Назначение системы зажигания автомобиля – Назначение систем зажигания | Система зажигания

Назначение систем зажигания | Система зажигания

Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя. Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между электродами свечи зажигания, установленной в головке цилиндров. Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.

Рис. Схема батарейной системы зажигания

Система зажигания состоит из следующих основных элементов:

  • источник тока ИТ, функцию которого выполняет аккумуляторная батарея или генератор
  • выключатель ВК цепи электроснабжения (выключатель зажигания)
  • датчик Д углового положения коленчатого вала
  • регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
  • источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
  • силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тири­стор)
  • распределитель Р импульсов высокого напряжения по свечам
  • помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
  • свечи зажигания СВ, на которые подается высокое вторичное напряжение

В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). Система зажигания от магнето принципиально отличается от батарейной тем, что источник электроэнергии в ней — магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.

Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы. Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.

Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых на­чинается развитие химической реакции оксидирования топлива, со­провождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:

  • начальная, в которой формируется пламя, инициированное ис­кровым разрядом в свече
  • основная, в которой пламя распространяется на большую часть камеры сгорания
  • конечная, в которой пламя догорает у стенок цилиндра

Рис. Система зажигания с накоплением энергии:
а — в магнитном поле; б — в электрическом поле

Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.

Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивле­нием в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.

Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50—225.

В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2. В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2. Конденсатор предварительно за­ряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.

ustroistvo-avtomobilya.ru

Система зажигания автомобиля: предназначения, устройство, принцип работы

Система зажигания авто предопределена для создания искрового разряда, распределения его по свечам зажигания и все это в подходящий момент работы мотора. В определенных моделях авто импульсы системы поступают на блок управления с помощью погружного топливного насоса. В дизельных моторах зажигание случается во время впрыска топливной смеси при такте сжатия.

Система зажигания бывает трех типов:

  • Контактная. Появление импульсов осуществляется в тот миг, когда контакты находятся в стадии разрыва.
  • Бесконтактная. Появлению импульсов способствует коммутатор (генератор импульсов).

  • Микропроцессорная. Механизм представляет собой электронный прибор, управляющий моментом воспламенения искры, а также и другими системами транспортного средства.

В двухтактных силовых агрегатах, для работы которых не нужен внешний источник питания, устанавливают системы от магнето. Магнето – это самостоятельное устройство, которое объединяет источник тока и катушку зажигания.

Все эти системы используют единый принцип для своей работы, а отличаются лишь методом образования управляющего импульса.

Строение системы зажигания:

  1. Источник питания. Во время запуска двигателя машины источником питания служит аккумулятор, а во время его эксплуатации – генератор авто.
  2. Замок зажигания — приспособление, благодаря которому осуществляется передача напряжения. Выключатель (замок зажигания) есть механический либо электрический.
  3. Накопитель энергии. Это устройство, главная роль которого в накоплении и преобразовании энергии в достаточном количестве для образования разряда меж электродами свечки зажигания. В устройстве современных автомобилей применяются такие накопители: емкостные, индуктивные. Первый вид накопителя представлен в виде емкости, использующей высокое напряжение для накапливания заряда, который в виде энергии поступает в определенное время на свечку. Второй вид накопителя, то есть накопитель индуктивный имеет вид катушки зажигания. Сначала первичная обмотка подсоединяется к плюсовому полюсу, а через прибор разрыва – к минусовому. Работающее устройство разрыва способствует появлению напряжения самоиндукции в обмотке. Относительно вторичной обмотки, то в ней появляется напряжение в количестве достаточном для того чтобы пробить воздушный зазор свечки.
  4. Свечки зажигания. Каждая свеча – это приспособление в виде изолятора из фарфора, накрученного на металлическую резьбу и имеющего два электрода, расположенные в интервале от 0,15 до 0,25 мм один от другого. Первым электродом является центральный проводник, а вторым – резьба металлическая.

  1. Система распределения зажигания. Предназначение системы – снабжение в необходимое мгновение энергией свечки зажигания. Она состоит из: распределителя (коммутатора), а также блока управления.

Распределитель зажигания  – это приспособление, распределяющее высокое напряжение по электропроводам, подсоединенным к свечкам цилиндра. Этот процесс может иметь статическую или механическую природу. Статический распределитель не имеет в своей конструкции вращающихся деталей. В этом случае катушка зажигания прикрепляется прямо к свечке, а управление процессом осуществляется не чем иным как блоком управления зажиганием. Силовой агрегат, имеющий четыре цилиндра, будет иметь в своей конструкции и 4 катушки. Высоковольтные провода в этой системе не применяются. Что касается механического распределителя зажигания, то это устройство представлено в виде вала, запуск которого осуществляется при запуске двигателя, а распространение напряжения по проводам осуществляется с помощью специального «бегунка».

Коммутатор – это электронное приспособление, которое применяется для создания импульсов, приводящих в действие автотрансформатор (катушку).

Блок управления системой зажигания существует в виде микропроцессорного механизма, который устанавливает тот момент, когда нужно подать импульс в катушку. При этом учитываются показатели лямбда-зондов, коленвала, распредвала, температурные показатели.

Особенность функционирования

Система зажигания классическая функционирует следующим образом. Кулачки, активировавшиеся с помощью обращения вала привода трамблера, создают «разрыв», передаваемый на первичную обмотку авторансформатора заряд в размере 12 вольт. После исчезновения напряжения в обмотке образовывается ЭДС самоиндукции, а в обмотке вторичной зарождается напряжение в размере около 30 тысяч вольт. Далее высокое напряжение появляется в распределителе, а потом расходится на свечки в том количестве, которое требуется во время периода работы силового агрегата. В этом случае такого напряжения вполне достаточно для того чтобы пробить искровым зарядом зазор воздуха между электродами свечек зажигания.

Для полного перегорания топлива необходим процесс опережения зажигания. Учитывая то, что топливная смесь перегорает не сразу, ее нужно зажечь немного заранее. Миг подачи искры должен быть четко отрегулирован, ведь в случае несвоевременного зажигания может иметь место потеря мощности двигателя, повышенная детонация.

qvarto.ru

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ. История электротехники

8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ

Низковольтная магнитоэлектрическая машина, названная впоследствии «магнето низкого напряжения», была впервые применена для зажигания двигателей внутреннего сгорания (ДВС) в 1875 г. От магнето осуществлялось зажигание на отрыв — внутри цилиндра ДВС помещались два электрода, которые механическим путем раздвигались. В дальнейшем система была дополнена индукционной катушкой зажигания (бобиной), получавшей питание от магнето низкого напряжения, и зажигание стало осуществляться электрической искрой высокого напряжения. В первоначальных конструкциях магнето обмотка якоря совершала качательное движение в поле постоянного магнита, затем движение стало вращательным.

Распределение энергии зажигания по цилиндрам первоначально осуществлялось на стороне низкого напряжения. В частности, на первых моделях автомобиля «Форд» устанавливалось по числу цилиндров четыре катушки зажигания, четыре электромагнитных прерывателя и магнето низкого напряжения.

Однако после 1910 г. система с магнето низкого напряжения была вытеснена системой с магнето высокого напряжения. В то же время был осуществлен переход на распределение высокою напряжения по свечам.

Магнето высокого напряжения было изобретено в 1900 г. М. Будевиллем и усовершенствовано в 1901 г. Г. Хонольдом в фирме «Бош» (Германия).

Выпуск отечественных автомобильных магнето был освоен с использованием конструкции магнето фирмы «Сцентилла» (Чехословакия).

В своем окончательно сформированном виде магнето отечественных автомобилей представляло собой однофазную электрическую машину переменного тока с двух- или многополюсным ротором, несущим на себе постоянные магниты с полюсными наконечниками и вращающимся между выступами магнитопровода трансформатора высокого напряжения, ток в первичной обмотке которого коммутировался прерывательным механизмом. При разрыве тока во вторичной обмотке наводилось высокое напряжение (10–17 кВ), подводящееся через распределительный механизм к свечам. Регулировка момента искрообразования (опережения зажигания) производилась либо вручную, либо центробежным автоматом.

Совершенствование конструкции магнето шло в основном в направлении применения постоянных магнитов с большим запасом магнитной энергии.

Недостатком магнето является малое вторичное напряжение при низких частотах вращения и, в частности, при пуске. Поэтому батарейная система зажигания в 20–30-х годах нашего века стала вытеснять магнето сначала в США, потом в Европе.

На легковых автомобилях «Форд-А» и грузовых «Форд-АА», выпуск которых был начат в 1927–1928 гг., уже было установлено батарейное зажигание.

Зажигание от магнето применялось на первых отечественных грузовых автомобилях завода АМО (ЗИЛ) «АМО-Ф-15», выпуск которых начался в 1924 г.

Магнето дожило до наших дней в виде магдино — совокупности электрического генератора и магнето, которое устанавливается на мопеды, мотоциклы легкого класса и применяется в комплекте с вынесенным трансформатором высокого напряжения и полупроводниковым коммутатором.

В батарейном зажигании электрический ток, получаемый от аккумуляторной батареи, превращается в высокое напряжение индукционной катушкой (катушкой зажигания — бобиной). Основными элементами этой системы являются выключатель зажигания, прерыватель-распределитель и катушка зажигания. Число витков вторичной обмотки катушки зажигания в 50–250 раз больше, чем первичной. Поэтому при размыкании тока в первичной обмотке прерывателем исчезающий магнитный поток наводит во вторичной обмотке высокое напряжение, поступающее через бегущий контакт распределителя на свечи.

Первоначально регулировка момента зажигания осуществлялась вручную («Форд-А», «Форд-АА», Г A3-А, ГАЗ-АА и др.), затем появился центробежный регулятор опережения зажигания, изменяющий момент зажигания по скорости (Ml, ЗИС-5, ЗИС-101), а затем и вакуумный регулятор, осуществляющий регулировку по нагрузке (М20 «Победа», ГАЗ-51, ЗИС-150). В окончательном виде прерыватель-распределитель современных автомобилей содержит оба этих регулятора.

Катушка зажигания классической батарейной системы зажигания имеет разомкнутый магнитопровод, т.е. обмотки располагаются на стержневом сердечнике, набранном из листов электротехнической стали.

С изобретением в 1948 г. транзистора, появилась возможность устранить существенный недостаток контактной батарейной системы зажигания — повышенный износ контактов прерывателя. Первоначально возникли контактно-транзисторные системы («Дженерал моторс» — 1962 г., отечественные — 1966 г.), где ток в катушке зажигания коммутировался транзистором, базовая цепь которого управлялась контактами прерывателя. Применение контактно-транзисторной системы позволило увеличить запас энергии в катушке, что благотворно сказалось на зажигании.

С появлением контактно-транзисторного зажигания на автомобилях возникло новое изделие — электронный коммутатор, включающий в себя силовой коммутирующий транзистор, схему его управления и защиты.

Благодаря простоте и дешевизне контактно-транзисторная система более четверти века обеспечивала нормальное зажигание восьмицилиндровых бензиновых двигателей грузовых автомобилей ЗИЛ и ГАЗ.

Однако развитие электроники позволило перейти на бесконтактные электронные системы зажигания (США — 1964 г., СССР — 1973 г.).

В таких системах механический контактный прерыватель заменен датчиком, управляющим электронным коммутатором, — магнитоэлектрическим («Искра») или датчиком Холль («Бош», зажигание ВАЗ-2108).

Применение электронной системы зажигания с регулируемым временем накопления энергии, впервые установленной на автомобилях ВАЗ-2108, позволило избежать снижения вторичного напряжения с ростом частоты вращения ДВС.

Развитие электронной промышленности привело к появлению после 1967 г. на автомобилях интегральных микросхем. В 1973 г. фирма «Дженерал электрик» использовала в системе зажигания интегральную схему на монокристалле кремния.

Электронные системы позволили увеличить энергию воспламенения на свечах, но их развитие обеспечило и решение глобальных задач, связанных с экономией топлива и снижением токсичности отработанных газов. При этом был осуществлен переход на электронное управление углом опережения зажигания.

Аналоговая система управления углом опережения зажигания была установлена на автомобиле «Крайслер» в 1975 г. Однако аналоговые системы не нашли широкого распространения. В 1976 г. фирма «Дженерал моторc» применила цифровую систему управления углом опережения зажигания МИСАР. Центральным узлом системы являлся микропроцессор. Микропроцессор по заданной программе управлял блоком высокого напряжения, содержащим электронный коммутатор, катушку зажигания и переключатель, выполняющий функции распределителя. На отечественных автомобилях микропроцессорные системы появились в конце 80-х годов.

Электронные коммутаторы позволили повысить ток в первичной обмотке катушки зажигания и перейти на конструкцию с замкнутым магнитопроводом.

В рассмотренных выше системах накопления энергии, используемой затем для воспламенения смеси, осуществлялось в магнитном поле катушки зажигания. Однако в основном для двухтактных двигателей мопедов, мотоциклов легкого класса и т.п. нашли применение системы зажигания с накоплением энергии в конденсаторе. Конденсаторная система дополнительно содержит преобразователь напряжения бортовой сети в высокое для заряда конденсатора либо конденсатор заряжается от специальной обмотки генератора с повышенным напряжением. Коммутация в цепи конденсатор — первичная обмотка катушки зажигания осуществляется тиристором.

Первоначально искровые свечи зажигания имели разборную и неразборную конструкции, причем в отечественном производстве предпочтение было отдано разборной свече, у которой изолятор вместе с центральным электродом прижимался ниппелем, ввернутым в верхнюю часть корпуса свечи. Это позволяло заменять изолятор или очищать центральный электрод без извлечения корпуса свечи из головки блока цилиндров. Изолятор изготавливался из керамики или слюды, но слюда применялась только для гоночных двигателей.

До 1930 г. основным типом американских свечей были свечи с дюймовой резьбой в Европе — с метрической. В дальнейшем дюймовые свечи были вытеснены метрическими.

В настоящее время конструкция свечи стабилизировалась и применяется только в неразборном варианте. Свеча состоит из металлического корпуса, одного или нескольких боковых электродов, изолятора с центральным электродом и контактной головкой. Первоначально изоляторы автомобильных свечей изготавливались в основном из стеатита, сейчас из уралита, боркорунда, хилумина, синоксаля и т.п.

В настоящее время все большее распространение находят свечи с расширенным температурным диапазоном. Теплоотдача таких свечей увеличена за счет выполнения центрального электрода комбинированным.

Определенную специфику имеют провода, соединяющие распределительный механизм со свечами: подведение к свечам высокого напряжения (20–30 кВ) при малых значениях тока и излучении радиопомех. Обычно помехоподавление осуществляется резисторами, устанавливаемыми в свечах, распределителе или отдельно, а также экранированием всей системы. Однако помехоподавляющие свойства могут обеспечиваться и конструкцией самого провода. Провода такого типа бывают с распределенным активным сопротивлением (резистивный провод) и с распределенным активно-индуктивно-емкостным сопротивлением (реактивный провод).

Развитие электроники на современном этапе ведет к объединению систем управления зажиганием и топливоподачей двигателя, а также коробкой перемены передач и сцеплением.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о