Обьем цилиндра: Расчет объема цилиндра по диаметру и высоте в мм (мм3, см3, м3, л)

3

Проверить ответ поможет калькулятор .

Содержание

Как посчитать объем цилиндра — онлайн калькулятор

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать объем цилиндра

Чтобы посчитать объем цилиндра воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

Найти чему равен объем цилиндра (V) можно зная (либо-либо):

  • радиус r и высоту h цилиндра
  • диаметр d и высоту h цилиндра
  • площадь основания So и высоту h цилиндра
  • площадь боковой поверхности Sb и высоту h цилиндра

Подставьте значения в соответствующие поля и получите результат.

Зная радиус r и высоту h

Чему равен объем цилиндра если его радиус

r = ,

а высота

h = ?

Ответ: V =

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

V = π⋅r2⋅h

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3. 14156 ⋅ 22 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см3

Зная диаметр d и высоту h

Чему равен объем цилиндра если его диаметр

d = ,

а высота

h = ?

Ответ: V =

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

V = π⋅(d/2)2⋅h

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ (1/2)2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см3

Зная площадь основания S

o и высоту h

Чему равен объем цилиндра если площадь его основания

So = ,

а высота

h = ?

Ответ: V =

Чему равен объем цилиндра V если известны его площадь основания So и высота h?

Формула

V = So⋅h

Пример

Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см2, то:

V = 10 ⋅ 5 = 50 см3

Зная площадь боковой поверхности S

b и высоту h

Чему равен объем цилиндра если площадь его боковой поверхности

Sb = ,

а высота

h = ?

Ответ: V =

Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?

Формула

V = Sb2/4πh

Пример

Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см2, то:

V = 302/ 4 ⋅ 3. 14⋅ 5 = 900/62.8 = 14.33 см3

См. также

Калькулятор круглого цилиндра

Форма круглого цилиндра


r = радиус
ч = высота
В = объем
L = площадь боковой поверхности
T = площадь верхней поверхности

B = площадь базовой поверхности
A = общая площадь поверхности
π = пи = 3,1415926535898
√ = квадратный корень

Калькулятор Использование

Этот онлайн-калькулятор рассчитает различные свойства цилиндра по двум известным значениям. Он также рассчитает эти свойства с точки зрения PI π. Это правильный круглый цилиндр, верхняя и нижняя поверхности которого параллельны, но его обычно называют «цилиндром».

Единицы: Обратите внимание, что единицы измерения показаны для удобства, но не влияют на расчеты. Единицы используются для указания порядка результатов, таких как футы, футы 2 или фут 3 . Например, если вы начинаете с мм и знаете r и h в мм, ваши расчеты дадут V в мм

3 , L в мм 2 , T в мм 2 , B в мм 2 и A в мм 2 .

Ниже приведены стандартные формулы для цилиндра. Расчеты основаны на алгебраических манипуляциях с этими стандартными формулами.

Формулы цилиндра через r и h:

  • Рассчитать объем цилиндра:
    • В = πr 2 ч
  • Рассчитайте площадь боковой поверхности цилиндра (только кривизну снаружи)**:
    • Д = 2πrh
  • Рассчитайте площадь верхней и нижней поверхности цилиндра (2 круги):
    • Т = В = πr 2
  • Общая площадь поверхности закрытого цилиндра:
    • A = L + T + B = 2πrh + 2(πr
      2
      ) = 2πr(h+r)

** Рассчитывается площадь только боковой поверхности наружной стенки цилиндра. Чтобы рассчитать общую площадь поверхности, вам нужно будет также рассчитать площадь верха и низа. Вы можете сделать это с помощью круговой калькулятор.

Расчеты цилиндров:

Используйте следующие дополнительные формулы вместе с формулами выше.

  • По радиусу и высоте рассчитайте объем, площадь боковой поверхности и общую площадь поверхности.
    Вычислить V, L, A | Учитывая г, ч
    • используйте формулы выше
  • По заданным радиусу и объему рассчитайте высоту, площадь боковой поверхности и общую площадь поверхности.
    Вычислить h, L, A | Учитывая г, В
    • ч = В / πr 2
  • По заданным радиусу и площади боковой поверхности рассчитайте высоту, объем и общую площадь поверхности.
    Рассчитать h, V, A | Учитывая г, L
    • ч = л/2πr
  • Зная высоту и площадь боковой поверхности, рассчитайте радиус, объем и общую площадь поверхности.
    Рассчитать r, V, A | Учитывая h, L
    • r = л/2πh
  • Зная высоту и объем, рассчитайте радиус, площадь боковой поверхности и общую площадь поверхности.
    Вычислить r, L, A | Учитывая h, V
    • $r = √(В / πh)

Калькулятор объема

Ниже приведен список калькуляторов объема для нескольких распространенных форм. Пожалуйста, заполните соответствующие поля и нажмите кнопку «Рассчитать».

Калькулятор объема сферы


Калькулятор объема конуса


Калькулятор объема куба


Калькулятор объема баллона


Калькулятор объема прямоугольного резервуара

Длина (л) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Ширина (w) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Высота (ч) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
 

Калькулятор объема капсулы


Калькулятор объема сферической крышки

Для расчета укажите любые два значения ниже.

Базовый радиус (r) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Радиус шара (R) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Высота (ч) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
 

Калькулятор объема усеченного конуса

Верхний радиус (r) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Радиус дна (R) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Высота (ч) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
 

Калькулятор объема эллипсоида

Ось 1 (a) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Ось 2 (b) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Ось 3 (с) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
 

Калькулятор объема квадратной пирамиды


Калькулятор объема пробирки

Внешний диаметр (d1) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Внутренний диаметр (d2) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
Длина (л) милиярдыфутыдюймыкилометрыметрысантиметрымиллиметрымикрометрынанометрыангстремы
 

Связанные Калькулятор площади поверхности | Калькулятор площади

Объем – это количественная оценка трехмерного пространства, занимаемого веществом.

Единицей объема в СИ является кубический метр, или м 3 . По соглашению объем контейнера обычно представляет собой его вместимость и количество жидкости, которое он может вместить, а не объем пространства, которое вытесняет фактический контейнер. Объемы многих форм можно рассчитать с помощью четко определенных формул. В некоторых случаях более сложные формы можно разбить на более простые совокупные формы, и сумма их объемов используется для определения общего объема. Объемы других, еще более сложных форм, можно рассчитать с помощью интегрального исчисления, если существует формула для границы формы. Помимо этого, формы, которые не могут быть описаны известными уравнениями, могут быть оценены с использованием математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и однородна, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых из наиболее распространенных простых форм.

Сфера

Сфера — это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, равноудаленных от данной точки в его центре, где расстояние между центром и любой точкой на сфере равно радиусу r . Вероятно, наиболее известным сферическим объектом является идеально круглый шар. В математике существует различие между шаром и сферой, где шар представляет собой пространство, ограниченное сферой. Независимо от этого различия, шар и сфера имеют одинаковый радиус, центр и диаметр, и вычисление их объемов одинаково. Как и в случае с окружностью, самый длинный отрезок, соединяющий две точки сферы через ее центр, называется диаметром, д . Уравнение для расчета объема сферы приведено ниже:

объем = πr 3

EX: Клэр хочет наполнить уксусом идеально сферический воздушный шар радиусом 0,15 фута, чтобы использовать его в битве с водяным шаром против ее заклятого врага Хильды в ближайшие выходные. Необходимый объем уксуса можно рассчитать по приведенному ниже уравнению:

объем = 4/3 × π × 0,15 3 = 0,141 фута 3

Конус

Конус представляет собой трехмерную форму, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус образован подобно кругу набором отрезков, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, содержащую круг (или какое-либо другое основание). На этой странице рассматривается только случай конечного прямого кругового конуса. Конусы, состоящие из полулиний, некруглых оснований и т. д., которые простираются до бесконечности, рассматриваться не будут. Уравнение для расчета объема конуса выглядит следующим образом:

объем = πr 2 ч

где r — радиус, а h — высота конуса

ПРИМЕР: Беа полна решимости выйти из магазина мороженого с хорошо потраченными 5 долларами, заработанными тяжелым трудом. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, бесспорно, крупнее. Она определяет, что на 15 % предпочитает обычные сахарные рожки вафельным рожкам, и ей необходимо определить, превышает ли потенциальный объем вафельного рожка на ≥ 15 % объем сахарного рожка. Объем вафельного рожка с круглым основанием радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать с помощью приведенного ниже уравнения:

объем = 1/3 × π × 1,5 2 × 5 = 11,781 дюйма 3

Беа также вычисляет объем сахарного рожка и обнаруживает, что разница составляет < 15%, и решает купить сахарный рожок. . Теперь все, что ей нужно сделать, это использовать свою ангельскую детскую привлекательность, чтобы заставить персонал опустошить контейнеры с мороженым в ее рожок.

Куб

Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых сходятся в каждой из его вершин, и все они перпендикулярны соответствующим соседним граням. Куб является частным случаем многих классификаций фигур в геометрии, включая квадратный параллелепипед, равносторонний кубоид и правильный ромбоэдр. Ниже приведено уравнение для расчета объема куба:

объем = а 3
где a — длина ребра куба

ПРИМЕР: Боб, родившийся в Вайоминге (и никогда не покидавший штат), недавно посетил родину своих предков в Небраске. Потрясенный великолепием Небраски и окружающей средой, не похожей ни на что другое, с чем он когда-либо сталкивался, Боб понял, что ему нужно привезти часть Небраски домой с собой. У Боба есть кубический чемодан с длиной ребра 2 фута, и он вычисляет объем почвы, который он может унести с собой домой, следующим образом:

объем = 2 3 = 8 футов 3

Цилиндр

Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от заданной прямой оси. Однако в обычном употреблении «цилиндр» относится к прямолинейному круговому цилиндру, основаниями которого являются окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . . Уравнение для расчета объема цилиндра показано ниже:

объем = πr 2 ч
где r — радиус, а h — высота резервуара

ПРИМЕР: Кэлум хочет построить замок из песка в гостиной своего дома. Поскольку он решительно выступает за переработку отходов, он нашел три цилиндрические бочки с незаконной свалки и очистил их от химических отходов, используя средство для мытья посуды и воду. Каждая бочка имеет радиус 3 фута и высоту 4 фута, и Кэлум определяет объем песка, который может вместить каждая, используя приведенное ниже уравнение:

объем = π × 3 2 × 4 = 113,097 фута 3

Он успешно строит замок из песка в своем доме и, в качестве дополнительного бонуса, ему удается экономить электроэнергию на ночном освещении, так как его замок из песка светится ярко-зеленым в темноте. темнота.

Прямоугольный резервуар

Прямоугольный резервуар представляет собой обобщенную форму куба, стороны которого могут иметь различную длину. Он ограничен шестью гранями, три из которых сходятся в его вершинах и все перпендикулярны соответствующим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:

объем= длина × ширина × высота

ПРИМЕР: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к тортам. Она планирует пройти по тропе Калалау на Кауаи, и, хотя Дарби в отличной форме, она беспокоится о своей способности пройти тропу из-за отсутствия торта. Она решает упаковать только самое необходимое и хочет наполнить свой идеально прямоугольный пакет длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно тортом. Точный объем торта, который она может поместить в свою упаковку, рассчитывается ниже:

объем = 2 × 3 × 4 = 24 фута 3

Капсула

Капсула представляет собой трехмерную геометрическую форму, состоящую из цилиндра и двух полусферических концов, где полусфера представляет собой половину сферы. Отсюда следует, что объем капсулы можно рассчитать, комбинируя уравнения объема для сферы и прямого кругового цилиндра:

объем = πr 2 ч + πr 3 = πr 2 ( р + ч)

где r — радиус, а h — высота цилиндрической части. Джо может взять с собой капсулу времени, которую он хочет похоронить для будущих поколений в своем путешествии самопознания через Гималаи:

объем = π × 1,5 2 × 3 + 4/3 × π ×1,5 3 = 35,343 футов 3

Сферическая крышка

Сферическая крышка представляет собой часть сферы, отделенную от остальной части сферы плоскостью. Если плоскость проходит через центр сферы, сферическая шапка называется полусферой. Существуют и другие различия, в том числе сферический сегмент, где сфера сегментирована двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для расчета объема сферической шапки получено из уравнения для сферического сегмента, где второй радиус равен 0. Относительно сферической шапки, показанной в калькуляторе:

объем = πh 2 (3R — h)

Имея два значения, предоставленный калькулятор вычисляет третье значение и объем. Уравнения для преобразования между высотой и радиусом показаны ниже:

Учитывается R и R : H = R ± √r 2 — R 2

.0125 ч 2 + р 2
11 Даны R и h : r = √2Rh — h 2
где r — радиус основания, R — радиус сферы, а h — высота сферического колпачка

EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы тренироваться, он решает саботировать мяч для гольфа Джеймса. Он отрезает идеальный сферический колпачок от верхней части мяча для гольфа Джеймса и должен рассчитать объем материала, необходимого для замены сферического колпачка и смещения веса мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую срезал Джек, составляет 0,3 дюйма, объем можно рассчитать следующим образом:0014

объем = 1/3 × π × 0,3 2 (3 × 1,68 — 0,3) = 0,447 дюйма 3

К сожалению для Джека, Джеймс получил новую партию мячей за день до их игры, и все усилия Джека оказались напрасными.

Коническое усеченное сечение

Коническое усеченное сечение — это часть твердого тела, остающаяся после разрезания конуса двумя параллельными плоскостями. Этот калькулятор вычисляет объем для прямого круглого конуса специально. Типичные усеченные конусы, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы. Объем правого конического усеченного конуса рассчитывается по следующему уравнению:

объем = πh(r 2 + rR + R 2 )

где r и R — радиусы оснований, h — высота усеченного конуса

таким образом, чтобы мороженое оставалось упакованным внутри конуса, а поверхность мороженого находилась на одном уровне и была параллельна плоскости отверстия конуса. Она собирается начать есть свой рожок и оставшееся мороженое, когда ее брат хватает ее рожок и откусывает часть нижней части рожка, которая идеально параллельна ранее единственному отверстию. Беа теперь осталась с протекающим мороженым в правом коническом усеченном конусе, и ей нужно рассчитать объем мороженого, который она должна быстро съесть, учитывая высоту усеченного конуса 4 дюйма и радиусы 1,5 дюйма и 0,2 дюйма:

объем = 1/3 × π × 4(0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10,849 в 3

поверхность, которую можно описать как деформацию сферы за счет масштабирования направленных элементов. Центром эллипсоида называется точка, в которой пересекаются три попарно перпендикулярные оси симметрии, а отрезки, ограничивающие эти оси симметрии, называются главными осями. Если все три имеют разную длину, эллипсоид обычно называют трехосным. Уравнение для расчета объема эллипсоида выглядит следующим образом:

объем = πabc

где a , b и c длины осей мясо, поскольку он может поместиться в булочке в форме эллипса. Таким образом, Хабат выдалбливает булочку, чтобы максимально увеличить объем мяса, который он может поместить в свой бутерброд. Учитывая, что осевая длина его булочки составляет 1,5 дюйма, 2 дюйма и 5 дюймов, Хабат вычисляет объем мяса, который он может поместить в каждую выдолбленную булочку, следующим образом:

объем = 4/3 × π × 1,5 × 2 × 5 = 62,832 дюйма 3

Квадратная пирамида

Пирамида в геометрии представляет собой трехмерное тело, образованное путем соединения многоугольного основания с точкой, называемой его вершиной, где многоугольник — это фигура на плоскости, ограниченная конечным числом отрезков прямой линии. Существует множество возможных многоугольных оснований для пирамиды, но квадратная пирамида — это пирамида, в которой основание — квадрат. Другое различие, связанное с пирамидами, связано с расположением вершины. Вершина правильной пирамиды находится прямо над центром тяжести ее основания. Независимо от того, где находится вершина пирамиды, если ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды можно записать как:

Обобщенный объем пирамиды:

объем = бх

где b площадь основания и h высота

Объем квадратной пирамиды:

объем = а 2 ч

где a — длина края основания

ПРИМЕР: Ван очарован древним Египтом и особенно любит все, что связано с пирамидами. Будучи старшим из своих братьев и сестер Ту, Три и Форе, он может легко загнать их в загон и использовать по своему желанию. Воспользовавшись этим, Ван решает воспроизвести древние египетские времена и попросить своих братьев и сестер выступить в роли рабочих, строящих ему пирамиду из грязи с длиной ребра 5 футов и высотой 12 футов, объем которой можно рассчитать с помощью уравнения для квадрата. пирамида:

объем = 1/3 × 5 2 × 12 = 100 футов 3

Трубчатая пирамида

Трубка, часто также называемая трубой, представляет собой полый цилиндр, который часто используется для передачи жидкостей или газов. . Вычисление объема трубы по существу использует ту же формулу, что и для цилиндра ( объем = pr 2 h ), за исключением того, что в этом случае используется диаметр, а не радиус, и длина используется, а не высота. Таким образом, формула включает измерение диаметров внутреннего и внешнего цилиндров, как показано на рисунке выше, вычисление каждого из их объемов и вычитание объема внутреннего цилиндра из объема внешнего. С учетом использования длины и диаметра, упомянутых выше, формула для расчета объема трубы показана ниже:

объем = π
d 1 2 — d 2 2
4
л

, где d 1 — внешний диаметр, d 2 — внутренний диаметр, а l — длина трубы. Ее строительная компания использует только самые экологически чистые материалы. Она также гордится тем, что удовлетворяет потребности клиентов. У одного из ее клиентов есть загородный дом, построенный в лесу, через ручей. Он хочет более легкого доступа к своему дому и просит Беулу построить ему дорогу, обеспечив при этом свободное течение ручья, чтобы не мешать его любимому месту рыбалки. Она решает, что надоедливые бобровые плотины были бы хорошей точкой для прокладки трубы через ручей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *