Установка опережения впрыска на дизеле
Своевременное опережение впрыска так же важно для дизельных двигателей, как правильно отрегулированный момент зажигания для бензиновых.
Зачастую говорят не об опережении впрыска, а об опережении нагнетания как о главном контрольном параметре топливного насоса высокого давления. Речь идет о том, какой угол пройдет коленчатый вал за время от момента начала выталкивания топлива из нагнетательной секции насоса в топливопровод высокого давления до момента, в который поршень достигнет ВМТ. Установка опережения впрыска — это установка момента нагнетания топлива топливным насосом относительно определенного положения коленчатого вала. Обычно она производится по положению первого цилиндра, и положение насоса высокого давления для первого цилиндра будет правильным и для всех остальных цилиндров.
Проверка и установка опережения впрыска производится в случае падения мощности двигателя, при «жесткой» работе его, дымности выхлопа, а также периодически — через каждые 50 000—60 ООО км во время плановой проверки на СТО.
На деле дизельные двигатели крайне редко требуют установки момента впрыска — реже, чем современные карбюраторные автомобили. Неизбежна регулировка момента впрыска лишь после замены зубчатого ремня, влекущей смещение топливного насоса.
Статический метод
Статический метод проверки и установки опережения впрыска наиболее прост и доступен.
Потребуется моментоскоп — приспособление для определения момента впрыска методом слива (прозрачная пластмассовая трубка с наконечником, позволяющим надеть ее на выпускной штуцер, на место снятого трубопровода, ведущего к форсунке).
Потребуется также ключ для снятия наконечника провода высокого напряжения и ключ для выполнения регулировки в случае необходимости.
На плунжерных насосах проверка производится следующим образом.
Снимите трубопровод высокого давления, ведущий к первому цилиндру, и наденьте на штуцер трубку-моментоскоп
Установите управляющий рычаг регулятора в положение максимальной подачи топлива. Если нужно, удалите воздух из топливной системы топливоподкачивающим насосом или при помощи стартера.
Проворачивайте коленчатый вал до момента, пока стеклянную трубку моментоскопа не заполнит топливо, затем верните коленвал назад примерно на четверть оборота.
Снова медленно проворачивайте коленвал, наблюдая при этом за трубкой моментоскопа: начало движения топлива в трубке означает момент начала нагнетания, поэтому запомните положение установочных знаков на маховике или насосе.
Если установочный знак на фланце насоса не совпадет со знаком на распредвале, требуется регулировка опережения зажигания.
Регулируется оно или вращением переставной части муфты в пределах, которые позволяет регулировочный винт, или (в тех конструкциях, в которых насос крепится фланцево) вращением насоса относительно своей оси.
Остается добавить, что плунжерные насосы встречаются довольно редко, около 90 % дизельных автомобилей оснащены насосами распределительного типа.
К топливным насосам высокого давления распределительного типа относятся насосы фирмы «Bosch», японских фирм, большинство насосов фирмы «Lucas». В таких насосах есть заглушки, закрывающие отверстие для установки датчика часового типа или установочного штифта (производимых, кстати, теми же фирмами).
Проверка опережения впрыска на насосах распределительного типа сложнее.
Для нее потребуются уже упомянутые датчик, а также установочные штифты в зависимости от типа двигателя. Эту операцию, как и проверку опережения впрыска динамическим методом с использованием специального дизельного стробоскопа («Bosch», «Sun», AVL, «Time Track Stanodyne», «Technotest» и др.), выгоднее производить у профессионалов на СТО.
Опережение впрыска на насосах распределительного типа статическим методом регулируется так.
Вращая коленвал, установите — поршень первого цилиндра в ВМТ. Ориентируйтесь по установочным знакам, либо действуйте с помощью установочного штифта:
Снимите заглушку с топливного насоса, вставьте на ее место датчик в специальной оправке и действуйте в соответствии с инструкцией. Датчик должен показать заданную величину опережения нагнетания впрыска. В случае необходимости регулировки ослабьте крепление насоса и поверните его соответствующим образом, а затем повторно проверьте опережение.
При регулировочных работах не трогайте креплений, указанных стрелками:
Автоматическое регулирование впрыска топлива в дизельных двигателях
Автоматическое регулирование впрыска топлива в дизельных двигателях
Для обеспечения нормальной работы дизельного двигателя необходимо, чтобы впрыск топлива в цилиндры двигателя происходил в тот момент, когда поршень находится в конце такта сжатия вблизи в.м.т. Желательно также с увеличением частоты вращения коленчатого вала двигателя увеличить угол опережения впрыска топлива, так как в этом случае происходит некоторое запаздывание подачи и снижается время на смесеобразование и сгорание топлива. Поэтому насосы высокого давления современных дизельных двигателей снабжают автоматическими муфтами опережения впрыска.
Кроме муфты опережения впрыска, влияющей на момент подачи топлива, необходимо иметь в топливоподающей системе регулятор, изменяющий количество впрыскиваемого топлива в зависимости от нагрузки двигателя при заданном уровне подачи.
Необходимость такого регулятора объясняется тем, что с увеличением частоты вращения коленчатого вала цикловая подача насосов высокого давления несколько возрастает. Поэтому, если снизится нагрузка при работе двигателя с большой частотой вращения коленчатого вала, то частота вращения может превысить допустимые значения, так как количество впрыскиваемого топлива будет возрастать. Это повлечет за собой увеличение механических и тепловых нагрузок и может вызвать аварию двигателя.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Для предотвращения нежелательного возрастания частоты вращения коленчатого вала при снижении нагрузки двигателя, а также повышения устойчивости работы с малой нагрузкой или на холостом ходу двигатели оборудуют всережимными регуляторами.
Автоматическая муфта опережения впрыска (рис. 68) устанавливается на носке кулачкового вала насоса высокого давления на шпонке. Она состоит из двух полумуфт: ведущей и ведомой. На ведомую полумуфту навернут корпус, объединяющий детали муфты. Полумуфты распираются пружинами, которые воздействуют на них через пальцы. Пальцы установлены в ведомой полумуфте и на них свободно надеты грузы. В профильные вырезы грузов под действием пружин упираются пальцы, закрепленные в ведущей полумуфте. Таким образом по-лумуфты оказываются связанными между собой.
Рис. 68. Автоматическая муфта изменения угла опережения впрыска:
При малой частоте вращения коленчатого вала грузы находятся в сведенном состоянии и ведомая полумуфта занимает определенное положение относительно ведущей. Как только частота вращения коленчатого вала начинает превышать 1000 об/мин, возникающие центробежные силы грузов становятся больше усилия предварительного сжатия пружин.
Вследствие этого грузы начинают расходиться, сжимая пружины и поворачивая ведомую полумуфту относительно ведущей по направлению вращения. Это приводит к более раннему впрыску топлива, т. е. к увеличению угла опережения впрыска.
С понижением частоты вращения вала двигателя уменьшается центробежная сила грузов муфты и они сходятся под действием пружин. При этом происходит поворот ведомой полумуфты, а вместе с ней и кулачкового вала насоса в направлении, противоположном направлению вращения вала насоса. Угол опережения впрыска топлива уменьшается.
Предельное расположение грузов муфты ограничено внутренней поверхностью ее корпуса и составляет по коленчатому валу двигателя угол 10—14° (5—7° по кулачковому валу насоса).
Всережимный регулятор частоты вращения коленчатого вала двигателя установлен на насосе высокого давления и приводится в действие от кулачкового вала. Его работа основана, как и в автоматической муфте, на использовании центробежных сил и протекает следующим образом. Например, при заданном положении педали управления подачи топлива и возникновении дополнительного сопротивления движению (на подъеме) частота вращения коленчатого вала двигателя будет уменьшаться и скорость автомобиля падать.
Аналогичным образом всережимный регулятор изменяет подачу топлива при уменьшении нагрузки на двигатель. Только в этом случае управляющее воздействие регулятора сводится к уменьшению количества впрыскиваемого топлива. В результате при снижении нагрузки на двигатель происходит уменьшение скорости движения и доведение ее до заданного уровня.
Таким образом, всережимный регулятор изменяет подачу топлива при изменении нагрузки двигателя и обеспечивает любой установленный скоростной режим от 500 до 2100 об/мин коленчатого вала.
Устроен всережимный регулятор частоты вращения (рис.
69) следующим образом. Корпус регулятора закреплен болтами непосредственно к корпусу насоса высокого давления. Внутри корпуса расположены повышающая передача, центробежные грузы и система рычагов и тяг, связывающая регулятор с рычагом подачи и зубчатой рейкой управления плунжерами насоса.Повышающаяся передача состоит из двух шестерен, соединяющих валик регулятора с кулачковым валом насоса. Применение повышающей передачи улучшает работу регулятора на малой частоте вращения коленчатого вала.
Центробежные грузы закреплены державками на валике регулятора. При вращении валика грузы воздействуют через муфту и корректор на рычаг, который через двуплечий рычаг будет – растягивать пружину, уравновешивающую перемещение грузов. Одновременно через серьгу перемещение грузов может передаваться на рычаг привода рейки.
1 — регулировочный винт подачи топлива, 2 — кулиса, 3 — палец рычага рейки, 4 — серьга, 5 — муфта, 6, 16 — грузы, 7 —корпус, 8 — шестерня кулачкового вала насоса, 9 — скоба кулисы, 10 — вал рычага пружины регулятора, 11 — рычаг управления, 12 — болт ограничения максимальной частоты вращения, 13 — болт ограничения минимальной частоты вращения. 14— шестерня валика регулятора, 15 — валик регулятора, 17 — плунжер, 18 — втулка, 19 — зубчатый сектор, 20 — зубчатая рейка, 21 — тяга зубчатой рейки, 22 — пружина рычага рейки, 23 — рычаг пружины, 24 — пружины регулятора, 25 —распорная пружина, 26 —двуплечий рычаг, 27 — рычаг привода рейки, 28 — регулировочный винт, 29 — рычаг регулятора, 30 — буферная пружина, 31 — винт регулирования подачи, 32 — корректор регулятора
Рычаг в нижней части связан через палец с кулисой, которая соединяется скобой с рычагом ручного выключения подачи.
Средняя часть рычага шарнирно соединена с серьгой и муфтой, а верхняя часть его— с тягой зубчатой рейки. Пружина стремится постоянно удерживать рычаг рейки в положении максимальной подачи, т. е. вдвигает рейку внутрь.
Ручное управление подачей топлива осуществляется через рычаг управления. При повороте рычага в сторону увеличения подачи усилие от него передается на вал, далее на рычаг, пружину, двуплечий рычаг, регулировочный винт, рычаг, серьгу, а затем на рычаг и тягу. Рейка вдвигается в корпус насоса, и подача топлива увеличивается. Для уменьшения подачи перемещают рычаг в обратную сторону.
Автоматическое изменение подачи топлива с помощью регулятора происходит при снижении нагрузки на двигатель и повышении частоты вращения его коленчатого вала (рис. 70). Одновременно увеличивается частота вращения грузов и регулятора и они удаляются от оси вращения, перемещая муфту по валику регулятора.
Вместе с муфтой перемещается шарнирно связанный рычаг привода рейки. Рейка выдвигается из корпуса насоса, и подача топлива уменьшается. Частота вращения коленчатого вала двигателя снижается, и грузы начинают слабее давить на муфту.
Усилие пружин, уравновешивающее центробежные силы грузов, становится несколько больше и через рычаги передается на рейку насоса. В результате рейка вдвигается в корпус насоса, увеличивая подачу топлива, и двигатель переходит на заданный скоростной режим.
Регулятор работает аналогично при повышении нагрузки на двигатель, обеспечивая увеличение подачи топлива и поддержание заданной скорости. Автоматическое поддержание заданной частоты вращения коленчатого вала, а следовательно, и скорости автомобиля при возрастании нагрузки без переключения передач возможно до тех пор, пока винт (см. рис. 69) регулирования подачи не упрется в вал рычага пружины регулятора. Если нагрузка будет продолжать возрастать, то частота вращения коленчатого вала двигателя будет снижаться. Некоторое увеличение подачи при этом происходит за счет корректора, но дальнейшее поддержание скорости автомобиля при возрастании нагрузки может быть осуществлено только включением понижающей передачи в коробке передач.
Рис. 70. Схема работы регулятора при увеличении частоты вращения коленчатого вала:
1 — валик регулятора, 2. 10 — грузы, 3 — муфта, 4 — рычаг привода рейки, 5 — рычаг ручного привода, 6 — двуплечий рычаг, 7 — пружина регулятора, 8 — тяга рейки, 9— пружина рычага рейки
Для остановки дизельного двигателя скобу кулисы (см. рис. 69) отклоняют вниз и усилие от нее передается через палец на рычаг привода рейки.
Рис. 71. Фильтр грубой очистки топлива двигателя КамАЗ-740:
1 — корпус, 2 — распределитель, 3 — шайба, 4 — сетчатый фильтр, 5 — стакан, 6 — пробка сливного отверстия
Читать далее: Особенности устройства топливной аппаратуры двигателей автомобилей КамАЗ
Комбинированное влияние момента впрыска и давления впрыска топлива на характеристики производительности, сгорания и выбросов дизельного двигателя с прямым впрыском, численно с использованием инструмента CONVERGE CFD 2017-28-1953
2017-07-10
Введение строгих норм выбросов по всему миру заставило автомобильную промышленность сосредоточиться на исследованиях по снижению выбросов двигателей внутреннего сгорания, а именно дизельных двигателей. Изменение момента впрыска топлива лучше влияет на снижение выбросов выхлопных газов двигателя. В этой статье рассматривается изменение времени впрыска топлива вместе с давлением впрыска топлива в числовом виде на 4-тактном одноцилиндровом дизельном двигателе с непосредственным впрыском топлива, работающем в условиях полной нагрузки, с использованием инструмента CONVERGE CFD. Поскольку геометрия поршня и камеры сгорания, рассматриваемая в этой работе, является симметричной, для численного моделирования по полной 360-градусной модели рассматривается только 60-градусный сектор поршневого цилиндра в сборе. Для изучения явления физики сгорания и потока, происходящего внутри цилиндра двигателя, а также для сокращения времени вычислений, численное моделирование выполняется от угла поворота коленчатого вала (CA) 20 градусов до ВМТ (bTDC) во время такта сжатия до 140 градусов CA после ВМТ (aTDC) в рабочем такте, как указано в литературе. Стандартное время впрыска топлива из литературы составляет 15,1 до ВМТ, и это время увеличено до 19.
SAE MOBILUS
Подписчики могут просматривать аннотации и загружать весь контент SAE. Учить больше »
Доступ к САЕ МОБИЛУС »
Цифровой $35.00 Распечатать $35. 00
Предварительный просмотр документа Добавить в корзину
Участники экономят до 17% от прейскурантной цены.
Войдите, чтобы увидеть скидку.
Специальное предложение: Загружать несколько технических статей каждый год? TechSelect — это экономичный вариант подписки, позволяющий выбирать и загружать от 12 до 100 полнотекстовых технических документов в год. Дополнительную информацию можно найти здесь.