Основные части генератора: Особенности генераторов переменного тока

Содержание

1.) Назвать основные части генератора постоянного тока и объяснить их назначение.

Генераторы и двигатели постоянного тока устроены одинаково.

Основные части машины: неподвижный статор, вращающийся якорь и щеточно-коллекторный узел. Статор (рис. 1, а) состоит из станины, главных и дополнительных полюсов с обмотками. Станина1представляет собой полый стальной цилиндр, на внутренней поверхности которого укрепляются главные2и дополнительные полюса3. На главных полюсах2размещается обмотка возбуждения4, которая питается постоянным током и служит для создания основного магнитного поля, постоянного во времени и неподвижного в пространстве. Дополнительные полюса3со своей обмоткой5предназначены для уменьшения искрения на коллекторе.

Рис. 3.1. Устройство генератора постоянного тока

2.) Объяснить принцип работы генератора постоянного тока.

При работе генератора используются явления электромагнитной индукции и механического действия магнитного поля на проводник с током. Генератору необходимо сообщить механическую энергию, для чего якорь приводится во вращение первичным двигателем. Кроме того, необходимо создать магнитное поле. Для этого по обмотке возбуждения пропускают постоянный ток. При вращении якоря в магнитном поле в его обмотке наводится ЭДС, пропорциональная величине магнитного потока и частоте вращения якоря.

,

где – конструктивный коэффициент ЭДС.

Если к щеткам генератора подключить нагрузку, то под действием ЭДС в цепи якоря появится ток . Ток якоря взаимодействует с магнитным полем, возникают электромагнитные силы и момент, направленный противоположно вращению якоря. Поэтому он является тормозным и преодолевается первичным двигателем.Величина момента пропорциональна магнитному потоку и току якоря.

3.) Как происходит самовозбуждение генератора? в каких случаях самовозбуждение невозможно?

По способу возбуждения генераторы постоянного тока делятся на три группы: генераторы независимого возбуждения, генераторы с самовозбуждением, генераторы с постоянными магнитами.

У генератора с независимым возбуждением обмотка возбуждения не имеет электрического соединения с обмоткой якоря и питается от постороннего источника постоянного тока (рис. 2).

У генератора с самовозбуждением обмотка возбуждения питается от якоря, и генератор не нуждается в постороннем источнике питания. По способу соединения обмотки возбуждения с обмоткой якоря генераторы с самовозбуждением делятся на три типа: параллельного, последовательного и смешанного возбуждения.

При параллельном возбуждении обмотка возбуждения соединяется параллельно с обмоткой якоря. Самовозбуждение обычно осуществляется при холостом ходе генератора.

4.) Что такое реакция якоря, как она влияет на работу генератора, как ее компенсировать?

Реакция якоря — воздействие магнитного поля, создаваемого током якоря электрической машины, на её главные полюса.

Наиболее эффективным средством уменьшения влияния реакции якоря является компенсационная обмотка. Она укладывается в специальные пазы главных полюсов и включается последовательно в цепь якоря. Магнитное поле компенсационной обмотки направлено встречно и, как следует из ее названия, компенсирует магнитное поле якоря. Ток компенсационной обмотки равен току якоря, поэтому компенсация происходит при всех режимах от холостого хода до полной нагрузки

Основные части генератора переменного тока

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.


Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где B – магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t – время, wt – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.


Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.


Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.


Рис. 4. Двигатель постоянного тока

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Блок автоматики и управления следит за работой электростанции и при необходимости корректирует и защищает в аварийных ситуациях.

В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.

Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».

← Предыдущая страница Следующая страница →

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.


Альтернатор постоянного тока

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.


Принцип действия генератора

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.


Якорь

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

Вам это будет интересно Пломба на счетчик

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.


Устройство машины постоянного тока

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).


Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.


Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.


Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.


Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Что такое генератор переменного тока, и кто его изобрел

Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.


Демонстрация рассматриваемого прибора в разрезе

Советуем изучить — Механические характеристики электроприводов

К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.

Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки. Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.

Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.


Демонстрация прибора с помощью простого магнита и контура

Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.

Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе. Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя

Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.


Использование графика для демонстрации переменного и постоянного электротоков

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.


Применение ГПТ

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.


Сварочный генератор

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

Части генератора и принцип их работы

Части генератора и принцип их работы

Генератор — резервный источник питания, используемый при отключении электроэнергии, вызванном аварийными ситуациями, ненастной погодой, регламентными работами и другими факторами, влияющими на первичные источники энергии. Подобно бытовым генераторам и их способности снабжать дома электроэнергией во время отключения электроэнергии, коммерческие генераторы имеют ту же функциональность в большем масштабе.

Генераторы чрезвычайно важны для промышленных и коммерческих объектов, поскольку эти здания в значительной степени зависят от оборудования, требующего высокой номинальной мощности. Из-за высоких требований к мощности коммерческих предприятий, коммерческие генераторы больше и имеют более прочные компоненты, большие двигатели и более высокую выходную мощность.

Перед установкой нового генератора важно знать, как он работает и что делает каждая из его частей, чтобы обеспечить его эффективность и безопасность тех, кто работает рядом с ним.

Как работает генератор?

Каждый компонент генератора играет ключевую роль в том, как генератор производит энергию. Понимание базовой механики генератора поможет вам укрепить его простоту в эксплуатации и функциональность.

Одна из самых важных вещей, которые нужно понять о любом генераторе, это то, что они не создают энергию. Вместо этого они преобразуют энергию в полезную мощность с использованием постоянного или переменного тока.

Генераторы постоянного тока (DC) требуют аккумуляторной батареи или электромагнитной индукции с однонаправленным потоком для производства токов. Переменные токи (AC) текут от нуля к положительному максимуму, обратно к нулю, затем вниз к отрицательному максимуму и обратно к нулю.

Наиболее часто используемыми коммерческими генераторами являются дизельные и газовые генераторы. Как правило, дизельные генераторы имеют бак, прикрепленный или соединенный с большим баком, который пользователи заполняют топливом, который выступает в качестве их основного источника топлива. Затем двигатель использует это топливо, преобразуя его в механическую энергию, заставляя его включаться в цепь для создания электрического тока.

Например, дизельный генератор запускается и автоматически вырабатывает электроэнергию при отключении электроэнергии. Он делает это путем преобразования энергии от сжигания топлива, используя тепло, выделяемое при сжатии воздуха.

Генераторы природного газа обычно подключаются к трубопроводу природного газа, если в месте установки имеется вспомогательное оборудование для обеспечения стабильной подачи топлива. В некоторых случаях можно переоборудовать генератор природного газа для работы на пропане (СНГ), а затем подключить его к более крупным резервуарам с пропаном на месте для работы в режиме ожидания.

Из каких частей состоит коммерческий генератор?

Генераторы незаменимы в аварийных ситуациях и при отключении электроэнергии и состоят из многих частей, которые способствуют их функционированию. Каждая часть генератора имеет уникальное назначение, которое позволяет машине правильно работать и подавать энергию туда, где она вам нужна.

Поскольку предприятия и компании так сильно зависят от электричества, чтобы обеспечить безопасность своих сотрудников, а продукты — функциональными или пригодными для использования, важно понимать, как работает ваш генератор и что делает каждая его часть. Вот ключевые компоненты генератора, которые вы должны знать, чтобы понять, откуда берется резервное питание и как эти машины обеспечивают его на вашей рабочей площадке:

1. Топливная система

Одной из жизненно важных частей коммерческого генератора является топливная система. Прежде чем генератор сможет вырабатывать механическую энергию, вы должны снабдить его источником топлива, чтобы он мог преобразовывать этот источник — природный газ или дизельное топливо — в химическую энергию, которая преобразуется в механическую энергию и, в конечном итоге, в электрическую мощность.

Оценивая топливную систему промышленного генератора, начнем с топливного бака дизель-генераторов. Топливные баки дизельного генератора могут быть либо вспомогательными, либо баком, установленным на генераторе, известным как базовый дизельный бак. Количество топлива, которое может вместить бак, определяет его возможности по выработке энергии с точки зрения продолжительности. Проще говоря, чем больше бак дизельного топлива, тем дольше он может работать для питания генератора и обеспечения резервного питания в случае отключения электроэнергии. Часто эти емкости дизельного топливного бака рассчитываются в зависимости от размера и мощности дизельного генератора в кВт, включая предполагаемое потребление топлива и нагрузку. Базовые баки для дизельного топлива часто дополняют дизельный генератор и приблизительно определяют, сколько времени генератор будет работать в зависимости от мощности. Например, дизельный генератор мощностью 300 кВт с базовым дизельным баком на 555 галлонов будет считаться базовым дизельным баком на 24 часа.

К баку подсоединены трубы или топливопроводы, ведущие к двигателю генератора. Эти топливоперекачивающие трубы могут быть над или под землей и транспортировать топливо от хранилища к двигателю. Топливная система также включает в себя насосы, которые используют давление электродвигателей для забора топлива из внешнего бака и впрыскивания его в цилиндр двигателя.

Когда речь идет о генераторах природного газа, эти типы генераторов, как правило, должны быть подключены к магистральному газоснабжению. Это позволяет генератору природного газа иметь стабильную подачу топлива, исключая какие-либо коммунальные работы, модернизацию или отключение газоснабжения из-за природных или техногенных катастроф. Это означает, что нет необходимости беспокоиться о емкости хранилища топлива, пока основное коммунальное предприятие продолжает работать.

Важным примечанием к системам впрыска топлива является то, что генераторы, работающие на природном газе и дизельном топливе, используют разные системы впрыска и не являются взаимозаменяемыми. Эти различные источники топлива требуют времени впрыска и других подобных параметров, характерных для типа топлива.

Любое избыточное топливо, не впрыснутое в цилиндр, возвращается в бак. В конечном счете, возврат топлива в бак может снизить мощность двигателя, поскольку возвращенное топливо имеет более высокую температуру, чем хранящееся топливо. Это потому, что он поглощает тепло от форсунок. Если температура становится слишком высокой, система отключается. По этой причине многие генераторы включают охладители топлива, которые помогают регулировать температуру топлива.

Еще одно важное замечание о топливных системах генераторов заключается в том, что они имеют контрольное оборудование, так что вы можете контролировать насосы, резервуары для хранения, запасы топлива и обнаружение утечек.

2. Двигатель

Двигатель является еще одним ключевым элементом в составе коммерческих генераторов. Подобно двигателям, работающим на природном газе или дизельным двигателям в автомобилях, в генераторных двигателях химическая энергия или ваш источник топлива преобразуется в механическую энергию.

Различные генераторы имеют разные объемы двигателей, что важно учитывать при выборе или обслуживании двигателя вашей машины. Объем двигателя напрямую зависит от максимальной выходной мощности генератора в лошадиных силах (л.с.). Этот аспект означает, что более крупные двигатели могут генерировать большее количество выходной энергии, в то время как двигатели меньшего размера имеют меньшую выходную мощность.

С максимальной выработкой энергии связана лошадиная сила, единица измерения мощности двигателя. Максимальная вырабатываемая мощность соответствует мощности в лошадиных силах, а это означает, что более крупные двигатели с большей выходной мощностью имеют большую мощность, чем модели меньшего размера.

Horsepower также более подробно объясняет важность регулирования температуры топливного бака. Поскольку возвратное топливо теплее, чем хранящееся топливо, температура хранящегося топлива затем повышается. На каждые 10 градусов по Фаренгейту, когда температура хранимого топлива превышает 100 градусов, мощность двигателя падает на 1%. Большие баки менее подвержены влиянию температуры возвращаемого топлива, что в конечном итоге позволяет более крупным двигателям продолжать работать с более высокой мощностью.

Размер двигателя генератора вашей компании будет соответствовать тому, сколько электроэнергии генератор должен производить. Более крупным компаниям и отраслям, которые в большей степени зависят от электричества, потребуются генераторы с более мощными двигателями.

Важно также отметить, что дизельные генераторы и генераторы, работающие на природном газе, отличаются тем, что двигатели генераторов, работающих на природном газе, имеют свечи зажигания и искровое зажигание, что следует учитывать при поиске резервного генератора. Это связано с тем, что генераторы природного газа потребуют более регулярных осмотров и технического обслуживания, чтобы гарантировать, что они могут продолжать работать с максимальной эффективностью, а также обеспечить соблюдение всех мер безопасности при эксплуатации генератора природного газа.

3. Генератор

Генератор переменного тока, также называемый генератором, превращает механическую энергию в электричество. Этот процесс начинается, когда двигатель сжигает топливо и передает его генератору. Генератор содержит два основных компонента, которые позволяют генератору эффективно и экономично производить энергию: статор и ротор.

Статор представляет собой стационарный компонент, содержащий набор электрических проводников, представляющих собой катушки, намотанные вместе с железным сердечником.

Ротор (Якорь) представляет собой движущийся компонент, создающий магнитную силу, заставляющую электроны двигаться и производящую электричество.

Статор — неподвижная часть генератора. Он содержит электрические проводящие катушки, намотанные вокруг железного сердечника. Ротор или якорь — это движущийся компонент, создающий магнитную силу. Магнитная сила заставляет электроны двигаться, что создает энергию.

В частности, ротор использует механическую энергию двигателя для движения вокруг статора и создания магнитного поля. Этот процесс создает различное напряжение или электрический потенциал между катушками статора, создавая переменный ток на выходе генератора.

4. Регуляторы напряжения

Автоматические регуляторы напряжения (АРН) — это автоматические устройства в генераторах, которые помогают поддерживать постоянный уровень напряжения. Являясь важным компонентом генераторов, они стабилизируют выходное напряжение, предотвращая колебания уровней напряжения и поддерживая переменный ток в нужном диапазоне уровней напряжения.

Эти регуляторы являются важной частью генератора, поскольку они помогают машине удовлетворять ваши коммерческие потребности в электроэнергии и требования к мощности вашего оборудования. Если генератор не поддерживает допустимое напряжение с постоянной скоростью, это негативно влияет как на производительность генератора, так и на работу любого оборудования, питаемого от генератора.

Все электроприборы и механизмы имеют различные диапазоны предпочтительного напряжения, в которых они работают с максимальной производительностью. Любой уровень напряжения выше или ниже этого диапазона может вызвать проблемы с производительностью или выход из строя устройства. Нерегулируемых генераторов или генераторов без автоматизированной системы регулирования напряжения недостаточно. Когда вырабатываемое напряжение постоянно меняется, это сокращает срок службы вашего прибора и самого генератора.

При длительном использовании несоответствующего напряжения эффективность вашего оборудования может необратимо снизиться и даже выйти из строя. Регулятор напряжения генератора помогает исключить повреждение оборудования или проблемы с безопасностью, вызванные колебаниями напряжения, поскольку АРН обеспечивают защиту от скачков напряжения, скачков напряжения и перегрузок генератора.

5. Системы охлаждения и выпуска

Постоянное использование генератора приводит к нагреву рабочих частей. Система охлаждения является неотъемлемой частью любого генератора для регулирования его температуры и предотвращения перегрева. Большинство генераторов имеют систему воздушного или жидкостного охлаждения для регулирования внутреннего тепла.

Генераторные системы с воздушным охлаждением полагаются на циркуляцию воздуха для снижения температуры генератора за счет всасывания воздуха из атмосферы и подачи его внутрь генератора. Одним из преимуществ этого типа системы охлаждения является то, что для нее не требуется насос охлаждающей воды или какие-либо соединительные шланги. Он также требует меньше обслуживания из-за простоты воздушной системы. Однако генераторы с воздушным охлаждением могут перегреваться при длительном использовании, что может привести к их выходу из строя или непоправимому повреждению.

В системах жидкостного охлаждения используются охлаждающие жидкости или масло с радиатором и водяным насосом для регулирования внутренней температуры генератора. Насос использует сеть шлангов для подачи охлаждающей жидкости к двигателю, где жидкость поглощает тепло и направляется к радиатору для воздушного охлаждения. Эти системы охлаждения стоят дороже в эксплуатации и стоят дороже. Кроме того, они часто требуют большего внимания и обслуживания, поскольку представляют собой более сложные системы.

Кроме того, поскольку генераторы выделяют пары, содержащие опасные химические вещества, необходимо иметь установленную систему для удаления этих паров. Для выхлопных систем генератора требуется выхлопная труба, которая заканчивается снаружи и ведет от точек входа, дверных проемов и мест с интенсивным движением.

6. Система смазки

Подобно любой другой машине с движущимися частями, генераторы опираются на шестерни и рычаги, и эти движущиеся части часто создают трение. Чтобы эти детали могли легко двигаться, генераторам требуется смазка. Смазка — это жидкость или масло, предназначенное для разделения внутренних компонентов генератора.

Что касается генераторов и их двигателей, смазочные материалы служат четырем основным целям. Во-первых, он создает пленочное разделение между движущимися частями двигателя, чтобы предотвратить контакт металла с металлом. Он также создает масляную пленку, образующую газонепроницаемое уплотнение между поршневыми кольцами и цилиндром. Кроме того, смазка отводит тепло, выделяемое двигателем. Наконец, это помогает поддерживать чистоту внутренней поверхности двигателя.

Генераторы

полагаются на систему смазки, которая устраняет трение между поверхностями, соприкасающимися в обычных условиях эксплуатации. Производители используют тонкий слой смазки на трущихся поверхностях, чтобы уменьшить сопротивление трению.

Важно по возможности избегать сухого трения и сопротивления трению, так как трение может привести к механическому износу и снижению эффективности генератора. Правильно смазанная система позволяет генератору выполнять свою работу, а также улучшает и продлевает срок службы и надежность машины.

7. Аккумулятор

Аккумуляторы являются важной частью генератора, потому что они обеспечивают питание, необходимое для запуска машины во время отключения электроэнергии. Когда электричество отключено и вам нужен генератор, у машины нет другого источника энергии, кроме аккумулятора. В частности, аккумуляторы питают стартер двигателя и панели управления. Некоторые генераторы даже имеют дополнительную батарею на случай выхода из строя основной.

Поскольку выход из строя аккумуляторной батареи является одной из основных причин отказа генератора. Поэтому важно проводить плановые проверки аккумуляторов. Проверка требует, чтобы вы очистили и затянули любые ослабленные или грязные соединения и убедились, что сульфаты не накапливаются на аккумуляторе. Также важно знать срок годности батареи вашего генератора. Его емкость со временем будет уменьшаться и упадет ниже 80% от ее нормальной емкости. Общее практическое правило, когда речь идет о батареях, заключается в том, что вы должны заменять их каждые 4 года, чтобы обеспечить эффективность и работоспособность.

8. Полозья

Основная рама или салазки — это основное основание, на котором монтируются генератор и его компоненты. В помещении с генератором полозья часто крепятся к полу, чтобы обеспечить их надежную фиксацию. Этот салазок выступает в качестве основного основания генераторной установки и обеспечивает большую гибкость, помимо удержания частей и компонентов генератора.

Генераторы, установленные на салазках, позволяют пользователям добавлять кожух поверх генераторной установки, который может обеспечить защиту от атмосферных воздействий или даже шумоизоляцию с преимуществами защиты от атмосферных воздействий для генераторов, установленных на открытом воздухе. Для генераторов природного газа салазки и кожух монтируются на бетонную подушку. Бетонная подушка измеряется и заливается, чтобы выдержать вес генератора, и обычно устанавливается с учетом стоек, креплений виброизолятора и вырезов для кабельных соединений.

Дизельные генераторы

также могут быть установлены сверху базового дизельного бака через салазки, что позволяет дизельному генератору иметь подачу топлива, прикрепленную непосредственно к агрегату. Для таких наружных установок дизельные генераторы также монтируются на бетонную подушку, которая не только поддерживает вес генератора, но и учитывает вес базового дизельного бака.

Портативные генераторы используют даже салазки. Большинство портативных генераторов являются дизельными генераторами. Это означает, что генераторная установка монтируется на салазках, звукопоглощающий кожух крепится к салазкам, а базовый бак крепится под салазками. Затем весь этот пакет монтируется на трейлер, который позволяет пользователям перемещать генератор с места на место по мере необходимости.

Чтобы генераторы соответствовали коду и функционировали должным образом, вам нужно спланировать рамы перед установкой, так как у вас будет много соображений. В частности, вы хотите избежать установки вашего генератора в месте, где недостаточно места для установки и обслуживания. Вы также хотите предотвратить перегрузку площадки генератора и несоблюдение правовых или нормативных требований, которые могут привести к штрафам или остановке генератора.

9. Панель управления

Панель управления генератором представляет собой набор компонентов, отображающих детали и параметры, включая ток, напряжение и частоту. Представленные на встроенных дисплеях, манометрах или измерителях, панели управления обычно имеют переключатели или кнопки для обеспечения работы генератора.

Новые панели управления имеют программируемые модули, в то время как более старые полагаются на аналоговые методы и ручную настройку. В панелях управления есть микропроцессор, который использует входные данные от датчиков для предоставления обратной связи о генераторе на панели управления. Эта настройка позволяет генератору контролировать себя и управлять любыми процессами, которые могут быть нерегулярными.

Например, одной из наиболее распространенных настроек обратной связи является температура. Если двигатель перегревается, датчики оповещают панель управления и соответствующим образом корректируются, находя решение, например, отключая машину, чтобы предотвратить повреждение.

Эти панели управления позволяют операторам видеть функции системы, диагностику и текущий статус оператора генератора. Поскольку генераторы представляют собой тяжелые механизмы, они подвержены перегреву, износу в результате постоянного использования, колебаниям скорости и усталости двигателя. Важно следить за критически важными функциями вашего генератора, такими как температура масла и охлаждающей жидкости.

10. Корпус

Основным назначением корпусов генераторов является защита и снижение шума машины. Прежде чем выбрать корпус для вашего генератора, рассмотрите свои приоритеты. Вы можете выбрать один из двух типов кожухов для генераторов: атмосферостойкие и шумопоглощающие кожухи.

Всепогодные корпуса

обеспечивают защиту от влаги и экстремальных температур. Тем не менее, эти корпуса обычно обеспечивают самый минимум и не имеют каких-либо особых функций, которые отличают их от других, за исключением, возможно, включения более эффективных методов защиты от непогоды.

Звукопоглощающие кожухи защищены от атмосферных воздействий и снижают уровень шума, создаваемого генератором. Генераторы могут сильно шуметь, и чем мощнее машина, тем больше шума она будет создавать. Это может беспокоить окружающих, нарушать правила и наносить вред работникам или тем, кто находится поблизости.

Найдите подходящий генератор от Woodstock Power

Компания Woodstock Power гордится тем, что предоставляет нашим клиентам качественные и доступные по цене электрические системы, начиная от генераторов и заканчивая системами бесперебойного питания и трансформаторами. Предлагая только проверенное, обслуживаемое и проверенное оборудование, мы гарантируем, что вы можете положиться на нашу продукцию.

У нас есть отраслевые эксперты с глубокими знаниями, которые помогут вам найти генераторы и продукты, которые наилучшим образом соответствуют вашим потребностям и бюджету. Наша приверженность поставке надежного, рентабельного и высококачественного оборудования помогает нам удовлетворять потребности в электроэнергии компаний разного размера по всей территории Соединенных Штатов.

Чтобы узнать больше о Woodstock Power, заполните нашу контактную форму или позвоните нам по телефону 610-658-3242, если у вас возникнут вопросы или проблемы.

Поделиться с

Различные части генератора

••• Mimadeo/iStock/GettyImages

Обновлено 23 мая 2018 г.

Кристин Дженнифер

Генератор — это машина, используемая для преобразования механической энергии в электричество. Генераторы, работающие от источника топлива, такого как нефть, бензин, ветер или движущаяся вода, создают электрический ток посредством электромагнитной индукции. Генераторы широко используются в качестве резервных источников питания для заводов и больниц, где предприятие может немедленно включить их в работу в случае отключения основного питания. Коммерческие генераторы, обычно используемые в жилых домах и на малых предприятиях, обычно имеют размер большого гриля для барбекю и удобны для хранения.

TL;DR (слишком длинный; не читал)

Генераторы преобразуют источник топлива в полезную энергию, которую потребители могут использовать в качестве резервного источника питания. Генераторы содержат двигатель, топливную систему, генератор переменного тока и регулятор напряжения, а также системы охлаждения, выхлопа и смазки.

Двигатель

Каждая машина содержит двигатель, который, как правило, является частью машины, которая преобразует источник топлива в полезную энергию и позволяет машине двигаться или выполнять свою механическую функцию. По этой причине двигатели иногда называют первичным двигателем машины. В генераторе двигатель использует свой источник топлива (бензин, дизельное топливо, природный газ, пропан, биодизель, воду, канализационный газ или водород) для создания механической энергии, которую генератор преобразует в электричество. Конструкция каждого двигателя генератора направлена ​​на создание максимального запаса электрического тока за счет работы на определенном топливе или другом источнике энергии. Некоторые двигатели, обычно используемые в конструкции генераторов, включают поршневые двигатели, паровые двигатели, газотурбинные двигатели и микротурбины.

Топливная система

Генераторы, работающие на топливе, имеют систему хранения и подачи соответствующего топлива в двигатель. В баке хранится достаточно топлива для питания генератора в течение эквивалентного количества часов. Топливная трубка соединяет бак с двигателем, а обратная трубка соединяет двигатель с топливным баком для возврата топлива. Топливный насос подает топливо из бака через топливопровод к двигателю. Топливный фильтр отфильтровывает любой мусор из топлива перед подачей в двигатель. Топливная форсунка распыляет топливо и впрыскивает его непосредственно в камеру сгорания двигателя.

Генератор и регулятор напряжения

Генератор преобразует механическую энергию, вырабатываемую двигателем, в электрический ток. Генератор состоит из статора и ротора (или якоря). Статор представляет собой неподвижную часть, содержащую набор катушек, проводящих электричество. Ротор движется, создавая постоянно вращающееся электромагнитное поле вокруг статора. Генератор вырабатывает электрическое напряжение. Генератор должен регулировать напряжение для получения постоянного тока, подходящего для практического использования.

Системы охлаждения, выхлопа и смазки

Температура компонентов генератора требует регулирования во избежание перегрева во время эксплуатации. Генераторы могут использовать вентилятор, охлаждающую жидкость или и то, и другое для контроля температуры генератора во время работы. Генератор также будет производить выхлопные газы, поскольку камера сгорания преобразует топливо. Выхлопные системы рассеивают вредные газы, выделяемые генератором во время работы. Генераторы состоят из множества движущихся частей, каждая из которых требует смазки для обеспечения бесперебойной работы. Система смазки поддерживает генератор в хорошем состоянии.

Связанные статьи

Ссылки

  • Популярная механика: велосипедный генератор
  • Популярная механика: ветряная турбина
  • Университет Суссекса: Электрический генератор

О САМЕРОВОЙ ПРОИЗВОДОВАТЕЛЬСКОЙ, КРИСТ -ЭЛЕКТРИОНАЛЬНОЙ ДЖОНАТОР. на ехау. Она имеет пятилетний опыт работы специалистом по иммиграции в Хьюстоне и Нью-Йорке. Она имеет степень бакалавра гуманитарных наук в области политологии и дополнительную степень в области экономики в Барнард-колледже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *