Напряжение обозначение: Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Содержание

Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Содержание статьи

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам.

Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом. Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только
    лавинный механизм пробоя
    , который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны.

Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.

Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора.  

Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Принцип работы и маркировка стабилитронов ⋆ diodov. net

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т. п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Еще статьи по данной теме

Обозначение цепей питания в иностранных материалах

РадиоКот >Статьи >

Обозначение цепей питания в иностранных материалах

Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.

 

VCC, VEE, VDD, VSSоткуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.

Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.

Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).

 

Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC — плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD — плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.

Для схем с двух полярным питанием VCC и VDD могут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.

Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.

 

Вот перечень некоторых обозначений (далеко не полный).

Обозначение

Описание

Заметки

GND

Земля (минус питания)

Ground

AGND

Аналоговая земля (минус питания)

Analog ground

DGND

Цифровая земля (минус питания)

Digital ground

Vcc
Vdd
V+
VS+

Плюс питания
(наибольшее положительное напряжение)

 

Vee
Vss
V-
VS−

Земля, минус питания
(самое отрицательное напряжение)

 

Vref

Опорное напряжение
(для АЦП, ЦАП, компараторов и др. )

Reference (эталон, образец)

Vpp

Напряжение программирования/стирания

(возможно pp = programming power)

VCORE
VINT

Напряжение питания ядра
(например, в ПЛИС)

Core (ядро)

Internal (внутренний)

VIO
VCCIO

Напряжение питания периферийных схем
(например, в ПЛИС)

Input/Output (ввод/вывод)

 

Как видно, часто обозначения образуются путём добавления слова, одной или нескольких букв (возможно цифр), которые соответствуют буквам в слове отражающем функцию цепи (например, как Vref).

Иногда обозначения Vcc и Vdd могут присутствовать у одной микросхемы (или устройства), тогда это может быть, например, преобразователь напряжения. Так же это может быть признаком двойного питания. В таком случае, обычно, Vcc соответствует питанию силовой или периферийной части, Vdd питанию цифровой части (обычно Vcc>=Vdd), а минус питания может быть обозначен Vss.

Совмещение в современных микросхемах различных технологий, традиции, или какие-то другие причины, привели к тому, что нет чёткого критерия для выбора того или иного обозначения. Поэтому бывает, что обозначения «смешивают», например, используют VCC вместе с VSS или VDD вместе с VEE, но смысл, обычно, сохраняется — VCC > VSS, VDD > VEE. Например, практически повсеместно, можно встретить в спецификации на микросхемы серии 74HC (HC = High speed CMOS), 74LVC и др. , обозначение питания как Vcc. Т.е. в спецификации на CMOS (КМОП) микросхемы используется обозначение для схем на биполярных транзисторах.

Текстов какого либо стандарта (ANSI, IEEE) по этой теме найти не удалось. Именно поэтому в тексте встречаются слова «может быть», «иногда», «обычно» и подобные. Несмотря на это, приведённой информации вполне достаточно, чтобы чуть лучше ориентироваться в иностранных материалах по электронике.

 

Информация собрана из различных источников в сети Интернет.
Специально для сайта radiokot.ru


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Расшифровка трансформаторов: тока, напряжения и силовых

Чтобы понимать, для каких условий эксплуатации предназначен тот или иной трансформатор тока или напряжения, а также прочие разновидности, применяется особая маркировка приборов. Отечественные и импортные агрегаты имеют различное обозначение. В нашей стране чаще применяются установки, изготовленные по ГОСТу.

Маркировка трансформаторов наносится на щиток из металла на корпусе. Самые распространённые виды условных обозначений трансформаторов будут рассмотрены далее.

Информация на корпусе

Информация, представленная на видимой стороне устройства, наносится при помощи гравировки, травления или теснения. Это обеспечивает чёткость и долговечность надписи. На металлическом щитке указываются данные о заводе-изготовителе оборудования. Наносится год его выпуска, заводской номер.

Помимо данных о производителе обязательно присутствует информация об агрегате. Указывается номер стандарта, которому соответствует представленная конструкция. Обязательно наносится показатель номинальной мощности. Для трехфазных устройств этот параметр приводится для каждой обмотки отдельно. Указывается информация о напряжении ответвлений витков катушек.

Для всех обмоток определяется показатель номинального тока. Приводится количество фаз установки, частота тока. Производитель предоставляет данные о конфигурации и группах соединения катушек.

После приведённой выше информации можно ознакомиться с параметрами напряжения короткого замыкания. Представляются требования к установке. Она может быть наружной или внутренней.

Технические характеристики позволяют определить способ охлаждения, массу масла в баке (если применяется эта система), а также массу активной части. На приводе переключателя указывается его положение. Если установка обладает сухим видом охлаждения, есть данные о мощности установки при отключённом вентиляторе.

Под щитком должен быть выбит заводской номер. Он присутствует на баке. Номер указывается на крышке возле ввода ВН, а также сверху и слева на полке балки сердечника.

Схема

Все приведённые на табличке данные можно разбить на 6 групп. Чтобы не запутаться в информации, следует рассмотреть последовательность её написания. Например, установка АТДЦТН-125000/220/110/10-У 1. Для маркировки особенностей прибора применяются следующие группы:

  • I группа. А — Предназначена для указания типа прибора (силовой или автотрансформатор).
  • II группа. Т — Соответствует типу сети, для которой применяется прибор (однофазная, трехфазная).
  • III группа. ДЦ – Система охлаждения с принудительной циркуляцией масла и воздуха.
  • IV группа. Т – Показывает количество обмоток (трехобмоточный).
  • V группа. Н – Напряжение регулируется под нагрузкой.
  • VI группа. Все цифры (номинальная мощность, напряжение ВН СН обмоток, климатическое исполнение, категория размещения).

О каждой категории следует узнать подробнее. Это значительно облегчит выбор.

Разновидности

Обозначение трансформаторов обязательно начинается с разновидности оборудования. Если маркировка начинается с буквы А, это автотрансформатор. Её отсутствие говорит о том, что агрегат относится к классу силовых трансформаторов.

Обязательно приводится число фаз. Это позволяет выбрать установку, работающую от бытовой или промышленной сети. Если трансформатор подключается к трехфазной сети, в маркировке будет присутствовать Т. Однофазные же разновидности имеют букву О. Они применяются в бытовых сетях.

Если устройство обладает расщеплённой обмоткой, он будет иметь Р. Если присутствует регулировка напряжения под нагрузкой (РПН) устройство будет иметь маркировку Н на металлическом щитке. При её отсутствии можно сделать вывод об отсутствии представленной особенности в аппарате.

Особые обозначения

В зависимости от категории установки могут применяться особые обозначения. Для трансформатора тока и напряжения они могут не совпадать. Вторая разновидность техники применяется при работе защитных механизмов или для измерения тока. Первая категория приборов предназначается для изменения значения переменного тока.

Трансформаторы напряжения не используют для передачи электричества большой мощности. Они способны создавать развязку от низковольтных коммуникаций. В цепях с напряжением 12В и менее применяется эта категория приборов. Основным их рабочим параметром выступает ток и напряжение первичной обмотки. Именно их величину предоставляет производитель.

Маркировка трансформаторов напряжения начинается с их конструкции. Если это проходная конструкция, она обозначается литерой П. Если её нет, это опорный вид аппаратов. Литой изолятор имеет в маркировке Л, а фарфоровый – Ф. Встроенный изолятор имеет В.

Расшифровка современных трансформаторов тока выполняется в установленной последовательности. Она начинается с Т, которая характеризует представленные приборы. Способ установки может быть проходным (П), опорным (О) или шинным (Ш). Если этот прибор присутствует в аппаратуре силовых трансформаторов, он обозначается как ВТ. Если же он встроен в масляный выключатель, то маркировка будет иметь букву В. При наружной установке прибор будет иметь Н.

Охладительная система

Условное обозначение трансформатора продолжается способом охлаждения. Сегодня существуют сухие, масляные разновидности. Также охладительная установка может иметь в своём составе негорючий текучий диэлектрик.

Масляные разновидности включают в себя около десятка различных конструкций оборудования. Если циркуляция жидкости внутри производится естественным путём, прибор имеет на щитке М. Если же она принудительная, здесь будет присутствовать обозначение Д. Оно соответствует также и сухим разновидностям приборов с представленным устройством внутренней циркуляции.

Если установлено оборудование с естественным движением масла и принудительным течением воды, оно маркируется сочетанием МВ. Для приборов с принудительной циркуляцией ненаправленного потока масла и естественным перемещением воздуха используется комбинация МЦ. Если же в таком устройстве направление масла чётко обозначено, маркировка будет НМЦ.

Для систем с принудительным ненаправленным движением масла и воздуха применяется обозначение ДЦ, а для направленного перемещения – НДЦ. Когда масло движется в пространстве между трубами и перегородками, по которым течёт вода, такой агрегат имеет на щитке букву Ц. Если же масло течёт по направленному вектору, прибор маркируется НЦ.

Охладительная система с жидким диэлектриком

Сегодня в «эксплуатацию» вводят новые разновидности устройств с различными улучшенными охладительными системами. Одной из них являются экземпляры техники с негорючим диэлектриком жидкого типа. Если охлаждение происходит посредством естественной циркуляции, представленная установка обозначается буквой Н. Если же присутствует принудительное движение воздуха, маркировка будет НД.

На табличке агрегатов с направленным потоком жидкого диэлектрика и принудительной циркуляцией воздуха указывается ННД. Это позволяет подобрать правильно тип аппаратуры.

Сухие системы

Одной из новых разновидностей являются системы сухого охлаждения. Они просты в эксплуатации и обслуживании, не требовательны и не капризны. Если исполнение установки открытое, а циркуляция воздуха происходит естественным способом, его маркируют как С.

Защищённое исполнение обозначается буквами СЗ. Корпус может быть закрыт от воздействия различных факторов окружающей среды, он называется герметичным. При естественной циркуляции воздуха в нём, маркировка имеет буквы СГ.

В воздушных охладительных системах может присутствовать принудительная циркуляция. В этом случае устройство обозначается буквами СД.

Исполнение

Установки могут отличаться между собой особенностями исполнения. Если в них присутствует принудительная циркуляция воды, это позволит понять присутствующая на корпусе буква В. При наличии защиты от грозы и поражения молнией, конструкция имеет маркировку Г.

Система может обладать естественной циркуляцией масла или негорючего диэлектрика. При этом в некоторых разновидностях используется защита с азотной подушкой. В ней нет расширителей, выводов во фланцах стенок бака. Обозначение имеет букву З.

Литая изоляция обозначается как Л. Подвесное исполнение определяет буква П. Усовершенствованная категория аппаратов обозначается как У. Они могут иметь автоматические РПН.

Оборудование с выводами и расширителем, установленными на фланцах стенках бака, маркируется буквой Ф. Энергосберегающий аппарат имеет пониженные потери энергии на холостом ходу. Его обозначают буквой Э.

Назначение

После категории особенностей исполнения представляется информация о назначении и области применения оборудования. Маркировка с буквой Б говорит о способности конструкции прогревать грунт или бетон зимой. Такое же обозначение может иметь трансформатор, предназначенный для станков буровых.

При электрификации железной дороги нужны установки с особыми свойствами и характеристиками. Они маркируются буквой Ж. Устройства с обозначением М эксплуатируются на металлургических комбинатах.

При передаче постоянного тока по линии нужны конструкции класса П. Агрегаты для обеспечения работы погружных насосов обозначаются как ПН.

Если агрегат применяется для собственных нужд электростанции, он относится к категории С. Тип ТО применяется для обработки грунта и бетона при высокой температуре, обеспечения электроэнергией временного освещения и ручного инструмента.

В угольных шахтах применяют трансформаторы разновидности Ш, а в системе питания электричеством экскаватора – Э.

Цифры

После перечисленных обозначений могут следовать числовые значения. Это номинальное напряжение обмотки в кВ, мощность в кВА. Для автотрансформаторов добавляется информация о напряжении обмотки СН.

В маркировке может присутствовать первый год выпуска представленной конструкции. Мощность агрегатов может составлять 20,40, 63, 160, 630, 1600 кВА и т. д. Этот показатель подбирают в соответствии с эксплуатационными условиями. Существует оборудование более высокой мощности. Этот параметр может достигать 200, 500 МВА.

Продолжительность применения трансформаторов советского производства составляет порядка 50 лет. Поэтому в современных энергетических коммуникациях может применяться оборудование, выпущенное до 1968 г. Их периодически совершенствуют и реконструируют при капитальном ремонте.

Примеры

Чтобы понимать, как трактовать информацию на корпусе аппаратуры, следует рассмотреть несколько примеров маркировок. Это могут быть следующие трансформаторы:

  1. ТДТН-1600/110. Трехфазный класс техники понижающего типа. Он имеет масляное принудительное охлаждение, а также устройство РПН. Номинальная мощность равняется 1600, а напряжение ВН обмотки – 110 кВ.
  2. АТДЦТН-120000/500/110-85. Автотрансформатор, который применяется в трехфазной сети. Он имеет три обмотки. Масляная система охлаждения имеет принудительную циркуляцию. Есть устройство РПН. Номинальная мощность составляет 120 МВА. Устройство понижает напряжение и работает между сетями 500 и 110 кВ. Разработка 1985 года.
  3. ТМ-100/10 – двухобмоточный агрегат, который рассчитан для работы в трехфазной сети. Масляная система циркуляции имеет естественное перемещение жидкости. Изменение напряжения происходит при помощи ПБВ узла. Номинальная мощность составляет 100 кВА, а класс обмотки – 10 кВ.
  4. ТРДНС-25000/35-80. Аппарат для трехфазной сети с двумя расщеплёнными обмотками. Охлаждение производится посредством принудительной циркуляции масла. В конструкции есть регулятор РПН. Применяется для нужд электростанции. Мощность агрегата составляет 25 МВА. Класс напряжения обмотки – 35 кВ. Конструкция разработана в 1980 году.
  5. ОЦ-350000/500. Двухобмоточное устройство для однофазной сети повышающего класса. Применяется масляное охлаждение при помощи принудительного движения жидкости. Мощность 350 МВА, напряжение обмотки 500 кВ.
  6. ТСЗ-250/10-79. Экземпляр для трехфазной сети с сухим способом охлаждения. Корпус защищённый. Мощность составляет 250 кВА, а обмотки – 10 кВ. Устройство создано в 1979 г.
  7. ТДЦТГА-350000/500/110-60. Трехобмоточный прибор для трехфазной сети. Применяется для повышения напряжения. Трансформация происходит по принципу НН-СН и НН-ВН. Конструкция разработана в 1960 году.

Видео: Классификация трансформаторов

Рассмотрев особенности маркировки различных видов трансформаторов, можно правильно применять их на объекте. Знание обозначений позволяет понимать функции, основные технические характеристики подобного оборудования. Маркировка, включающая в себя буквы и цифры, соответствует ГОСТам, применяемым в процессе изготовления специальной техники.

Напряжение и ток — Вопросы и ответы по электронике

Почему напряжение и ток электроники?

В этом разделе вы можете выучить и попрактиковаться в вопросах по электронике на основе «Напряжение и ток» и улучшить свои навыки, чтобы пройти собеседование, конкурсные экзамены и различные вступительные испытания (CAT, GATE, GRE, MAT, банковский экзамен, железнодорожный экзамен и т. Д. .) с полной уверенностью.

Где я могу получить вопросы и ответы о напряжении и токе электроники с пояснениями?

IndiaBIX предоставляет вам множество полностью решенных вопросов и ответов по электронике (напряжение и ток) с пояснениями.Решенные примеры с подробным описанием ответов, даны пояснения, которые легко понять. Все студенты и первокурсники могут загрузить вопросы викторины по электронному напряжению и току с ответами в виде файлов PDF и электронных книг.

Где я могу получить вопросы и ответы на собеседовании по напряжению и току электроники (тип цели, множественный выбор)?

Здесь вы можете найти объективные вопросы и ответы для собеседований и вступительных экзаменов.Также предусмотрены вопросы с множественным выбором и вопросы истинного или ложного типа.

Как решить проблемы с напряжением и током электроники?

Вы можете легко решить все вопросы по электронике, основанные на напряжении и токе, выполнив упражнения объективного типа, приведенные ниже, а также получите быстрые методы решения проблем с электроникой, напряжением и током.

Упражнение: напряжение и ток — общие вопросы

1.

Какой цветовой код у резистора 220 5%?

А. Красный, Красный, Коричневый, Золотой
Б. Оранжевый, Оранжевый, Черный, Золотой
C. Красный, Красный, Черный, Золотой
D. Красный, красный, коричневый, серебристый

Ответ: Вариант А

Пояснение:

Серия цветовой кодировки резистора
:

Черный 0
Коричневый 1
Красный 2
Апельсин 3
Желтый 4
Зеленый 5
Синий 6
Фиолетовый 7
Серый 8
Белый 9
Нет 20%
Серебро 10%
Золото 5%

Поэтому красный, красный, коричневый, золотой
           2 2 10  1  5%

 = 22 x 10 = 220 Ом 5% (допуск).

Пояснение к видео: https://youtu.be/8YHFQCqBGcA









Трехфазное питание, значения напряжения и тока

Трехфазное соединение звездой: линия, фазный ток, напряжения и мощность в конфигурации Y

Что такое соединение звездой (Y)?

Звездное соединение ( Y ) Система также известна как Трехфазная четырехпроводная система ( 3-фазная 4-проводная ) и является наиболее предпочтительной системой для распределения питания переменного тока, а для передачи — Delta соединение обычно используется.

В системе соединения Star (также обозначается как Y ) начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку. Или

Звездное соединение получается путем соединения вместе одинаковых концов трех катушек, либо «Пуск», либо «Завершение». Остальные концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой , которая представлена ​​ N .(Как показано на рис. 1)

Звездное соединение также называется трехфазной 4-проводной системой (3-фазная, 4-проводная).

Также читайте:

Если сбалансированная симметричная нагрузка подключена к трехфазной системе параллельно, то три тока будут течь по нейтральному проводу, количество которых будет одинаковым, но они будут отличаться на 120 ° (не в фазе) , следовательно, векторная сумма этих трех токов = 0. т.е.

I R + I Y + I B = 0 …………….Victorially

Напряжение между любыми двумя клеммами или напряжение между линией и нейтралью (точка звезды) называется фазным напряжением или напряжением звезды, обозначенным как V Ph . Напряжение между двумя линиями называется линейным напряжением или линейным напряжением и обозначается V L .

Соединение звездой (Y) Трехфазное питание, значения напряжения и тока

Значения напряжения, тока и мощности при соединении звездой (Y)

Теперь мы найдем значения сетевого тока, линейного напряжения, фазного тока, фазы Напряжения и мощность в трехфазной системе переменного тока звездой.

Линейные напряжения и фазные напряжения при соединении звездой

Мы знаем, что линейное напряжение между линией 1 и линией 2 (из рис. 3а) составляет

В RY = V R — V Y …. (Разность векторов)

Таким образом, чтобы найти вектор V RY , увеличьте вектор V Y в обратном направлении, как показано пунктирной линией на рисунке 2 ниже. Точно так же на обоих концах вектора V R и Vector V Y образуют перпендикулярные пунктирные линии, которые выглядят как параллелограмм, как показано на рис. (2).Диагональная линия, разделяющая параллелограмм на две части, показывает значение V RY . Угол между векторами V Y и V R составляет 60 °.

Следовательно, если

V R = V Y = V B = V PH

, то

V RY = 2 x V PH x Cos (60 ° / 2)

= 2 x V PH x Cos 30 °

= 2 x V PH x (√3 / 2) …… Так как Cos 30 ° = √3 / 2

V RY = √3 V PH

Аналогично,

V YB = V Y — V B

V YB = √3 V PH

и25 V = V B — V R

V BR = √3 V PH

Следовательно, доказано, что V RY = V YB = V BR является линейные напряжения (V L ) при соединении звездой , следовательно, при соединении звездой;

V L = √3 V PH или V L = √3 E PH

Линейные и фазовые напряжения при соединении звездой

Из рисунка 2 видно, что;

  • Линейные напряжения отстоят друг от друга на 120 °
  • Линейные напряжения на 30 ° опережают соответствующие фазные напряжения
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает (30 ° + Ф) от соответствующего сетевого напряжения.

Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником

Линейные токи и фазные токи при соединении звездой

Из рис. (3a) видно, что каждая линия соединена последовательно с отдельной фазной обмоткой, поэтому значение Линейный ток такой же, как и в фазных обмотках, к которым подключена линия. т.е.

  • Ток в линии 1 = I R
  • Ток в линии 2 = I Y
  • Ток в линии 3 = I B

Поскольку текущие токи во всех трех линиях одинаковы, и индивидуальный ток в каждой строке равен соответствующему фазному току, следовательно;

I R = I Y = I B = I PH ….Фазный ток

Линейный ток = Фазный ток

I L = I PH

Проще говоря, значения линейных токов и фазных токов одинаковы в Star Connection .

Соединение звездой (Y): значения линейных токов и напряжений, а также фазных токов и напряжений
Мощность при соединении звездой

В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Или сумма всех трех фазных мощностей — это полная активная или истинная мощность.

Следовательно, полная активная или истинная мощность в трехфазной системе переменного тока;

Общая истинная или активная мощность = 3-фазная мощность

Или

P = 3 x V PH x I PH x CosФ … .. уравнение… (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении звездой;

I L = I PH

V PH = V L / √3 ….. (От В L = √3 В PH )

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x (V L / √3) x I L x CosФ …….…. (V PH = V L / √3)

P = √3 x√3 x (V L / √3) x I L x CosФ….… {3 = √3x√3 }

P = √3 x V L x I L x CosФ

Следовательно, доказано;

Питание в звездообразном соединении ,

P = 3 x V PH x I PH x CosФ или

P = √3 x V L x I L x CosФ

То же объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ No.1)

Аналогично,

Общая реактивная мощность = Q = √3 x V L x I L x SinФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током, а не между линейным током и линейным напряжением.

Полезная информация : Реактивная мощность индуктивной катушки принимается как положительная (+), а у конденсатора — как отрицательная (-).

Также полная кажущаяся мощность трех фаз;

Полная полная мощность = S = √3 x V L x I L Или,

S = √ (P 2 + Q 2 )

Также читается:

POWER ОСНОВЫ КАЧЕСТВА: ПАДКИ ИЛИ ПЕРЕПАДЫ НАПРЯЖЕНИЯ

Падение напряжения или Падение напряжения (термин IEC) определяется IEEE 1159 как снижение уровня среднеквадратичного напряжения до 10% — 90% (1% — 90% для EN 50160) от номинального при промышленной частоте для продолжительности от ½ цикла до одной (1) минуты.Кроме того, проседание напряжения классифицируется как явление кратковременного изменения напряжения, которое является одной из общих категорий проблем качества электроэнергии.

Продолжительность провалов (провалов) напряжения подразделяется на три категории: мгновенные (от ½ цикла до 30 циклов), мгновенные (от 30 циклов до 3 секунд) и временные (от 3 секунд до 1 минуты). Эти продолжительности предназначены для согласования с типичными временами срабатывания защитных устройств, а также с разделениями продолжительности, рекомендованными международными техническими организациями.Провалы широко признаны одними из наиболее распространенных и важных аспектов проблем качества электроэнергии, влияющих на коммерческих и промышленных потребителей — они практически незаметны при наблюдении за миганием освещения, но многие производственные процессы были бы остановлены. Возможные последствия провалов напряжения могут заключаться в отключении системы или снижении эффективности и срока службы электрического оборудования, особенно двигателей. Поэтому такие нарушения особенно проблематичны для промышленности, где неисправность устройства может привести к огромным финансовым потерям.

Падение напряжения (провал)

Использование терминологии в отношении провалов (провалов) напряжения


Термин напряжение провал уже много лет используется в сообществе специалистов по качеству электроэнергии для описания определенного типа нарушения качества электроэнергии — кратковременного снижения напряжения. Согласно определению МЭК для этого явления: напряжение провал . Эти два термина считаются взаимозаменяемыми. Обычно провисание является предпочтительным в США, а провисание распространено в европейских странах.

Терминология, используемая для описания величины просадки напряжения, часто сбивает с толку. Согласно IEEE 1159-1995, рекомендуемое использование — «провисание до 65%», что означает, что линейное напряжение снижается до 65% от нормального значения, а не на 65%. Использование предлога «из» (например, «прогиб на 65%» или подразумевается в «прогибе на 65%») не рекомендуется.Это предпочтение согласуется с практикой IEC и с большинством анализаторов помех, которые также сообщают остаточное напряжение. Подобно тому, как неопределенное обозначение напряжения принято для обозначения межфазного потенциала, неопределенная величина провала будет относиться к оставшемуся напряжению. По возможности следует указать номинальное или базовое напряжение и остаточное напряжение.

Пример провала напряжения до 65%
Распространенные причины провалов или провалов напряжения

Падения напряжения обычно вызываются погодными условиями и проблемами с коммунальным оборудованием, которые обычно приводят к системным сбоям в системе передачи или распределения.Например, неисправность в цепи параллельного фидера приведет к падению напряжения на шине подстанции, которое затронет все другие фидеры, пока неисправность не будет устранена. Та же самая концепция применима к неисправности где-то в системе передачи. Большинство неисправностей в системе передачи и распределения коммунальных услуг — это неисправности одной линии на землю (SLG).

Падения напряжения также могут быть вызваны переключением больших нагрузок или запуском больших двигателей. Для иллюстрации, асинхронный двигатель может потреблять в шесть-десять раз ток полной нагрузки во время запуска.Если величина тока относительно больше, чем доступный ток повреждения в этой точке системы, падение напряжения может стать значительным.

Падение напряжения, вызванное запуском двигателя
Кроме того, провалы напряжения могут повлиять на большие площади, особенно если неисправность возникает на входе. События обычно начинаются в системе передачи или распределения — неисправности и переключение.
Покрытие зоны провала напряжения


Защита от провалов или провалов напряжения
Подходы к устранению провалов напряжения
Провалы или провалы напряжения могут быть смягчены путем сотрудничества коммунального предприятия, конечного пользователя и производителя оборудования с целью уменьшения количества и серьезности последствий и снизить чувствительность оборудования к такой проблеме.
1. Включите в оборудование возможность прохождения провалов напряжения. Обычно это менее затратное и лучшее решение. Рекомендации по обеспечению прохождения провала напряжения следующие: Ø Производители оборудования должны иметь в наличии кривые пропускной способности для своих клиентов, которые должны начать требовать, чтобы эти типы кривых были доступны, чтобы они могли должным образом оценить оборудование. Ø Компания, закупающая новое оборудование, должна установить процедуру оценки важности оборудования.Если оборудование критично по своей природе, компания должна убедиться, что при покупке оборудования предусмотрена соответствующая проходимость. Ø Оборудование должно, по крайней мере, выдерживать просадки напряжения с минимальным напряжением 70 процентов (кривая ITIC). Более идеальная пропускная способность при кратковременных провалах напряжения составляла бы 50 процентов, как указано полупроводниковой промышленностью в SEMI F-47. 2. Подключите систему бесперебойного питания (ИБП) или другой тип стабилизатора питания к системе управления машиной.Это применимо, когда сами машины могут выдержать провисание или прерывание, но средства управления автоматически отключают их. 3. Резервный источник питания, способный поддерживать нагрузку в течение короткого периода времени. 4. Улучшения системы электроснабжения для значительного уменьшения количества провалов и отключений (например, замена реле). Величина: от 0,1 до 0,9 о.е. Источник: утилита или начало большой нагрузки конечными пользователями Продолжительность: от ½ цикла до 1 минуты Симптомы: неисправность или отключение Возникновение: в среднем 50 событий в год в США.

Артикул:

Боллен, М.(2000). Понимание проблем качества электроэнергии: провалы и прерывания напряжения .

Дуган, Р., Макгранаган, М., Сантосо, С., и Бити, Х.В. (2004). Качество электроэнергетических систем (2-е изд.) . Нью-Йорк: Макгроу-Хилл. IEEE 1159-1995. Рекомендуемая практика мониторинга качества электроэнергии .

Ленг, О.С. (2001). Моделирование проблем качества электроэнергии

Напряжение и ток | Клуб электроники

Напряжение и ток | Клуб электроники

Следующая страница: Метры

См. Также: Мультиметры | Закон Ома

Напряжение и ток жизненно важны для понимания электроники, но их довольно сложно понять, потому что мы не можем видеть их напрямую.


Напряжение — это причина, ток — это следствие

Напряжение пытается заставить ток течь, и ток будет течь, если цепь замкнута. Напряжение иногда называют «толчком» или «силой» электричества, на самом деле это не сила, но это может помочь вам представить, что происходит. Возможно наличие напряжения без тока, но ток не может течь без напряжения.

Напряжение и ток
Переключатель замкнут, замыкая
цепь, так что ток
может течь.

Напряжение, но без тока
Переключатель разомкнут, значит,
цепь разорвана и ток
не может течь.

Нет напряжения и нет тока
Без элемента
нет источника напряжения, поэтому ток
не может течь.


Напряжение, В

  • Напряжение — это мера энергии , переносимой зарядом .
    Строго говоря: напряжение — это «энергия на единицу заряда».
  • Собственное название напряжения — разность потенциалов или p.d. коротко, но в электронике этот термин используется редко.
  • Напряжение подается от батареи (или источника питания).
  • Напряжение используется в компонентах , но не в проводах.
  • Мы говорим напряжение на компоненте.
  • Напряжение измеряется в В , В .
  • Напряжение измеряется вольтметром , подключенным по параллельно .
  • Символ В используется для напряжения в уравнениях.


Параллельное подключение вольтметра


Напряжение в точке и 0 В (ноль вольт)

Напряжение — это разница в между двумя точками , но в электронике мы часто ссылаемся на напряжения в точке означает разность напряжений между этой точкой и точкой отсчета 0В (ноль вольт).

Нулевое напряжение может быть в любой точке цепи, но для согласованности обычно это отрицательная клемма аккумулятора или источника питания .Вы часто будете видеть принципиальные схемы помечен как 0V в качестве напоминания.

Возможно, вам будет полезно думать о напряжении как о высоте в географии. Ориентир нулевой высоты — это средний (средний) уровень моря, и все высоты отсчитываются от этой точки. Ноль вольт в электронной схеме подобен среднему географическому уровню моря.

Нулевое напряжение для цепей с двойным питанием

Для некоторых цепей требуется двойной источник питания с тремя соединениями питания , как показано на диаграмма.Для этих схем нулевого вольт опорная точка является средним между терминалом две части поставки.

На сложных принципиальных схемах с использованием двойного источника питания символ заземления часто используется для обозначения подключение к 0В, это помогает уменьшить количество проводов, нарисованных на схеме.

На схеме показано двойное питание ± 9 В, средняя клемма — 0 В.



Ток, I

  • Ток — это скорость потока заряда .
  • Текущий не израсходован , то, что течет в компонент, должно вытекать.
  • Мы говорим ток через компонент.
  • Ток измеряется в ампер (ампер) , A .
  • Ток измеряется амперметром , подключенным к серии .
    Для последовательного подключения необходимо разорвать цепь и поставить амперметр восполните зазор, как показано на схеме.
  • Символ I используется для тока в уравнениях.
    Почему я использовал текущую букву? … см. FAQ.

1 А (1 ампер) — довольно большой ток для электроники, поэтому часто используется мА (миллиампер). м (милли) означает тысячную:

1 мА = 0,001 А или 1000 мА = 1 А

Необходимость разрыва цепи для последовательного подключения означает, что амперметры затруднены для использования в паяных схемах. Большинство испытаний электроники выполняется с помощью вольтметров, которые могут быть легко подключенным без мешающих цепей.


Последовательное подключение амперметра


Напряжение и ток для компонентов серии

  • Сумма напряжений составляет для компонентов, соединенных последовательно.
  • Токи одинаковы через все компоненты, соединенные последовательно.

В этой цепи 4 В на резисторе и 2 В на светодиоде складываются. к напряжению батареи: 2В + 4В = 6В.

Ток через все части (аккумулятор, резистор и светодиод) составляет 20 мА.


Напряжение и ток для компонентов, подключенных параллельно

  • Напряжения одинаковы на всех компонентах, подключенных параллельно.
  • Сумма токов составляет для компонентов, соединенных параллельно.

В этой цепи батарея, резистор и лампа имеют напряжение 6 В.

Ток 30 мА через резистор и ток 60 мА через лампу складываются к току 90мА через аккумулятор.


Следующая страница: Метры | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *