Генератор постоянного тока – принцип действия, устройство, как работает
Генератор постоянного тока предназначен для преобразования кинетической энергии в электрическую. Используется в качестве источника электроэнергии в тепловозах, автомобилях, промышленных установках и т.д.
Представляет собой обратимую электрическую машину. В зависимости от схемы подключения может работать как генератор или как электродвигатель.
Принцип действия генератора постоянного тока основан на физическом явлении электромагнитной индукции. Заключается в том, что если проводник передвигается в магнитном поле, в нем возникает электрический ток. Такой ток называется индукционным.
Важным условием является то, что проводник должен пересекать поле, а не двигаться вдоль него.
Схематично это явление можно описать следующим образом. Если проводник, например, медную проволоку в виде рамки поместить между двумя полюсами подковообразного магнита, он будет находиться в постоянном магнитном поле.
Затем начнем вращать эту рамку. В процессе вращения она будет пересекать магнитный поток. Вследствие этого, внутри проволоки индуцируется электродвижущая сила э.д.с.
Если концы этой рамки соединить, то под воздействием э.д.с., потечет индукционный ток. Если включить в эту цепь амперметр, он покажет наличие в ней тока. Это и есть самый простой макет генератора.
Для того, чтобы подключить рамку к электрической цепи, ее крепят к полукольцам. Две щетки контактируют с вращающимися полукольцами поочередно, и через них индукционный ток поступает далее в электрическую цепь. Полукольца устанавливают на оси, вокруг которой вращается рамка. Это упрощенная схема коллектора.
Когда рамка переходит через горизонтальное положение (нейтраль), щетки одновременно переключаются с одного полукольца на второе. В этот момент стороны рамки магнитных силовых линий не пересекают. В таком положении э.д.с. и, соответственно, ток равны 0. Благодаря этому переключение щеток не сопровождается искрением.
На величину электродвижущей силы влияют следующие факторы:
- длина проволоки;
- величина индукции магнитного поля;
- частота вращения.
Величина э.д.с. (Е) меняется по синусоидальной траектории, с пиками при прохождении рамкой вертикальных положений. В эти моменты она перпендикулярно пересекает максимум силовых линий. Нулевые значения отмечаются при прохождении нейтрали. После ее пересечения э.д.с. меняет свое направление.
В свою очередь, коллектор, чередуя каждые пол оборота полукольца на щетках, выпрямляет переменную э.д.с. На выходе получается пульсирующий, в виде выпрямленной синусоиды, постоянный ток.
КАК НА ВЫХОДЕ ПОЛУЧАЕТСЯ ПОСТОЯННЫЙ ТОК
Для того, чтобы можно было пользоваться генератором, как источником энергии, ток нужно сгладить. Если увеличить количество рамок до двух и расположить их перпендикулярно друг другу. Тогда пиковые значения Е и, соответственно, тока будут возникать уже каждые четверть оборота.
Если их соединить последовательно, индуцируемый ток будет суммироваться. А его выходная характеристика будет иметь вид двух, смещенных между собой на четверть периода выпрямленных синусоид. Пульсация значительно уменьшится.
Если количество последовательных рамок еще увеличивать, тогда значение тока будет все больше приближаться к идеальной прямой. Кроме того, величина электродвижущей силы напрямую зависит от длины проводника. Поэтому количество рамок делают большим, а их совокупность и составляет обмотку вращающейся части генератора — якоря.
Для последовательного соединения витков обмотки, конец предыдущего нужно соединить с началом следующего. Делают это на полукольцах или, как их называют, пластинах. Их количество будет равняться количеству витков.
Другим фактором, влияющим на величину Е, является сила магнитного поля. Индукция магнитного потока обычного магнита слишком маленькая, а потери в среде между двумя полюсами наоборот очень большие.Для решения первой проблемы вместо постоянного магнита используют гораздо более сильный электромагнит. Для решения второй проблемы сердечник якоря выполняют из стали. Также уменьшают до самого минимума зазор между якорем генератора и полюсами электромагнита.
Ток, протекающий в якоре, образуют своего рода электромагнит, и создает свое магнитное поле. Это явление называется реакция якоря. В нем также возникает реактивная э.д.с. Вместе они искажают магнитное поле. Чтобы это скомпенсировать, устанавливаются добавочные полюса. Они включаются в цепь якоря и полностью перекрывают это негативное воздействие.
По источнику тока возбуждения генераторы бывают:
- с независимым возбуждением;
- с самовозбуждением.
Необходимый для работы генератора магнитный поток создается благодаря току, проходящему через обмотки главных полюсов. Этот ток называется током возбуждения. При независимом возбуждении обмотка питается от аккумулятора или другого источника питания. При самовозбуждении питается током якоря.
Благодаря тому, что сердечники полюсов обладают остаточным магнетизмом, они создают небольшой магнитный поток. Если якорь начинает вращаться, этого потока достаточно для появления в витках якоря небольшого индукционного тока.
Этот ток, попадая в обмотку возбуждения полюсов, усиливает рабочий магнитный поток. Это приводит к увеличению тока в якоре и происходит цепная реакция. Таким образом, генератор быстро выходит на расчетную мощность.
По схеме подключения обмотки якоря к обмотке возбуждения генераторы с самовозбуждением делятся на три типа:
- с параллельным возбуждением;
- с последовательным возбуждением;
- со смешанным возбуждением.
Схема возбуждения влияет на характеристики генератора и особенности его применения. Основным его параметром является внешняя характеристика, выражающая зависимость напряжения на выходе от тока нагрузки при заданной частоте вращения и параметрах возбуждения. Также к основным характеристикам относится мощность и КПД, который достигает 90-95%.
УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Генератор состоит из двух частей:
- подвижная вращающаяся часть якорь;
- неподвижная – статор.
Статор состоит из станины, магнитных полюсов, подшипникового щита с подшипниками. Станина — это несущая часть генератора, на которой размещены все его части. Внутри установлены полюсы с сердечниками и обмотками возбуждения. Изготавливается из ферромагнитных материалов.
Ротор или якорь состоит из сердечника, вала, коллектора и вентилятора. В качестве опоры для якоря используются подшипники, установленные на боковых подшипниковых щитах статора.
Преимущества и область применения.
Генераторы постоянного тока обладают следующими достоинствами:
- простота конструкции, компактность;
- надежность;
- экономичность;
- обратимость, то есть возможность использования в качестве электродвигателя;
- практически линейная внешняя характеристика.
Недостатки:
- высокая стоимость;
- ограниченный срок службы щеточно-коллекторного узла.
Используются в различных отраслях производства, в строительстве, в промышленных установках, сварочном оборудовании, в машиностроении, на предприятиях металлургической промышленности, в автомобильном, железнодорожном, воздушном и морском, транспорте.
* * *
© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
устройство, принцип работы, технические характеристики
Содержание:
Что такое генератор переменного тока, и кто его изобрел
Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.
Демонстрация рассматриваемого прибора в разрезе
К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.
Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки. Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.
Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.
Демонстрация прибора с помощью простого магнита и контура
Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.
Вам это будет интересно Ток через конденсатор
Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе.
Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.
Использование графика для демонстрации переменного и постоянного электротоков
Характеристики генератора переменного тока
Основные технические характеристики генератора переменного тока: внешняя, скоростная регулировочная и токоскоростная. Внешняя характеристика определяется, как зависимость напряженности прибора от генерируемого им тока. Она является константой и может быть определена в процессе самостоятельного и независимого возбуждения.
Скоростная регулировочная характеристика чаще всего высчитывается исходя из нескольких величин электротока нагрузки. Самое маленькое значение возбуждения находится при нагрузочном токе, равном нулю (частота вращений при этом максимальная).
Последняя токоскоростная характеристика определяется как одна из самых важных при выборе или создании генератора. Практически все новые генераторы могут самостоятельно ограничивать свой максимальный ток.
Обратите внимание! Делается это для того, чтобы частота вращения роторов не увеличивалось до частоты индуцированного стартера.
Простой индукционный генератор для использования дома и на предприятии
Принцип работы генератора
Пришло время рассмотреть устройство генератора перемененного тока и принцип его действия. Он заключается в том, что в электроустановке используют специальную систему, которая при функционировании производит магнитный поток большой мощности.
За основу взято два сердечника, изготовленных из электротехнической стали. Пазы одного сердечника предполагают размещение обмотки, которая отвечает за генерацию потока магнитных волн. Второй же используется для индукции электродвижущей силы.
Обычно сердечник, который расположен внутри, находится в горизонтальном или вертикальном положении и вращается по соответствующим орбитам. Его называют ротором. Второй же сердечник, называемый статором, как понятно из его названия, остается в неподвижном состоянии. Чем меньшее расстояние будет между этими элементами, тем больше вырастет индуктивность магнитного потока. Далее рассмотрены назначение устройства и работа генератора переменного тока.
Рассмотрение строения электрогенератора на практике
Функции генератора
При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).
Автомобильный генератор
Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.
Устройство генератора переменного тока
Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.
Устройство генератора
Генератор состоит из следующих основных элементов:
- привод со шкивом, подшипниками и валом;
- ротор с обмоткой возбуждения и контактными кольцами;
- статор с сердечником и обмоткой;
- корпус, состоящий из двух крышек;
- регулятор напряжения;
- выпрямительный блок или диодный мост;
- щеточный узел.
Разберем каждый элемент устройства отдельно и подробно.
Корпус
В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.
В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.
Привод
Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.
Ротор
На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.
Ротор генератора
На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.
Статор
Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Синхронные
Альтернатор синхронного типа имеет главную особенность, по которой его можно определить с первого взгляда. На его роторе имеется обмоточный провод. Он необходим для стабилизации частоты между статором и ротором. ЭДС в таком устройстве создается за счет пересечения магнитного полюса ротора и обмотки статора.
Альтернатор синхронного типа оснащается роторами с несколькими полюсами, число которых всегда кратно 2, например, 2, 4, 6, 8. Работает генератор переменного тока по следующему принципу:
- После запуска ротором создается очень слабое магнитное поле. Величина ЭДС увеличивается по мере увеличения оборотов вала. Для первоначального возбуждения используется постоянное напряжение от аккумулятора или блока управления.
- Если генератор работает от двигателя внутреннего сгорания, сначала необходимо стабилизировать обороты для получения стабильного переменного напряжения.
- После установки необходимых оборотов, происходит стабилизация напряжения блоком автоматической регулировки (AVR). Обороты двигателя очень сильно влияют на частоту переменного напряжения на выходе и его мощность. Оптимальной считается частота вращения до 3000 оборотов. AVR стабилизирует напряжение под этот параметр, и при сбое значительно снижает напряжение. В противном случае электрические насосы могут быстро потерять мощность и перегреться.
Работа такого генератора сильно зависит от типа нагрузки. Нагрузка индукционного типа сильно влияет на размагничивание якоря. Этот эффект приводит к большой потере напряжения.
При емкостных нагрузках якорь наоборот намагничивается, что значительно увеличивает выходное напряжение. Схема генератора переменного тока синхронного типа представлена ниже.
Синхронный альтернатор имеет одно большое преимущество. Его выходное напряжение намного выше (в 3–4 раза) номинальных значений. Увеличение необходимо, если устройство питает электрические насосы, приборы и устройства, которым нужен стартовый ток. Такие устройства сильно увеличивают реактивные нагрузки на общую сеть, с которыми справляется синхронный генератор.
Недостатки у такого генератора также есть. Первый заключается в высокой чувствительности к перегрузке в цепи. Реакцией на нагрузку является краткий, но достаточно мощный ток на обмотке ротора, который появляется из-за увеличения тока самим блоком регулировки. В результате обмотка выгорает или происходит ее нагрев.
Вторым минусом является искрение. У простейшего генератора синхронного типа на роторе установлены контактные кольца с щетками. Они небезопасны при эксплуатации на промышленных предприятиях, в условии наличия легко воспламеняемых газов или жидкостей. Для таких случаев используются трех машинные генераторы синхронного типа. Устройство и принцип работы генератора переменного тока такого типа сильно отличается. Этот генератор состоит из:
- Пред возбудителя.
- Возбудителя.
- Самого генератора.
Все эти элементы установлены на общий вал. Работа осуществляется следующим образом:
- Постоянные магниты, установленные на валу, возбуждают обмотку синхронного генератора пред возбудителя. Для такого генератора не требуется наличие аккумулятора или дополнительного генератора для возбуждения. Его работа строится на явлении магнитной индукции, которое возникает при вращении постоянного магнита.
- Напряжение, которое он сгенерировал, перенаправляется к возбудителю, а точнее на обмотку его статора.
- Обмотка ротора соединена с трехфазным выпрямителем напряжения.
- На них действует возбуждение от статора возбудителя.
В конечном итоге генератор выдает номинальное требуемое напряжение, которое регулируется блоком AVR. Вся работа такого устройства производится в одном корпусе, который полностью герметичен.
Асинхронный
Асинхронный генератор переменного тока имеет иное устройство. Его ротор не имеет обмотки. По этой причине принцип его работы сильно отличается. Во время вращения, ротор такого генератора опережает обороты магнитных полей, которые создаются статором. Роторы этих устройств имеют 2 типа обмотки: короткозамкнутую и фазную. Принцип работы асинхронных электрогенераторов следующий:
- На вспомогательной обмотке статором создается магнитное поле.
- После чего поле передается ротору и формирует ЭДС на обмотке статора.
- Выработанное напряжение поступает на блок управления.
Главное отличие заключается в невозможности регулировки напряжения при установленном числе оборотов. Асинхронные генераторы сильно зависимы от приводных двигателей. Любая потеря стабильности приводит к понижению напряжения и частоты тока.
Преимуществом подобных устройств является низкая чувствительность к возникновению коротких замыканий. Применение — питание бытовых приборов, сварочного оборудования и электрических насосов. При наличии реактивной нагрузки, AVR должен увеличить обороты приводного двигателя на короткий срок. При этом включенный в цепь понижающий трансформатор защищает остальные устройства от перенапряжения.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
- Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
- Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
- Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
- Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
- Относительная дешевизна топлива;
- Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
- Высокий уровень противопожарной безопасности;
- В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
- Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
- Малые габариты при высокой мощности;
- Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
- В случае перегрузки генератора автоматически срабатывает защита;
- Просты в обслуживании и ремонте;
- Во время работы не издают много шума;
- Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.
Виды приборов
Несмотря на одинаковое строение, они применяются в различных видах устройств и типах транспорта. Определённый тип ЭГ применяется в различных ситуациях. Выделяют основные виды устройств-генераторов, которые классифицируются по типу применения:
- автомобильный;
- электрический;
- инвентарный;
- дизельный;
- синхронный;
- асинхронный;
- электрохимический.
Основным предназначением автомобильного аккумулятора является вращение коленвала. Применяется новый тип — гибридный генератор, выполняющий роль стартера. Основным принципом работы можно считать использование для включения зажигания, при этом I течёт по контактным кольцам, а затем к щелочной части. Далее переходит на обмотку возбуждения, образовывается магнитное поле и запускается ротор, создающий электромагнитные волны.
Эти волны пронизывают обмотку статора. После происходит возникновение переменного тока на выходе обмотки. Если генератор осуществляет работу в режиме самовозбуждения, то при этом частота вращения увеличивается до допустимого значения, а переменный ток преобразуется в постоянный при помощи выпрямителя.
Электрогенератор выполняет функции преобразователя механической энергии в электрическую. Источников может быть много: вода, пар, ветер, ДВЗ и другие сторонние силы, оказывающие механическую работу на ротор генератора.
Очень распространён инверторный тип ЭГ. Он представляет собой автономный источник питания, который производит качественную электрическую энергию. Применяется практически везде и является очень надежным источником питания, при котором отсутствуют любые скачки U. Основной принцип действия:
- вырабатывается переменный высококачественный ток, который при помощи диодного моста выпрямляется;
- постоянный ток накапливается в аккумуляторах;
- из аккумуляторов при помощи инвертора происходит преобразование в переменный стабилизированный ток.
Ещё одним отличным и долговечным вариантом является дизельный ЭГ, преобразующий энергию топлива в электрическую. Топливо сгорает и преобразовывается из химического вида энергии в тепловую. Затем тепловая энергия преобразовывается в механическую. Затем происходит трансформация по старой схеме: механическая энергия в электрическую.
В синхронном ЭГ ротор выполняет роль постоянного магнита с полюсами, число которых колеблется от 2 и более. Однако должна соблюдаться кратность 2. Во время запуска ротор генерирует слабое электромагнитное поле, но в процессе увеличения частоты вращения появляется ток в обмотке возбуждения.
Во время этого процесса появляется U, поступающее на устройство, контролирующее его значение при изменении электромагнитного поля. Генераторы синхронного типа отлично зарекомендовали себя благодаря стабильно вырабатываемому U.
Однако у них есть существенный недостаток — возможна перегрузка по току, а также наличие щёточного узла, который приходится иногда обслуживать.
Принцип работы ЭГ асинхронного типа основан на постоянном нахождении в режиме «торможения с подвижной частью», вращающейся с опережением. Ротор бывает фазным и короткозамкнутым. Вспомогательное магнитное поле создаётся при помощи обмотки возбуждения и продолжает индуцироваться в роторе. От количества оборотов зависит частота тока и U.
Очень интересным источником электричества является электрохимический генератор. Энергия электрического типа получается из водорода. Он является химическим источником тока, так как проходит реакция этого типа взаимодействия молекул кислорода и водорода.
Однако этот источник довольно опасен. Ведь водород может и взорваться при больших количествах, а кислород выполняет роль катализатора. В очаге взрыва водорода произойдёт значительное возгорание, так как кислород усилит горение.
Кроме того, при использовании ЭГ нужно совместно с ними применять и устройства, регулирующие параметры U и частоты. Принцип работы устройства заключается в поддержании постоянных значений U и других параметров электроэнергии для качественного питания потребителей. Регулятор также защищает генератор от перегрузок и аварийного режима. При возникновении аварийной ситуации при наличии регулятора, генератор не запустится и останется в выключенном состоянии. Это возможно при КЗ в цепи потребителей. Эти приборы улавливают U, частоту и I, а также Ф.
Применение генераторов переменного тока на практике
Промышленное производство мощных генераторов
Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.
Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.
Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.
Синхронные генераторы – устройства, предназначенные для добычи переменного тока. Встретить такие устройства можно на различных станциях:
- атомных;
- тепловых;
- гидроэлектростанциях.
А также агрегаты активно используются в транспортных системах. Их применяют в различных автомобилях, в судовых системах. Синхронный генератор способен работать как в автономном режиме, отдельно от электрической сети, так и одновременно с ней. При этом удается подключить сразу несколько агрегатов.
Преимуществом станций, вырабатывающих переменный ток, является возможность обеспечить выделенное пространство электроэнергией. Удобно, если объект находится далеко от центральной сети. Поэтому агрегаты пользуются спросом у владельцев ферм, отдаленных от города населенных пунктов.
Основные сферы применения
В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:
- Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
- Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
- Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.
Генератор на жидком топливе
Бензиновый генератор
Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.
Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.
Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.
Панель управления генератора
На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…
На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.
Автомобильные генераторы
Электрический генератор для автомобиля
Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.
Принципиальная схема автомобильного генератора
Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.
Для выпрямления трехфазного тока используется несколько диодов.
Особенности установки
Использование дизельного генератора
Потенциальный владелец генератора переменного тока перед приобретением должен озаботиться подготовкой места для его установки. Независимо от того, где будет установлен такой агрегат, в помещении или на свежем воздухе, для него понадобится ровная и твердая площадка. Установка электрогенератора на неровной площадке приведет к увеличению вибрации, что ускорит износ деталей и может спровоцировать выход дорогостоящего устройства из строя.
Устанавливая генератор в помещении, важно предусмотреть наличие вытяжной вентиляции. Кроме того, во время работы агрегата рекомендуется оставлять дверь помещения открытой, что в свою очередь потребует установить в дверном проеме решетку, перекрывающую посторонним, а главное детям, доступ в опасную зону.
Соединяют электрогенератор с электросетью в строгом соответствии с требованиями, изложенными в инструкции по эксплуатации. При этом электрический кабель необходимо подключить после вводного автомата и электросчетчика.
Предыдущая
РазноеЭлектролизсолей, щелочей, кислот
Следующая
РазноеСхемы подключения трехфазного счетчика. Установка трёхфазного счетчика
Теория работы индукционного генератора| www.electriceasy.com
Как и машина постоянного тока, одна и та же асинхронная машина может использоваться в качестве асинхронного двигателя, а также в качестве асинхронного генератора без каких-либо внутренних модификаций. Асинхронные генераторы также называются асинхронными генераторами .
Прежде чем начать объяснять принцип работы асинхронного генератора , я предполагаю, что вы знаете принцип работы асинхронного двигателя. В асинхронном двигателе ротор вращается из-за скольжения (то есть относительной скорости между вращающимся магнитным полем и ротором). Ротор пытается догнать синхронно вращающееся поле статора, но безуспешно. Если ротор догоняет синхронную скорость, относительная скорость будет равна нулю, и, следовательно, ротор не будет испытывать крутящего момента.
Как работают индукционные генераторы?
- Предположим, источник переменного тока подключен к клеммам статора асинхронной машины. Вращающееся магнитное поле, создаваемое в статоре, тянет ротор за собой (машина действует как двигатель).
- Теперь, если ротор разгоняется до синхронной скорости с помощью первичного двигателя, скольжение будет равно нулю и, следовательно, чистый крутящий момент будет равен нулю. Ток ротора станет равным нулю, когда ротор работает на синхронной скорости.
- Если ротор вращается со скоростью, превышающей синхронную скорость, скольжение становится отрицательным. Ток ротора генерируется в противоположном направлении из-за того, что проводники ротора пересекают магнитное поле статора.
- Этот генерируемый ток ротора создает вращающееся магнитное поле в роторе, которое давит (воздействует в противоположном направлении) на поле статора. Это вызывает напряжение статора, которое толкает ток, вытекающий из обмотки статора, против приложенного напряжения. Таким образом, машина теперь работает как асинхронный генератор (асинхронный генератор) .
Асинхронный генератор не является самовозбуждающейся машиной. Таким образом, при работе в качестве генератора машина получает реактивную мощность от линии электропередачи переменного тока и отдает активную мощность обратно в линию. Реактивная мощность необходима для создания вращающегося магнитного поля.
Асинхронный генератор с самовозбуждением
Понятно, что асинхронной машине для возбуждения нужна реактивная мощность, независимо от того, работает она как генератор или двигатель. Когда асинхронный генератор подключен к сети, он получает реактивную мощность из сети. Но что, если мы хотим использовать асинхронный генератор для питания нагрузки без использования внешнего источника (например, сети)?
Батарея конденсаторов может быть подключена к клеммам статора для подачи реактивной мощности на машину, а также на нагрузку. Когда ротор вращается с достаточной скоростью, на клеммах статора генерируется небольшое напряжение из-за остаточного магнетизма. Из-за этого небольшого генерируемого напряжения вырабатывается конденсаторный ток, который обеспечивает дополнительную реактивную мощность для намагничивания.
Применение асинхронных генераторов: Асинхронные генераторы производят полезную мощность даже при различных скоростях вращения ротора. Следовательно, они подходят для ветряных турбин.
Преимущества: Асинхронные или асинхронные генераторы более надежны и не требуют коллекторно-щеточного устройства (как это необходимо в случае синхронных генераторов).
Одним из основных недостатков асинхронных генераторов является то, что они потребляют довольно большое количество реактивной мощности.
Введение в индукционный генератор, принцип работы, характеристики, преимущества и применение
Привет, друзья! Надеюсь, у вас все отлично. В сегодняшнем уроке мы рассмотрим введение в индукционный генератор. Генератор – это такой прибор, который преобразует любую энергию в электрическую. Как вы знаете, энергия не может быть произведена, она может переходить из одной формы в другую. Генератор может преобразовывать многие виды энергии, такие как механическая, тепловая и ПЭ, в электрическую. Очень распространена механическая энергия, которая представляет собой работу генератора для производства электроэнергии. Когда генератор преобразует механическую энергию в электрическую, это также известно как динамо .
В настоящее время генератор работает в каждом доме, на заводе или в промышленной зоне. Например, они работают в различных автомобилях, ветряных турбинах или в системе выработки электроэнергии. В сегодняшнем посте мы рассмотрим введение асинхронного генератора, рабочую конструкцию, использование или схему. Итак, давайте начнем с введения в индукционный генератор.
Введение в асинхронный генератор
- Генератор переменного тока, работа которого аналогична асинхронным двигателям, называется индукционный генератор.
- Этот генератор работает механически, так как скорость вращения генератора выше синхронной скорости.
- Обычный асинхронный двигатель в основном работает как генератор без особых изменений в его схеме.
- Асинхронный генератор в основном используется на электростанциях Hydel, вырабатывающих энергию ветра, и они имеют возможность уменьшать давление воздуха с более высоким давлением до более низкого давления, поскольку они имеют возможность восстанавливать мощность самым простым способом.
- Асинхронный генератор имеет множество ограничений. Потому что он не имеет внешней схемы возбуждения и не может генерировать реактивную энергию (Q).
- Поскольку этот генератор использует реактивную энергию, к нему должен быть подключен внешний источник реактивной мощности для создания поля на статоре.
- Этот отдельный источник также регулирует (управляет) выходное напряжение генератора, этот генератор не имеет возможности управлять напряжением на его клеммах.
- Обычно напряжение генератора регулируется внешним источником энергии, который с ним связан.
- Основное преимущество этого генератора в том, что его конструкция очень проста и нет необходимости постоянно двигаться с одной и той же скоростью, а также в нем нет специальной схемы возбуждения.
Возбуждение асинхронного генератора
- В асинхронной машине, будь то двигатель или генератор, требуется ток якоря, который обеспечивается внешним питанием.
- Поскольку поле в роторе запаздывает, поле статора и асинхронного генератора или двигателя всегда использует реактивную мощность.
- Итак, источник питания для производства реактивной мощности необходим в констатирующей части генератора для производства (наведения) тока в роторе.
- Когда генератор не работает, реактивная мощность вырабатывается внешним источником, после чего он использует собственную мощность.
- Метод производства энергии для асинхронных двигателей сложен из-за требования подавать питание на ротор, который начинается только с остаточной (остаточной) намагниченностью.
- В некоторых ситуациях этой оставшейся (остаточной) намагниченности достаточно для самовозбуждения двигателя в условиях нагрузки.
- Таким образом, важно либо остановить машину и временно подключить ее к электростанции, либо подключить конденсаторную батарею, которая уже имеет накопленную энергию и обеспечивает принудительную реактивную мощность в процессе.
- Асинхронный генератор вырабатывает электроэнергию, когда скорость вращения ротора больше синхронной скорости (это скорость вращения поля в статоре).
- Если у нас есть обычный 4-полюсный асинхронный двигатель, работающий на частоте шестьдесят герц, он будет иметь синхронную скорость 1800 об/мин (оборот в минуту).
- По данной формуле можно найти синхронную скорость.
n syn =120f e /P
- В этом уравнении
n syn — синхронная скорость.
f e – электрическая частота.
P — номер полюса двигателя.
- Если у нас есть другая аналогичная безполюсная машина, работающая на частоте пятьдесят герц, то она будет иметь скорость 1500 оборотов в минуту.
- Скорость вращения двигателя меньше синхронной скорости (n sync ).
- Разница между скоростью вращения ротора и синхронной скоростью известна как скольжение .
- Предположим, что двигатель вращается со скоростью 1450 оборотов в минуту и имеет Nsync (синхронная скорость) 1500 оборотов в минуту, тогда его скольжение составляет (+3,3) процента.
- При обычной работе асинхронного двигателя синхронная скорость больше скорости ротора.
- Позволяет потоку ротора создавать ток в роторе, этот ток создает поток в статоре, полярность которого обратна потоку статора.
- Таким образом, ротор тянулся за потоком статора, при этом токи в роторе индуцировались на частоте скольжения.
- В случае генератора первичный двигатель (который обеспечивает генератор механической энергией) приводит в движение ротор с такой скоростью, которая выше синхронной скорости.
- В случае генератора статор также индуцирует ток в роторе и создает поток, поскольку противоположный поток ротора теперь соединяется со статором, в статоре формируется ток, и двигатель теперь работает как генератор, производя электрическую энергию.
- Асинхронный генератор может работать в одиночку, если мы снабдим его конденсаторной батареей для реактивной мощности.
- На данной схеме показан изолированный генератор.
- Ток намагничивания I M , необходимый для асинхронной машины, в зависимости от напряжения на клеммах (V t ) можно рассчитать, запустив машину как двигатель без нагрузки и вычислив ток якоря (Im) как функцию напряжение на клеммах. Данная диаграмма поясняет кривую этого процесса.
- Для достижения определенного напряжения для асинхронного генератора, подключенные к нему конденсаторные батареи должны давать такое значение тока намагничивания, которое будет соответствовать этому уровню.
- Между тем, ток, который обеспечивают конденсаторные батареи, прямо пропорционален подаваемому на них напряжению, размещение всех возможных групп напряжения и тока через конденсатор является линейным.
- Соответствующая кривая показана на данной диаграмме.
- Если к клеммам подключен 3-фазный набор конденсаторов, напряжение холостого хода асинхронного генератора будет пересекать кривую намагничивания генератора и линию нагрузки конденсаторных батарей.
- Выходное напряжение холостого хода генератора для трех конденсаторных батарей показано на приведенной диаграмме .
- Моментно-скоростная характеристика асинхронной машины нарисована на данной диаграмме.
- В результирующей схеме асинхронного двигателя мы увидели, что выход двигателя был заменен сопротивлением с указанным ниже значением.
R mec =R 2 /с (1-с)
- Из кривой видно, что скольжение асинхронного генератора имеет отрицательное значение, в связи с чем значение сопротивления нагрузки также отрицательно. .
- Это означает, что нагрузочный резистор не потребляет энергию, а работает как источник питания.
- Он начал подавать питание, связанное с ним.
- Мощность асинхронного генератора зависит от некоторых заданных факторов.
- Значение отрицательного скольжения (S).
- скорость вращения ротора.
- Из характеристики крутящий момент-скорость асинхронного двигателя видно, что экстремальный крутящий момент, создаваемый в режиме генератора, называется пусковым моментом.
- Если значение этого крутящего момента, обеспечиваемого любым первичным двигателем, выше, чем пусковой момент.
- При первом запуске асинхронного генератора остаточный (остаточный) магнетизм в статоре генератора создает меньшее значение напряжения.
- Меньшее напряжение создает ток в роторе, этот ток ротора индуцирует напряжение в статоре, и значение напряжения статора увеличивается, после чего устанавливается нормальное значение для запуска генератора.
- Главный вопрос в том, что если в статоре нет остаточной намагниченности то как запустится генератор.
- Основная проблема с асинхронным генератором заключается в том, что напряжение этого генератора изменяется при изменении нагрузки, особенно когда он работает с реактивной нагрузкой.
- Характеристика работающего в одиночку асинхронного генератора с постоянной параллельной емкостью, изображенная на данной диаграмме.
- Из графика видно, что при наличии индуктивной нагрузки на генераторе кривая очень быстро идет вниз.
- Это происходит, когда батареи конденсаторов обеспечивают мощность (реактивную) для генератора и нагрузки, и если какая-то часть мощности, движущаяся к нагрузке, отводится на генератор, вызывает серьезные падения напряжения в генераторе.
- Из-за этих перепадов напряжения в генераторе непросто запустить асинхронный двигатель от источника питания генератора.
- Следует использовать различные методы для повышения эффективной емкости в начальных условиях, а затем для ее уменьшения во время нормальной работы.
Ограничения асинхронного генератора
- Асинхронный генератор, связанный с конденсаторной схемой, может производить достаточно реактивной мощности для самостоятельной работы.
- Когда ток нагрузки превышает способность генератора обеспечивать как реактивную мощность намагничивания, так и мощность нагрузки, генератор мгновенно прекращает генерировать мощность.
- Выход на валу должен быть устранен, и генератор снова запустится с питанием постоянным током из-за остаточного магнетизма в статоре.
- Индукционные генераторы в основном подходят для мест, производящих энергию ветра, так как в этом случае скорость постоянно является гибким фактором.
- В отличие от синхронных двигателей, асинхронные генераторы зависят от нагрузки и не могут использоваться отдельно для регулирования частоты сетевой станции.
Применение для индукционных генераторов
- Асинхронные генераторы в основном использовались в 20 веках, но с 1960 по 1970 годы они почти исчезли с рынка общественного пользования.
- Но после 1973 года, когда цена на нефть выросла, люди осознали важность этих генераторов, и они вернулись на рынок.