топливо тратится практически «в пустую» — фактически только на поддержание холостых оборотов.
Хорошо было бы, подумали инженеры, для режимов малых нагрузок наполнять цилиндры бедной смесью, сильно отступив от пропорций стехиометрии. И если для полноценного горения за идеал принято соотношение 14.7 кг воздуха на 1 кг бензина плюс-минус 10%, то выгодным, с точки зрения экологии, было бы найти возможность поджигать смесь в несколько раз более бедную, экономя бензин. Раза так в 2-3 более бедную, иначе заметного результата не будет. Из практики однако известно, что уже соотношение более 15,7 вызывает проблемы с горением. При соотношениях более 22:1 эффективного воспламенения уже не происходит, что грозило затее провалом.
Вот тут-то про непосредственный впрыск и вспомнили. В отличие от обычного распределенного впрыска, где форсунка льет прямо во впускной канал, поместив форсунку прямо в цилиндр, мы получаем возможность управлять фазой и длительностью впрыска — впускной клапан уже не мешает. Это как видео против киноаппарата с обтюратором — когда источник топлива уже в цилиндре, управляй им как хочешь — ничто не мельтешит перед форсункой и не отвлекает от процесса. 🙂
Для режима частичных нагрузок впрыскивание организовали в момент начала такта сжатия. Топливо долетает до днища поршня специальной формы, попутно забирая часть тепла в цилиндре и препятствуя тем самым детонации, хорошо перемешивается с воздухом и вспыхивает к моменту конца сжатия совместно с дополнительно поданной порцией в итоговом соотношении всего около 40:1(!). В обычном же режиме, двигатель работает на уже привычном соотношении воздуха и бензина, близком к стехиометрии. Вот вам и зримая экономия.
Это как бы осязаемые плюсы. А теперь сюрприз, поговорим о недостатках.
Система питания обычного двигателя работает при давлении около 3,5 атм. Для этого нам требуется электронасос, не шибко отличающийся по конструкции, надежности и цене от насоса «Малыш» у вас на даче. Также потребуется несколько форсунок, по числу цилиндров — а это тоже не ахти какие большие затраты как при производстве так и при последующей возможной замене. Добавляем сюда только обычные шланги и фильтр. Неисправный насос сразу даст о себе знать и может быть довольно просто продиагностирован и заменен на аналогичный. С форсунками возни и проблем еще меньше — живут десятками лет.
А теперь вот вам, форсунка непосредственного впрыска, по сравнению с распределенным впрыском, это недешевые, сложные в производстве и довольно капризные форсунки с давлением от 50 до 200 атм. Сравните с 3,5 атм. Да, это не дизель с 1800-2500 атм, но уже совсем точно не «обычный» распределенный впрыск.
Систему дополнительно усложняет наличие ТНВД — самого насоса, который обеспечивает столь высокое давление. В принципе, любой насос — штука механическая. А если давления высокие, то потенциально проблемная.
Идем далее: осмоление и закоксовка рабочей части форсунки нарушают точность ее работы — чувствительность к качеству топлива заметно повышается. Надежность — нет.
Требования экологии подразумевают рециркуляцию картерных газов — избытка давления в масляной системе. Это минимум. А иногда еще и части выхлопных газов… То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, «на переработку». Экология…
Вспоминаем теперь, что форсунка во впускные каналы уже не прыскает — грязь и отложения не смывает. А вентиляция именно через них и организована, что в итоге?! А вот что:
Закоксовывание приводит к затруднению закрытия клапана, что в скором времени гарантирует снижение компрессии в цилиндрах. Мотор начинает ощутимо потряхивать, а после цилиндры и вовсе отключаются. Применение масел обычного качества, что норма для всех производителей (LowSAPS, с низкой щелочностью и высоким NOACK индексом)
отпускает мотору пару-тройку лет сравнительно беспроблемного существования.
Теперь поговорим про прирост мощности и экономичности. Как современный (года так с 1990) автомобиль с условным 3-х литровым двигателем ел по городу 15-16 литров, так и ест. Без улучшений. Что с непосредственным впрыском, что с распределенным. Какие тесты журналисты не проводят — там везде примерно одни и те же цифры фактического расхода.
Мощность, точнее — момент? Для примера рассмотрим в сравнении два практически идентичных мотора — BMW N52 и BMW N53. Ну едва ли этот эксцесс в 20 Н/м можно назвать достижением, чиптюнингом можно достичь сравнимых результатов.
Что в итоге?
Непосредственный впрыск для реальных условий эксплуатации это:
1.Использование конструктивно сложных и потенциально ненадежных узлов и агрегатов.
2.Исключительно высокие требования к качеству топлива, а особенно — масла.
3.Снижение потребления топлива и увеличение мощности на практике малозначительны, или вообще отсутствуют.
4.Диагностирование неисправностей и ремонт значительно усложнены.
Покупая автомобили BMW, Audi, Mercedes и прочих марок с непосредственным впрыском топлива, найдите время разобраться с особенностями эксплуатации этих двигателей на основе практического опыта владельцев, а не рекомендаций производителя.
www.drive2.ru
Впрыск – Автомобили – Коммерсантъ
Впрыск
Журнал «Коммерсантъ Автопилот» №1 от , стр. 71
 Впрыск
Продолжим рассказ о системах питания двигателя. В предыдущем номере журнала мы воздали последние почести старичку карбюратору по случаю его 100-летнего юбилея. Сейчас речь пойдет о гораздо более современных системах впрыска топлива, хотя лет им на самом деле не меньше, чем карбюратору.
Для распыления топлива и приготовления топливо-воздушной смеси в любой системе питания используется перепад давления: в карбюраторе он образуется за счет создаваемого двигателем разрежения воздуха, в системах впрыска — за счет давления топлива, создаваемого высокопроизводительным бензонасосом. Разница, казалось бы, непринципиальная. Но перепад давления в системах впрыска почти на порядок выше. Это не только обеспечивает лучшую гомогенизацию и испарение топлива, но, самое главное, позволяет гораздо более точно, гибко и эффективно управлять процессом подачи топлива в двигатель.
Конструкторы автомобильных двигателей тоже не чурались этой идеи. Первое экспериментальное механическое устройство впрыска топлива под давлением появилось на 4-тактном двигателе еще в 1894 году, т. е. годом раньше карбюратора Даймлера и Майбаха. Фирма Bosch начала эксперименты с механическими системами впрыска в 1912 году. Подобными разработками занимались и другие компании. Однако системы механического впрыска монтировались лишь на уникальных гоночных машинах, до серийного производства дело не доходило. Таким образом, на автомобилях того времени безраздельно господствовал карбюратор: он был несравненно проще в производстве, надежнее в эксплуатации и, самое главное, на порядок, а то и на два дешевле.
Систему впрыска топлива для дизельных автомобильных двигателей фирма Bosch создала в 1927 году. Использовались топливные насосы высокого давления с механическим приводом от двигателя. В 1937 году эта идея была реализована в авиационных моторах, как дизельных, так и бензиновых. Позднее были созданы аналогичные устройства для гоночных автомобилей, а в 1954 году в Германии был представлен публике легковой автомобиль с бензиновым двигателем, оснащенным механической системой впрыска. Это был знаменитый Mercedes-Benz 300SL. Позже подобные системы появились на автомобилях BMW, Jaguar и других фирм.
В самой автомобильной стране мира — США — первая система впрыска появилась в 1957 году на автомобилях Chevrolet. Это тоже была механическая система, созданная Рочестерским (Rochester) отделением корпорации General Motors. В этом же году фирма Bendix разработала первую систему впрыска с электронным управлением — Electrojector, а фирма Chrysler даже взялась было устанавливать ее на свои автомобили, но высокая стоимость ($400—500 по тем временам было дорого) быстро отпугнула потенциальных покупателей.
Систем впрыска на сегодняшний день создано довольно много. Не будем городить сложную классификацию, для наших целей достаточно упомянуть, что впрыск топлива может осуществляться в различные точки двигателя — во впускной коллектор (центральный впрыск — Central-point Injection, иногда Throttle Body Injection), в предклапанное пространство каждого цилиндра (многоточечный впрыск — Multi-point Injection) или же непосредственно в камеру сгорания каждого цилиндра двигателя (непосредственный, или прямой впрыск — Direct Injection).
Впрыскивать топливо можно как непрерывно (Continuous Injection), так и импульсно, отдельными порциями (Pulsed Injection). Управление впрыском может осуществляться электронным, механическим или комбинированным способами.
Широко распространенный термин Electronic Fuel Injection (EFI) — электронный впрыск, строго говоря, сегодня ничего особенного не значит, поскольку большинство современных систем впрыска в той или иной степени использует электронные схемы управления. По традиции, этот термин обычно относят к системам импульсного впрыска.
Перед тем как переходить к рассмотрению различных типов и конструкций систем впрыска следует сказать несколько слов, относящихся ко всем системам питания двигателей. Известно, что в зависимости от режима работы двигателя в каждый конкретный момент времени количество подаваемого в него топлива должно строго дозироваться. Для изменения режима работы меняется и количество подаваемого топлива. Кроме того, соответственно изменяются и такие параметры, как момент подачи топлива, время открытия и закрытия клапанов, угол опережения зажигания.
При создании двигателя инженеры обкатывают его на стенде и на полигоне, подбирая сочетание оптимальных параметров для каждого режима работы. Работа длительная, кропотливая и дорогая. Полученные экспериментальные данные сводятся в электронную карту управления двигателем, которая заносится в память электронного блока (компьютера) и является индивидуальной для каждой модели двигателя. В простых системах компьютер управляет только впрыском топлива, в более сложных компьютеру поручено и управление всеми дополнительными параметрами. Такие электронные блоки называются системами комплексного управления двигателем. Кроме управления впрыском компьютер выбирает оптимальный момент зажигания, регулирует работу двигателя на холостом ходу, управляет давлением наддува и рециркуляцией отработавших газов, включает и отключает компрессор кондиционера и электрический вентилятор системы охлаждения, производит непрерывную самодиагностику и запись всех сбоев в работе системы в специальную область памяти и многое другое. Обязанности современных электронных систем настолько обширны, что впору писать об этом отдельную статью. Здесь же мы попытаемся рассмотреть только те части системы управления двигателем, которые относятся к впрыску.
ЦЕНТРАЛЬНЫЙ ВПРЫСК
Основные отличия системы впрыска от карбюратора достаточно наглядны, если рассмотреть систему центрального впрыска, например, Bosch Mono-Jetronic, схема которой представлена на рис. 1.
На впускном коллекторе на месте привычного карбюратора прямо над дроссельной заслонкой (отсюда Throttle Body Injection) расположена электромагнитная форсунка, или инжектор (5). На первый взгляд очень похоже на карбюратор. Да и функции те же, только выполняются по-другому. Форсунка представляет собой быстродействующий электромагнитный клапан с соплом, обеспечивающим высокоэффективное распыливание топлива, когда клапан находится в открытом состоянии. Для открытия клапана на него подается управляющее напряжение. Топливо к форсунке подводится под давлением около 1 кг/см кв. через фильтр (3) электрическим насосом (2), расположенным в бензобаке 1. Распыленное топливо с потоком воздуха всасывается двигателем.
Количество подаваемого топлива зависит от времени открытия клапана форсунки, дозирование осуществляется дискретно-временным (импульсным) способом. Время открытия клапана (приблизительно от 1 до 20 миллисекунд) определяется электронным блоком — компьютером (7), который сравнивает занесенные в его память экспериментальные данные об оптимальном режиме работы двигателя с информацией о его нагрузочном режиме в данный момент времени, поступающей от установленных на двигателе датчиков (6, 8, 9, 10, 11, 12).
Частота срабатывания клапана форсунки кратна частоте вращения коленчатого вала двигателя. В более совершенных вариантах такой системы момент впрыска связан также и с фазами газораспределения, т. е. с моментами открытия впускных клапанов.
Системы центрального впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но из-за своей простоты не лишены недостатков и уже не удовлетворяют современным требованиям. Основной изъян, как и у карбюратора, — неоднородное распределение смеси по цилиндрам и ее конденсация во впускном коллекторе.
В Европе и Японии системы центрального впрыска получили распространение в основном на небольших автомобилях, что связано прежде всего с относительной дешевизной этих систем. Немаловажно и то, что под них легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. А вот в США, где пик популярности систем центрального впрыска пришелся на конец 80-х — начало 90-х годов, их ставили на двигатели любого объема — вплоть до самых больших — 7,5 литровых.
МНОГОТОЧЕЧНЫЙ ВПРЫСК
Более совершенными являются системы многоточечного впрыска, в которых подача топлива к каждому цилиндру осуществляется индивидуально. Устройство такой системы на примере L-Jetronic показано на рис. 2.
Топливо из бензобака (1) насосом (2) через топливный фильтр 3 подается к общей распределительной магистрали, запитывающей электромагнитные форсунки (5). Давление топлива поддерживается постоянным, благодаря регулятору (4), который направляет излишки топлива обратно в бак. В каждый цилиндр двигателя топливо впрыскивается отдельной форсункой. Принцип дозирования количества топлива, как и во всех системах с электронным управлением, — временной. Клапаны форсунок (рис. 3) управляются электрически и открываются синхронно с работой коленчатого вала двигателя поодиночке или группами по 2 или 3 (т. н. последовательный впрыск — sequental fuel injection). Микропроцессор (компьютер), входящий в состав блока управления (7), обрабатывает поступающие от соответствующих датчиков данные о нагрузочном режиме двигателя, частоте вращения и положении коленчатого вала, положении дроссельной заслонки, температуре охлаждающей жидкости, количестве и температуре поступающего в двигатель воздуха… Эти данные в сопоставлении с заложенными в память блока управления экспериментальными регулировочными характеристиками используются процессором блока для определения длительности импульсов напряжения, подаваемых на клапаны форсунок. В наиболее совершенных моделях систем этого типа определяется также и оптимальный момент впрыска.
Основной датчик во всех системах впрыска — это устройство, измеряющее количество поступающего в двигатель воздуха, что позволяет судить о нагрузочном режиме двигателя. Измерять количество воздуха можно по-разному. В первой и самой простой системе Bosch D-Jetronic измерялось давление во впускном коллекторе, отсюда обозначение D (Druck по-немецки — давление). Это был косвенный метод, такой же, как в карбюраторе. В 1974 году появилась система L-Jetronic, в которой количество поступающего в двигатель воздуха определялось более точно — по углу отклонения шторки, или лопасти датчика воздушного потока (Luft — воздух). Самый точный метод измерений использован в системах LH-Jetronic (1984 год) и LH-Motronic (1987 год, Motronic по классификации Bosch обозначает систему управления впрыском, объединенную с системой управления зажиганием). Буква H в обозначении — от немецкого Heiss — горячий. Действительно, в термоанемометрах системы LH используется тонкий (70 мкм) платиновый проводник, нагретый до 1000C. Поток проходящего воздуха охлаждает проводник, по изменению его электрического сопротивления определяется количество проходящего воздуха. Преимущество: прямое измерение массы, а не объема воздуха, что позволяет отказаться от поправок на температуру и плотность воздуха, или высоту над уровнем моря.
НЕПРЕРЫВНЫЙ ВПРЫСК
Описанные выше системы являются импульсными, впрыск топлива форсунками осуществляется дискретно, по командам блока управления. Можно сделать проще — подавать топливо из форсунок непрерывно, изменяя лишь его количество в зависимости от нагрузки на двигатель.
В качестве примера современного устройства непрерывного впрыска можно привести систему К-Jetronic, созданную Bosch в 1973 году и годом позже примененную на Porsche 911T. Буква K в обозначении — от немецкого Kontinuerlich — непрерывный. Система с механическим (иногда его называют гидравлическим) управлением не лишена недостатков. Пожалуй, единственная причина появления механической системы в то время, когда на рынке давно и широко были представлены электронные, заключалась в ее низкой цене, сопоставимой со стоимостью карбюраторных систем питания.
Работу К-Jetronic (рис. 4) можно описать следующим образом: поток воздуха, засасываемый двигателем, отклоняет напорный диск (6), который через рычаг воздействует на дозирующий плунжер (7), а тот, перемещаясь внутри цилиндра (8), изменяет площадь радиально расположенных дозирующих отверстий (9). Количество отверстий равно количеству цилиндров двигателя. В цилиндр (8) под давлением порядка 5—6 кг/см кв. подается топливо, нагнетаемое электрическим бензонасосом (2). Пройдя дозирующие отверстия (9), топливо по трубопроводам поступает к впрыскивающим форсункам (инжекторам), которые расположены прямо над впускными клапанами. Форсунки в этой системе (рис. 5) — это просто пружинные клапаны с распылителем на конце, которые открываются при определенном давлении. Топливо из форсунок поступает непрерывно, меняется лишь его количество, определяемое положением дозирующего плунжера (на самом деле все несколько сложнее, мы намеренно не описали еще несколько подсистем, но сути это не меняет). Чем выше нагрузка на двигатель, тем сильнее отклоняется напорный диск и тем выше поднимается дозирующий плунжер, увеличивая тем самым площадь отверстий (9), а значит, и подачу топлива к форсункам.
В момент открытия впускного клапана поступившее топливо смешивается с воздухом и всасывается в цилиндр. Все остальное время, пока впускной клапан закрыт, в зоне над ним происходит накопление и испарение топлива. С технической точки зрения не очень изящно, но тем не менее К-Jetronic неплохо работает, доказательством чему являются миллионы изготовленных экземпляров данной системы и ее многочисленные модификации, выпущенные после 1973 года. Особой любовью такие системы пользовались у инженеров из Штутгарта — вплоть до недавнего времени впрыск топлива на автомобилях Mercedes был представлен почти исключительно системами K- и KE-Jetronic.
KE-Jetronic является развитием системы К-Jetronic, но в отличие от последней, она снабжена электронным блоком и некоторыми другими дополнениями, сделавшими работу системы более точной и гибкой. Есть вариант KE-Jetronic с лямбда-сенсором. Есть и другие усовершенствования базовой системы: KE3-Jetronic и KE-Motronic, дополненные схемами управления зажиганием. Применяются они в основном на автомобилях Audi под названиями соответственно CIS-E III и CIS-Motronic.
Стоит сказать, что созданные Bosch системы непрерывного впрыска используются исключительно на автомобилях европейских производителей — c 1989 года ни на одной машине японского или американского происхождения К-Jetronic или ее аналоги не устанавливались. Среди европейских пользователей — все ведущие фирмы: Audi, BMW, Ferrari, Lotus, Mercedes, Peugeot, Porsche, Renault, Rolls-Royce, Saab, Volvo и, конечно, Volkswagen. На 12-цилиндровых двигателях Ferrari (Testarossa) и Mercedes по две системы KE-Jetronic устанавливались параллельно, каждая обслуживала свою группу цилиндров.
Отличительным внешним признаком системы непрерывного впрыска является отдельный блок, объединяющий в себе измеритель воздушного потока и дозирующее устройство. Этот блок, как правило, крепится между воздушным фильтром и впускным коллектором, с которым соединяется гибким рукавом. От дозирующего устройства к каждому (если впрыск многоточечный) инжектору подведен отдельный тонкий бензопровод. Встречаются, правда, и исключения: на многих двигателях Mercedes, а также на V-образных шестерках Peugeot, Renault и Volvo этот блок крепится прямо на впускном коллекторе и закрыт сверху воздушным фильтром — внешне похоже на обычный карбюратор. В любом случае электрические провода к инжекторам и единый массивный распределительный бензопровод, являющиеся отличительными признаками системы импульсного впрыска, естественно, отсутствуют.
Для обогащения смеси в момент пуска холодного двигателя в системах многоточечного впрыска во впускной трубопровод раньше устанавливали еще одну, дополнительную форсунку, т. н. инжектор холодного пуска, управляемый термочувствительным переключателем. В последние годы от этого решения отказались, изменив при пуске режим работы стандартных инжекторов.
НЕПОСРЕДСТВЕННЫЙ ВПРЫСК
Перспективной разновидностью многоточечного впрыска являются системы непосредственного, или прямого впрыска топлива. От обычных конструкций они отличаются тем, что впрыск бензина происходит не во впускной коллектор, а непосредственно в камеру сгорания. Интересно, что первая в мире система впрыска для серийного бензинового двигателя (Mercedes-Benz 300SL, 1954 год) относилась именно к этой категории. Но там использовались топливные насосы высокого давления с механическим приводом от двигателя, что требовало высокой точности изготовления и тщательной регулировки. Стоимость таких систем и их обслуживания была весьма высока, да и Mercedes-Benz 300SL назвать серийным автомобилем можно лишь с большой натяжкой. Широкого применения они не нашли.
Реализация на современном техническом уровне идеи прямого впрыска для бензиновых двигателей требует решения ряда конструктивных и технологических проблем, и осуществить ее в массовом производстве пока не удается, тем не менее идея считается весьма перспективной, разработки в этом направлении ведутся многими фирмами.
На Tokyo Motor Show в конце 1993 года Toyota показала свой новый двигатель D-4 («Автопилот #1). Это 4-цилиндровый бензиновый двигатель с непосредственным впрыском топлива, работающий на переобедненной смеси. Степень сжатия 12,5. Топливо подается под давлением более 100 кг/см кв. Применены быстродействующие пьезоэлектрические инжекторы повышенной точности, которые фирма называет электронными. Момент впрыска регулируется в зависимости от нагрузки на двигатель: при малых и средних нагрузках впрыск происходит позднее, при больших — раньше. Для управления турбуленцией потока в цилиндре применен специальный клапан (swirl control valve) в воздушном впускном патрубке, открывающийся при больших нагрузках.
Работа над двигателем продолжается, по окончании его доводки конструкторы надеются добиться 20% экономии топлива. Массовое внедрение двигателей с непосредственным впрыском фирмы Toyota ожидают не ранее 2005—2010 годов.
ЗАЧЕМ ОНИ ПОНАДОБИЛИСЬ
А теперь наконец попробуем разобраться, почему собственно системы впрыска получили такое распространение и в чем их преимущество перед теми же карбюраторами?
Может показаться, что ответ лежит на поверхности — системы впрыска позволяют увеличить мощность, улучшить динамику, двигатель становится более экономичным. Действительно, вначале целью внедрения таких систем на серийных автомобилях было прежде всего улучшение ездовых качеств. Однако обвальное распространение впрыска топлива на современных автомобилях обусловлено прежде всего не техническими, а экологическими соображениями.
Как известно, при сгорании бензина в двигателе в атмосферу выбрасывается множество вредных для человека и окружающей среды веществ и соединений. Регламентируется пока (к счастью для автопроизводителей и к несчастью для всех остальных) выброс только трех компонентов выхлопа: окиси углерода (CO), углеводородов (НС) и окислов азота (NOx). Снизить их содержание можно совершенствованием двигателя, оптимизацией процесса сгорания топлива, а также установкой в системе выпуска специальных трехкомпонентных (по числу регламентируемых компонентов выхлопа) каталитических нейтрализаторов отработавших газов. Без них выполнить современные, а тем более планируемые в недалеком будущем нормы по токсичности выхлопа невозможно. А применение катализатора обязательно влечет за собой комплектацию автомобиля системой впрыска топлива.
Массовое внедрение каталитических устройств в системе выпуска отработавших газов и, соответственно, систем впрыска топлива началось в США, где нормы на чистоту выхлопа становились более жесткими, чем в Европе. Уже с 1980 года европейские производители автомобилей были вынуждены поставлять свою продукцию в США с системами впрыска, в то время как на местные рынки по-прежнему шли автомобили с карбюраторными системами питания.
Разработанные к середине 80-х годов трехкомпонентные катализаторы предназначались для нейтрализации продуктов, образующихся при сжигании в двигателе т. н. нормальной топливо-воздушной смеси (весовое соотношение бензин/воздух 1/14,7). Любое отклонение состава смеси от указанного приводило к падению эффективности работы катализатора и увеличению токсичности выхлопа.
Поддержание нужного состава смеси на различных режимах работы двигателя при наличии массы возмущающих факторов возлагалось на систему впрыска. Для карбюраторов, даже оснащенных электронным управлением, это была совершенно непосильная задача. Да и упрощенные системы впрыска, например, К-Jetronic или KE-модификация тоже не могли решить ее полностью.
Выход был найден следующий. В систему впрыска ввели обратную связь — в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, т. н. лямбда-сенсор. По сигналам этого датчика компьютер системы управления регулировал подачу топлива в двигатель, точно выдерживая нужный состав смеси.
Трехкомпонентный катализатор в сочетании со снабженной лямбда-сенсором системой впрыска работал весьма эффективно — с точки зрения экологов. Но для конструкторов автомобильных двигателей такая схема обернулась серьезной проблемой — дело в том, что максимальная экономичность двигателя достигается при работе на обедненной или даже переобедненной смеси (отношение бензин/воздух 1/25), и конструкторами уже была проделана немалая работа по созданию именно таких двигателей. Однако на обедненных смесях катализатор работает плохо.
За чистоту выхлопа, достигнутую в результате внедрения катализаторов, пока приходится расплачиваться некоторым увеличением расхода топлива по сравнению с результатами, которых удалось добиться к середине 80-х годов на двигателях без катализаторов. Но увеличение расхода топлива приводит к увеличению общего количества выбросов в атмосферу, пусть даже и более чистых. Круг замыкается. Решение — за экологами, экономистами и политиками.
Тенденция работать на переобедненных смесях, по-видимому, сохранится. Потребуются, конечно, новые катализаторы, способные работать с такими смесями, а сокращение расхода топлива будет достигаться за счет дальнейшего совершенствования и усложнения систем управления двигателем: в конце концов принцип «Максимально достижимой технологии» — это получение наилучших результатов вне зависимости от сложности и стоимости технических решений.
Приверженность переобедненным смесям демонстрируют японские конструкторы. Первый двигатель такого типа Toyota выпустила на рынок в 1984 году. Соотношение бензин/воздух 1/25, многоточечный впрыск, мощная система зажигания, 2 впускных клапана/цилиндр, в системе управления двигателем — дополнительный датчик состава смеси или давления в камере сгорания. Экономия топлива 8—10%.
Похожие двигатели в 1991 году выпустили Mitsubishi и Honda, в 1994 году о завершении аналогичной разработки объявил Nissan. Одна из проблем в таких конструкциях — необходимость повышения турбуленции, или завихрения топливо-воздушной смеси в камере сгорания. Завихрение может происходить по-разному — swirl или tumble — как в стиральных машинах с вертикально или горизонтально расположенной осью барабана. В двигателях Toyota и Nissan для завихрения смеси в одном из двух воздушных впускных патрубков каждого цилиндра применен специальный клапан — swirl control valve. Honda для этих целей использует различающееся на 1 мм по высоте приоткрытие впускных клапанов каждого цилиндра, Mitsubishi — особую конфигурацию впускных патрубков в сочетании с формой днища поршня.
Пока все созданные двигатели имеют относительно небольшой (до 2,0 литра) объем, который можно будет увеличить лишь после создания катализаторов, хорошо работающих с переобедненными смесями. Определенный прогресс в этом направлении уже достигнут. Toyota, кроме того, небезуспешно экспериментирует с системой из двух датчиков кислорода в выпускной системе, один из которых установлен до катализатора, а второй после. Исследуется метод электроподогрева катализатора для улучшения его работы при пуске холодного двигателя. FIAT предлагает использование двух каталитических нейтрализаторов, один из которых установлен близко к выпускному коллектору и способен работать при более высокой температуре.
ВМЕСТО ЗАКЛЮЧЕНИЯ
Многие до сих пор настороженно относятся к автомобилям, оснащенным системами впрыска топлива. Напрасно. Во-первых, карбюраторные двигатели все равно постепенно отходят в прошлое и волей-неволей к впрыску придется привыкать. Во-вторых, с точки зрения эксплуатации системы впрыска гораздо надежнее карбюраторов, требующих постоянной чистки и регулировки. О выигрыше с точки зрения ходовых качеств автомобиля можно не говорить. И о зимнем запуске двигателя тоже. И о многом другом. Но, конечно, неприятности тоже случаются.
В первую очередь, заправка этилированным бензином. Его продажа в Москве запрещена, но кто не попадал в ситуацию, когда заправляться приходится за городом? А в других городах? Одной заправки этилированным бензином с гарантией хватает на то, чтобы вывести из строя катализатор. Можно, конечно, не думать об окружающей среде, но от содержащегося в этилированном бензине тетраэтилсвинца страдает не только катализатор — из строя выходит и датчик кислорода, лямбда-сенсор. Это уже хуже, поскольку нарушается управление двигателем. А это потеря мощности и другие прелести.
Бывают и курьезные случаи. Один из наших коллег за городом оборвал глушитель. Где-то в самой передней части. Грохочет машина, естественно, жутко. И не едет совсем. Сначала думал, что дело в психологии — не хотелось сильно шуметь. Превозмог себя, нажал на газ как следует — все равно не едет, вернее едет, но плохо. Потом только в гараже разобрался — глушитель оборван перед самым цилиндром с катализатором, датчик кислорода торчит наружу. Естественно, сигнализирует, что кислорода много. Умный компьютер понял — подаваемая в двигатель смесь слишком бедная. И обогатил ее до отказа. С соответствующей потерей мощности двигателя.
Другой пример — добыл себе человек Land Rover. Летом все было нормально, но как только чуть похолодало, начались проблемы. Когда разобрались, выяснилось, что человек из экономических соображений немного схитрил — купил машину по случаю, в исполнении для жарких стран. Естественно, компьютер был запрограммирован на совершенно другой температурный диапазон. Пришлось ставить новый. Этим и закончилась экономия.
Достаточно распространенное явление в отечественных условиях — загрязнение форсунок инжекторов. От плохого бензина. Проявляется это в повышенной шумности холостого хода, провале или неуверенном наборе скорости при резком нажатии на педаль газа, увеличении расхода топлива, грязном выхлопе. Чаще происходит в небольших автомобилях с тесным подкапотным пространством при коротких поездках по городу с длительными остановками между ними: в неработающем горячем двигателе оставшиеся в соплах форсунок капли топлива испаряются, оставляя осадок, постепенно забивающий тонкий (около 0,05 мм) кольцевой канал (рис. 6). Профилактика — использование высокосортного топлива с хорошими моющими характеристиками. Проверка — только на стенде. Лечение — моющие добавки к бензину, причем использовать рекомендуется только те из них, которые специально предназначены для чистки инжекторов — добавки для карбюраторных двигателей не годятся.
И здесь мы переходим к важному вопросу. В целом системы впрыска устроены логичнее и даже проще карбюраторов. Но уровень их технического исполнения таков, что найти неисправность без специального диагностического оборудования сложно, а уж отремонтировать — тем более. И вряд ли здесь поможет умелец в робе с продранными локтями, который регулирует карбюраторы на улице. И хотя ломаются системы впрыска крайне редко, ищите хорошую станцию заранее.
Сергей Газетин, Михаил Васильев
Комментарии
Система впрыска топлива — принцип действия
Главная » Двигатели » Система впрыска топлива — схемы и принцип действияпросмотров 4 468
Разные системы и типы впрыска топлива.
Рассмотрим кратко некоторые схемы.
Топливный инжектор — это не что иное, как автоматический контролируемый клапан. Топливные форсунки являются частью механической системы, которая впрыскивает топливо в камеры сгорания через определенный интервал. Топливные инжекторы способны открываться и закрываться много раз в течение одной секунды. В последние годы, использованные ранее для доставки топлива карбюраторы, были практически заменены инжекторами.
- Дроссельно-заслонный инжектор.
Корпус дроссельной заслонки является самым простым типом впрыска. Как и карбюраторы, дроссельно-заслонный инжектор расположен на верхней части двигателя. Такие инжекторы очень сильно напоминают карбюраторы, кроме их работы. Как и карбюраторы, они не имеют миску топлива или жиклеры. В том виде форсунки передают его непосредственно в камеры сгорания.
- Система непрерывного впрыска.
Как и предполагает название, существует непрерывный поток топлива из форсунок. Вход его в цилиндры или трубки контролируется с помощью впускных клапанов. Существует непрерывный поток топлива при переменной ставке в непрерывной инъекции.
- Центральный порт впрыска (ИПЦ).
Эта схема использует особый тип арматуры, так называемые ‘тарелки клапанов’. Тарелками клапанов являются клапаны, используемые для управления входа и выброса топлива к цилиндру. Это распыляет горючее на каждый прием с помощью трубки, прикрепленной к центральному инжектору.
- Мульти-порт или многоточечный впрыск топлива — схема работы.
Один из более продвинутых схем впрыска топлива в наше время называется ‘многоточечный или мульти-порт впрыска’. Это динамический тип впрыска, в котором содержится отдельная форсунка для каждого цилиндра. В мульти-порт системе впрыска топлива все форсунки распыляют его одновременно без каких-либо задержек. Одновременный многоточечный впрыск — это одна из самых продвинутых механических настроек, которая позволяет горючему в цилиндре мгновенно воспламеняться. Следовательно, с многоточечным впрыском топлива водитель получит быстрый отклик.
Современные схемы впрыска топлива являются довольно сложными компьютеризированными механическими системами, которые сводятся не только к топливным форсункам. Весь процесс контролируется с помощью компьютера. И различные детали реагируют в соответствии с данными инструкциями. Существует ряд датчиков, которые адаптируется с помощью посыла важной информации компьютером. Существуют различные датчики, которые контролируют расход топлива, уровень кислорода и другие.
Хотя эта схема топливной системы более сложная, но работа ее разных частей очень уточненная. Она помогает контролировать уровень кислорода и расход топлива, что поможет избежать ненужного расхода горючего в двигателе. Топливная форсунка дает вашему авто потенциал для выполнения задач с высокой степенью точности.
Для разных топливных систем зачастую приходит необходимость для промывки специальным оборудованием.
Сущность схемы непосредственного впрыска в камеру сгорания
Для человека, который не обладает техническим складом ума, разобраться в данном вопросе – задача чрезвычайно сложная. Но все же знание отличий данной модификации двигателя от инжекторной или карбюраторной необходимо. Впервые двигатели с непосредственным впрыском применялись в модели Mercedes-Benz 1954 года выпуска, но большую популярность данная модификация приобрела благодаря компании Mitsubishi под названием Gasoline Direct Injection.
И с тех пор данная конструкция применяется многими известными брендами, такими как:
- BMW,
- Infinity,
- Ford,
- General Motors,
- Hyundai,
- Mercedes-Benz,
- Mazda.
При этом каждая из фирм использует свое название для рассматриваемой системы. Но принцип действия остается одним и тем же.
Росту популярности системы впрыска топлива способствуют показатели ее экономичности и экологичности, так как при ее использовании значительно сокращается выброс вредных веществ в атмосферу.
Основные особенности системы впрыска топлива
Основной принцип работы данной системы состоит в том, что топливо непосредственно впрыскивается в цилиндры двигателя. Для работы системы обычно необходимо наличие двух топливных насосов:
- первый располагается в баке с бензином,
- второй – на двигателе.
Причем второй является насосом высокого давления, иногда выдающим более 100 бар. Это необходимое условие работы, так как топливо поступает в цилиндр на такте сжатия. Высокое давление является основной причиной особого строения форсунок, которые выполняются в виде уплотнительных тефлоновых колец.
Данная топливная система, в отличие от системы с обычным впрыском, является системой с внутренним смесеобразованием с послойным или однородным образованием топливовоздушной массы. Способ смесеобразования изменяется с изменением нагрузки двигателя. Разберемся в работе двигателя при послойном и однородном образовании топливовоздушной смеси.
Работа при послойном образовании топливной смеси
Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.
Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.
Однородное образование топливной смеси
В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.
Основные недостатки впрыска топлива
Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.
Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.
Итоги
Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.
Проголосуйте, понравилась ли вам статья? Загрузка…Системы впрыска топлива
Одноточечный впрыск топлива. Одноточечный или центральный впрыск топлива – это электроуправляемая система впрыска топлива, принцип действия которой основан на периодическом впрыскивании топлива форсункой во впускной трубопровод (Mono-Jetronic).
Многоточечный или распределенный впрыск топлива. Этот впрыск обеспечивает более оптимальную работу системы в сравнении с одноточечным. Для каждого цилиндра предусмотрена топливная форсунка, которая впрыскивает топливо непосредственно перед впускным клапаном (KE-Jetronic).
Механическая система. В такой системе количество топлива регулируется специальным устройством «дозатором», через которое топливо подается дальше к форсунке. Форсунка же открывается автоматически при определенном давлении (K-Jetronic).
Комбинированная электронно-механическая система — базируется на механике, но оснащена электронным блоком управляющим режимами работы насоса и форсунок (KE-Jetronic).
Электронные системы впрыска – работа такой системы заключается в прерывистом впрыске топлива форсунками с электро-магнитным управлением. Количество поступившего топлива определяется временем открытия форсунки (L-Jetronic).
Чтобы обеспечить современные требования по выбросу отработавших газов в окружающую среду в современных системах многоточечного впрыска на каждый цилиндр двигателя приходится по электромагнитной форсунке, и управления каждой форсунки осуществляется индивидуально. Количество и момент впрыска топлива рассчитывается блоком управления (ECU).
Системы впрыска с непосредственным впрыском. В таких системах форсунки имеют электромагнитный привод и размещаются в каждом цилиндре. Впрыск топлива производится в камеру сгорания. Смесеобразование происходит внутри цилиндра. Чтобы топлива качественно сгорало особое внимание уделяется процессу распыления топлива из форсунки. В впускной трубопровод подается воздух и исключается попадание топлива на стенки впускного трубопровода. Двигатель имеет возможность работать как с однородной так и с неоднородной смесью.
{jcomments on}
Система впрыска
При производстве современных автомобилей используются разные системы впрыска топлива. Система впрыска (также известна, как инжекторная система), отвечает за впрыск топлива.
Необходимо отметить, что система впрыска используется и на бензиновых, и на дизельных моторах. Однако особенности их конструкции и работа имеют значительные различия.
С помощью системы впрыска в бензиновом двигателе создается однородная топливно-воздушная смесь, воспламенение которой происходит в принудительном порядке за счет искры. Если говорить о дизельных силовых агрегатах, то в этом случае подача топлива выполняется под высоким давлением, порция топлива перемешивается со сжатым нагретым воздухом и практически мгновенно воспламеняется. Величина порции определяется давлением впрыска. Отсюда следует, что чем больше давление, тем выше мощность силового агрегата.
Система впрыска является неотъемлемой частью топливной системы машины. А форсунка (инжектор) является основным рабочим устройством любой системы впрыска.
Системы впрыска бензиновых двигателей
В зависимости от метода создания топливно-воздушной смеси, различают несколько видов систем впрыска: центральный, распределенный, непосредственный. Системы распределенного и центрального впрыска относятся к системам предварительного впрыска. Другими словами, впрыск в них выполняется во впускном коллекторе, не достигая до камеры сгорания.
Центральный впрыск (или моновпрыск) осуществляется одной форсункой, которая устанавливается во впускном коллекторе. По сути это карбюратор с форсункой. На сегодняшний день такие системы перестали производить, но и сейчас они встречаются на легковых авто. Данная система имеет определенные преимущества: надежность и простота конструкции. Из недостатков можно назвать низкие экологические показатели и большой расход топлива.
Система распределенного впрыска (т.н. многоточечная система) – наиболее распространенная системой впрыска в бензиновых силовых установках. Подразумевает подачу топлива на каждый цилиндр посредством отдельной форсунки. Топливно-воздушная смесь создается во впускном коллекторе. Из преимуществ системы выделяют: незначительный уровень вредных выбросов, умеренное потребление топлива, не слишком требовательна к качеству топлива.
Непосредственный впрыск – данная система считается наиболее перспективной. Топливо подается в камеру сгорания каждого цилиндра. Такая система способствует созданию наиболее сбалансированного состава топливно-воздушной смеси на всех режимах работы мотора, повышает степень сжатия, обеспечивая таким образом полное сгорание смеси, повышение мощности двигателя, экономию топлива, снижение вредных выбросов. Наряду с этим, непосредственный впрыск имеет определенные недостатки – система отличается довольно сложной конструкцией и жесткими эксплуатационными требованиями, в частности очень чувствительна к качеству топлива, особенно содержанию в нем серы.
Комбинированная система впрыска объединяет систему распределенного и непосредственного впрыска на одном ДВС. Применяется для снижения вредных выбросов в атмосферу.
На бензиновых силовых агрегатах системы впрыска могут иметь электронное и механическое управление. Наиболее совершенным считается электронное управление, поскольку обеспечивает ощутимую экономию топлива и минимизирует выброс вредных веществ.
Впрыск топлива может производиться импульсивно (дискретно) или непрерывно. Если говорить об экономичности, то перспективным является импульсивный впрыск, и именно поэтому его используют все современные системы.
В силовых агрегатах система впрыска, как правило, связана с системой зажигания, образуя при этом объединенную систему впрыска и зажигания (к примеру, системы Fenix, Motronic). А система управления двигателем обеспечивает согласованную работу этих систем.
Системы впрыска дизельных двигателей
В дизельных силовых установках впрыск топлива осуществляется двумя способами: непосредственно в камеру сгорания либо в предварительную камеру.
ДВС с впрыском топлива в предварительную камеру отличаются плавностью работы и низким уровнем шума. Однако на сегодняшний день автопроизводители отдают предпочтение именно системам непосредственного впрыска – хотя они и отличаются повышенным уровнем шума, системы обеспечивают высокую экономичность. Главным элементом конструкции системы впрыска дизельного мотора является ТНВД (топливный насос высокого давления).
Легковые машины с дизельными двигателями могут оснащаться различными конструкциями системами впрыска: с распределительным ТНВД, рядным ТНВД, Сommon Rail, насос-форсунками. Более совершенными считаются две последние системы.
В системе впрыска насос-форсунками за создание высокого давления и впрыск топлива отвечает одна деталь – насос-форсунка. Это устройство имеет неотключаемый привод от распределительного вала силового агрегата, чем и обусловлен быстрый износ. Из-за этого недостатка автопроизводители отдают предпочтение системе Сommon Rail.
Система впрыска Сommon Rail работает по принципу подачи топлива к форсункам от общего аккумулятора высокого давления – топливной рампы (от англ. common rail – общая магистраль). Данную систему также называют аккумуляторной системой впрыска. Чтобы улучшить самовоспламенение топлива, снизить уровень шума и вредные выбросы, в системе предусмотрен поэтапный впрыск топлива:
- Предварительный;
- Основной;
- Дополнительный.
В дизельных силовых установках системы впрыска могут иметь электронное и механическое управление. С помощью электроники создана система управлением дизелем. А в механических системах регулирование объема, давления и момента подачи топлива осуществляется механическим способом.
Ниссановские мотористы придумали оригинальную систему впрыска — ДРАЙВ
Вряд ли следование жёстким экологическим требованиям в ближайшее время сделает традиционные двигатели внутреннего сгорания достоянием истории. Резервы обычных моторов отнюдь не исчерпаны, их всё совершенствуют и совершенствуют. На текущей неделе компания Nissan предложила очередную инновацию — систему распределённого впрыска топлива с парными форсунками.
Новинку назвали не иначе как «двойной впрыск», но её нельзя сравнивать, например, с изощрённой системой комбинированного впрыска на автомобилях Lexus. Тут всё гораздо проще. Изюминка системы — индивидуальная топливная форсунка в каждом впускном канале головки блока цилиндров. Четыре клапана на цилиндр — пара форсунок. По заверениям ниссановцев, это, во-первых, оптимизирует наполнение цилиндра, делая процесс сгорания смеси более ровным, стабильным и, в конечном счёте, эффективным. А во-вторых (и это главное), «двойной впрыск» позволяет избежать затрат на разработку системы питания с непосредственным впрыском для небольших и дешёвых автомобилей. Тем более что на маленьких моторчиках применение топливного насоса высокого давления не всегда оправдано.
Справа — струя новой форсунки, слева — старой, которая устанавливалась во впускном коллекторе и прицельно била в два впускных канала. Теперь настраивать впрыск можно гораздо точнее. Внедрение системы «двойного впрыска» позволит сократить вредные выбросы и как следствие уменьшить использование редких металлов в катализаторах на 50%.
Да и производство новой системы на 60% дешевле, чем основанной на непосредственном впрыске. Вдобавок одновременно с внедрением «двойного впрыска» ниссановские мотористы собираются применить регулировку фаз газораспределения не только на впуске, но и на выпуске. Это снижает насосные потери и вкупе с новой системой питания даёт экономию топлива до 4%. Не имеющую пока аналогов разработку начнут ставить на серийные автомобили Nissan в начале следующего года.
Особенности бензиновых двигателей с электронным управлением
Постоянное ужесточение норм выбросов токсичных веществ и выдвижение новых требований к диагностике, распространяющихся на автомобили с общей массой до 3 500 кг, в том числе малотоннажные грузовики и грузопассажирские, привело к тому, что большинство современных бензиновых двигателей имеют электронное управление системами и трехкомпонентный каталитический нейтрализатор.
Наиболее эффективный способ одновременного улучшения и экологических, и энергетических показателей – применение распределенного (многоточечного) впрыска бензина во впускные каналы в зоне впускных клапанов. Обычно для улучшения наполнения одновременно с ним используется инерционный наддув, т.е. устанавливаются длинные патрубки от общего ресивера к каждому цилиндру. В этом случае по сравнению с карбюраторной системой питания максимальная мощность повышается на 15 – 20%, а эксплуатационный расход топлива снижается в среднем на 10%. Кроме того, улучшаются ездовые качества автомобиля (плавный без рывков разгон, хорошая динамика), повышается надежность двигателя, упрощается его диагностика.
О введении в России норм Euro говорится немало. Однако большинству заводов от них удалось откреститься… – пока. Но все понимают, что уступки законодателей не могут быть вечными. Системы с электронным управлением распределенным впрыском бензина, зажиганием и антитоксичными устройствами уже разработаны для автомобилей УАЗ-3160 и УАЗ-31605, а также малотоннажных грузовиков ГАЗ. И скоро они в полном объеме придут в нашу жизнь. (Принципиальная схема такой системы дана на рис. 1). А потому остановимся подробнее на устройствах, входящих в такие системы, и особенностях их эксплуатации.
Забор топлива производится через фильтр грубой очистки с размером ячеек 50 мкм. Встречаются системы с двумя фильтрами – грубой и тонкой очистки. Для подачи топлива используется электробензонасос, который может располагаться в бензобаке, под кузовом или на лонжероне (УАЗ). Наиболее часто встречаются насосы эксцентриковые с роликовым уплотнением (рис. 2а) или шестеренные (рис. 2б). Они развивают рабочее давление от 300 до 400, а иногда и до 600 кПа. Производительность нового насоса обычно в 3 – 4 раза превышает расход топлива при максимальной мощности, что позволяет компенсировать уменьшение подачи из-за износа.
От насоса топливо через фильтр тонкой очистки (размер ячеек до 5 мкм) подается в коллектор (рампу), в конце которого расположен регулятор давления впрыска топлива (рис. 3). Диафрагменный механизм регулятора соединен с задроссельным пространством. Это позволяет поддерживать постоянный перепад давлений у форсунки независимо от разрежения во впускном трубопроводе. Избыточное топливо из регулятора возвращается в топливный бак. Рампа устанавливается непосредственно на электромагнитных форсунках (рис. 4). На входе в форсунку расположен фильтр для улавливания случайных частиц, попавших в систему после фильтра тонкой очистки.
В современных системах распределенного впрыска количество впрыскиваемого бензина регулируется изменением времени открытия клапана (5 – 50 мс). Ход клапана остается постоянным. Угол факела топлива зависит от конструкции распылителя и выбирается в зависимости от расположения форсунки: при ее установке во впускной трубе он меньше, при установке в головке блока – больше.
Частота вращения коленчатого вала и положение поршня определяется индуктивным датчиком, расположенным в приливе передней части двигателя в плоскости вращения зубчатого диска на коленчатом валу. Окружность диска разделена на 60 частей, причем вместо двух зубьев сделана просечка. Начало 20-го зуба диска по ходу вращения коленчатого вала соответствует ВМТ первого цилиндра. В системе зажигания применяется электронный коммутатор и, как правило, две двухискровые катушки зажигания, каждая из которых вырабатывает импульсы высокого напряжения одновременно для пары цилиндров (1 и 4-го, 2 и 3-го).
Фазирование впрыска (он должен начинаться при закрытом впускном клапане) осуществляется датчиком, установленным на крышке шестерен распределительного вала (двигатели УМЗ) или в головке блока цилиндров (двигатели ЗМЗ).
Расход воздуха в системах впрыска двигателей ЗМЗ и УМЗ определяется термоанемометрическим датчиком. Наиболее распространены два типа датчиков: пленочные и нитевые. Пленочные (рис. 5а) имеют меньшую стоимость, но при засорении требуют замены элемента. Нитевые устанавливались на двигателях с впрыском первых выпусков. В них нагреваются тонкие (70 мкм) платиновые нити (рис. 5б). Схема управления датчика обеспечивает постоянную температуру нити (150°С). В зависимости от расхода воздуха для стабилизации температуры изменяется напряжение на контактах нити и таким образом определяется расход топлива. Для самоочищения платиновой нити при выключении зажигания она кратковременно нагревается до 1 000°С.
Положение дроссельной заслонки контролируется установленным на ее оси потенциометром. По его показаниям отключается подача топлива на принудительном холостом ходу, а при полном открытии заслонки происходит переход на мощностные смеси. На корпусе дроссельных заслонок установлен и регулятор холостого хода. Он поддерживает заданную частоту вращения холостого хода, изменяя в зависимости от условий работы двигателя (температуры масла, охлаждающей жидкости, нагрузки на генератор) по сигналу блока управления (контроллера) количество подаваемого в обход дроссельной заслонки воздуха. На режиме прогрева двигателя этот регулятор поддерживает повышенную частоту вращения коленчатого вала для сокращения времени достижения рабочей температуры. Регулирование осуществляется поворотом шибера или перемещением клапана, регулирующего проходное сечение (рис. 6).
Для предотвращения работы с интенсивной детонацией устанавливается пьезоэлектрический датчик детонации (рис. 7) для поддержания угла опережения зажигания на пределе детонации при заправке бензином с низким фактическим октановым числом (в двигателях ЗМЗ в зоне 4-го цилиндра, в двигателях УМЗ – между 2-м и 3-м).
Управляют системами питания и зажигания двигателей УМЗ-420.10 и УМЗ-4213.10 блоки М1.5.4-У «Автрон» или «Микас-7.2», а двигателей ЗМЗ-4062.10 и их модификаций – М1.5.4 «Автрон» или «Микас М1.5.4». Отличительной особенностью блоков М1.5.4 «Автрон» являются шестнадцатиразрядные микропроцессоры, обеспечивающие по сравнению с ранее применявшимися восьмиразрядными более высокое быстродействие и лучшие показатели по топливной экономичности и токсичности.
Одна из важнейших проблем эксплуатации – выявление причин отказа и своевременное устранение неисправностей. Некоторые диагностические возможности заложены уже в самой системе электронного управления. При использовании контроллеров «Автрон» и «Микас» после включения зажигания контрольная лампа должна загораться на 0,6 с и гаснуть. Если она продолжает гореть, то необходимо провести техническое обслуживание и выявить неисправность. При устранении неисправности лампа выключается, но диагностический код сохраняется в памяти блока до отключения аккумулятора или ее очистки. Далее используются диагностические карты, приводимые в руководстве по техобслуживанию.
Есть несколько способов выявления причин нарушения работы систем управления двигателем. Наиболее просто определить характер неисправности вызовом ее кода. Стереть коды и запустить функциональный тест, в том числе и в дорожных условиях, можно при помощи контрольной лампы и диагностической кнопки. После замыкания контактов диагностического разъема по числу миганий контрольной лампы определяется код неисправности. В зависимости от этого водитель в дорожных условиях может принять решение как действовать дальше.
При отказе некоторых датчиков после включения контрольной лампы система автоматически переходит на аварийный режим. В частности, при выходе из строя датчика массового расхода воздуха для регулирования цикловой подачи топлива может использоваться датчик положения дроссельной заслонки. Однако при этом обычно ухудшаются ездовые качества автомобиля (появляются рывки, провалы) или/и увеличивается расход топлива. При повреждении датчика детонации во время движения автомобиля, особенно с низкой частотой вращения коленчатого вала и полной нагрузкой, нельзя допускать работы с интенсивной детонацией. В случае отказа датчика температуры охлаждающей жидкости ухудшаются пусковые качества холодного двигателя. При прогретом двигателе нарушений в его работе обычно нет. При повреждении регулятора напряжения в системе электрооборудования необходимо двигаться с невысокой частотой вращения коленчатого вала, чтобы не вывести из строя блок управления.
В случае отказа датчика положения дроссельной заслонки возможны пуск двигателя стартером и движение автомобиля, но не работает регулятор частоты вращения на холостом ходу и не отключается подача топлива при торможении двигателем, что увеличивает выброс токсичных веществ и расход топлива. Кроме того, не происходит переход на мощностную регулировку при больших нагрузках, что ограничивает максимальную скорость движения. При повреждении датчиков частоты вращения коленчатого вала пуск двигателя невозможен. Одной из наиболее частых причин нарушения работы двигателя является отказ системы регулирования состава топливовоздушной смеси.
Для выполнения требований к токсичности отработавших газов, предъявляемых большинством стран Европы, Америки и Японии, необходим трехкомпонентный каталитический нейтрализатор, снижающий выброс СО, СН и N0х на 90 – 95%. Однако для его эффективной работы отношение расхода воздуха к расходу топлива должно находиться в пределах 14,6 – 14,8. Такую точность обеспечивает только система обратной связи с кислородным датчиком. Ею предусмотрено оснащение двигателей и ВАЗ и УАЗ в «европейском» исполнении.
Кислородный датчик представляет собой тонкостенный баллон из специальной керамики (обычно двуокиси циркония), покрытый тонким слоем платины (рис.8). Внутри полости датчика находится воздух. Датчик располагается в выпускном трубопроводе. Когда в отработавших газах имеется кислород, электрический потенциал датчика близок к нулю (рис.9). Поэтому блок управления увеличивает подачу топлива. Как только смесь обогатится и в отработавших газах содержание кислорода резко уменьшится, электрический потенциал датчика становится максимальным, а блок управления дает сигнал на уменьшение подачи топлива. Характеристика управления составом смеси имеет пилообразный вид, обеспечивая заданное соотношение воздуха и топлива.
Необходимо иметь в виду, что при работе двигателя на этилированном бензине и каталитический нейтрализатор, и кислородный датчик выходят из строя. Блок управления переходит на аварийный режим работы, что может сопровождаться увеличением расхода топлива или появлением рывков и провалов в работе двигателя. В случае крайней необходимости продолжать движение на этилированном бензине требуется вывернуть кислородный датчик, и заглушить отверстие под него. После выработки этилированного бензина датчик можно поставить на место. При этом нейтрализатор может быть выведен из строя и потребуется его замена.
Важно, чтобы система зажигания работала надежно, поскольку из-за перебоев в зажигании нейтрализатор перегревается. Автомобили с трехкомпонентным нейтрализатором и кислородным датчиком вследствие работы на неэкономичном составе смеси при прочих равных условиях расходуют бензина на 5 – 10% больше. Учитывая, что в России используется этилированный бензин, автомобили имеют модификации без каталитических нейтрализаторов и кислородных датчиков.
В двигателях автомобилей ГАЗ и УАЗ с распределенным впрыском топлива СО регулируется винтом на датчике массового расхода воздуха. Вращая винт, необходимо по газоанализатору установить концентрацию СО примерно 0,8%. При наличии трехкомпонентного нейтрализатора содержание СО устанавливается автоматически.
В условиях станций техобслуживания целесообразно использовать тестеры, подключаемые к диагностическому разъему. Код на индикаторе тестера указывает причину нарушения работы. В частности, можно выявить отсутствие сигнала от датчиков расхода воздуха, кислородного, частоты вращения и положения коленчатого вала. Определяется уровень (высокий или низкий) сигналов датчиков температуры охлаждающей жидкости, положения дроссельной заслонки, температуры воздуха, состава смеси. Для каждой системы управления существует свой тестер с набором кодов, приводимым в инструкции.
В блоках управления М1.5.4 «Автрон» автомобилей ГАЗ и М1.5.4-У «Автрон» автомобилей УАЗ для выдачи информации предусмотрены два канала связи. Первый (ISO-9141) используется для большинства современных автомобилей. Подключение к нему сканер-тестера СТМ-1.1 диагностического тестера DST-2 c картриджем «Автрон»v1.33НТС или другого системного сканера-тестера позволяет производить запись параметров управления, вызов и стирание кодов неисправностей. Второй канал связи (RS-232) позволяет подключаться к персональному компьютеру, получать графическое отображение и распечатку данных.
Использование персонального компьютера дает возможность адаптировать блоки для других двигателей, осуществлять контроль в процессе производства. Наиболее полную информацию обеспечивают жгутовые тестеры ГМ-1 и ГМ-2, подключаемые между разъемом блока управления и жгутом проводов. Их преимущество состоит в том, что такие тестеры оценивают параметры реальных сигналов в цепях датчиков и исполнительных устройств.
MPFI (Многоточечный впрыск топлива) Система электронного впрыска топлива
Впрыск топлива — это способ или система подачи топлива в двигатель внутреннего сгорания. С начала 1940-х годов различные компании вводят на рынок многие системы впрыска, такие как одноточечный впрыск, непрерывный впрыск. Но в настоящее время наиболее часто используемые системы впрыска — это MPFI в бензиновых двигателях и CRDI в дизельных двигателях.
Многоточечная система впрыска топлива
В автомобилях с бензиновым двигателемиспользуется устройство, называемое карбюратором, для подачи воздушно-топливной смеси в цилиндры в правильном соотношении во всех диапазонах оборотов.Поскольку конструкция карбюратора относительно проста, в прошлом он использовался почти исключительно в бензиновых двигателях. Однако в настоящее время нам нужны более чистая выхлопная система, более экономичный расход топлива, улучшенная управляемость и т. Д.
Итак, чтобы получить все это, нам нужен карбюратор, который должен иметь различные устройства для выполнения вышеуказанных функций, что делает его более сложной системой. Таким образом, вместо карбюратора используется система MPFI (многоточечный впрыск топлива), обеспечивающая надлежащее соотношение воздух-топливо к двигателю путем электрического впрыска топлива в соответствии с различными условиями движения.
Не пропустите
Преимущества и недостатки | Автомобили со средним расположением двигателя | Задний привод против AWD
ECU (Блок управления двигателем) Автомобили, ECM, детали, функционирование
КАК УВЕЛИЧИТЬ ЭКОНОМИЮ ТОПЛИВА ВАШЕГО АВТОМОБИЛЯ
АНТИБЛОКИРОВКА СИСТЕМА (АБС) И ЕЕ РАБОТА ПОДВЕСКА
И ЕЕ РАЗЛИЧНЫЕ ТИПЫ
CRDi (Common Rail Direct Injection) Двигатель
КАРБЮРАЦИЯ И КАРБЮРАТОР
Система многоточечного впрыска топлива впрыскивает топливо во впускные каналы непосредственно перед впускным клапаном каждого цилиндра, а не в центральную точку впускного коллектора.
Многоточечные системы впрыска топлива бывают трех типов: первая — ЗАПАСНАЯ, в которой топливо впрыскивается в цилиндры группами, без точного совмещения с тактом впуска какого-либо конкретного цилиндра, вторая — одновременная, при которой топливо впрыскивается одновременно. ко всем цилиндрам, а третий является последовательным, в котором впрыск синхронизируется с тактом впуска каждого цилиндра.
BMW использует старую технологию впрыска воды. В своих новых автомобилях нажмите, чтобы узнать больше.
ПРЕИМУЩЕСТВА МНОГОТОЧЕЧНОЙ СИСТЕМЫ ВПРЫСКА ТОПЛИВА
- В каждый цилиндр будет подаваться более однородная воздушно-топливная смесь, поэтому разница в мощности, развиваемой в каждом цилиндре, минимальна.
- В двигателях MPFI возникает очень низкая вибрация, благодаря чему увеличивается срок службы компонентов двигателя.
- Нет необходимости проверять двигатель дважды или трижды в случае холодного запуска, как это происходит в системе карбюратора.
- Немедленное реагирование при резком ускорении или замедлении.
- Увеличен пробег автомобиля.
- В эти системы впрыска будет подаваться более точное количество топливовоздушной смеси. В результате произойдет полное сгорание. Это приводит к эффективному использованию подаваемого топлива и, следовательно, к низкому уровню выбросов.
Это видео, демонстрирующее работу СИСТЕМЫ многоточечного впрыска топлива (MPFI)
типов топливных форсунок | | — Pro Flow
Типы топливных форсунок:
Верхняя подача — Топливо входит сверху и выходит снизу.
Боковая подача — Топливо попадает сбоку на штуцере форсунки внутри топливной рампы.
Форсунки корпуса дроссельной заслонки — (TBI) Расположены непосредственно в корпусе дроссельной заслонки.
Типы систем впрыска топлива:
Форсунки корпуса дроссельной заслонки или одноточечные форсунки (TBI)
Одноточечный впрыск был первым шагом до появления более сложных многоточечных систем. Не такой точный, как современные системы, TBI дозировал топливо лучше, чем карбюратор, был дешевле и проще в обслуживании.
Портовый или многоточечный впрыск топлива (MPFI)
Многоточечный впрыск топлива имеет отдельную форсунку для каждого цилиндра, сразу за его впускным портом, поэтому систему иногда называют впрыском через порт. Подача паров топлива так близко к впускному отверстию гарантирует, что они будут полностью втянуты в цилиндр. Основным преимуществом является то, что MPFI измеряет топливо более точно, чем TBI, обеспечивая желаемое соотношение воздух / топливо. MPFI снижает вероятность конденсации топлива во впускном коллекторе.
Последовательный впрыск топлива (SFI)
SFI, который иногда называют последовательным впрыском топлива (SPFI) или впрыском по времени, представляет собой тип многоточечного впрыска. Хотя в базовом MPFI используется несколько форсунок, которые распыляют топливо одновременно или группами. Последовательный впрыск топлива запускает каждую форсунку независимо и синхронизируется по времени, как свечи зажигания. SFI распыляет топливо непосредственно перед или после открытия впускного клапана.
Прямой впрыск
Прямой впрыск подает топливо непосредственно в камеры сгорания, минуя клапаны.Прямой впрыск, более распространенный в дизельных двигателях, набирает популярность в конструкциях бензиновых двигателей и иногда называется DIG или бензин с прямым впрыском. Как и в других системах, дозирование топлива является еще более точным, а прямой впрыск дает инженерам еще одну переменную, влияющую на то, как происходит сгорание в цилиндрах.
Топливные форсунки Acura
Топливные форсунки Alfa Romeo
American Motors
Топливные форсунки Audi
Топливные форсунки Bentley
Топливные форсунки BMW
Топливные форсунки Buick
Топливные форсунки Cadillac
Топливные форсунки Chevrolet
Топливные форсунки Chrysler
Топливные форсунки Daewoo
Топливные форсунки
Топливные форсунки Ferrari
Топливные форсунки Fiat
Топливные форсунки Ford
Топливные форсунки Geo
Топливные форсунки GMC
Топливные форсунки Holden
Топливные форсунки Honda
Топливные форсунки Hyundai
Топливные форсунки Infiniti
Топливные форсунки Isuzu
Топливные форсунки Jaguar
Jeep
Kia Топливные форсунки
Топливные форсунки Lancia
Топливные форсунки Lexus
Топливные форсунки Lincoln
Топливные форсунки Mazda
Топливные форсунки Mercedes Benz
Топливные форсунки Mercury
Топливные форсунки Merkur
Топливные форсунки Mitsubishi
Топливные форсунки Nissan
Топливные форсунки Oldsmobile
Топливные форсунки Plymouth
Топливные форсунки Plymouth
Топливные форсунки Porsche
Топливные форсунки Range Rover
Топливные форсунки Renault
Топливные форсунки Rolls Royce
Топливные форсунки Rover
Топливные форсунки Saab
Топливные форсунки Saturn
Топливные форсунки Seat
Топливные форсунки Subaru
Топливные форсунки Suzuki
Топливные форсунки Toyota
Triumph Топливные форсунки Топливные форсунки Volkswagen
Топливные форсунки Volvo
Форсунки Yamaha
Симулятор многоточечного впрыска топлива| VWR
Положения и условия
Спасибо, что посетили наш сайт.Эти условия использования применимы к веб-сайтам США, Канады и Пуэрто-Рико (далее «Веб-сайт»), которыми управляет VWR («Компания»). Если вы заходите на веб-сайт из-за пределов США, Канады или Пуэрто-Рико, пожалуйста, посетите соответствующий международный веб-сайт, доступный по адресу www.vwr.com, для ознакомления с применимыми условиями. Все пользователи веб-сайта подчиняются следующим условиям использования веб-сайта (эти «Условия использования»). Пожалуйста, внимательно прочтите эти Условия использования перед доступом или использованием любой части веб-сайта. Заходя на веб-сайт или используя его, вы соглашаетесь с тем, что вы прочитали, поняли и соглашаетесь соблюдать настоящие Условия использования с поправками, которые время от времени вносятся, а также Политику конфиденциальности компании, которая настоящим включена в настоящие Условия. использования. Если вы не желаете соглашаться с настоящими Условиями использования, не открывайте и не используйте какие-либо части веб-сайта.
Компания может пересматривать и обновлять настоящие Условия использования в любое время без предварительного уведомления, разместив измененные условия на веб-сайте. Продолжение использования вами веб-сайта означает, что вы принимаете и соглашаетесь с пересмотренными Условиями использования.Если вы не согласны с Условиями использования (в которые время от времени вносятся поправки) или недовольны Веб-сайтом, ваше единственное и исключительное средство правовой защиты — прекратить использование Веб-сайта.
Использование сайта
Информация, содержащаяся на этом веб-сайте, предназначена только для информационных целей. Хотя считается, что информация верна на момент публикации, вам следует самостоятельно определить ее пригодность для вашего использования. Не все продукты или услуги, описанные на этом веб-сайте, доступны во всех юрисдикциях или для всех потенциальных клиентов, и ничто в настоящем документе не предназначено как предложение или ходатайство в любой юрисдикции или какому-либо потенциальному покупателю, где такое предложение или продажа не соответствует требованиям.
Приобретение товаров и услуг
Настоящие Условия и положения распространяются только на использование веб-сайта. Обратите внимание, что условия, касающиеся обслуживания, продаж продуктов, рекламных акций и других связанных мероприятий, можно найти по адресу https://us.vwr.com/store/content/externalContentPage.jsp?path=/en_US/about_vwr_terms_and_conditions.jsp , и эти условия регулируют любые покупки продуктов или услуг у Компании.
Интерактивные функции
Веб-сайт может содержать службы досок объявлений, области чата, группы новостей, форумы, сообщества, личные веб-страницы, календари и / или другие средства сообщения или связи, предназначенные для того, чтобы вы могли общаться с общественностью в целом или с группой ( вместе «Функция сообщества»).Вы соглашаетесь использовать функцию сообщества только для публикации, отправки и получения сообщений и материалов, которые являются надлежащими и относятся к конкретной функции сообщества. Вы соглашаетесь использовать веб-сайт только в законных целях.
A. В частности, вы соглашаетесь не делать ничего из следующего при использовании функции сообщества:
1. Опорочить, оскорбить, преследовать, преследовать, угрожать или иным образом нарушать законные права (например, право на неприкосновенность частной жизни и гласность) других.
2. Публикация, размещение, загрузка, распространение или распространение любых неуместных, непристойных, дискредитирующих, нарушающих права, непристойных, непристойных или незаконных тем, названий, материалов или информации.
3. Загружайте файлы, содержащие программное обеспечение или другие материалы, защищенные законами об интеллектуальной собственности (или правами на неприкосновенность частной жизни), если вы не владеете или не контролируете права на них или не получили всех необходимых разрешений.
4. Загрузите файлы, содержащие вирусы, поврежденные файлы или любое другое подобное программное обеспечение или программы, которые могут повредить работу чужого компьютера.
5. Перехватить или попытаться перехватить электронную почту, не предназначенную для вас.
6. Рекламировать или предлагать продавать или покупать какие-либо товары или услуги для любых деловых целей, если такая функция сообщества специально не разрешает такие сообщения.
7. Проводите или рассылайте опросы, конкурсы, финансовые пирамиды или письма счастья.
8. Загрузите любой файл, опубликованный другим пользователем функции сообщества, который, как вы знаете или разумно должен знать, не может распространяться на законных основаниях таким образом или что у вас есть договорное обязательство сохранять конфиденциальность (несмотря на его доступность на веб-сайте).
9. Подделывать или удалять любые ссылки на автора, юридические или другие надлежащие уведомления, обозначения собственности или ярлыки происхождения или источника программного обеспечения или других материалов, содержащихся в загружаемом файле.
10. Представление ложной информации о принадлежности к какому-либо лицу или организации.
11. Участвовать в любых других действиях, которые ограничивают или препятствуют использованию веб-сайта кем-либо, или которые, по мнению Компании, могут нанести вред Компании или пользователям веб-сайта или подвергнуть их ответственности.
12. Нарушать любые применимые законы или постановления или нарушать любой кодекс поведения или другие правила, которые могут быть применимы к какой-либо конкретной функции Сообщества.
13. Собирать или иным образом собирать информацию о других, включая адреса электронной почты, без их согласия.
B. Вы понимаете и признаете, что вы несете ответственность за любой контент, который вы отправляете, вы, а не Компания, несете полную ответственность за такой контент, включая его законность, надежность и уместность. Если вы публикуете сообщения от имени или от имени вашего работодателя или другой организации, вы заявляете и гарантируете, что у вас есть на это право. Загружая или иным образом передавая материалы в любую область веб-сайта, вы гарантируете, что эти материалы являются вашими собственными или находятся в общественном достоянии или иным образом свободны от проприетарных или иных ограничений, и что вы имеете право размещать их на веб-сайте.Кроме того, загружая или иным образом передавая материал в любую область веб-сайта, вы предоставляете Компании безотзывное, бесплатное право во всем мире на публикацию, воспроизведение, использование, адаптацию, редактирование и / или изменение таких материалов любым способом, в любые и все средства массовой информации, известные в настоящее время или обнаруженные в будущем, во всем мире, в том числе в Интернете и World Wide Web, для рекламных, коммерческих, торговых и рекламных целей, без дополнительных ограничений или компенсации, если это не запрещено законом, и без уведомления, проверки или одобрения.
C. Компания оставляет за собой право, но не принимает на себя никакой ответственности (1) удалить любые материалы, размещенные на веб-сайте, которые Компания по своему собственному усмотрению сочтет несовместимыми с вышеуказанными обязательствами или иным образом неприемлемыми по любой причине. ; и (2) прекратить доступ любого пользователя ко всему или части веб-сайта. Однако Компания не может ни просмотреть все материалы до их размещения на веб-сайте, ни обеспечить быстрое удаление нежелательных материалов после их размещения.Соответственно, Компания не несет ответственности за какие-либо действия или бездействие в отношении передач, сообщений или контента, предоставленных третьими сторонами. Компания оставляет за собой право предпринимать любые действия, которые она сочтет необходимыми для защиты личной безопасности пользователей этого веб-сайта и общественности; тем не менее, Компания не несет ответственности перед кем-либо за выполнение или невыполнение действий, описанных в этом параграфе.
D. Несоблюдение вами положений пунктов (A) или (B) выше может привести к прекращению вашего доступа к веб-сайту и может подвергнуть вас гражданской и / или уголовной ответственности.
Особое примечание о содержании функций сообщества
Любой контент и / или мнения, загруженные, выраженные или отправленные с помощью любой функции сообщества или любого другого общедоступного раздела веб-сайта (включая области, защищенные паролем), а также все статьи и ответы на вопросы, кроме контента, явно разрешенного Компания, являются исключительно мнениями и ответственностью лица, представляющего их, и не обязательно отражают мнение Компании.Например, любое рекомендованное или предлагаемое использование продуктов или услуг, доступных от Компании, которое публикуется через функцию сообщества, не является признаком одобрения или рекомендации со стороны Компании. Если вы решите следовать какой-либо такой рекомендации, вы делаете это на свой страх и риск.
Ссылки на сторонние сайты
Веб-сайт может содержать ссылки на другие веб-сайты в Интернете. Компания не несет ответственности за контент, продукты, услуги или методы любых сторонних веб-сайтов, включая, помимо прочего, сайты, связанные с Веб-сайтом или с него, сайты, созданные на Веб-сайте, или стороннюю рекламу, и не делает заявлений относительно их качество, содержание или точность.Наличие ссылок с веб-сайта на любой сторонний веб-сайт не означает, что мы одобряем, поддерживаем или рекомендуем этот веб-сайт. Мы отказываемся от всех гарантий, явных или подразумеваемых, в отношении точности, законности, надежности или действительности любого контента на любых сторонних веб-сайтах. Вы используете сторонние веб-сайты на свой страх и риск и в соответствии с условиями использования таких веб-сайтов.
Права собственности на контент
Вы признаете и соглашаетесь с тем, что все содержимое веб-сайта (включая всю информацию, данные, программное обеспечение, графику, текст, изображения, логотипы и / или другие материалы) и его дизайн, выбор, сбор, расположение и сборка являются являются собственностью Компании и защищены законами США и международными законами об интеллектуальной собственности.Вы имеете право использовать содержимое веб-сайта только в личных или законных деловых целях. Вы не можете копировать, изменять, создавать производные работы, публично демонстрировать или исполнять, переиздавать, хранить, передавать, распространять, удалять, удалять, дополнять, добавлять, участвовать в передаче, лицензировать или продавать какие-либо материалы в Интернете. Сайт без предварительного письменного согласия Компании, за исключением: (а) временного хранения копий таких материалов в ОЗУ, (б) хранения файлов, которые автоматически кэшируются вашим веб-браузером в целях улучшения отображения, и (в) печати разумного количество страниц веб-сайта; в каждом случае при условии, что вы не изменяете и не удаляете какие-либо уведомления об авторских правах или других правах собственности, включенные в такие материалы.Ни название, ни какие-либо права интеллектуальной собственности на любую информацию или материалы на веб-сайте не передаются вам, а остаются за Компанией или соответствующим владельцем такого контента.
Товарные знаки
Название и логотип компании, а также все связанные названия, логотипы, названия продуктов и услуг, появляющиеся на веб-сайте, являются товарными знаками компании и / или соответствующих сторонних поставщиков. Их нельзя использовать или повторно отображать без предварительного письменного согласия Компании.
Отказ от ответственности
Компания не несет никакой ответственности за материалы, информацию и мнения, предоставленные или доступные через Веб-сайт («Контент сайта»). Вы полагаетесь на Контент сайта исключительно на свой страх и риск. Компания не несет никакой ответственности за травмы или убытки, возникшие в результате использования любого Контента Сайта.
ВЕБ-САЙТ, СОДЕРЖАНИЕ САЙТА И ПРОДУКТЫ И УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ ИЛИ ДОСТУПНЫЕ ЧЕРЕЗ САЙТ, ПРЕДОСТАВЛЯЮТСЯ НА УСЛОВИЯХ «КАК ЕСТЬ» И «ПО ДОСТУПНОСТИ», СО ВСЕМИ ОШИБКАМИ.КОМПАНИЯ И НИ ЛИБО, СВЯЗАННОЕ С КОМПАНИЕЙ, НЕ ДАЕТ НИКАКИХ ГАРАНТИЙ ИЛИ ЗАЯВЛЕНИЙ В ОТНОШЕНИИ КАЧЕСТВА, ТОЧНОСТИ ИЛИ ДОСТУПНОСТИ ВЕБ-САЙТА. В частности, НО БЕЗ ОГРАНИЧЕНИЯ ВЫШЕИЗЛОЖЕННОГО, НИ КОМПАНИЯ И НИ ЛИБО, СВЯЗАННОЕ С КОМПАНИЕЙ, НЕ ГАРАНТИРУЕТ ИЛИ ЗАЯВЛЯЕТ, ЧТО ВЕБ-САЙТ, СОДЕРЖАНИЕ САЙТА ИЛИ УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ НА САЙТЕ ИЛИ С ПОМОЩЬЮ САЙТА, БУДУТ ТОЧНЫМИ, НАДЕЖНЫМИ ИЛИ БЕСПЛАТНЫМИ ИЛИ БЕСПЛАТНЫМИ ЧТО ДЕФЕКТЫ БУДУТ ИСПРАВЛЕНЫ; ЧТО ВЕБ-САЙТ ИЛИ СЕРВЕР, ДЕЛАЮЩИЙ ЕГО ДОСТУПНЫМ, СВОБОДНЫ ОТ ВИРУСОВ ИЛИ ДРУГИХ ВРЕДНЫХ КОМПОНЕНТОВ; ИНАЧЕ ВЕБ-САЙТ ОТВЕЧАЕТ ВАШИМ ПОТРЕБНОСТЯМ ИЛИ ОЖИДАНИЯМ.КОМПАНИЯ ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ ЛЮБЫЕ ГАРАНТИИ КОММЕРЧЕСКОЙ ЦЕННОСТИ, ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ И НЕ НАРУШЕНИЯ.
НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ КОМПАНИЯ ИЛИ ЕЕ ЛИЦЕНЗИАРЫ ИЛИ ПОДРЯДЧИКИ НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБОЙ ВИД ЛЮБОГО ВИДА УЩЕРБА, ВЫЯВЛЕННОГО ИЛИ В СВЯЗИ С ИСПОЛЬЗОВАНИЕМ ВАМИ ИЛИ НЕВОЗМОЖНОСТЬЮ ИСПОЛЬЗОВАТЬ ВЕБ-САЙТ, СОДЕРЖИМОЕ САЙТА ЛЮБЫЕ УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ НА ВЕБ-САЙТЕ ИЛИ ЧЕРЕЗ ВЕБ-САЙТ ИЛИ ЛЮБОЙ САЙТ, ВКЛЮЧАЮЩИЙ ПРЯМЫЕ, КОСВЕННЫЕ, СЛУЧАЙНЫЕ, СПЕЦИАЛЬНЫЕ, КОСВЕННЫЕ ИЛИ КАРАТНЫЕ УБЫТКИ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЯ, ЛИЧНЫЕ ТРАВМЫ, ПОТЕРЯ ПРИБЫЛИ ИЛИ УБЫТКОВ , ВИРУСЫ, УДАЛЕНИЕ ФАЙЛОВ ИЛИ ЭЛЕКТРОННЫХ СООБЩЕНИЙ, ИЛИ ОШИБКИ, УПУЩЕНИЯ ИЛИ ДРУГИЕ НЕТОЧНОСТИ НА ВЕБ-САЙТЕ ИЛИ СОДЕРЖАНИИ САЙТА ИЛИ УСЛУГ, НЕОБХОДИМО ЛИ КОМПАНИЯ ИЛИ НЕОБХОДИМО ЛИ ПРЕДОСТАВЛЕНИЕ КОМПАНИИ ВОЗМОЖНОСТИ ЛЮБЫЕ ТАКИЕ УБЫТКИ, ЕСЛИ НЕ ЗАПРЕЩЕНЫ ПРИМЕНИМЫМ ЗАКОНОДАТЕЛЬСТВОМ.
Компенсация
Вы соглашаетесь возместить и обезопасить Компанию и ее должностных лиц, директоров, агентов, сотрудников и других лиц, участвующих в работе Веб-сайта, от любых обязательств, расходов, убытков и издержек, включая разумные гонорары адвокатам, возникающих в результате любое нарушение вами настоящих Условий использования, использование вами Веб-сайта или любых продуктов, услуг или информации, полученных с Веб-сайта или через него, ваше подключение к Веб-сайту, любой контент, который вы отправляете на Веб-сайт через любые Функция сообщества или нарушение вами каких-либо прав другого лица.
Применимое право; Международное использование
Настоящие условия регулируются и толкуются в соответствии с законами штата Пенсильвания без учета каких-либо принципов коллизионного права. Вы соглашаетесь с тем, что любые судебные иски или иски, вытекающие из настоящих Условий использования или связанные с ними, будут подаваться исключительно в суды штата или федеральные суды, расположенные в Пенсильвании, и вы тем самым соглашаетесь и подчиняетесь личной юрисдикции таких судов для цели судебного разбирательства по любому подобному действию.
Настоящие Условия использования применимы к пользователям в США, Канаде и Пуэрто-Рико. Если вы заходите на веб-сайт из-за пределов США, Канады или Пуэрто-Рико, пожалуйста, посетите соответствующий международный веб-сайт, доступный по адресу www.vwr.com, для ознакомления с применимыми условиями. Если вы решите получить доступ к этому веб-сайту из-за пределов указанных юрисдикций, а не использовать доступные международные сайты, вы соглашаетесь с настоящими Условиями использования и тем, что такие условия будут регулироваться и толковаться в соответствии с законами США и штата. Пенсильвании и что мы не делаем никаких заявлений о том, что материалы или услуги на этом веб-сайте подходят или доступны для использования в этих других юрисдикциях.В любом случае все пользователи несут ответственность за соблюдение местных законов.
Общие условия
Настоящие Условия использования, в которые время от времени могут вноситься поправки, представляют собой полное соглашение и понимание между вами и нами, регулирующее использование вами Веб-сайта. Наша неспособность реализовать или обеспечить соблюдение какого-либо права или положения Условий использования не означает отказ от такого права или положения. Если какое-либо положение Условий использования будет признано судом компетентной юрисдикции недействительным, вы, тем не менее, соглашаетесь с тем, что суд должен попытаться реализовать намерения сторон, отраженные в этом положении и других положениях Условия использования остаются в полной силе.Ни ваши деловые отношения, ни поведение между вами и Компанией, ни какая-либо торговая практика не может считаться изменением настоящих Условий использования. Вы соглашаетесь с тем, что независимо от какого-либо закона или закона об обратном, любые претензии или основания для иска, вытекающие из или связанные с использованием Сайта или Условий использования, должны быть поданы в течение одного (1) года после такой претензии или причины. иска возникла или будет навсегда запрещена. Любые права, прямо не предоставленные в настоящем документе, сохраняются за Компанией.Мы можем прекратить ваш доступ или приостановить доступ любого пользователя ко всему сайту или его части без предварительного уведомления за любое поведение, которое мы, по нашему собственному усмотрению, считаем нарушением любого применимого законодательства или наносящим ущерб интересам другого пользователя. , стороннего поставщика, поставщика услуг или нас. Любые вопросы, касающиеся настоящих Условий использования, следует направлять по адресу [email protected].
Жалобы на нарушение авторских прав
Мы уважаем чужую интеллектуальную собственность и просим наших пользователей поступать так же.Если вы считаете, что ваша работа была скопирована и доступна на Сайте способом, который представляет собой нарушение авторских прав, вы можете уведомить нас, предоставив нашему агенту по авторским правам следующую информацию:
электронная или физическая подпись лица, уполномоченного действовать от имени правообладателя;
описание работы, защищенной авторским правом, в отношении которой были нарушены ваши претензии;
идентификация URL-адреса или другого конкретного места на Сайте, где находится материал, который, по вашему мнению, нарушает авторские права;
ваш адрес, номер телефона и адрес электронной почты;
ваше заявление о том, что вы добросовестно полагаете, что спорное использование не разрешено владельцем авторских прав, его агентом или законом; а также
ваше заявление, сделанное под страхом наказания за лжесвидетельство, о том, что приведенная выше информация в вашем уведомлении является точной и что вы являетесь владельцем авторских прав или уполномочены действовать от имени владельца авторских прав.
С нашим агентом для уведомления о жалобах на нарушение авторских прав на Сайте можно связаться по адресу: [email protected].
Впрыск топлива | Тракторно-строительный завод Wiki
|
Топливная рампа, подключенная к форсункам, которые установлены чуть выше впускного коллектора на четырехцилиндровом двигателе.
Впрыск топлива — это система подачи топлива в двигатель внутреннего сгорания. Он стал основной системой подачи топлива, используемой в автомобильных бензиновых двигателях, почти полностью заменив карбюраторы в конце 1980-х годов.
Система впрыска топлива разработана и откалибрована специально для типа (-ов) топлива, с которым она будет работать.Большинство систем впрыска топлива предназначены для бензиновых или дизельных двигателей. С появлением электронного впрыска топлива (EFI) оборудование для дизельного и бензинового двигателей стало схожим. Программируемая прошивка EFI позволяет использовать общее оборудование с разными видами топлива.
Карбюраторы были преобладающим методом измерения количества топлива в бензиновых двигателях до широкого распространения впрыска топлива. С самого начала использования двигателя внутреннего сгорания существовало множество систем впрыска.
Основное различие между карбюраторами и впрыском топлива заключается в том, что впрыск топлива распыляет топливо, принудительно прокачивая его через небольшое сопло под высоким давлением, в то время как карбюратор полагается на всасывание, создаваемое всасываемым воздухом, устремляющимся через трубку Вентури, чтобы втягивать топливо в воздушный поток. .
Функциональные цели для систем впрыска топлива могут быть разными. Все разделяют главную задачу — подачу топлива для процесса сгорания, но то, как конкретная система будет оптимизирована, — это проектное решение.Есть несколько конкурирующих целей, таких как:
- выходная мощность
- топливная экономичность
- показатели выбросов
- Возможность использования альтернативных видов топлива
- надежность
- управляемость и плавность хода
- начальная стоимость
- стоимость обслуживания
- диагностические возможности
- диапазон экологической эксплуатации
- Настройка двигателя
Некоторые комбинации этих целей противоречат друг другу, и для одной системы управления двигателем нецелесообразно полностью оптимизировать все критерии одновременно.На практике автомобильные инженеры стремятся наилучшим образом удовлетворить потребности клиентов на конкурентной основе. Современная цифровая электронная система впрыска топлива гораздо более способна последовательно оптимизировать эти конкурирующие цели, чем карбюратор. Карбюраторы могут лучше распылять топливо (см. Патенты Пога и Аллена Каджано).
Работа двигателя [править | править источник]
Эксплуатационные преимущества для водителя автомобиля с системой впрыска топлива включают более плавную и надежную реакцию двигателя при быстром переключении дроссельной заслонки, более легкий и надежный запуск двигателя, лучшую работу при чрезвычайно высоких или низких температурах окружающей среды, увеличенные интервалы технического обслуживания и повышенную топливную экономичность.На более простом уровне впрыск топлива устраняет дроссельную заслонку, которую на автомобилях с карбюратором необходимо задействовать при запуске двигателя из холодного состояния, а затем регулировать по мере прогрева двигателя.
Для достижения желаемых характеристик двигателя, выбросов, управляемости и экономии топлива необходимо точно контролировать соотношение воздух / топливо в двигателе во всех рабочих условиях. Современные электронные системы впрыска топлива очень точно измеряют топливо и используют контроль количества впрыска топлива с обратной связью на основе различных сигналов обратной связи от датчика кислорода, датчика массового расхода воздуха (MAF) или абсолютного давления в коллекторе (MAP), дроссельной заслонки. положение (TPS) и по крайней мере один датчик на коленчатом валу и / или распредвале (ах) для контроля положения вращения двигателя.Системы впрыска топлива могут быстро реагировать на изменение входных сигналов, таких как резкие движения дроссельной заслонки, и контролировать количество впрыскиваемого топлива в соответствии с динамическими потребностями двигателя в широком диапазоне рабочих условий, таких как нагрузка двигателя, температура окружающего воздуха, температура двигателя, октановое число топлива. , и атмосферное давление.
Система многоточечного впрыска топлива обычно подает более точную и равную массу топлива в каждый цилиндр, чем карбюратор, таким образом улучшая распределение между цилиндрами.Выбросы выхлопных газов чище, потому что более точное и точное дозирование топлива снижает концентрацию токсичных побочных продуктов сгорания, покидающих двигатель, и потому что устройства очистки выхлопных газов, такие как каталитический нейтрализатор, могут быть оптимизированы для более эффективной работы, поскольку выхлопные газы имеют постоянный и предсказуемый состав.
Впрыск топлива обычно увеличивает топливную экономичность двигателя. Благодаря улучшенному распределению топлива между цилиндрами требуется меньше топлива для той же выходной мощности.Когда распределение от цилиндров к цилиндрам не является идеальным, как это всегда бывает в некоторой степени с впрыском топлива через карбюратор или дроссельную заслонку, некоторые цилиндры получают избыток топлива в качестве побочного эффекта обеспечения того, чтобы все цилиндры получали достаточного количества топлива . Выходная мощность асимметрична по отношению к соотношению воздух / топливо; сжигание лишнего топлива в богатых цилиндрах не снижает мощность почти так же быстро, как сжигание слишком малого количества топлива в бедных цилиндрах. Однако цилиндры с богатой рабочей средой нежелательны с точки зрения выбросов выхлопных газов, топливной экономичности, износа двигателя и загрязнения моторного масла.Отклонения от идеального распределения воздуха / топлива, какими бы незначительными они ни были, влияют на выбросы, не позволяя событиям горения иметь химически идеальное (стехиометрическое) соотношение воздух / топливо. Более грубые проблемы распределения в конечном итоге начинают снижать эффективность, а самые грубые проблемы распределения, наконец, влияют на мощность. Все более плохое распределение воздуха / топлива влияет на выбросы, эффективность и мощность именно в этом порядке. За счет оптимизации однородности распределения смеси от цилиндров к цилиндрам все цилиндры достигают своего максимального потенциала мощности, и общая выходная мощность двигателя улучшается.
Двигатель с впрыском топлива часто производит больше мощности, чем эквивалентный карбюраторный двигатель. Сам по себе впрыск топлива не обязательно увеличивает максимальную потенциальную мощность двигателя. Увеличенный воздушный поток необходим для сжигания большего количества топлива, что, в свою очередь, высвобождает больше энергии и производит больше энергии. В процессе сгорания химическая энергия топлива преобразуется в тепловую независимо от того, подается ли топливо через топливные форсунки или карбюратор. Тем не менее, воздушный поток часто улучшается с помощью впрыска топлива, компоненты которого обеспечивают большую свободу конструкции для улучшения пути воздуха в двигатель.В отличие от этого, варианты установки карбюратора ограничены, потому что он больше, он должен быть тщательно ориентирован по отношению к силе тяжести и должен находиться на равном расстоянии от каждого из цилиндров двигателя в максимально возможной степени. Эти конструктивные ограничения обычно затрудняют поступление воздуха в двигатель. Кроме того, карбюратор использует ограничительную трубку Вентури для создания локальной разности давлений воздуха, которая выталкивает топливо в воздушный поток. Однако потери потока, вызванные трубкой Вентури, невелики по сравнению с другими потерями потока в индукционной системе.В хорошо спроектированной впускной системе карбюратора трубка Вентури не является значительным ограничением воздушного потока.
Топливо экономится, когда автомобиль движется по инерции, потому что движение автомобиля помогает двигателю вращаться, поэтому для этой цели расходуется меньше топлива. Блоки управления на современных автомобилях реагируют на это и уменьшают или останавливают подачу топлива в двигатель, уменьшая износ тормозов [ необходима цитата ] .
Герберт Акройд Стюарт разработал первую современную систему (с высокоточным «рывковым насосом» для дозирования жидкого топлива под высоким давлением в инжектор.Эта система использовалась на двигателе с горячей лампой и была адаптирована и усовершенствована Робертом Бошем и Клесси Камминз для использования в дизельных двигателях — оригинальная система Рудольфа Дизеля использовала громоздкую систему воздушной продувки с использованием сжатого воздуха [ требовалось уточнение ] [ необходима ссылка ] .
Впервые непосредственный впрыск бензина был применен в двигателе Hesselman, изобретенном шведским инженером Йонасом Хессельманом в 1925 году. [1] [2] В двигателях Hesselman используется принцип сверхбедного горения; топливо впрыскивается к концу такта сжатия, а затем воспламеняется свечой зажигания.Их часто заводят на бензине, а затем переключают на дизельное топливо или керосин. [3] К середине 1920-х годов впрыск топлива широко использовался в дизельных двигателях. Из-за большей невосприимчивости к резко меняющимся перегрузкам в двигателе эта концепция была адаптирована для использования в самолетах с бензиновым двигателем во время Второй мировой войны, а прямой впрыск применялся в некоторых известных конструкциях, таких как Junkers Jumo 210, Daimler-Benz. DB 601, BMW 801, Швецов АШ-82ФН (М-82ФН) и более поздние версии Wright R-3350, используемые в B-29 Superfortress.
Alfa Romeo испытала одну из самых первых электрических систем впрыска (Caproni-Fuscaldo) в Alfa Romeo 6C2500 с кузовом «Ala spessa» в 1940 году в Mille Miglia. Двигатель имел шесть электрических форсунок и питался от системы циркуляционного топливного насоса полувысокого давления. [ требуется ссылка ]
Механический [править | править источник]
Термин Механический применительно к впрыску топлива используется для обозначения того, что дозирующие функции впрыска топлива (как определяется и доставляется правильное количество топлива для любой данной ситуации) не достигаются электронным путем, а скорее с помощью только механических средств .
В 1940-х годах стюарт Хилборн предложил механический впрыск для гонщиков, соляных машин и карликов. [4]
Одной из первых коммерческих систем впрыска бензина была механическая система, разработанная Bosch и представленная в 1952 году на Goliath GP700 и Gutbrod Superior 600. По сути, это был дизельный насос прямого впрыска высокого давления с дроссельной заслонкой на впуске. установлен клапан. (Дизели изменяют только количество впрыскиваемого топлива для изменения мощности; дроссельной заслонки нет.В этой системе использовался обычный бензиновый топливный насос для подачи топлива к топливному насосу с механическим приводом, который имел отдельные плунжеры для каждой форсунки, чтобы подавать очень высокое давление впрыска непосредственно в камеру сгорания.
Другая механическая система, также от Bosch, но с впрыском топлива в порт над впускным клапаном, позже использовалась Porsche с 1969 по 1973 год для производственной линейки 911 и до 1975 года на Carrera 3.0 в Европе. Porsche продолжал использовать его на своих гоночных автомобилях до конца семидесятых и начала восьмидесятых годов.Гоночные варианты Porsche, такие как 911 RSR 2.7 и 3.0, 904/6, 906, 907, 908, 910, 917 (в его обычном атмосферном исполнении или с турбонаддувом 5,5 л / 1500 л.с.) и 935 — все использованные варианты производства Bosch или Kugelfischer инъекции. Система Kugelfischer также использовалась в BMW 2000/2002 Tii и некоторых версиях Peugeot 404/504 и Lancia Flavia. Лукас также предложил механическую систему, которая использовалась в некоторых моделях Maserati, Aston Martin и Triumph в период с. 1963 и 1973 гг.
Система, аналогичная встроенному механическому насосу Bosch, была построена SPICA для Alfa Romeo, использовалась на Alfa Romeo Montreal и на американском рынке моделей 1750 и 2000 с 1969 по 1981 год.Это было специально разработано для удовлетворения требований США по выбросам и позволило Alfa выполнить эти требования без потери производительности и снижения расхода топлива.
Chevrolet представила вариант механического впрыска топлива, произведенный подразделением General Motors Rochester Products для своего двигателя 283 V8 в 1956 году (1957 модельный год в США). Эта система направляла всасываемый в двигатель воздух через плунжер в форме ложки, который перемещался пропорционально объему воздуха. Плунжер соединен с системой дозирования топлива, которая механически распределяет топливо в цилиндры через распределительные трубки.Эта система была не «импульсным» или прерывистым впрыском, а скорее системой постоянного расхода, дозирующей топливо во все цилиндры одновременно из центральной «звездочки» линий впрыска. Счетчик топлива регулировал количество потока в соответствии с частотой вращения двигателя и нагрузкой и включал топливный резервуар, который был похож на поплавковую камеру карбюратора. С собственным топливным насосом высокого давления, приводимым в действие кабелем от распределителя до счетчика топлива, система обеспечивала необходимое давление для впрыска. Однако это был «портовый» впрыск, в котором форсунки расположены во впускном коллекторе, очень близко к впускному клапану.(Прямой впрыск топлива — довольно недавняя инновация для автомобильных двигателей. Еще в 1954 году в вышеупомянутом Mercedes-Benz 300SL или Gutbrod в 1953 году.) Самая высокопроизводительная версия двигателя с впрыском топлива имела мощность 283 л.с. (211,0 кВт) от 283 кубических дюйма (4,6 л). Это сделало его одним из первых серийных двигателей в истории с мощностью более 1 л.с. / дюйм³ (45,5 кВт / л) после двигателя Chrysler Hemi и ряда других. Двигатель General Motors с впрыском топлива — обычно называемый «топливный» — не входил в комплект поставки Corvette в 1957 модельном году.
В течение 1960-х годов другие механические системы впрыска, такие как Hilborn, иногда использовались в модифицированных американских двигателях V8 в различных гоночных приложениях, таких как дрэг-рейсинг, овальные гонки и шоссейные гонки. [5] Эти гоночные системы не подходили для повседневного использования на улицах, не имели приспособлений для измерения низкой скорости или часто даже для запуска (топливо приходилось впрыскивать в трубки форсунок во время проворачивания двигателя, чтобы запустить его. ). Однако они были фаворитами в вышеупомянутых соревнованиях, в которых преобладала работа с полностью открытой дроссельной заслонкой.Системы впрыска с постоянным потоком продолжают использоваться на самых высоких уровнях дрэг-рейсинга, где ключевую роль играют полностью открытая дроссельная заслонка и высокие обороты. [6]
Электронный [править | править источник]
Первой коммерческой системой электронного впрыска топлива (EFI) был Electrojector , разработанный Bendix Corporation и должен был быть предложен American Motors (AMC) в 1957 году. [7] [8] Специальная модель маслкара. Компания Rambler Rebel продемонстрировала новые модели AMC емкостью 327 у.е.в (5.4 л) двигатель. Electrojector был опцией и имел мощность 288 л.с. (214,8 кВт). [9] Без эффекта Вентури или нагретого карбюратора (для облегчения испарения бензина) двигатель AMC с EFI дышал более плотным холодным воздухом, чтобы быстрее набрать больше мощности, достигая пикового крутящего момента на 500 об / мин ниже, чем у эквивалентного двигателя без впрыска топлива. . [5] В Руководстве по эксплуатации повстанцев описывается конструкция и работа новой системы. [10] Первоначальная информация в прессе о системе Bendix в декабре 1956 г. сопровождалась в марте 1957 г. ценовым бюллетенем, в котором цена была привязана к цене 395 долларов США, но из-за трудностей с поставщиками Rebels с впрыском топлива будут доступны только после 15 июня. [11] Это должен был быть первый серийный двигатель EFI, но проблемы с прорезыванием Electrojector означали, что только предсерийные автомобили были оснащены таким оборудованием: таким образом, было продано очень мало автомобилей с таким оборудованием. [12] и ни один из них не был выпущен. публике. [13] Система EFI в Рамблере представляла собой гораздо более совершенную установку, чем механические типы, которые тогда появлялись на рынке, и двигатели работали нормально в теплую погоду, но плохо запускались при более низких температурах. [11]
Chrysler предлагал Electrojector на Chrysler 300D, Dodge D500, Plymouth Fury и DeSoto Adventurer 1958 года, которые, возможно, были первыми серийными автомобилями, оснащенными системой EFI.Он был разработан совместно компаниями Chrysler и Bendix. Однако первые электронные компоненты не соответствовали суровым условиям эксплуатации под капотом и были слишком медленными, чтобы не отставать от требований управления двигателем «на лету». Большинство из 35 автомобилей, изначально оборудованных таким образом, были модернизированы на 4-цилиндровые карбюраторы. Впоследствии патенты на электродвигатели были проданы компании Bosch.
Компания Bosch разработала электронную систему впрыска топлива под названием D-Jetronic ( D для Druck , немецкий язык для «давления»), которая впервые была использована на VW 1600TL / E в 1967 году.Это была система скорости / плотности, использующая частоту вращения двигателя и плотность воздуха во впускном коллекторе для расчета «массового расхода воздуха» и, следовательно, потребности в топливе. Эта система была принята VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo. Лукас лицензировал систему для производства с Jaguar. Bosch заменил систему D-Jetronic системами K-Jetronic и L-Jetronic в 1974 году, хотя некоторые автомобили (например, Volvo 164) продолжали использовать D-Jetronic в течение следующих нескольких лет.
Двигатель Chevrolet Cosworth Vega с электронным впрыском топлива Bendix
Cadillac Seville был представлен в 1975 году с системой EFI производства Bendix и очень похож на D-Jetronic от Bosch. L-Jetronic впервые появился на Porsche 914 1974 года и использует механический расходомер воздуха (L для Luft , по-немецки «воздух»), который выдает сигнал, пропорциональный «объему воздуха». Этот подход требовал дополнительных датчиков для измерения атмосферного давления и температуры, чтобы в конечном итоге вычислить «воздушную массу».L-Jetronic получил широкое распространение на европейских автомобилях того периода, а вскоре и на нескольких японских моделях.
Ограниченная серия Chevrolet Cosworth Vega была представлена в марте 1975 года с системой Bendix EFI с импульсным впрыском в коллектор, четырьмя инжекторными клапанами, электронным блоком управления (ЭБУ), пятью независимыми датчиками и двумя топливными насосами. Система EFI была разработана для удовлетворения строгих требований к контролю за выбросами и рыночным требованиям для технологически передового отзывчивого автомобиля.Было произведено 5000 двигателей Cosworth Vega ручной сборки, но до 1976 года было продано всего 3508 автомобилей. [14]
Важный рубеж был достигнут в 1980 году, когда корпорация Motorola представила первый компьютер двигателя с микропроцессорным (цифровым) управлением, EEC III. модуль, который теперь является стандартным подходом. Появление цифрового микропроцессора позволило объединить все подсистемы трансмиссии в один модуль управления. [15]
В 1981 году Chrysler Corporation представила систему EFI с датчиком, который непосредственно измеряет массовый расход воздуха в двигателе на автомобиле Imperial (5.2L V8) в качестве стандартного оборудования. В датчике массового расхода воздуха используется нагретая платиновая проволока, помещенная во входящий воздушный поток. Скорость охлаждения проволоки пропорциональна массе воздуха, протекающего по проволоке. Поскольку датчик горячей проволоки непосредственно измеряет массу воздуха, необходимость в дополнительных датчиках температуры и давления отпала. Эта система была независимо разработана и спроектирована в Хайленд-Парке, штат Мичиган, и произведена в подразделении Chrysler’s Electronics в Хантсвилле, штат Алабама, США. [16] [17]
Замена карбюраторов [править | править код]
Когда в двигателе внутреннего сгорания происходит эффективное сгорание, необходимое количество молекул топлива и молекул кислорода направляется в камеру (камеры) сгорания двигателя, где происходит сгорание топлива (т.е.е., окисление топлива). Когда происходит эффективное сгорание, не остается ни лишнего топлива, ни лишних молекул кислорода: каждой молекуле топлива соответствует соответствующее количество молекул кислорода. Это сбалансированное состояние называется стехиометрией.
В 1970-х и 1980-х годах в США федеральное правительство ввело все более строгие правила по выбросам выхлопных газов. В то время подавляющее большинство бензиновых двигателей легковых автомобилей и легких грузовиков не использовали впрыск топлива.Чтобы соответствовать новым правилам, производители автомобилей часто вносили обширные и сложные модификации в карбюратор (ы) двигателя. Хотя простая карбюраторная система имеет определенные преимущества по сравнению с системами впрыска топлива, которые были доступны в 1970-х и 1980-х годах (включая более низкую стоимость производства), более сложные карбюраторные системы, установленные на многих двигателях, начиная с начала 1970-х годов, обычно не обладали этими преимуществами. Таким образом, чтобы легче было соблюдать государственные правила контроля выбросов, производители автомобилей, начиная с конца 1970-х годов, снабжали больше своих бензиновых двигателей системами впрыска топлива и меньшее количество сложных карбюраторных систем.
Существует три основных типа токсичных выбросов от двигателя внутреннего сгорания: оксид углерода (CO), несгоревшие углеводороды (HC) и оксиды азота (NOx). CO и HC образуются в результате неполного сгорания топлива из-за недостатка кислорода в камере сгорания. NOx, напротив, возникает из-за избытка кислорода в камере сгорания. Противоположные причины появления этих загрязнителей затрудняют одновременный контроль всех трех. Как только допустимые уровни выбросов упали ниже определенного значения, возникла необходимость в каталитической обработке этих трех основных загрязнителей.Это потребовало особенно большого повышения точности и точности дозирования топлива, поскольку для одновременного катализа всех трех загрязняющих веществ требуется, чтобы смесь топлива и воздуха удерживалась в очень узком диапазоне стехиометрии. Системы впрыска топлива с разомкнутым контуром уже улучшили распределение топлива от цилиндра к цилиндру и работу двигателя в широком диапазоне температур, но не обеспечивали достаточного управления топливно-воздушной смесью для обеспечения эффективного катализа выхлопных газов. Замкнутый контур Системы впрыска топлива улучшили управление воздушно-топливной смесью с помощью датчика кислорода в выхлопных газах.Датчик O 2 установлен в выхлопной системе перед каталитическим нейтрализатором и позволяет компьютеру управления двигателем точно и быстро определять и регулировать соотношение воздух / топливо.
Впрыск топлива вводился поэтапно в течение последних 70-х и 80-х годов ускоренными темпами, при этом лидирующие позиции на рынках США, Франции и Германии, а также некоторого отставания на рынках Великобритании и Содружества, а с начала 1990-х годов были проданы почти все легковые автомобили с бензиновым двигателем. на первых мировых рынках, таких как США, Канада, Европа, Япония и Австралия, были оснащены системой электронного впрыска топлива (EFI).На многих мотоциклах по-прежнему используются карбюраторные двигатели, хотя все современные высокопроизводительные модели перешли на EFI.
Системы впрыска топлива претерпели значительные изменения с середины 1980-х годов. Современные системы обеспечивают точный, надежный и экономичный метод измерения топлива и обеспечения максимальной эффективности двигателя с чистыми выбросами выхлопных газов, поэтому системы EFI заменили карбюраторы на рынке. Благодаря широкому использованию EFI становится более надежным и дешевым.В то же время карбюраторы становятся менее доступными и более дорогими. Даже морские приложения используют EFI по мере повышения надежности. Практически все двигатели внутреннего сгорания, включая мотоциклы, внедорожники и наружное силовое оборудование, могут в конечном итоге использовать ту или иную форму впрыска топлива.
Карбюратор по-прежнему используется в развивающихся странах, где выбросы транспортных средств не регулируются, а инфраструктура для диагностики и ремонта недостаточна. Впрыск топлива постепенно заменяет карбюраторы и в этих странах, поскольку они принимают правила выбросов, концептуально аналогичные действующим в Европе, Японии, Австралии и Северной Америке.NASCAR узаконит и примет на вооружение топливные форсунки, которые заменят карбюраторы, начиная с сезона серии гонок NASCAR Sprint Cup в 2012 году. [18] [19] [20]
Процесс определения необходимого количества топлива и его подачи в двигатель известен как дозирование топлива. В ранних системах впрыска использовались механические методы измерения топлива (неэлектронный или механический впрыск). Современные системы почти полностью электронные и используют электронный соленоид (инжектор) для впрыска топлива.Электронный блок управления двигателем рассчитывает массу впрыскиваемого топлива.
Современные схемы впрыска топлива работают примерно так же. На впуске имеется датчик массового расхода воздуха или датчик абсолютного давления в коллекторе, обычно устанавливаемый либо в воздушной трубке, идущей от корпуса воздушного фильтра к корпусу дроссельной заслонки, либо непосредственно к корпусу дроссельной заслонки. Датчик массового расхода воздуха делает именно то, что подразумевает его название; он определяет массу воздуха, который проходит мимо него, давая компьютеру точное представление о том, сколько воздуха поступает в двигатель.Следующим на очереди компонентом является корпус дроссельной заслонки. На корпусе дроссельной заслонки установлен датчик положения дроссельной заслонки, обычно на дроссельной заслонке корпуса дроссельной заслонки. Датчик положения дроссельной заслонки (TPS) сообщает компьютеру положение дроссельной заслонки, которую ECM использует для расчета нагрузки на двигатель. Топливная система состоит из топливного насоса (обычно устанавливаемого в баке), регулятора давления топлива, топливопроводов (состоящих из высокопрочного пластика, металла или армированной резины), топливной рампы, к которой подсоединяются форсунки, и топлива. инжектор (ы).Существует датчик температуры охлаждающей жидкости, который сообщает о температуре двигателя в блок управления двигателем, который двигатель использует для расчета требуемого соотношения топлива. В системах с последовательным впрыском топлива имеется датчик положения распределительного вала, который ECM использует для определения, какая топливная форсунка сработает. Последний компонент — датчик кислорода. После прогрева автомобиля он использует сигнал кислородного датчика для выполнения точной настройки топливной коррекции.
Топливная форсунка действует как топливораздаточная форсунка.Он впрыскивает жидкое топливо прямо в воздушный поток двигателя. Почти во всех случаях для этого требуется внешний насос. Насос и инжектор — это только два из нескольких компонентов полной системы впрыска топлива.
В отличие от системы EFI, карбюратор направляет всасывающий воздух через трубку Вентури, которая создает небольшую разницу в давлении воздуха. Мельчайшие перепады давления воздуха эмульгируют (предварительно смешивают топливо с воздухом) топливо, а затем действуют как сила, выталкивающая смесь из сопла карбюратора в поток всасываемого воздуха.По мере того, как в двигатель поступает больше воздуха, создается больший перепад давления, и в двигатель дозируется больше топлива. Карбюратор — это автономная система дозирования топлива, которая конкурентоспособна по стоимости по сравнению с полной системой EFI.
Система EFI требует нескольких периферийных компонентов в дополнение к форсункам, чтобы дублировать все функции карбюратора. Во время ремонта счетчиков топлива стоит отметить, что ранние системы EFI склонны к неоднозначности диагностики.Замена одного карбюратора может привести к тому, что может потребоваться множество попыток ремонта, чтобы определить, какой из нескольких компонентов системы EFI неисправен. Новые системы EFI, появившиеся после появления диагностических систем OBD II, могут быть очень легко диагностированы благодаря возросшей способности контролировать потоки данных в реальном времени от отдельных датчиков. Это дает техническому специалисту по диагностике обратную связь в режиме реального времени о причине проблемы с управляемостью и может значительно сократить количество диагностических шагов, необходимых для установления причины неисправности, что не так просто сделать с карбюратором.С другой стороны, системы EFI не требуют регулярного обслуживания; карбюратор обычно требует сезонной регулировки и / или регулировки высоты над уровнем моря.
Примечание. Эти примеры особенно применимы к современному бензиновому двигателю EFI. Можно провести параллели с другими видами топлива, кроме бензина, но только концептуально.
Типичные компоненты EFI [править | править источник]
Анимированная сквозная диаграмма типичной топливной форсунки.
- Форсунки
- Топливный насос
- Регулятор давления топлива
- ECM — Блок управления двигателем; включает цифровой компьютер и схему для связи с датчиками и управляющими выходами.
- Жгут проводов
- Различные датчики (Некоторые из необходимых датчиков перечислены здесь.)
Функциональное описание [править | править источник]
Центральным элементом системы EFI является компьютер, называемый блоком управления двигателем (ECU), который контролирует рабочие параметры двигателя с помощью различных датчиков. ЭБУ интерпретирует эти параметры, чтобы вычислить необходимое количество впрыскиваемого топлива, помимо других задач, и управляет работой двигателя, управляя потоком топлива и / или воздуха, а также другими переменными.Оптимальное количество впрыскиваемого топлива зависит от таких условий, как температура двигателя и окружающей среды, частота вращения и рабочая нагрузка двигателя, а также состав выхлопных газов.
Электронная топливная форсунка обычно закрыта и открывается для впрыска топлива под давлением, пока на катушку соленоида форсунки подается электричество. Продолжительность этой операции, называемая шириной импульса, пропорциональна желаемому количеству топлива. Электрический импульс может подаваться в строго контролируемой последовательности с событиями клапана на каждом отдельном цилиндре (в системе последовательного впрыска топлива ) или группами, меньшими, чем общее количество форсунок (в системе периодического пожара ).
Поскольку природа впрыска топлива распределяет топливо в дискретных количествах, и поскольку природа 4-тактного двигателя имеет дискретные события впуска (впуска воздуха), ECU рассчитывает топливо в дискретных количествах. В последовательной системе масса впрыскиваемого топлива подбирается для каждого отдельного случая индукции. Каждое событие индукции, каждого цилиндра, всего двигателя — это отдельный расчет массы топлива, и каждая форсунка получает уникальную ширину импульса, основанную на потребностях этого цилиндра в топливе.
Необходимо знать массу воздуха, которым двигатель «дышит» во время каждого впуска. Это пропорционально давлению / температуре воздуха во впускном коллекторе, которые пропорциональны положению дроссельной заслонки. Количество воздуха, всасываемого при каждом всасывании, известно как «воздушный заряд», и его можно определить с помощью нескольких методов. (См. Датчик массового расхода воздуха и датчик MAP.)
Три основных ингредиента горения — это топливо, воздух и воспламенение. Однако полное сгорание может произойти только в том случае, если воздух и топливо присутствуют в точном стехиометрическом соотношении, которое позволяет всему углероду и водороду из топлива соединяться со всем кислородом воздуха без нежелательных загрязняющих остатков.Датчики кислорода контролируют количество кислорода в выхлопных газах, и ЭБУ использует эту информацию для регулировки соотношения воздух-топливо в режиме реального времени.
Для достижения стехиометрии массовый расход воздуха в двигателе измеряется и умножается на стехиометрическое соотношение воздух / топливо 14,64: 1 (по весу) для бензина. Требуемая масса топлива, которую необходимо впрыснуть в двигатель, затем преобразуется в требуемую ширину импульса для топливной форсунки. Стехиометрическое соотношение изменяется в зависимости от топлива; дизельное топливо, бензин, этанол, метанол, пропан, метан (природный газ) или водород.
Отклонения от стехиометрии требуются при нестандартных рабочих условиях, таких как тяжелая нагрузка или холодный режим, и в этом случае соотношение смеси может варьироваться от 10: 1 до 18: 1 (для бензина). В ранних системах впрыска топлива это осуществлялось с помощью термореле.
Ширина импульса обратно пропорциональна разнице давлений на входе и выходе форсунки. Например, если давление в топливной магистрали увеличивается (на входе форсунки) или давление в коллекторе уменьшается (на выходе из форсунки), меньшая ширина импульса будет пропускать то же топливо.Топливные форсунки также доступны в различных размерах и характеристиках распыления. Компенсация этих и многих других факторов запрограммирована в программном обеспечении ЭБУ.
Пример расчета ширины импульса [править | править источник]
Примечание. Эти расчеты основаны на 4-тактном бензиновом двигателе объемом 5,0 л, V-8. Используемые переменные являются реальными данными.
Рассчитать ширину импульса форсунки по расходу воздуха [редактировать | править источник]
- Сначала ЦП определяет массовый расход воздуха по датчикам -. (Различные методы определения расхода воздуха выходят за рамки данной темы. См. Датчик массового расхода воздуха или датчик MAP.)
- является обратным от двигателя скорость (об / мин).
- Термин, будь то четырехтактный или двухтактный двигатель.
- — желаемое соотношение смеси, обычно стехиометрическое, но часто различающееся в зависимости от условий эксплуатации.
- — пропускная способность инжектора или его размер.
- Объединение трех вышеуказанных терминов. . .
- Подстановка вещественных переменных для двигателя объемом 5,0 л на холостом ходу.
- *
- Подстановка вещественных переменных вместо 5.Двигатель 0 л на максимальной мощности.
- *
Ширина импульса форсунки обычно составляет от 4 мс / цикл двигателя на холостом ходу до 35 мс на цикл двигателя при полностью открытой дроссельной заслонке. Точность ширины импульса составляет приблизительно 0,01 мс .
Рассчитать расход топлива по ширине импульса [править | править источник]
- (Расход топлива) ≈ (ширина импульса) × (частота вращения двигателя) × (количество топливных форсунок)
- С другой стороны:
- (Расход топлива) ≈ (положение дроссельной заслонки) × (об / мин) × (цилиндры)
- Другой путь:
- (Расход топлива) ≈ (наддув) × (топливо / воздух) × (об / мин) × (цилиндры)
- Подставляем вещественные переменные вместо 5.Двигатель 0 л на холостом ходу.
- (Расход топлива) = (2,0 мс / такт впуска) × (час / 3600000 мс) × (24 фунта топлива / час) × (4 такта впуска / оборот) × (700 об / мин) × (60 мин / ч) = (2,24 фунта / ч)
- Подстановка реальных переменных для двигателя 5,0 л при максимальной мощности.
- (Расход топлива) = (17,3 мс / такт впуска) × (час / 3600000 мс) × (24 фунта топлива / час) × (4 такта впуска / оборот) × (5500 об / мин) × (60 мин / час) = (152 фунт / час)
Расход топлива на максимальной мощности двигателя в 68 раз больше, чем на холостом ходу.Такой динамический диапазон расхода топлива типичен для двигателя легкового автомобиля без наддува. Динамический диапазон больше у двигателей с наддувом или с турбонаддувом. Интересно отметить, что 15 галлонов бензина будет израсходовано за 37 минут, если будет поддерживаться максимальная мощность. С другой стороны, этот двигатель мог непрерывно работать на холостом ходу почти 42 часа на тех же 15 галлонах.
Одноточечный впрыск [править | править источник]
Одноточечный впрыск , получивший название Дроссельный впрыск ( TBI ) от General Motors и Central Fuel Injection ( CFI ) от Ford, был введен в 1940-х годах в больших авиадвигателях (тогда назывался карбюратор высокого давления) и в 80-е годы в автомобильном мире.Система SPI впрыскивает топливо в корпус дроссельной заслонки (то же место, где карбюратор вводил топливо). Смесь всасывания проходит через впускные коллекторы, как карбюраторная система, и поэтому обозначается как «система мокрого коллектора». Давление топлива обычно указывается в диапазоне 10-15 фунтов на квадратный дюйм. Основанием для одноточечного впрыска была низкая стоимость. Многие из поддерживающих компонентов карбюратора можно использовать повторно, например, воздухоочиститель, впускной коллектор и прокладку топливопровода. Это отложило затраты на модернизацию и оснащение этих компонентов.Большинство этих компонентов были позже переработаны для следующего этапа эволюции впрыска топлива, который представляет собой впрыск через отдельный порт, широко известный как MPFI или «многоточечный впрыск топлива». TBI широко использовался в легковых и легких грузовиках американского производства в период 1980–1995 годов, а также на некоторых европейских автомобилях с переходным двигателем в начале и середине 1990-х годов. Mazda назвала свою систему EGI и даже представила версию с электронным управлением под названием EGI-S.
Непрерывный впрыск [править | править источник]
В системе непрерывного впрыска топливо постоянно течет из топливных форсунок, но с переменным расходом.Это отличается от большинства систем впрыска топлива, которые подают топливо во время коротких импульсов различной продолжительности с постоянной скоростью потока в течение каждого импульса. Системы непрерывного впрыска могут быть многоточечными или одноточечными, но не прямыми.
Самая распространенная автомобильная система непрерывного впрыска — это Bosch K-Jetronic (K для kontinuierlich , нем. Для «непрерывного» — также известная как CIS — система непрерывного впрыска), представленная в 1974 году. Бензин перекачивается из топливного бака в систему впрыска. большой регулирующий клапан, называемый распределителем топлива , который разделяет одиночный топливопровод от бака на более мелкие трубы, по одной для каждой форсунки.Распределитель топлива установлен на лопатке управления, через которую должен проходить весь всасываемый воздух, и система работает, изменяя объем топлива, подаваемого в форсунки, в зависимости от угла воздушной лопатки, который, в свою очередь, определяется объемным расходом прошедшего воздуха. лопасти, и управляющим давлением. Управляющее давление регулируется с помощью механического устройства, называемого регулятором управляющего давления (CPR) или регулятором разогрева (WUR). В зависимости от модели CPR может использоваться для компенсации высоты над уровнем моря, полной нагрузки и / или холодного двигателя.На автомобилях, оборудованных кислородным датчиком, топливная смесь регулируется устройством, называемым частотным клапаном. Форсунки представляют собой простые подпружиненные обратные клапаны с форсунками; как только давление в топливной системе становится достаточно высоким, чтобы преодолеть встречную пружину, форсунки начинают распыление. K-Jetronic использовался в течение многих лет с 1974 до середины 1990-х годов BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean и Volvo. Также существовал вариант системы под названием KE-Jetronic с электронным, а не механическим контролем управляющего давления.Некоторые Toyota и другие японские автомобили с 1970-х до начала 1990-х годов использовали многоточечную систему Bosch L-Jetronic, изготовленную по лицензии DENSO. Chrysler использовал аналогичную систему непрерывного впрыска топлива на Imperial 1981-1983 годов.
В поршневых авиационных двигателях наиболее распространенным типом является непрерывный впрыск топлива. В отличие от автомобильных систем впрыска топлива, непрерывный впрыск топлива в самолетах полностью механический, и для работы не требуется электричество. Существуют два общих типа: система Bendix RSA и система TCM.Система Bendix является прямым потомком напорного карбюратора. Однако вместо нагнетательного клапана в цилиндре используется делитель потока , установленный в верхней части двигателя, который регулирует скорость нагнетания и равномерно распределяет топливо по линиям впрыска из нержавеющей стали, которые идут к впускным отверстиям каждого цилиндра. . Система TCM еще проще. В нем нет трубки Вентури, напорных камер, диафрагм и нагнетательного клапана. Блок управления питается от топливного насоса постоянного давления.Блок управления просто использует дроссельную заслонку для воздуха, которая механически связана с поворотным клапаном для топлива. Внутри блока управления есть еще одно ограничение, которое используется для управления топливной смесью. Падение давления через ограничения в блоке управления регулирует количество протекающего топлива, так что расход топлива прямо пропорционален давлению на делителе потока. Фактически, большинство самолетов, использующих систему впрыска топлива TCM, имеют датчик расхода топлива, который на самом деле является манометром, который откалиброван на галлонов в час или фунтов в час топлива.
Центральный порт впрыска (CPI) [править | править источник]
General Motors внедрила систему, называемую «впрыск через центральный порт» ( CPI, ) или «впрыск топлива через центральный порт» ( CPFI ). В нем используются трубки с тарельчатыми клапанами от центрального инжектора для распыления топлива на каждое впускное отверстие, а не центральный корпус дроссельной заслонки [ необходима ссылка ] . Характеристики давления обычно отражают характеристики системы TBI. Двумя вариантами были CPFI с 1992 по 1995 год и CSFI с 1996 года и на [ требуется ссылка ] .CPFI — это система с периодическим зажиганием серии , в которой топливо впрыскивается во все порты одновременно. Система CSFI 1996 года и позже распыляет топливо последовательно . [21]
Многоточечный впрыск топлива [править | править источник]
Многоточечный впрыск топлива обеспечивает впрыскивание топлива во впускные каналы непосредственно перед впускным клапаном каждого цилиндра, а не в центральную точку впускного коллектора. Системы MPFI (или просто MPI) могут быть последовательными , в которых впрыск синхронизируется с тактом впуска каждого цилиндра; партиями , в которых топливо впрыскивается в цилиндры группами без точной синхронизации с тактом впуска какого-либо конкретного цилиндра; или одновременных , в которых топливо впрыскивается одновременно во все цилиндры.Впускной канал слегка влажный, и типичное давление топлива составляет 40-60 фунтов на квадратный дюйм.
Многие современные системы EFI используют последовательный MPFI; однако в более новых бензиновых двигателях системы прямого впрыска начинают заменять последовательные.
Прямой впрыск [править | править источник]
- См. Также: Common Rail
Прямой впрыск топлива стоит больше, чем системы непрямого впрыска: форсунки подвергаются большему нагреву и давлению, поэтому требуются более дорогие материалы и более точные электронные системы управления.Однако весь воздухозаборник сухой, что делает эту систему очень чистой. В системе Common Rail топливо из топливного бака подается в общий коллектор (называемый аккумулятором). Это топливо затем направляется по трубопроводу к форсункам, которые впрыскивают его в камеру сгорания. В коллекторе есть предохранительный клапан высокого давления для поддержания давления в коллекторе и возврата излишков топлива в топливный бак. Топливо распыляется с помощью форсунки, которая открывается и закрывается игольчатым клапаном, управляемым соленоидом.Когда соленоид не активирован, пружина вдавливает игольчатый клапан в канал форсунки и предотвращает впрыск топлива в цилиндр. Соленоид поднимает игольчатый клапан с седла клапана, и топливо под давлением направляется в цилиндр двигателя. В дизелях Common Rail третьего поколения используются пьезоэлектрические форсунки для повышения точности с давлением топлива до 1800 бар / 26000 фунтов на квадратный дюйм.
Бензиновые двигатели используют технологию двигателей с непосредственным впрыском бензина.
Дизельные двигатели[править | править источник]
Дизельные двигатели должны использовать впрыск топлива с синхронизацией (в отличие от бензиновых двигателей).На протяжении всей ранней истории дизелей они всегда питались механическим насосом с небольшим отдельным цилиндром для каждого цилиндра, питающим отдельные топливопроводы и отдельные форсунки. Большинство таких насосов было рядным, хотя некоторые были роторными.
Более ранние системы, основанные на форсунках для сырой нефти, часто впрыскивались в подкамеры, имеющие форму для завихрения сжатого воздуха и улучшения сгорания; это было известно как непрямая инъекция. Однако он был менее термически эффективен, чем теперь универсальный прямой впрыск, в котором начало горения происходит в углублении (часто тороидальном) в головке поршня.
Бензиновые / бензиновые двигатели [править | править источник]
- Основная статья: бензин с прямым впрыском
Современные бензиновые двигатели (бензиновые двигатели) также используют прямой впрыск, который называется непосредственным впрыском бензина. Это следующий шаг в эволюции от многоточечного впрыска топлива, который предлагает другой уровень контроля выбросов за счет устранения «мокрой» части впускной системы вдоль впускного тракта.
Благодаря лучшей дисперсии и однородности непосредственно впрыскиваемого топлива цилиндр и поршень охлаждаются, что обеспечивает более высокую степень сжатия и более агрессивную синхронизацию зажигания, что приводит к увеличению выходной мощности.Более точное управление событием впрыска топлива также позволяет лучше контролировать выбросы. Наконец, однородность топливной смеси позволяет использовать более бедное соотношение воздух / топливо, что вместе с более точной синхронизацией зажигания может улучшить топливную экономичность. Наряду с этим двигатель может работать на расслоенных (обедненных) смесях и, следовательно, избегать потерь на дросселирование при низкой и частичной нагрузке двигателя. Некоторые системы прямого впрыска содержат пьезоэлектронные топливные форсунки. Благодаря чрезвычайно быстрому времени отклика, в каждом цикле каждого цилиндра двигателя может происходить несколько событий впрыска.
Впервые непосредственный впрыск бензина был применен в двигателе Хессельмана, изобретенном шведским инженером Йонасом Хессельманом в 1925 году. [22] [23]
Впрыск топлива представляет потенциальную опасность при техническом обслуживании двигателя из-за высокого давления топлива. Остаточное давление может оставаться в топливных магистралях еще долгое время после остановки двигателя с системой впрыска. Это остаточное давление должно быть сброшено, и если это делается с помощью внешнего стравливания, топливо должно быть надежно удержано.Если дизельный топливный инжектор высокого давления снять со своего гнезда и использовать на открытом воздухе, существует риск получения травмы оператором подкожным впрыском, даже при давлении всего 100 фунтов на квадратный дюйм (6,9 бар). [24] Первая известная такая травма произошла в 1937 году во время технического обслуживания дизельного двигателя. [25]
- ↑ Scania fordonshistoria 1891-1991 av Björn-Eric Lindh, 1992. ISBN 91-7886-074-1
- ↑ Volvo — Lastbilarna igår och idag av Christer Olsson, 1987.ISBN 91-86442-76-7
- ↑
- ↑ Circle Track , 9/84, стр.82-3.
- ↑ 5,0 5,1 Уолтон, Гарри (март 1957 г.), «Насколько хороша система впрыска топлива?», Popular Science (Bonnier Corporation) 170 (3): 88–93, http: // books .google.com /? id = byEDAAAAMBAJ & pg = PA88 & dq = 1957 + Rambler + топливо + впрыск & cd = 18 # v = onepage & q =. Проверено .
- ↑ http: // www.hotrod.com/techarticles/engine/hrdp_1010_what_you_need_to_know_about_mechanical_fuel_injection/index.html
- ↑ Ингрэм, Джозеф С. «Автомобили: гонки; каждому удается что-то выиграть на соревнованиях в Дейтона-Бич», The New York Times, 24 марта 1957 года. Страница 153. Проверено 15 декабря 2007 года.
- ↑ Потребительские отчеты 22 : 154.1957 .
- ↑ Держатель, Уильям (2006). Экстремальные маслкары: заводское легкое наследие .Krause Publications, 16. ISBN 9780896892781. Проверено 26 декабря 2009 г.
- ↑ Выдержки из руководства пользователя Rambler Rebel 1957 года, получено 26 декабря 2009 г.
- ↑ 11,0 11,1 «Рамблер выходит на новый уровень», опубликованный Auto Editors из Consumer Guide , 22 августа 2007 г., получено 26 декабря 2009 г.
- ↑ Эйрд, Форбс (2001). Системы впрыска топлива Bosch . HP Trade, 29. ISBN 9781557883650.
- ↑ American Musclecars: Power to the People, получено 26 декабря 2009 г.
- ↑ 1975 Chevrolet Cosworth Vega Overhaul Supplement — общая информация
- ↑ http://www.motorola.com/staticfiles/Consumers/Corporate/US-EN/_Documents/Motorola_History_Timeline.pdf
- ↑ http://www.hemmings.com/hcc/stories/2008/07/01/hmn_feature22.html
- ↑ http://www.imperialclub.com/Yr/1981/81EFI/Cover.htm
- ↑ NASCAR устанавливает систему впрыска топлива на 2012 год, но сохраняет ограничительные пластины в USA Today
- ↑ NASCAR переходит на систему впрыска топлива, первый утвержденный поставщик Bosch в Auto Service World
- ↑ Bosch предоставит кислородные датчики для впрыска топлива в NASCAR.ком
- ↑ 1997 Chevrolet Truck Service Manual, стр. 6A-24, чертеж, позиция (3) Форсунка Central Sequential Muliport.
- ↑ Scania fordonshistoria 1891-1991 av Björn-Eric Lindh, 1992. ISBN 91-7886-074-1 (переведенное название: История автомобилей Scania 1891-1991, )
- ↑ Volvo — Lastbilarna igår och idag av Christer Olsson, 1987. ISBN 91-86442-76-7 (Перевод названия: Грузовики Volvo вчера и сегодня )
- ↑ Ага, Ф.П. (1978), «Травмы руки, нанесенные краской под высоким давлением: клинические и рентгенологические аспекты», Медицинский журнал штата Нью-Йорк 78 : 1955–6.
- ↑ Рис, C.E. (1937), «Проникновение в ткани мазута под высоким давлением от дизельного двигателя», журнал Американской медицинской ассоциации 109 : 866–7.
Что такого хорошего в прямом впрыске? (Азбука автомобильной техники)
Возможно, вы читали или слышали, как один из ваших любимых редакторов Car Tech рассказывал о непосредственном впрыске бензина и о том, что это одна из «больших технологий», которая помогает сохранить жизнь почти 200-летнему двигателю внутреннего сгорания в 21 веке.В выпуске ABCs of Car Tech на этой неделе я собираюсь объяснить, что такое чертовски прямой впрыск бензина и почему вам должно быть важно, находится он в двигателе вашей следующей машины или нет.
Как работал впрыск топлива перед прямым впрыском?
Современному бензиновому двигателю внутреннего сгорания (ДВС) для вращения коленчатого вала необходимы три вещи: насыщенный кислородом воздух, топливо и искра, которая заставляет воздух и топливо взорваться. Воздух втягивается через впускное отверстие, где он измеряется датчиком массового расхода воздуха (MAF) автомобиля, а затем проходит во впускной коллектор, где единственный впускной канал делится на четыре-восемь впускных направляющих, каждая из которых ведет к одному из цилиндрических камеры сгорания.Где-то на линии всасываемый заряд смешивается с топливом до того, как свеча зажигания заставляет все взлетать в камеру сгорания. Я уверен, что для большинства из вас это ICE 101.
Еще в древние времена технологии двигателей карбюраторы и системы одноточечного впрыска топлива производили относительно неточное смешивание воздуха и топлива во впускном коллекторе или даже перед ним, добавляя примерно необходимое количество топлива для всего ряда цилиндров. По большей части каждая камера сгорания имела то, что ей нужно.Однако, в зависимости от конструкции впускного коллектора, это приближение может привести к тому, что в цилиндрах, ближайших к карбюратору или топливной форсунке, будет получено слишком много топлива (работа на богатой смеси), в то время как в самых дальних цилиндрах будет слишком мало топлива (работа на обедненной смеси). Квалифицированный тюнер карбюратора (или компьютер с умным двигателем) мог удержать ситуацию от выхода из-под контроля, но даже лучшая настройка была ограничена конструкцией впускного коллектора.
Эта (не в масштабе) иллюстрация демонстрирует, как одноточечный впрыск может вызвать несоответствие между количеством топлива (зеленого цвета), добавляемого в каждый цилиндр.Антуан Гудвин / CNETВ подавляющем большинстве современных автомобилей используется система многоточечного впрыска топлива (MPFI) (также известная как впрыск через порт). Вот как это работает: вместо того, чтобы использовать один инжектор, который распыляет необходимое количество топлива, каждый из отдельных впускных каналов имеет свой собственный инжектор (или инжекторы), который добавляет брызги аэрозольного топлива во всасываемый воздух из инжектора под давлением. Топливно-воздушная смесь втягивается в открытый канал и в камеру сгорания отступающим поршнем.Затем впускной клапан захлопывается, и в уже закрытом цилиндре происходит взрывное сгорание.
Многоточечный впрыск выравнивает подачу топлива, предоставляя каждому цилиндру собственную форсунку. Антуан Гудвин / CNETПо большей части, MPFI просто прекрасен. Он, безусловно, намного более эффективен, чем более старые карбюраторные системы и системы SPFI, благодаря своей способности регулировать количество топлива, добавляемого во впускное отверстие для каждого отдельного цилиндра, выравнивая ранее бедные и богатые цилиндры на крайних концах коллектора, улучшая выработку энергии. и сокращение потерь топлива.Итак, зачем исправлять то, что фактически не сломано?
Как прямой впрыск повышает производительность?
Вы могли заметить, что во время скачков от карбюратора к SPFI к MPFI точка, в которой топливо добавляется к заправке впуска, перемещается от перед дроссельной заслонкой к впускному коллектору и далее к отдельным впускным направляющим — все ближе и ближе в камеру сгорания. Прямой впрыск выводит эту эволюцию на новый уровень, помещая инжектор внутри камеры сгорания.При перемещении форсунки в камеру сгорания система прямого впрыска бензина (GDI) получает несколько преимуществ по сравнению с ранее обсужденными системами.
Поместив форсунку внутрь цилиндра, компьютер двигателя получает еще более точный контроль над количеством топлива во время такта впуска, дополнительно оптимизируя воздушно-топливную смесь для создания чистого горящего взрыва с очень небольшим расходом топлива и увеличенной подачей мощности.
Система GDI также имеет большую гибкость в отношении , когда в цикле сгорания добавляется топлива. Системы MPFI могут добавлять топливо только во время такта впуска поршня, когда впускной клапан открыт. GDI может подливать топливо, когда это необходимо. Например, некоторые двигатели GDI могут регулировать время так, чтобы меньшее количество топлива впрыскивалось во время такта сжатия, создавая гораздо меньший управляемый взрыв в цилиндре. В этом так называемом сверхбедном режиме сжигания немного снижается прямая мощность, но значительно сокращается количество топлива, используемого в периоды, когда транспортному средству требуется очень мало рывков (холостой ход, движение накатом, замедление и т. Д.).
ДвигателиGDI также быстрее реагируют на эти изменения времени и количества добавляемого топлива, повышая управляемость. Кроме того, автомобиль может более быстро регулироваться на основе сигналов от датчиков, расположенных ниже по потоку от камеры сгорания, что позволяет контролировать выброс грязных выбросов из выхлопной трубы.
Некоторые автопроизводители даже экспериментировали с использованием GDI для подачи дополнительного потока топлива в цилиндр для создания вторичного взрыва во время цикла сгорания, что потенциально привело к еще большей мощности и эффективности.
Вот забавный факт: технология прямого впрыска не , на самом деле так нова, как вы думаете. Эта технология существует с 1920-х годов для бензиновых двигателей и фактически уже используется в большинстве дизельных двигателей.
Есть ли у GDI возможные недостатки?
Вы можете спросить: «Если GDI так хорош, почему его нет в каждой новой машине?»
Частично причина в том, что производство двигателя с прямым впрыском обходится дороже из-за сложности компонентов, а это означает, что автомобиль, который в конечном итоге будет приводить в действие, также будет дороже купить.Например, форсунки двигателя GDI должны быть более прочными, чем форсунки портов, чтобы выдерживать нагрев и давление сотен (или даже тысяч) крошечных взрывов в минуту. Кроме того, поскольку система GDI должна иметь возможность впрыскивать топливо в камеру сгорания под давлением, топливопроводы, по которым подается бензин, должны иметь еще более высокую степень сжатия. Топливные системы GDI могут работать при давлении в несколько тысяч фунтов на квадратный дюйм по сравнению с 40-60 фунтами на квадратный дюйм систем впрыска через порт.
Цена на эти компоненты падает, но в целом и на данный момент портовый впрыск дешевле и «достаточно хорош» для большинства экономичных автомобилей.
Кроме того, некоторые владельцы и специалисты по обслуживанию двигателей GDI (особенно высокопроизводительных моделей с турбонаддувом) сообщают, что в системах с прямым впрыском наблюдается повышенное накопление углерода на задней стороне их впускных клапанов, что со временем приводит к снижению потока воздуха и производительности. Быстрый поиск в Google дает страницу за страницей с анекдотическими сообщениями об этой проблеме. Накопление происходит потому, что в большинстве автомобилей всасываемый воздух, откровенно говоря, довольно грязный — даже с установленными воздушными фильтрами современные системы рециркуляции выхлопных газов и системы вентиляции картера могут добавить немало грязи во всасываемую заправку — и без порта. форсунки, распыляющие бензин (и содержащиеся в нем моющие средства) на клапаны, могут стать довольно грязными на протяжении многих тысяч миль.
Прямой впрыск хорошо сочетается с другими технологиями двигателей
Автопроизводители находят всевозможные новые способы дальнейшего усовершенствования двигателя внутреннего сгорания с помощью технологии прямого впрыска. Например, некоторые автопроизводители (включая Ford, Audi и BMW) используют GDI в сочетании с турбонаддувом для создания двигателей с малым рабочим объемом, которые обеспечивают небольшой КПД двигателя при большой мощности двигателя.
Toyota уже несколько лет предлагает свою систему впрыска топлива D-4S с некоторыми моделями своего 3,5-литрового двигателя V-6. В D-4S используется комбинация прямого впрыска и впрыска через порт, чтобы объединить лучшие черты обеих систем. Как объясняется в этой статье от Wards Auto, система впрыска через порт обрабатывает чистый запуск, прямой впрыск обрабатывает ускорение при полной нагрузке, и две системы работают в тандеме, чтобы сбалансировать все, что между ними.Эта система D4-S также используется в 2,0-литровом оппозитном четырехцилиндровом двигателе, который используется в Scion FR-S и Subaru BRZ.
Принцип электронного впрыска топлива
Принцип, используемый большинством автомобилей для регулирования топливных форсунок, следующий:Одноканальная многоточечная система или «одновременный впрыск»
Цель:
Только один драйвер / транзистор запускает все форсунки одновременно.
Это также означает: Все форсунки параллельно соединены друг с другом электроникой.
Форсунка впрыскивает относительно большое количество топлива. Поэтому время открытия короткие, но частота включения и выключения последовательностей высока. Частый Последовательность включения и выключения форсунки / форсунок вызывает турбулентность. Турбулентность вместе с высоким коэффициентом дезинтеграции / распыления топлива улучшит действие стадии газожидкостной смеси. Мы сейчас говорим о многоточечной системе! Тогда все форсунки открываются и закрываются одновременно.Нельзя синхронизировать каждый цилиндр, так что каждая форсунка распыляет впускное отверстие, когда оно открыто — для этого нужна последовательная система.
Каждая форсунка находится под давлением топлива, и время открытия очень короткое. Открытие время составляет от 1 до 10 мс в зависимости от производителя вашей системы и нагрузка на двигатель. Время закрытия форсунки составляет от 50 до 100 мс (на холостом ходу).
Термины «время открытия» и «время закрытия» находятся здесь (и в соответствующих документы с этого веб-сайта), эквивалентные характеристикам электрического сигнала, а не время открытия или закрытия клапана топливной форсунки.Собственно, можно рассматривать как ширина импульса и фактическое время открытия одинаковы, но позвольте мне объяснить проблему более подробно. деталь: эффективное время открытия топливной форсунки или интервал, в течение которого форсунка впрыскивает топливо, происходит через некоторое время после электрического импульса. Причина такого поведения зависит от от электрической индукции в катушке форсунки и механической инерции. Задержка составляет примерно 1 мс, а время, необходимое для начала движения клапана, называется мертвым временем или временем задержки.Когда электрический импульс закончится, клапан начнет закрываться, но, опять же, требуется время. до закрытия клапана. Хотя у этого времени в основном такая же продолжительность, как у мертвых временной интервал, но имеет тенденцию быть короче. Производители топливных форсунок обеспечивают однако эти задержки не влияют на линейность. Задержки (или время задержки) варьируются в зависимости от производителя, но масса топлива на единицу всегда соответствует электрическому вариации сигнала линейной функцией. Это только при очень коротком времени открытия в качестве инжектора. может быть нелинейным.Подробнее о линейности форсунок ниже.
Частота открытия форсунок зависит от оборотов двигателя. Так что если скорость / об / мин увеличивается, частота делать то же самое. Время работы также зависит от нагрузка на двигатель, как я уже сказал. Нет никакой связи между частотой и время открытия. Вместо этого они работают совершенно независимо друг от друга.
Когда топливо представляет собой этанол, каждую форсунку необходимо открывать дольше обычного.Этот вопрос быть легкой проблемой для топливного компьютера двигателя, но дополнительное количество топлива слишком далеко от обычных вариантов бензина различного качества, поэтому компьютер вскоре достигает предел, и этот предел также различается в зависимости от производителя топливного компьютера.
Это просто ограничение электроники, не более того, но есть объяснение таким образом, чтобы устроить здесь такую систему, и это действительно для безопасности. Когда компьютер достигает предела того, что, по его мнению, является слишком большим количеством топлива, интерпретирует компьютер, что это, вероятно, утечка топлива.Это ненормально и, следовательно, также горит светодиод неисправности двигателя.
По идее, такая индикация может предотвратить аварию — пожар.
В Интернете ходили слухи, что продлевать открытие нельзя. время форсунки, потому что импульсы попадают друг в друга, когда двигатель достигает определенной скорости. Интерпретируйте рисунок ниже; вы легко можете это понять. Фактически, расстояния между каждым промежутком / интервалом больше.Если мы начнем с двигатель на холостом ходу и посмотрите, как долго впускной клапан может быть открыт, а затем холостой ход скорость около 800 об / мин — это будет около 13 об / сек. Впускной порт открывать половину оборота коленвала каждые два круга, 1 / (13×2) секунды — это 38 мс. Время закрытия или интервал до следующего импульса будет 38×3 = 114 мс. Было бы у нас есть последовательная система, если у каждого инжектора есть 38 мс для впрыска нужного количество топлива. Сравните затем с многоточечной системой, в которой время открытия на холостом ходу около 2 мс! Для последовательной системы все форсунки рассчитаны по времени, а открытие время чуть больше, скажем 3 мс.Вместе со временем закрытия у нас есть 3 мс плюс время закрытия 114 мс. Таким образом, одна форсунка открыта на 2,5% от максимального времени, в течение которого может быть открытым.
Если выбрать скорость 10000 об / мин, то получится 167 об / сек. Время впускной клапан открыт становится тогда 3 мСм, а интервал составляет 9 мСм. Инжектор может затем он должен оставаться открытым 25% максимального времени только во время такта впуска. Было бы производитель двигателя не рассчитывает на превышение габаритов при нагрузке двигателя а скорость максимальная? Предположим, что форсунка открыта на 50% максимум. нагрузка.Тогда еще есть место, чтобы удвоить топливо, если вы захотите тюнингуйте двигатель! Вместо настройки мы увеличиваем длительность импульса на 40%. для инжектора, который открыт 50% от максимального времени, поэтому общее время будет 70%, а затем еще 30% времени, чтобы выжать из трима (при максимальной нагрузке). Я думаю, что есть место, как вы думаете?
Дело в том, что там недостаточно хороших с линейным изменением.
При использовании низкоэнергетического топлива возникает небольшая проблема.
Кривая, применимая к бензину, не применима ко всем низкоэнергетическим видам топлива. Если твой компьютер открывает дроссельную заслонку для нового топлива, как это было для бензина, будет ли двигатель либо разбогатеть, либо похудеть, по крайней мере, на короткое время, пока компьютер дозировка. Лямбда-зонд знает, что двигатель получил неправильное количество топлива, и система перезагрузится.
Однако при использовании этанола или E85 можно считать с линейным изменением. В компьютер может открываться для топлива, как для бензина — тогда он работает нормально, таким образом, следуйте тому же графику (отображение), что и бензин.Некоторые проблемы остаются — и который применяет настройки, когда лямбда-контроль отключен.
Отображение обычно достаточно хорошее, пока вы имеете дело с обычными грузовые автомобили, но насколько большим должно быть расширение импульса, намного больше сложно предсказать — это зависит от линейности топливной форсунки или вернее; наклон графика линейности. Если увеличить пульс длина на 30%, поэтому это не значит, что расход топлива увеличится на 30%.Может быть, количество увеличится только на 25%, а может быть, увеличение идет в сторону 40% …
Важно понимать, что топливная форсунка имеет запаздывание, мертвая время до его открытия. Синий инжектор имеет мертвое время 0,8 мс, но как только он открывается, действует линейно почти сразу. На нелинейной части обычно присутствуют за временем открытия двигатель работает на холостом ходу, и поэтому на него можно не обращать внимания. Ширина импульса ниже 0,8 мс не повлияет на форсунки в приведенном выше примере.Линейность изменяется, если напряжение питания изменяется, но топливный компьютер может довольно легко это компенсировать. С моими схемами IPE можно решить, какие удлинение импульса, которое наилучшим образом соответствует линейности форсунки, через один или два потенциометры. Хотя, импульсную линейность тоже можно изменить, но следует обычно держатся как можно выше.
На этом изображении показано нечто среднее между обычной многоточечной системой и последовательной система. Один канал — это два канала — два многоточечных канала… или вы можете также рассматривайте это как разделение на группы. Двигатель V8 может иметь такую конфигурацию, в котором два водителя используют одну половину форсунок.
Однако это изображение не показывает принцип для V8.
РАЗЛИЧНЫЕ СИСТЕМЫ ВПРЫСКА ТОПЛИВА
Одноточечный впрыск или впрыск дроссельной заслонки (TBI)
Самый ранний и простой тип впрыска топлива, одноточечный, просто заменяет карбюратор с одной или двумя форсунками в корпусе дроссельной заслонки, который горловина впускного коллектора двигателя.Для некоторых автопроизводителей одноточечный инъекция была ступенькой к более сложной многоточечной системе. Хотя не такой же точный, как и последующие системы, TBI измеряет топливо лучше, чем карбюраторные, они дешевле и проще в обслуживании.
Канальный или многоточечный впрыск топлива (MPFI)
Многоточечный впрыск топлива предусматривает отдельную форсунку для каждого цилиндра, прямо за входным портом, поэтому систему иногда называют портовой инъекция.Стрельба паров топлива так близко к впускному отверстию почти гарантирует что он будет полностью втянут в цилиндр. Главное преимущество в том, что MPFI измеряет топливо более точно, чем конструкции TBI, что позволяет лучше достичь желаемого уровня воздуха / топлива соотношение и улучшение всех связанных аспектов. Кроме того, это практически исключает возможность это топливо будет конденсироваться или собираться во впускном коллекторе. С TBI и карбюраторами, впускной коллектор должен быть спроектирован так, чтобы отводить тепло от двигателя, чтобы испарить жидкое топливо.В этом нет необходимости для двигателей, оснащенных MPFI, поэтому Впускной коллектор может быть выполнен из более легкого материала, даже из пластика. Инкрементальный Результатом является улучшение экономии топлива. Также там, где обычные металлические впускные коллекторы должны быть расположены наверху двигателя для отвода тепла, те, что используются в MPFI, могут быть размещены более креативно, предоставляя инженерам гибкость при проектировании.
Последовательный впрыск топлива (SFI)
Последовательный впрыск топлива, также называемый последовательным впрыском топлива в порт (SPFI) или синхронизированный впрыск — это тип многопортового впрыска.Хотя базовый MPFI использует несколько форсунок, все они распыляют топливо одновременно или группами. Как результат, топливо может «зависать» над портом до 150 миллисекунд, когда двигатель работает на холостом ходу. Это может показаться не таким уж большим, но этого недостатка достаточно, чтобы инженеры Решение этой проблемы: Последовательный впрыск топлива запускает каждую форсунку независимо. Работая по времени, как свечи зажигания, они распыляют топливо непосредственно перед забором клапан открывается.Это кажется незначительным шагом, но эффективность и выбросы улучшаются. в очень малых дозах.
Прямой впрыск
Прямой впрыск продвигает концепцию впрыска топлива настолько далеко, насколько это возможно, впрыскивая топливо прямо в камеры сгорания, мимо клапанов. Чаще встречается в дизельном топливе двигателей, непосредственный впрыск начинает появляться в конструкциях бензиновых двигателей и стали обычным явлением в наши дни, иногда их называют DIG для бензина с непосредственным впрыском.Опять же, дозирование топлива даже более точное, чем в других схемах впрыска, а прямой впрыск дает инженерам еще одну возможность точно влиять на как происходит горение в цилиндрах. Наука о конструкции двигателя внимательно изучает как топливно-воздушная смесь вращается в цилиндрах и как распространяется взрыв от точки возгорания. Такие вещи, как форма цилиндров и поршней; порт и расположение свечей зажигания; время, продолжительность и интенсивность искры; и количество искр заглушки на цилиндр (возможно несколько) влияют на равномерность и полноту топлива. воспламенения в бензиновом двигателе.Прямая инъекция — еще один инструмент в этой дисциплине, который может использоваться в двигателях, работающих на обедненной смеси с низким уровнем выбросов.
Источник: Cars.com
Сравнение прямого впрыска и последовательного впрыска топлива
Прямой впрыск и последовательный впрыск топлива
Больше крутящего момента и меньше топлива — Двигатели с прямым впрыском PCMПрямой впрыск vs.Последовательный впрыск топлива
С тех пор, как PCM выпустила новые двигатели H5 и H6 с прямым впрыском, нас спрашивали, в чем разница между прямым и последовательным впрыском, и является ли PCM единственной компанией, использующей прямой впрыск. Я надеюсь ответить на оба вопроса ниже. Вот основная информация о системах впрыска.
Как правило, система SFI (последовательного впрыска топлива) имеет топливную форсунку для каждого цилиндра. Каждая из этих форсунок подает топливо в систему под давлением 30-40 фунтов на квадратный дюйм перед впускным клапаном.Эта топливно-воздушная смесь втягивается в цилиндр мимо впускного клапана на такте впуска поршня, а затем сжимается и воспламеняется. Эта система была намного более экономичной и создавала намного больше мощности, чем системы карбюратора, которые она заменила. Последовательный впрыск топлива использовался в судовых двигателях в течение нескольких лет и является системой, которая в настоящее время используется в большинстве новых буксиров, а также в системе PCM, используемой в двигателях до 2016 года.
DI (Direct Injection) — это следующая эволюция системы впрыска топлива, при которой топливо впрыскивается после впускного клапана непосредственно в каждый цилиндр под давлением более 3000 фунтов на квадратный дюйм.В чем преимущества DI по сравнению со старой системой SFI? Антуан Гудвин (автор движка для Cnet) сказал, что читатели, возможно, заметили, что во время переходов от карбюрации к SPFI (одиночный порт) к MPFI (многопортовый) точка, в которой топливо добавляется во впускной заряд, сместилась с предыдущего. дроссель к впускному коллектору и далее к отдельным впускным направляющим — все ближе и ближе к камере сгорания. Прямой впрыск выводит эту эволюцию на новый уровень, помещая инжектор внутри камеры сгорания.Перемещая форсунку в камеру сгорания, GDI (непосредственный впрыск бензина) получает несколько преимуществ по сравнению с ранее обсужденными системами.
Поместив форсунку внутрь цилиндра, компьютер двигателя получает еще более точный контроль над количеством топлива, впрыскиваемого во время такта впуска, дополнительно оптимизируя воздушно-топливную смесь для создания чистого горящего взрыва с очень небольшим расходом топлива и увеличенной подачей мощности. .
Система GDI также имеет большую гибкость относительно , когда в цикле сгорания добавляется топливо.Системы MPFI могут добавлять топливо только во время такта впуска поршня, когда впускной клапан открыт. GDI может подливать топливо, когда это необходимо. Например, некоторые двигатели GDI могут регулировать время так, чтобы меньшее количество топлива впрыскивалось во время такта сжатия, создавая гораздо меньший управляемый взрыв в цилиндре. Этот так называемый сверхбедный режим сжигания немного жертвует чистой мощностью, но значительно снижает количество топлива, используемого в то время, когда (лодка) требует очень небольшого рычания (холостой ход, замедление и т. Д.)).
Ну, хватит всей этой технической ерунды — Итак, , что для вас означает прямой впрыск ? Это означает, что у вас может быть двигатель с большим крутящим моментом (мощностью на нижнем уровне), чем у системы последовательного впрыска топлива, и вы получите эту дополнительную мощность при меньшем сжигании топлива. Я могу сказать вам по собственному опыту, что новый H5 просто вытесняет прошлогодний PCM ZR409 из ямы на Centurion FS33 с максимальным балластом. Но по-настоящему большой сюрприз случился, когда мы протестировали новый двигатель PCM H6 здесь, на высоте, в Юте.Мы смогли разогнать Ri237 с балластом (общий вес 10 500 фунтов) до скорости вейкборда в Дир-Крик. Мы были очень удивлены, потому что это максимальный вес, который мы могли бы получить для скорости вейкборда с моим 550-сильным PCM XR7 2015 года с наддувом. Мы протестировали их бок о бок, и разница была незначительной.
Излишне говорить, что после нашего личного опыта мы не были сильно удивлены, когда получили от PCM характеристики для сравнения двигателей. Новые модели PCM Direct Injection H5 и H6 на 33% быстрее от 0 до 23 миль в час, чем прошлогодние PCM ZR409 и ZR450.Но самое приятное то, что эти новые двигатели на 27% более экономичны, чем сопоставимые двигатели прошлого года. Больше мощности, меньше топлива. Это комбинация, с которой я могу жить. Неудивительно, что мой хороший друг, Трей Турман из PCM, год назад сказал мне, что в 2016 году у PCM есть что-то особенное, и что мне это понравится. Трей был прав, эти моторы очень и очень впечатляют.
Примечание: на всякий случай, PCM — единственный производитель двигателей для буксиров, использующий двигатели с прямым впрыском топлива в 2016 году.Это означает, что если буксир, на который вы смотрите, не является Centurion, Nautique или Supreme, он, скорее всего, не имеет прямого впрыска.

