Неподвижные детали КШМ
Блок картер является остовом двигателя, в котором размещаются и работают подвижные детали, к нему крепятся практически все навесные агрегаты и приборы, обеспечивающие работу двигателя.
Коренные подшипникиДля коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.
МаховикМаховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала и течение подготовительных тактов, и вывода деталей КШМ из ВМТ и НМТ.
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.
На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.
а — V- образного карбюраторного двигателя; 6 — V-образного дизельного двигателя; в — соединение головки блока цилиндров, гильзы и блока цилиндров двигателя KaМA3-740; 1- крышка блока распределительных зубчатых колес; 2 — прокладка головки блока цилиндров; 3 — камера сгорания, 4 — головка блока цилиндров, 5 — гильза цилиндра; 6 и 19 — уплотнительные кольца, 7 — блок цилиндров; 8 — резиновая прокладка; 9 — головка блока цилиндров; 10 -прокладка крышки; 11 — крышка головки блоки цилиндров; 12 и 13 — болты крепления крышки и головки блока цилиндров; 14 — патрубок выпускного коллектора; 15 — болт-стяжка; 16 — крышка коренного подшипника: 17 — болт крепления крышки коренного подшипника; 17 — стопорное кольцо: 20 — стальная прокладка головки блока цилиндров.
Блок картерБлок-картер отливают из легированного чугуна или алюминиевых сплавов.
Блок-картер разделен на дне части горизонтальной перегородкой. В нижней части в вертикальных перегородках имеются разъемные отверстия крепления коленчатого вала, в верхней гильзы цилиндров. Блок-картер может быть отлит вместе с цилиндрами («сухие» гильзы), либо иметь вставные сменные гильзы, непосредственно омываемые охлаждающей жидкостью, так называемые «мокрые» гильзы. Также в блок-картере выполнены гладкие отверстия пол коренные опоры распределительного вала, под толкатели ГРМ, имеются гладкие и резьбовые отверстия и припадочные поверхности крепления деталей и приборов.
Гильзы цилиндров являются направляющими для поршня и вместе с головкой образуют полость, в которой осуществляется рабочий ЦИКЛ, Изготовляют гильзы литьем из специального чугуна. На наружной поверхности имеется одна или две посадочные поверхности крепления гильзы в блоке цилиндров. Внутреннюю поверхность цилиндра подвергают закалке с нагревом ТВЧ и тщательно обрабатывают, получая «зеркальную» поверхность.
Верхняя часть цилиндра наиболее нагружена, так как здесь происходит сгорание рабочей смеси, сопровождаемое резким повышением давления и температуры. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Для повышения износостойкости верхней част цилиндров в карбюраторных двигателях (ЗМЗ-53 и ЗИЛ-508.10) применяют пеганки из специального износостойкого чугуна» запрессованные в верхней части цилиндра. Толщина вставки 2—4 мм. высота 40—50 мм. используемый материал — аустенитный чугун.
«Мокрые» гильзы могут быть установлены в блок-картер с центровкой по одному или двум поясам. Первый способ применяется для постановки гильзы в алюминиевые, в юрой — в чугунные блоки.
Для уплотнения нижнего центрирующего пояска «мокрых» гильз применяют резиновые кольца гильзы с центровкой по одному нижнему поясу уплотняются одной медной прокладкой под горне нон плоскостью буртика.
Головка блока цилиндров закрывает цилиндры и образует верхнюю часть рабочей полости двигателя, в ней частично или полностью размещаются камеры сгорания. Головки блока цилиндров отливают из легированного серого чугуна или алюминисвого сплава. Чаще всего они являются общими для всех цилиндров, образующих ряд.
прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости и масла в цилиндры. В двигателях послушного охлаждения головки блока цилиндров делают ребренными. Причем ребра располагают по движению потока охлаждающего воздуха. Так, чтобы обеспечивался более эффективный теплоотвод. Поддон картера
Поддон картера закрывает KШМ снизу и одновременно является резервуаром для масла. Поддоны изготовляют штамповкой из листовой стали или отливают из алюминиевых сплавов. Внутри поддонов могут выполняться лотки и перегородки, препятствующие перемещению и взбалтыванию масла при лвижении автомобиля по неровным дорогам,
Привалочная поверхность, стыкующаяся с блок-картером, имеет от-бортовку металла и усиливается для придания жесткости стальной полосой, приваренной по периметру. В нижней точке поддона приваривается бобышка с резьбовым отверстием, которое закрывают пробкой с магнитом для улавливания металлических продуктов износа, образующихся вследствие изнашивания двигателя.
Неподвижные детали кривошипно-шатунного механизма
Категория:
Автомобили и трактора
Публикация:
Неподвижные детали кривошипно-шатунного механизма
Читать далее:
Неподвижные детали кривошипно-шатунного механизма
Уплотнение гильз достигается резиновыми или медными кольцами. Картер может быть выполнен за одно целое с блоком цилиндров (ЗИЛ-130, СМД-14 и др.) или иметь обработанную верхнюю плоскость, на которой устанавливаются цилиндры, отлитые отдельно (обычно у двигателей с воздушным охлаждением Д-21, Д-37Е и др.).
Общая отливка блока цилиндров с картером называется блок-картером. К нижней части блок-картера крепится болтами штампованный из стали или реже литой поддон картера, который является резервуаром для масла. Для уплотнения между ними устанавливается картонная или пробковая прокладка. В нижней части поддона имеется отверстие с пробкой для слива масла. Пробка современных двигателей снабжается магнитом для улавливания металлических частиц, попавших в масло в результате износа деталей. В поддоне картера имеются перегородки, предотвращающие быстрое стекание масла в одну сторону при движении по пересеченной местности.
Рекламные предложения на основе ваших интересов:
В передней, задней и в средней стенках нижней части блок-картера размещаются коренные подшипники коленчатого вала. Крышки коренных подшипников съемные и крепятся к картеру двумя или четырьмя болтами. Правильная установка крышки подшипника на место при сборке осуществляется установочными штифтами или направляющим пазом. Число коренных подшипников зависит от количества цилиндров, типа двигателя, частоты вращения коленчатого вала и ряда других причин. Для уменьшения трения и износа рабочих поверхностей вала и самого подшипника последние снабжены вкладышами, залитыми антифрикционным сплавом. Параллельно оси коренных подшипников коленчатого вала в отверстиях блок-картера расположены подшипники распределительного вала. В картере сделаны каналы, через которые осуществляется подвод смазки. Плоскость разъема картера у некоторых карбюраторных двигателей (ЗИЛ-130, ГАЗ-53А) и, как правило, в дизельных двигателях располагают ниже оси коленчатого вала, что повышает жесткость картера. К передней части блока цилиндров крепится крышка распределительных шестерен. К задней части блока присоединен картер маховика.
На верхней фрезерованной части блока б или отдельно изоготовленных цилиндров шпильками и гайками или болтами укрепляют головку цилиндров. С целью уплотнения от прорыва газов между головкой и блоком ставится ста-леасбестовая прокладка.
Блок-картеры V-образных восьмицилиндровых двигателей в изготовлении более сложны, однако обладают рядом преимуществ по сравнению с блок-картерами рядных двигателей. Такие блоки более жестки, меньше подвергаются деформациям, влияющим на износ деталей. Двигатели с V-образным расположением цилиндров короче и легче рядных двигателей (при одинаковой мощности), что дает возможность уменьшить базу автомобиля или трактора и общую массу.
В цилиндре совершаются все процессы двигателя. Внутренняя поверхность цилиндра служит направляющей для поршня, а в двухтактных двигателях цилиндр одновременно является частью золотникового механизма газораспределения. Внутренняя поверхность цилиндра, вдоль которой движется поршень, называется рабочей поверхностью, или зеркалом цилиндра. Цилиндр соединяется с головкой, в которой размещается камера сгорания. Вокруг цилиндра имеется охлаждающее устройство (рубашка охлаждения или охлаждающие ребра).
Цилиндры двигателей воздушного охлаждения отливают индивидуально. Размер ребер и межреберных промежутков выбирают из условий, чтобы оребрение оказывало меньшее сопротивление потоку воздуха и обеспечивало нужную интенсивность теплоотвода.
Рис. 15. Неподвижные детали кривошипно-шатунного механизма V-образного двигателя
Цилиндры современных двигателей с жидкостным охлаждением обычно отливаются в общем блоке вместе с верхней частью картера из легированного чугуна (ЗИЛ-130, СМД-14 и др.) или из алюминиевого сплава (ГАЗ-24, ГАЗ-53А и др.). Внутренняя рабочая поверхность цилиндров тщательно обрабатывается. Цилиндры двигателей имеют двойные стенки для создания пространства, образующего рубашку охлаждения.
Рис. 16. Гильзы цилиндров
Рис. 17. Цилиндр и головка цилиндра двигателя с воздушным охлаждением:
Рис. 18. Формы камер сгорания
Для повышения изностойкости стенок цилиндров и упрощения отливки, а также ремонта и сборки двигателя в цилиндры (рис. 16) запрессовывают вставные сменные гильзы из легированного чугуна. Гильзы разделяются на мокрые и сухие. Мокрыми называются такие гильзы, которые с наружной стороны омываются охлаждающей жидкостью. Сухие гильзы непосредственно с охлаждающей жидкостью не соприкасаются. Они могут быть запрессованы в верхнюю наиболее изнашиваемую часть цилиндра (рис. 16, а) или на полную длину цилиндра (рис. 16, б).
Мокрая гильза (рис. 16, в) выполняется в виде цилиндра с небольшим буртиком и верхним и нижним центрирующим поясками. Буртиком гильза опирается на соответствующую выточку в блоке цилиндров. Буртик гильзы прижимается прокладкой к блоку цилиндров при затяжке головки цилиндров, чем обеспечивается хорошая герметичность соединения. Иногда для лучшего уплотнения между фланцем цилиндровой гильзы и выемкой в блоке устанавливается медное кольцо (прокладка). На поверхности нижнего пояска гильзы имеются несколько кольцевых канавок, куда устанавливаются резиновые уплотняющие кольца 6. Кольца предотвращают проникновение охлаждающей жидкости из рубашки охлаждения в картер.
Для повышения износостойкости мокрые гильзы двигателей автомобилей ЗИЛ-130, ГАЗ-БЗА и других снабжены короткими вставками — сухими гильзами 4, изготовленными из нирезиста (кислотоустойчивого и жаростойкого чугуна, хорошо сопротивляющегося коррозии и обладающего высокой износоустойчивостью).
Мокрые гильзы обеспечивают лучшее охлаждение стенок цилиндра, но уменьшают жесткость блока цилиндров.
Головка цилиндров изготавливается в большинстве случаев из алюминиевого сплава или легированного чугуна высокой прочности. Головка из алюминиевого сплава улучшает отвод тепла и позволяет повысить степень сжатия на 0,2— 0.3 ед. Она имеет рубашку охлаждения у двигателей с жидкостным охлаждением и оребренную поверхность у двигателей воздушного охлаждения. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. При верхнем расположении клапанов в головке расположены гнезда клапанов и отлиты впускные и выпускные каналы. В головке имеется отверстие для ввертывания свечи зажигания или форсунки.
Устройство цилиндра и головки цилиндра с воздушным охлаждением показано на рис. 17.
Конструкция головки блока цилиндров зависит от формы камеры сгорания и расположения клапанов. Форма камеры сгорания оказывает большое влияние на характер протекания рабочего процесса в цилиндре и особенно на процесс сгорания. Основные формы камер сгорания показаны на рис. 18.
Наиболее рациональными камерами сгорания карбюраторного двигателя при верхнем расположении клапанов являются полусферическая (ГАЗ-24) и клиновая (ЗИЛ-130, ГАЗ-53А и др.), обладающие высокими антидетанационны-ми качествами вследствие малой поверхности и хорошего завихрения смеси.
На некоторых устаревших моделях двигателей (ГАЗ-51А. П-46 и др.) применяется смещенная (Г-образная) камера сгорания с нижним односторонним расположением клапанов.
Форму камеры сгорания дизельного двигателя в основном определяет примененный способ смесеобразования. Камеры сгорания дизельных двигателей подразделяются на разделенные и неразделенные.
Рекламные предложения:
Читать далее: Шатунно-поршневая группа
Категория: — Автомобили и трактора
Главная → Справочник → Статьи → Форум
Подвижные и неподвижные детали кшм
Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия
Видео: Кривошипно-шатунный механизм (КШМ). Основы
Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
Детали кривошипно-шатунного механизма можно разделить на:
- неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
- подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.
Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.
Блок-картер
Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.
Цилиндр
Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.
Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.
В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.
Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.
В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.
Блок цилиндров
На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.
Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.
Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).
Остов двигателя
Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.
Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.
Поршень
Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.
Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.
Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла
Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).
При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.
Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.
Поршневые кольца
Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.
Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.
Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.
Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.
Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.
Поршневой палец
Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.
Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.
Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).
Шатунная группа кривошипно-шатунного механизма состоит из:
- шатуна
- верхней и нижней головок шатуна
- подшипников
- шатунных болтов с гайками и элементами их фиксации
Шатун
Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.
Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла
Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.
Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.
В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.
Коленчатый вал
Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.
Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.
К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.
Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.
Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.
В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.
Маховик
Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.
Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем
Видео-уроки о КШМ
Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы
Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.
Что такое КШМ и для чего он нужен?
Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.
Устройство КШМ
Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.
Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)- Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
- Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
- Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
- Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.
Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.
Подвижная (рабочая) группа КШМ
Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.
- Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.
Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)
- Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.
Устройство шатуна
- Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.
Устройство коленвала
- Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.
Неподвижная группа КШМ
Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.
- Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.
Блок цилиндров
- Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.
Принцип работы КШМ
Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.
Принцип работы КШМ:
- В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
- Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
- Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
- Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
- Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.
Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.
Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.
Основные неисправности
Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.
Стук в двигателе
Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.
Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.
Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.
Снижение мощности
Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.
Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.
Повышенный расход масла
Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.
Нагар
Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.
Белый дым из выхлопной трубы
Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.
Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.
Заключение
Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.
Устройство КШМ
КШМ ВАЗ 2110, 2111, 2112
|
Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.
Устройство КШМ можно разделить на две группы: подвижные и неподвижные.
Подвижные детали:поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.
Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.
Поршневая группаПоршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.
Коренные подшипникиДля коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.
МаховикМаховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.
Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.
Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.
Устройство шатуна
|
Устройство КШМ автомобиля.
1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня: 8 — юбка поршня; 9 — поршень: 10 — форсунка; 11- шатун; 12 — вкладыш; 13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17 — втулка шатуна; 18 — номер на шатуне; 19 — метка на крышке шатуна; 20 — шатунный болт.
Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.
Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.
Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.
Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.
По назначению кольца подразделяются на:
Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.
Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.
Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).
Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.
Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов). Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым. |
Установка поршневого пальца |
Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси. Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«. |
Устройство шатуна |
Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр, чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).
Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.
Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.
СОДЕРЖАНИЕ:
1. Устройство КШМ двигателя
1.1 Подвижные детали КШМ
1.2 Неподвижные детали КШМ
2. Неисправности КШМ двигателя
2.1 Звуки неисправностей двигателя (стуки двигателя)
2.2 Признаки и причины неисправностей двигателя автомобиля
3. Капитальный ремонт двигателя автомобиля
Кривошипно-шатунный механизм: устройство, детали, принцип работы
Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.
Устройство механизма
Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:
- деревянные части быстро изнашивались и требовали частого ремонта или замены;
- рабский труд обходился дешевле высоких для того времени технологий.
В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.
Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.
Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.
Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:
- Подвижные.
- Неподвижные.
К первым относятся:
- поршень;
- кольца;
- пальцы;
- шатун;
- маховик;
- коленвал;
- подшипники скольжения коленчатого вала.
К неподвижным деталям кривошипно-шатунного механизма относят:
- блок цилиндров;
- гильза;
- головка блока;
- кронштейны;
- картер;
- другие второстепенные элементы.
Поршни, пальцы и кольца объединяют в поршневую группу.
Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения
Блок цилиндров
Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.
Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.
Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.
Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:
- сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
- влажная, гильза омывается снаружи охлаждающей жидкостью.
Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.
Поршни
Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.
Деталь выполняет следующие функции:
- на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
- на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
- далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
- на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.
На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.
Конструктивно изделие подразделяется на такие части, как:
- днище, воспринимающее давление газов;
- уплотнение с канавками для поршневых колец;
- юбка, в которой закреплен палец.
Палец служит осью, на которой закреплено верхнее плечо шатуна.
Поршневые кольца
Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.
Кольца выполняют следующие функции:
- Уплотняют зазор между гильзой и стенками поршня.
- Обеспечивают направление движения поршня.
- Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
- Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.
Смазывать необходимо и соединение поршня с шатуном.
Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.
Поршневые пальцы
Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.
Различают следующие типы конструкции пальцев:
- Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
- Плавающие. Могут проворачиваться в своих креплениях.
Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной группы и увеличивает их ресурс.
Шатун
Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.
Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.
При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.
Коленчатый вал
Преобразование осуществляет с помощь.
Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.
Основные части, из которых состоит коленвал, следующие:
- Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
- Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
- Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
- Основная выходная часть. Передает энергию трансмиссии и далее — колесам.
Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.
Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.
Картер двигателя
Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.
Принцип работы кривошипно-шатунного механизма
Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.
Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью. В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.
Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.
Неисправности, возникающие при работе КШМ и их причины
Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.
Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.
Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.
Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.
Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.
Перечень неисправностей КШМ
Наиболее распространенными поломками механизма являются:
- износ и разрушение шатунных и коренных шеек коленвала;
- стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
- загрязнение нагаром сгорания поршневых колец;
- перегрев и поломка колец;
- скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
- длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.
Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.
Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.
Признаки наличия неисправностей в работе КШМ
Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:
- Стуки в двигателе, непривычные звуки при разгоне. Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
- Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
- «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
- Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
- Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.
При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.
Обслуживание КШМ
Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.
Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.
Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.
При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.
Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.
Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.
Устройство КШМ
КШМ ВАЗ 2110, 2111, 2112
|
Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.
Устройство КШМ можно разделить на две группы: подвижные и неподвижные.
Подвижные детали:поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.
Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.
Поршневая группаПоршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.
Коренные подшипникиДля коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.
МаховикМаховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.
Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.
Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.
Устройство шатуна
|
Устройство КШМ автомобиля.
1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня: 8 — юбка поршня; 9 — поршень: 10 — форсунка; 11- шатун; 12 — вкладыш; 13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17 — втулка шатуна; 18 — номер на шатуне; 19 — метка на крышке шатуна; 20 — шатунный болт.
Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.
Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.
Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.
Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.
По назначению кольца подразделяются на:
Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.
Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.
Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).
Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.
Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов). Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым. |
Установка поршневого пальца |
Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси. Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«. |
Устройство шатуна |
Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр, чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).
Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.
Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.
СОДЕРЖАНИЕ:
1. Устройство КШМ двигателя
1.1 Подвижные детали КШМ
1.2 Неподвижные детали КШМ
2. Неисправности КШМ двигателя
2.1 Звуки неисправностей двигателя (стуки двигателя)
2.2 Признаки и причины неисправностей двигателя автомобиля
3. Капитальный ремонт двигателя автомобиля
Как устроен и для чего служит кривошипно-шатунный механизм? 7 основных неисправностей, которые могут возникнуть в его работе
Если у вас есть автомобиль, то с вероятностью 99.99%, в нём есть кривошипно-шатунный механизм (КШМ). Его нет только в «чистых» электромобилях, а также автомобилях с роторно-поршневым двигателем, а также в газотурбинных двигателях. Все остальные автомобильные двигатели внутреннего сгорания построены именно на базе КШМ, и неважно, дизельные они или бензиновые. Данная система передаёт энергию горения рабочей смеси через коленчатый вал и далее трансмиссию на колёса автомобиля, преобразуя возвратно-поступательное (туда и обратно) движение поршней в цилиндрах мотора во вращательное движение коленчатого вала.
Содержание статьи
Устройство механизма
Классический кривошипно-шатунный механизм был известен ещё в Древнем Риме. Использовался похожий принцип в Римской пилораме, только там вращение, под воздействием течения реки, водяного колеса превращалось в возвратно-поступательное движение пилы.
В паровых машинах также использовался КШМ, похожий на использующийся сейчас в автомобильных двигателях внутреннего сгорания (ДВС). Только в нём поршень был соединён с шатуном через шток и цилиндр низкого давления. Схожая конструкция используется иногда в ДВС и по сей день.
В так называемых крейцкопфных двигателях поршень жёстко соединён с крейцкопфом – деталью, движущейся по неподвижным направляющим в одном измерении, как и поршень, через шток, а далее по привычной схеме – шатун с коленвалом. Это позволяет увеличить рабочий ход поршня, а иногда делает цилиндр двусторонним, в таких конструкциях добавлена ещё одна камера сгорания. Такой тип КШМ применяется чаще всего в судовых дизелях и другой крупной технике.
Кривошипно-шатунный механизм состоит из двух основных групп деталей – подвижных и неподвижных:
- К подвижным частям КШМ относятся следующие детали: поршни, которые вместе с кольцами и пальцами объединены в поршневую группу, шатуны, коленчатый вал (в просторечном сокращении — коленвал), подшипники коленвала и маховик.
- Неподвижные – это картер, объединённый с блоком цилиндров, гильзы цилиндров, головка блока цилиндров. Также к ним относятся поддон (нижний картер), полукольца коленвала, картер маховика и сцепления, а также кронштейны и детали крепежа.
Иногда выделяют и цилиндропоршневую группу, в которую входит поршневая и гильза цилиндра.
Блок цилиндров
Блок цилиндров сейчас неотделим от картера блока. Так, кстати, было не всегда – на старых двигателях (у «Запорожца», например) они могли быть изготовлены раздельно. Именно картер вместе с блоком цилиндров – основной узел конструкции двигателя автомобиля.
Внутри блока и происходит вся полезная работа двигателя. К блоку цилиндров крепятся внизу — нижний картер (поддон), сверху — головка блока, сзади — картер маховика, топливная, выпускная системы и другие детали двигателя. Сам блок прикреплён к шасси автомобиля через специальные «подушки».
Материал, из которого изготовлена эта важная часть двигателя – чаще всего либо алюминий, либо чугун. На спортивных автомобилях могут применяться и композитные материалы. В блок запрессованы съёмные гильзы, которые облегчают ход поршней и ремонтопригодность блока – то есть его расточку под «ремонтные» поршни и кольца. Гильзы делают из чугуна, стали или композитных сплавов. Существует два вида гильз:
- «сухие» — когда внешняя поверхность гильз не омывается охлаждающей жидкостью;
- «мокрые» — когда гильзу снаружи охлаждает поток жидкости.
Каждый вариант имеет свои достоинства и недостатки.
Поршни
Поршень – это металлическая деталь, которая имеет форму стакана, и в некоторых автопредприятиях водители и автослесари со стажем старые поршни, очищенные от нагара, в качестве стаканов и использовали. Однако основное его предназначение, естественно, не в этом, а для того, чтобы преобразовывать потенциальную энергию давления и термическую энергию температуры газов в кинетическую энергию вращения коленчатого вала в момент рабочего хода.
Во время тактов впуска он служит в качестве насоса, затягивающего воздух или горючую смесь, в ходе такта сжатия сжимает её, а в ходе такта выпуска — помогает удалению отработанных газов. Во время рабочего хода (точнее, чуть раньше) смесь воспламеняется (или форсунка впрыскивает топливо на дизельных двигателях), и горящие газы давят на поршень, заставляя его выполнять работу по преобразованию термической энергии в кинетическую.
Поршень современного автомобильного двигателя выполнен чаще всего из сплавов на основе алюминия. Они обеспечивают хороший отвод лишнего тепла, к тому же довольно лёгкие.
Составные части поршня автомобильного двигателя – это днище, уплотняющяя часть и юбка. Поршень соединяется с шатуном при помощи находящегося в юбке пальца. Для обеспечения плотности соединения поршня со стенкой цилиндра применяются поршневые кольца.
Поршневые кольца
Это плоские незамкнутые (с разъёмом в несколько десятых долей миллиметра) стальные или чугунные кольца, надеваемые в специальные канавки на уплотнительную часть поршня. Они служат для нескольких целей:
- Уплотнение. Качественные, неизношенные кольца повышают компрессию (давление в цилиндре).
- Теплопередача. Компрессионные кольца передают лишнее тепло гильзе цилиндра, предотвращая перегрев двигателя.
- Не пропускают моторное масло из картера в камеру сгорания, но оставляют на стенках гильзы небольшой слой масла для смазки цилиндра. Самое нижнее кольцо называется маслосъёмным. Его конструкция специально разработана под эту задачу.
Поршневые пальцы
Поршневой палец нужен для того, чтобы связать поршень с шатуном. Он находится во внутренней части юбки поршня и представляет собой металлический цилиндр, отдалённо похожий на палец (отсюда и название). Шатун не крепится жёстко на пальце, ведь надо обеспечивать максимально ровную передачу крутящего момента от поршня к шатуну и далее. Выполнены пальцы обычно из легированной стали.
Пальцы делятся на фиксированные и плавающие. Фиксированный жёстко прикреплён к юбке поршня, и двигается на нём только шатун, а плавающий палец как в поршневой юбке, и на шатуне может крутиться. Сейчас в конструкциях автомоторов преобладают плавающие пальцы, обеспечивающие более полную и плавную передачу крутящего момента и снижающие нагрузку на детали КШМ.
Шатун
Для того, чтоб передать крутящий момент с поршня на коленвал, служит шатун, соединяющий две этих важных детали. Для того, чтобы ремонт шатуна не вызывал особых трудностей, в нём применяются специальные вкладыши, фактически разборный подшипник скольжения, хотя в некоторых двигателях с малой скоростью вращения коленвала по-прежнему применяются баббитовые вкладки, а в быстроходных моторах в обеих головках шатуна (как нижней, так и верхней) установлены подшипники качения. По форме шатун похож на рычаг или гаечный ключ с двутавровым сечением. Его верхняя, обычно неразъёмная головка соединяет его с пальцем поршня, а нижняя, разъёмная соединяет шатун с коленчатым валом. Делают шатуны чаще всего из легированной, иногда из углеродистой стали.
Коленчатый вал
Коленчатый вал, или сокращённо коленвал – одна из важнейших деталей мотора, впрочем, лишних деталей не бывает. Он имеет форму вала с «искривлениями» в сторону, к которой через оси прикреплены шатуны двигателя. Он состоит из следующих деталей:
- Шейки. Они нужны для того, чтобы закрепить коленвал на картере и шатуны на нём. Подразделяются на коренные и шатунные. На коренных крепится к картеру сам коленчатый вал, на шатунных шейках к коленвалу крепятся шатуны.
- Щёки – они и являются своего рода «коленями» коленчатого вала, именно они крутятся вокруг оси коленчатого вала. Щёки коленвала соединяют коренные и шатунные шейки.
- Передняя выходная часть вала. К ней присоединены шкивы отбора мощности для привода через ремень, цепь или шестерни распредвала, системы охлаждения генератора и других агрегатов.
- Задняя выходная часть вала. Она соединена с маховиком и служит для отбора мощности для «основного предназначения» автомобиля – для движения.
В конструкции коленчатого вала также предусмотрены дополнительные детали, например, противовесы, предназначенные для компенсации вибраций вала, возникающих при ударных нагрузках.
Коленчатые валы чаще всего изготавливаются либо из стали, либо из высококачественного лёгкого чугуна. Чугунные коленвалы изготавливаются при помощи литья, стальные – при помощи штамповки.
Картер двигателя
Картер, отливаемый вместе с блоком цилиндров – основная деталь двигателя автомобиля, можно сказать, что рама двигателя. Именно на картере закреплены основные части двигателя, в нём крутится коленчатый вал, в цилиндрах двигаются поршни и происходит непосредственный процесс превращения энергии сгорания топлива в энергию вращения колёс вашего автомобиля.
Ещё картер является основным местом для размещения моторного масла, которое смазывает двигатель. Для хранения масла также предназначен поддон – нижняя часть картера.
Принцип работы кривошипно-шатунного механизма
Во время основного такта работы автомобильного двигателя – рабочего хода (расширения), горящие газы давят на поршень, а тот двигается вниз — от верхней мёртвой точки к нижней, тем самым передавая энергию посредством пальца и шатуна на коленчатый вал. Шатун может ограниченно поворачиваться и вокруг оси пальца поршня, и вокруг шатунной шейки коленвала, и таким образом поступательное движение поршня превращается во вращательное.
Стоит заметить, что при остальных тактах коленчатый вал через шатун, наоборот, сообщает возвратно-поступательное движение поршню. Где он его берёт? Из «рабочих» цилиндров, энергии коленвала и маховика, а при запуске – стартера.
Неисправности, возникающие при работе КШМ и их причины
Неполадки и поломки в кривошипно-шатунном механизме могут произойти в самых разных его узлах. Чтобы свести риск возникновения этих неприятностей до минимума, необходимо знать, отчего они происходят. Чаще всего это нагар на деталях и их износ. Наиболее часто происходят поломки КШМ от использования некачественного автомобильного топлива и масла. Особенно это чревато для дизелей, которые требовательны к качеству горюче-смазочных материалов, что может вывести из строя не только КШМ. Редкая смена масла, несвоевременная замена топливных, воздушных и масляных фильтров – всё это также несёт потенциальную угрозу поломок. Может послужить причиной неисправности перегрев двигателя, а также утечка и снижение уровня моторного масла в двигателе.
Перегрев двигателя может привести даже к заклиниванию. Чтобы этого не случилось, заливайте качественную охлаждающую жидкость и следите за состоянием системы охлаждения.
Бывает, что проблема в системе питания или в зажигании. Тогда смесь сгорает не полностью или неравномерно.
Ещё одна распространённая причина поломок – это использование некачественных запчастей. Не покупайте фейк и пользуйтесь услугами проверенных автосервисов.
Перечень неисправностей КШМ
Главные неприятности, которые могут случится с кривошипно-шатунным механизмом:
- Как шатунные, так и коренные шейки коленчатого вала подвержены износу и механическим повреждениям.
- Износ, механические повреждения и даже расплавление могут угрожать и вкладышам (подшипникам) шеек коленвала.
- «Болезни» поршневых колец – это закоксовывание не до конца сгоревшими продуктами горения (углеводороды окисляются только до углерода), их залегание и даже поломки, что может привести к фатальным последствиям.
- Цилиндропоршневая группа также подвержена износу. В современных «движках» это не так заметно, всё-таки они созданы по последнему слову техники, но у каждой детали имеется конечный ресурс.
- На днище поршня может отложиться нагар.
- В деталях могут появиться трещины, они могут прогореть, обломиться и даже расплавиться.
- Двигатель может даже заклинить.
Признаки наличия неисправностей в работе КШМ
Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.
Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.
Обслуживание КШМ
Прежде всего, общие советы: «машина любит ласку, чистоту и смазку». Следует вовремя проверять уровень масла, не допускать перегрева двигателя и заправляться только качественным горючим. Серьёзные проблемы с КШМ решаются только в автосервисе. Разумеется, есть автолюбители, которые самостоятельно могут расточить цилиндр до ремонтного размера, но это всё же характерно для не самых новых автомобилей.
В «закоксованных» двигателях можно провести раскоксовку, которая делается как с разбором двигателя, так и при помощи специальных средств – без такового. Однако, подобные манипуляции лучше доверить профессионалам. Соблюдайте сроки ТО.
Заключение
Кривошипно-шатунный механизм – это важнейший агрегат в автомобиле. От его функционирования зависит состояние всего автомобиля и настроение его владельца. Следите за его технической исправностью, и двигатель будет работать долго, радуя вас мощностью и экономичностью.
мьютексов — как мне работать с мьютексами в подвижных типах в C ++?
Переполнение стека- Около
- Продукты
- Для команд
- Переполнение стека Общественные вопросы и ответы
- Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
- Вакансии Программирование и связанные с ним технические возможности карьерного роста
- Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
Балки — закреплены на одном конце и поддерживаются на другом
Балка закреплена на одном конце и поддерживается на другом — одноточечная нагрузка
Изгибающий момент
M A = — F ab (L + b) / (2 L 2 ) (1a)
где
M A = момент на неподвижном конце (Нм, фунт f футов)
F = нагрузка (Н, фунт f )
M F = R b b (1b)
где
M F = момент в точке нагрузки F (Нм, фунт f футов)
R b = опорная нагрузка на опоре B (Н, фунт f )
Прогиб
δ F = F a 3 b 2 (3 L + b) / ( 12 л 3 EI) (1c) 9 0073
где
δ F = прогиб (м, фут)
E = Модуль упругости (Па (Н / м 2 ), Н / мм 2 , psi)
I = Момент инерции площади (м 4 , мм 4 , дюйм 4 )
Реакции опоры
R A = F b (3 л 2 — b 2 ) / (2 л 3 ) (1d)
где
R A = опорная сила в A (Н, фунт f )
R B = F a 2 (b + 2 L) / (2 L 3 ) (1f)
где
R B = сила опоры в B (Н, фунт f )
Балка, закрепленная на одном конце и поддерживаемая на другом — постоянная нагрузка
Изгибающий момент
M A = — q L 2 /8 (2a)
где
M A = момент на неподвижном конце (Нм, фунт на футов)
q = длительная нагрузка (Н / м, фунт на / фут)
M 1 = 9 q L 2 / 128 (2b)
где
M 1 = максимальный момент при x = 0.625 L (Нм, фунт f футов)
Прогиб
δ max = q L 4 / (185 EI) (2c)
где
δ max = максимальный прогиб при x = 0,579 L (м, фут)
δ 1/2 = q L 4 / (192 EI) (2d)
где
δ 1/2 = прогиб при x = L / 2 (м, фут)
Реакции опоры
R A = 5 q L / 8 (2e)
R B = 3 q L / 8 (2f)
Балка, закрепленная на одном конце и поддерживаемая на другом — непрерывная уменьшающаяся нагрузка
Изгибающий момент
M A = — q L 2 /15 (3a)
, где
M A = момент на неподвижном конце (Нм, фунт f футов)
q = непрерывно снижающаяся нагрузка (Н / м, фунт f / футов)
M 1 = q L 2 /33.6 (3b)
где
M 1 = максимальный момент при x = 0,553 L (Нм, фунт f фут)
Прогиб
δ max = q L 4 / (419 EI) (3c)
где
δ max = максимальный прогиб при x = 0,553 L (м, фут)
δ 1/2 = q L 4 / (427 EI) (3d)
где
δ 1/2 = прогиб при x = L / 2 (м, фут)
Реакции опоры
R A = 2 q L / 5 (3e)
R B = q L / 10 (3f)
Балка, закрепленная на одном конце и поддерживаемая на другом — Момент на поддерживаемом конце
Изгибающий момент
M A = -M B /2 (4a)
где
M A = момент на неподвижном конце (Нм, фунт f футов)
Прогиб
δ max = M B L 2 / (27 EI) (4b)
где
δ max = max прогиб при x = 2/3 L (м, фут)
Реакции опоры
R A = 3 M B / (2 L) (4c)
R B = — 3 м B / (2 л) (4d)
.Лезвия челюсти, фиксированные и подвижные
Поиск решений Интернет-магазин en- английский
- Deutsch
% PDF-1.4 % 14 0 объект > endobj xref 14 62 0000000016 00000 н. 0000001586 00000 н. 0000001733 00000 н. 0000002052 00000 н. 0000002270 00000 н. 0000002350 00000 н. 0000002447 00000 н. 0000002557 00000 н. 0000002982 00000 н. 0000003031 00000 н. 0000003080 00000 н. 0000003293 00000 н. 0000003481 00000 н. 0000003520 00000 н. 0000003569 00000 н. 0000003618 00000 н. 0000003667 00000 н. 0000003689 00000 н. 0000007038 00000 п. 0000007060 00000 п. 0000010296 00000 п. 0000010318 00000 п. 0000012975 00000 п. 0000012997 00000 п. 0000015852 00000 п. 0000015874 00000 п. 0000018750 00000 п. 0000018772 00000 п. 0000021667 00000 п. 0000022001 00000 п. 0000022428 00000 п. 0000022642 00000 п. 0000022864 00000 п. 0000022886 00000 п. 0000025941 00000 п. 0000025963 00000 п. 0000029232 00000 п. 0000044523 00000 п. 0000045374 00000 п. 0000053122 00000 п. 0000053979 00000 п. 0000054641 00000 п. 0000057318 00000 п. 0000058175 00000 п. 0000059032 00000 н. 0000072221 00000 п. 0000132349 00000 н. 0000135453 00000 п. 0000139595 00000 п. 0000141689 00000 н. 0000143944 00000 н. 0000147063 00000 н. 0000151908 00000 н. 0000155139 00000 н. 0000164393 00000 н. 0000172397 00000 н. 0000178517 00000 н. 0000180853 00000 п. 0000185648 00000 н. 0000185726 00000 н. 0000001784 00000 н. 0000002031 00000 н. трейлер ] >> startxref 0 %% EOF 15 0 объект > endobj 16 0 объект > endobj 74 0 объект > поток Hb«a«tv.6Ā # Vp? 2A0K? 10py30p [2Z0Ne8pȾ _oVN ٙ + ٙ 8). / qr -e`EraJ @
.Перечислить неподвижные детали КШМ указанные на рисунке 1
Технологическая инструкция
Для допуска к лабораторно-практическому занятию студент должен в ходе домашней проработки изучить назначение, устройство и принцип работы КШМ карбюраторного и дизельного двигателей.
Содержание работы
3.1 Изучить устройство КШМ, используемого в карбюраторных и дизельных двигателях, рядных и V-образных.
3.2 Изучить принцип работы КШМ в целом.
3.3 Изучить неподвижные детали КШМ.
3.4 Изучить назначение поперечных перегородок блока цилиндров двигателя.
3.5 Изучить назначение продольных, вертикальных и поперечных масляных каналов блока цилиндров двигателя.
3.6 Изучить место крепления распределительного вала и картера маховика.
3.7 Изучить места крепления приборов к блоку цилиндров и назовите их.
3.8 Объяснить назначение рубашки охлаждения в блоке цилиндров двигателя.
3.9 Изучить принцип работы шатунно-поршневой группы.
3.10 Дать полную характеристику изучаемого кривошипно-шатунного механизма и основных его деталей.
3.11 Изучить подвижные детали КШМ.
3.12 Изучить точки смазки коленчатого вала и объяснить, как подводится масло для смазки коренных подшипников.
3.13 Изучить каналы подвода масла к шатунным подшипникам.
3.14 Изучить назначение маслосбрасывающего гребня и маслосгонной насечки коленчатого вала и покажите их.
Работа в лаборатории
4.1 Определить неподвижные и подвижные детали КШМ.
4.2 Произвести необходимые расчеты основных параметров двигателя.
Контрольные вопросы
Вопросы для подготовки к выполнению работы:
5.1 Знать название неподвижных деталей КШМ и их назначение.
5.2 Знать назначение и общее устройство блока цилиндров.
5.3 Знать назначение масляных каналов в блоке цилиндров.
5.4 Знать назначение водяной рубашки блока цилиндров двигателя.
5.5 Знать какие виды гильз цилиндров существуют? Как их устанавливают и уплотняют в блоке картера?
5.6 Назвать места возможного проникновения охлаждающей жидкости в масляный картер двигателя. Назвать причины этих неисправностей.
5.7 Назвать подвижные детали КШМ и их назначение.
5.8 Объяснить назначение и устройство коленчатого вала, особенности конструкции коленчатого вала рядных и V-образных двигателей.
5.9 Как подводится масло для смазки коренных и шатунных подшипников?
5.10 Каково назначение маслосбрасывающего гребня и маслосгонной насечки коленчатого вала.
5.11 Назначение и устройство шатуна.
5.12 Как коленчатый вал удерживается от осевого перемещения?
5.13 В чем отличие конструкций поршней дизельного и карбюраторного двигателей.
5.14 Как и чем удерживается поршневой палец от осевого смещения?
Содержание отчета
Для чего служит КШМ
__________________________________________________________________________
6.2 Для чего служит блок-картер? Из какого материала он может изготавливаться
_______________________________________________________________________
Перечислить неподвижные детали КШМ указанные на рисунке 1
1 ______________________________ 2 __________________________
3 ______________________________ 4 __________________________
5 ______________________________ 6 __________________________
7 ______________________________ 8 __________________________
9 ______________________________ 10 __________________________
11 _____________________________ 12 __________________________
13 _____________________________ 14 __________________________
15 _____________________________ 16 __________________________
17 _____________________________ 18 __________________________
19 _____________________________ 20 __________________________
Рисунок 1 — Неподвижные детали кривошипно-шатунного механизма:
а — V-образного карбюраторного двигателя;
б — V-образного дизеля;
в — соединение головки блока цилиндров, гильзы и блока цилиндров дизеля КамАЗ-740.
6.4 Перечислить подвижные детали шатунно-поршневой группы указанные на рисунке 2
1 ______________________________ 2 __________________________
3 ______________________________ 4 __________________________
5 ______________________________ 6 __________________________
7 ______________________________ 8 __________________________
9 ______________________________ 10 __________________________
11 _____________________________ 12 __________________________
13 _____________________________ 14 __________________________
15 _____________________________ 16 __________________________
17 _____________________________ 18 __________________________
19 _____________________________ 20 __________________________
Рисунок 2 – Детали шатунно-поршневой группы различных двигателей:
а- дизеля ЯМЗ;
б- двигателя автомобиля ГАЗ-53А;
в — двигателя автомобиля ГАЗ-53-12
6.5 Как проявляются при работе двигатели износ цилиндров, поршней, поршневых колец?
______________________________________________________________________
Кривошипно- шатунный механизм — Мегаобучалка
1.Вставьте пропушенные слова:
Кривошипно- шатунный механизм преобразует возвратно-поступательное движение ________________ во вращение _____________.
2.Перечислите подвижные детали КШМ: ____________________________
Неподвижные детали КШМ : ____________________________
3. К каким деталям КШМ относятся эти детали и подпишите название каждой
Эти детали КШМ относятся к __________________________ ________________группе.
4. Сколько головок цилиндров устанавливается на автомобиле ЗИЛ-508?___________
5. Какую вентиляцию картера имеют большинство автомобильных двигателей?
_______
6. Какие гильзы называют «мокрыми»? ____________________________
7. Как называется эта деталь КШМ, напишите его назначение и устройство.
______________
8. Для чего в днище поршня дизельного двигателя делают выемку? ____________________________
9. Что изображено на рисунке, где они устанавливаются и как называются
____________________________
10. Как называется эта деталь КШМ, напишите ее устройство и назначение
__________
11. Сколько шатунов устанавливается на шатунной шейке V- образного двигателя? ______________
12. Напишите назначение и устройство коленчатого вала
_______________
13. Для чего к шейкам коленчатого вала прикрепляются противовесы? ____________________________
14. В виде чего изготавливаются коренные и шатунные подшипники и из какого материала они изготовлены? ________________________
15. Вставьте пропущенные слова:
Маховик служит для равномерного вращения _
и преодоления двигателем___________________ нагрузок при трогании с места и во время работы. Маховик представляет собой _ .
16. Зачем на ободе маховика напрессован стальной зубчатый венец? __________
Газораспределительный механизм
1.Напишите назначение газораспределительного механизма ____________
2.Что такое фаза газораспределения? _
3.Перечислите устройство ГРМ
4. Напишите передаточные детали ГРМ двигателя ЗМЗ-53 _
5. Закончите предложение:
Распределительный вал предназначен для своевременного__________________.
6. Какие детали изготовлены заодно с распредвалом? ______________________
7. Где устанавливается приводная шестерня распредвала и из какого материала она изготавливается?_____________________________
8. Почему диаметр распределительной шестерни коленчатого вала меньше шестерни распредвала? _
Система охлаждения
1. Для чего служит система охлаждения? ________
2. Система охлаждения бывает двух видов:
1.______
2.______
3. Какая должна быть температура охлаждающей жидкости для нормальной работы
двигателя?_____________________________
4.Какие узлы и агрегаты включает в себя жидкостная система охлаждения? ____________
5. По какому кругу циркулирует жидкость на этом рисунке?
__
6.Какой узел системы охлаждения служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах? __________________________
7. Что изображено на рисунке? Напишите назначение и устройство этого узла.
________________________
8.Напишите назначение и устройство радиатора системы охлаждения ________________________
9. Из какого материала изготовлены баки и сердцевина радиатора? ___________
10. Как называется этот узел системы охлаждения? Напишите его устройство и работу.
.
11. Для чего в крышке радиатора устанавливают паровоздушный клапан? _______________________________
12. Где устанавливаются датчики указателя температуры охлаждающей жидкости? _____________________
13. Для чего на некоторых автомобилях устанавливают предпусковые подогреватели? _____________________
14. Какие три положения имеет переключатель предпускового подогревателя? ___________________\
15. Опишите схему работы предпускового подогревателя
________________________
Смазочная система
1. Для чего необходима смазочная система двигателя? ____________
2. Какая система смазки будет называться «комбинированная»? _______________________________
3. Перечислите детали двигателя, которые будут смазываться:
под давлением ____________
разбрызгиванием
_________________________
4. Перечислите основные узлы системы смазки двигателя
1.________
2.________
3.________
4.________
5.________
5.Куда удаляются картерные газы при закрытой вентиляции картера? ________________________
6.Напишите схему работы системы смазки ____________________
7.Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.
______
8.Какой клапан смонтирован в расточке корпуса насоса и для чего он нужен? ________________________
9.Для чего нужен перепускной клапан в насосе и на какое давление он отрегулирован? ________________________
10.Как называется узел системы смазки, указанный на рисунке? Напишите его назначение и устройство.
________________
Из каких основных частей состоит фильтр со сменным фильтрующим элементом?_____________
Перечислите функции моторного масла: __________
Презентация к уроку «Кривошипно-шатунный механизм»
Цели урока
Білімдік
Образовательная : Изучить кривошипно-шатунный механизм. Определить степень усвоения материала. Формировать умения применять полученных знания на практике.
Дамытушылы?
Развивающая:Закрепить знания устройства,порядка разборки кривошипно-шатунного механизма. Развитие внимания, наблюдательности, познавательной активности, самостоятельности.
Т?рбиелік
Воспитывающая : Воспитание бережного отношения к учебному оборудованию и инструментам. Воспитание самостоятельности и ответственности.
О?ыту ?дістері
Методы обучения:Словесные. Наглядные: Демонстрация наглядных пособий,.
_____________________________________________________________________________
Саба?та?ы ?здік ж?мыс т?рлері
Виды самостоятельной работы на уроке _____работа с книгой___
Саба?ты? материалды?-техникалы? жабды?талуы
Материально-техническое оснащение урока: __________интерактивная доска,карточки задания,_учебники__________________________________________
Саба?ты? мазм?ны ж?не барысы
Содержание и ход урока
1. ?йымдастыру кезе?і / Организационная часть (___1,5-2__мин)
уа?ыт / время
Проверка по журналу присутствующих на уроке, отметка отсутствующих, заполнение журнала
2, О?ушылар?а саба?ты? та?ырыбы мен ма?сатын хабарлау
2. Сообщение учащимся темы и цели урока
3 ?й тапсырмасын тексеру
3. Проверка домашнего задания
Вопросы: 1.Перечислите основные части трактора:Ответ: двигатель,трансмиссия, ходовая часть, рулевое управление, кабина, навесное устройство.
2.Для чего служит навесное оборудование?Ответ: для использования мощности двигателя при выполнения различных работ.
3.Для чего предназначено электрооборудование?Ответ: для пуска двигателя, освещения и сигнализации.
4.Что такое двигатель ?Ответ: источник механической энергии.
5.Что называется камерой сгорания?Ответ: пространство между головкой цилиндра и поршнем, расположенным в ВМТ.
6.Что означает степень сжатия?Ответ: это число,показывающее.во сколько раз полный объем цилиндра больше объема камеры сгорания
7.Как называется крайнее верхнее и нижнее положение поршня?Ответ: Верхняя мертвая точка (ВМТ) и нижнее мертвая точка (НМТ)
8.Как называется процесс, который происходит в цилиндре за один ход поршня?Ответ: такт
9.Что такое рабочий цикл?Ответ: это ряд последовательно повторяющихся процессов-тактов.
10. Расскажите рабочий цикл четырехтактного дизеля?
4.Жа?а материалды т?сіндіру;
4. Объяснение нового материала;
А. Устный рассказ
Б. Запись основных положений
Новая тема.Формирование новых знаний, умений и навыков учащихся
(слайд)
Объяснение темы: 1.Назначение К.Ш.М. 2. Устройство К.Ш.М.
3. Неисправности К.Ш.М.
1.Сегодня тема нашего урока — «Кривошипно-шатунный механизм» Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Детали КШМ делят на две группы, это подвижные и неподвижные детали. Подвижные: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками или кривошип, маховик.
Неподвижные: блок цилиндров (является базовой деталью двигателя внутреннего сгорания)и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.
2.Состоит: поршень, поршневые кольца (компреционные,маслосьемные),поршневой палец,стопорные кольца, шатун, вкладыши ( шатунные, коренные),коленчатый вал, маховик, цилиндр. Устройство поршня: уплотняющая часть, направляющая часть, днище поршня, бобышка. На верхней части шатуна находится бронзовая втулка, который является подшипником качения В нижней части имеется крышка шатуна, который крепится к шатуну при помощи двух болтов и гайки (гайки шплинтуются), а в середине находится шатунная шейка вместе вкладышем. На коленчатом вале имеется шатунная шейка.коренная шейка.Если на двигателе четыре цилиндра то на коленчатом вале находятся 4 шатунных и 5 коренных шеек. Маховик, укрепляемый на заднем конце коленчатого вала, представляет собой массивный диск, отлитый из чугуна. Маховик выводит поршни из мертвых точек и облегчает работу двигателя при преодолении кратковременных перегрузок. На маховике укрепляется зубчатый венец, посредством которого вращают коленчатый вал при запуске двигателя в работу.
3.Неисправности. В процессе работы трущиеся поверхности изнашиваются. Увеличивается зазор между поршнем и цилиндром, между вкладышем и шатунной шейкой. Цилиндр приобретает форму овала. Двигатель теряет мощность. Расход топлива и масла увеличивается. Двигатель снимают и отправляют на ремонт.
Просмотр содержимого документа
«Презентация к уроку «Кривошипно-шатунный механизм» »
СКО,г.Тайынша КГУ «Тайыншинский колледж агробизнеса»
преподаватель спецдисциплин Омаров Куанбек Айдарханович
Цели урока :
Образовательная : Изучить кривошипно-шатунный механизм. Определить степень усвоения материала. Формировать умения применять полученных знания на практике.
Развивающая: Закрепить знания устройства,порядка разборки кривошипно-шатунного механизма . Развитие внимания, наблюдательности, познавательной активности, самостоятельности.
Воспитывающая : Воспитание бережного отношения к учебному оборудованию и инструментам. Воспитание самостоятельности и ответственности
Продольный разрез колесного трактора: 1 — двигатель; 2 — рулевое колесо; 3 — кабина; 4 — топливный бак; 5 — рычаги навесного устройства; 6 — вал отбора мощности; 7 — прицепной крюк; 8 — центральная передача; 9 — ведущее колесо; 10 — коробка передач; 11 — муфта сцепления; 12 — направляющее колесо.
1.Перечислите основные части трактора
2.Для чего служит навесное оборудование?
3.Для чего предназначено электрооборудование?
4.Что такой двигатель ?
5.Что называется камерой сгорания?
6.Что означает степень сжатия?
7.Как называется крайнее верхнее и нижнее положение поршня?
8.Как называется процесс, который происходит в цилиндре за один ход поршня?
9.Что такое рабочий цикл?
Рабочий цикл четырехтактного дизеля
Назначение
КШМ – предназначен для преобразования возвратно-поступательного движения поршня, во вращательное движение коленчатого вала.
1. Для чего служит К.Ш.М.?
2.Какие детали туда входят?
3.Перечислить неисправности К.Ш.М.
Детали КШМ делится на :
Подвижные
Неподвижные
- Поршень в сборе с кольцами
- Шатун в сборе с пальцем
- Коленчатый вал
- Маховик
- Вкладыши
Поршень в сборе с шатуном
- Поршень
- Поршневой палец
- Стопорные кольца
- Компрессионное кольцо
- Компрессионное кольцо
- Маслосъемное кольцо
- Шатун
- Нижняя разборная головка
- Бронзовая втулка
- Вкладыш
- Вкладыш
- Винты
Поршень
Днище
Бобышки
Юбка
Шатун
Верхняя неразборная головка
Тело шатуна (в сечении двутавр)
Нижняя разборная головка
Коленчатый вал
Коренные шейки
Шатунные шейки
Коленчатый вал и маховик
- Блок цилиндров
- Головка блока цилиндров
- Гильза
- Поддон картера
Блок цилиндров
Головка блока цилиндров
Гильза
Поддон картера
Блок-картер двигателя основная часть остова двигателя внутреннего сгорания. Выполняется блок-картер в виде единой отлитой детали. Отливка может быть выполнена из чугуна (для тяжелых дизельных двигателей) или алюминия (как правило, бензиновые двигатели). Для повышения жесткости и разделения на несколько отсеков внутри блок-картера выполняются перегородки. Горизонтальная перегородка делит блок-картер на две части верхняя блок цилиндров, нижняя картер
1.Блок цилиндров;
2. Горизонтальная перегородка;
3.Картер;
4.Перегородки картера;
5.Отверстие для распределительного вала;
6.Вертикальная перегородка;
7.Камера штанг;
Блок-картер дизеля Д-243
Көзге арналған
электрондық
сергіту сәті
- 1.Назовите детали составляющие КШМ?
- 2.Для чего служат КШМ?
- 3.Из какого материала изготавливают поршень?
- 4.Какие бывают кольца на поршнях?
Назовите следующие элементы под номерами:
2
6
1
4
3
5
Домашнее задание
Изучить параграф 3.1 ;3.2 стр-13-23 , составить конспект .
Ответить на контрольные вопросы.стр-23
Устройство автомобиля КамАЗ (стр. 1 из 5)
Содержание
1. Кривошипно-шатунный механизм
1.1 Назначение, конструкция и материал поршневых пальцев
1.2 Как фиксируются пальцы от осевых смещений
2. Насос системы охлаждения КамАЗ-740
2.1 Устройство и принцип действия
2.2 Опишите уплотнения вала
2.3 Вычертите схему уплотнения
3. Система смазки ЗМЗ-4062
3.1 Назначение и устройство
3.2 Путь масла от насоса к клапанному узлу ГРМ
3.3 Схема смазки на поперечном разрезе двигателя
4. Карбюратор К-151, система ускорительного насоса
4.1 Назначение и устройство система ускорительного насоса
4.2 Принцип действия системы
4.3 Возможные регулировки системы
5. Стартерная аккумуляторная батарея
5.1 Перечислите основные характеристики батареи
5.2 Емкость батареи и технологические мероприятия на увеличение емкости
Список использованной литературы
1. Кривошипно-шатунный механизм
Кривошипно-шатунный механизм (КШМ) служит для преобразования поступательного движения поршня во вращательное движение коленчатого вала, и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:
— подвижные: поршень с кольцами, поршневой палец, шатун, колен вал, маховик.
— неподвижные: блок цилиндров — является остовом д.в.с., головка блока, прокладка, поддон (картер).
1.1 Назначение, конструкция и материал поршневых пальцев
Поршневой палец соединяет поршень с верхней головкой шатуна (рис.1).
Поршневой палец служит осью в шарнирном соединении поршня с шатуном и воспринимает, поэтому все передающиеся между ними силовые нагрузки. В четырехтактных двигателях силовые нагрузки на поршневой палец резко изменяются как по величине, так и по направлению, а в двухтактных — только по величине. Однако в обоих случаях поршневые пальцы испытывают ударный характер нагрузки и работают в условиях ограниченной смазки.
а) «стакан» в «стакане» б) поперечный разрез
Рисунок 1 — Одноцилиндровый карбюраторный двигатель внутреннего сгорания
1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — поршневые кольца; 5 — поршневой палец;
6 — шатун; 7 — коленчатый вал; 8 — маховик; 9 — кривошип; 10 — распределительный вал;
11 — кулачок распределительного вала; 12 — рычаг; 13 — клапан; 14 — свеча зажигания
В кривошипном механизме быстроходных двигателей поршневые пальцы должны иметь, возможно, меньшую массу, а по конструктивным соображениям их выполняют с ограниченным поперечным сечением и малыми опорными поверхностями. Это порождает большие напряжения и значительные удельные давления на опорных поверхностях рассматриваемого шарнирного соединения, поэтому поршневой палец должен обладать высокой износостойкостью и одновременно хорошо противостоять действию ударных нагрузок при общей ограниченной массе.
Чтобы удовлетворить этим жестким требованиям, поршневые пальцы изготовляют в виде полого цилиндра с небольшой толщиной стенок одинакового или переменного (при необходимости) сечения по оси (рис. 2) и подвергают их соответствующей термической обработке.
Поршневой палец должен быть прочным, легким и износостойким, так как во время работы подвергается трению и большим механическим нагрузкам, переменным по величине и направлению. Пальцы изготовляют из высококачественной стали в виде пустотелых трубок. Для повышения надежности наружную поверхность пальца цементируют или закаливают, а затем шлифуют и полируют. Материалом для поршневых пальцев служат углеродистые стали марок 15, 20 или 45, а в особенно напряженных двигателях применяют хромистые — 20Х, 40Х, 12ХНЗА и другие легированные стали.
Рисунок 2 — Поршневые пальцы
Пальцы, изготовленные из малоуглеродистых сталей, содержащих до 0,2% углерода, цементируют, т. е. науглероживают поверхностный их слой, и подвергают закаливанию. Пальцы из среднеуглеродистых сталей закаливают, нагревая их поверхностный слой токами высокой частоты. Толщина закаленного слоя составляет 1…1,5 мм, а твердость HRC 55…62.
После такой термической обработки материал пальца с внутренней стороны стенок сохраняет свои вязкие свойства и хорошо сопротивляется ударным нагрузкам, а наружный закаленный слой их приобретает повышенную износостойкость. Пальцы тщательно шлифуют и полируют, с тем, чтобы на рабочей поверхности не оставалось каких-либо рисок или следов обработки, вызывающих концентрацию опасных для прочности местных напряжений.
Чтобы в процессе работы поршневые пальцы не выходили из отверстий бобышек и не могли повредить зеркало цилиндра, их фиксируют в строго заданном положении относительно шатуна или поршня.
В бобышках поршня палец укреплен стопорными кольцами, удерживающими его от осевого смещения. Такой палец называют плавающим, так как он при работе двигателя может повертываться в верхней головке шатуна и бобышках поршня. Плавающие поршневые пальцы равномернее изнашиваются и поэтому долговечнее.
У работающего двигателя поршень из алюминиевого сплава расширяется больше, чем стальной палец, поэтому возможен его стук в бобышках поршня. Для устранения этого явления поршень перед сборкой с шатуном нагревают до 70-80° С, а затем в поршень и шатун вставляют палец. Когда поршень остынет, палец в бобышках окажется закрепленным неподвижно, а верхняя головка шатуна будет иметь угловое смещение относительно неподвижного пальца.
При работе двигателя поршень нагревается и палец получает возможность повертываться вокруг своей оси. Применяют пальцы, запрессованные в верхние головки шатунов (двигатели автомобилей «Жигули»), Такие пальцы могут повертываться только в бобышках поршня.
1.2 Как фиксируются пальцы от осевых смещений?
По способу фиксации их подразделяют на плавающие и закрепленные. Последние неподвижно фиксируют в головке шатуна или в бобышках поршня, поэтому угловое перемещение они сохраняют только в бобышках (рис. 2, б) или в головке шатуна (рис. 2, в).
В современных конструкциях неподвижность пальца относительно головки шатуна достигают путем запрессовки пальца в головку с заданным натягом (например, в двигателях ВАЗ натяг составляет 0,01…0,042 мм при диаметре пальца 22 мм).
При неподвижной фиксации поршневых пальцев в шатуне или бобышках поршня отдельные участки их нагружаются неравномерно, а, следовательно, и неравномерно изнашиваются. Чтобы устранить этот недостаток, применяют так называемые плавающие пальцы, которые фиксируют только от осевого смещения, как показано на рис. 2, а, г.
В процессе работы они могут свободно поворачиваться, как в головке шатуна, так и в бобышках поршня, что способствует более равномерному их износу. В холодном состоянии палец должен плотно без качки входить в отверстие втулки верхней головки шатуна, а по отверстиям в бобышках поршня из алюминиевых сплавов его подбирают с тугой посадкой. Необходимость этого обусловливается разницей в коэффициентах линейного расширения у алюминиевых поршней и стальных пальцев.
Опыт показывает, что в прогретом двигателе зазоры между поршневым пальцем и отверстиями в бобышках и головке шатуна выравниваются. Для облегчения сборки алюминиевые поршни рекомендуется подогревать до 60…80 °С путем погружения в горячую жидкость.
Осевую фиксацию плавающих пальцев осуществляют с помощью стопорных пружинных колец круглого или прямоугольного сечения (рис. 2, а) и реже для этой цели используют грибки из мягкого металла (рис. 2, г).
Стопорные кольца устанавливают в канавках, проточенных для них в отверстиях бобышек, несущих поршневой палец. Из канавок их вынимают с помощью отогнутых внутрь концов или имеющихся у них отверстий (рис. 2, а). Грибки, или заглушки, из мягкого металла (обычно из алюминия) запрессовывают с двух сторон в отверстия поршневого пальца.
При осевом перемещении грибки поршневого пальца соприкасаются с зеркалом цилиндра, но не разрушают стенок. Поршневые пальцы двухтактных двигателей с торцов закрываются иногда заглушками, предотвращающими возможное перетекание газов между впускными и выпускными окнами. От осевого перемещения пальцы в этих двигателях фиксируют стопорными кольцами (рис. 2, д).
Таким образом, поршневые пальцы изготовлены из хромоникелевой стали в виде пустотелых цилиндрических стержней и упрочнены цементацией и закалкой. Осевое перемещение пальца в поршне ограничено стопорными кольцами.
2. Насос системы охлаждения КамАЗ-740.10
2.1 Устройство и принцип действия
В систему охлаждения КамАЗ-740 (рис.3) входят водяные рубашки блока и головок 26 цилиндров, водяной насос 27, радиатор 4, вентилятор 30 с гидромуфтой 5, жалюзи 3, два термостата 10, расширительный бачок 18, соединительные трубопроводы, шланги, клиноременная передача привода насоса, сливные краны или пробки, датчик температуры охлаждающей жидкости и другие детали.
Рисунок 3 — Система охлаждения двигателя автомобиля КамАЗ
Водяной насос (рис.4) центробежного типа служит для создания принудительной циркуляции охлаждающей жидкости в системе охлаждения. Водяной насос дизеля КамАЗ-740 закреплен на передней части блока цилиндров с левой стороны и приводится в действие клиноременной передачей от шкива коленчатого вала.
Принцип действия водяного насоса состоит в следующем. При вращении крыльчатки жидкость, поступающая из подводящего патрубка к центру крыльчатки, отбрасывается центробежной силой к стенкам корпуса, откуда вытесняется в рубашку охлаждения через отводящий патрубок.
Рисунок 4 — Водяной насос КамАЗ-740
1 — пылеотражатель; 2 — стопорное кольцо; 3 и 4 — шарикоподшипники; 5 — водоотражатель;
Классификация суставов | Безграничная анатомия и физиология
Структурная классификация соединений
Существует три структурных классификации суставов: фиброзные, хрящевые и синовиальные.
Цели обучения
Опишите три структурные категории соединений
Основные выводы
Ключевые моменты
- Тип
и характеристики данного шарнира определяют степень и тип движения. - Структурная классификация суставов классифицирует суставы на основе типа
ткани, участвующей в их образовании. - Существует
трех структурных классификаций суставов: фиброзные, хрящевые и синовиальные. - Из трех типов фиброзных суставов синдесмозы являются наиболее подвижными.
- Хрящевые суставы
допускают больше движений, чем фиброзные суставы
, но меньше, чем синовиальные суставы. - Синовиальные суставы (диартрозы) являются наиболее подвижными суставами тела и содержат синовиальную жидкость.
Ключевые термины
- надкостница : мембрана, покрывающая внешнюю поверхность всех костей.
- manubrium : Широкая верхняя часть грудины.
- синовиальная жидкость : вязкая жидкость, обнаруженная в полостях синовиальных суставов
, которая уменьшает трение между суставными хрящами во время движения.
Сустав, также известный как суставная поверхность, представляет собой соединение, которое возникает между костями в скелетной системе. Суставы предоставляют средства для движения. Тип и характеристики данного сустава определяют степень и тип его движения.Суставы можно классифицировать по структуре и функциям.
Структурная классификация суставов делит их на категории в зависимости от типа ткани, участвующей в образовании. Существует три структурных классификации суставов: фиброзные, хрящевые и синовиальные.
Фиброзные суставы
Фиброзные суставы соединены плотной прочной соединительной тканью, богатой коллагеновыми волокнами. Эти фиксированные или неподвижные соединения обычно имеют неровные края. Есть три типа фиброзных суставов.
Швы — это типы суставов, обнаруживаемые в черепе (черепе). Кости соединены волокнами Шарпея. Природа черепных швов допускает некоторые движения плода. Тем не менее, с возрастом они становятся в основном неподвижными, хотя очень небольшое движение обеспечивает некоторую необходимую черепную эластичность. Эти жесткие суставы называются синартродиальными.
Синдесмозы обнаруживаются между длинными костями тела, такими как радио-локтевой сустав и большеберцовый и малоберцовый суставы. Эти подвижные фиброзные суставы также называют амфиартродиальными.У них меньший диапазон движений, чем у синовиальных суставов.
Гомфоз — это тип сустава, обнаруживаемый в месте соединения между зубами и впадинами верхней или нижней челюсти (зубно-альвеолярный сустав). Фиброзная ткань, соединяющая зуб и лунку, называется периодонтальной связкой.
Фиброзные суставы : Изображение, демонстрирующее три типа фиброзных суставов. (а) Швы (б) Синдесмоз (в) Гомфоз.
Хрящевые суставы
Хрящевые суставы соединены волокнистым или гиалиновым хрящом.Они допускают больше движений, чем фиброзные суставы, но меньше, чем синовиальные суставы. Эти типы суставов далее подразделяются на первичные (синхондрозы) и вторичные (симфизы) хрящевые суставы. Эпифизарные (ростовые) пластинки являются примерами синхондрозов. Симфизы обнаруживаются между рукояткой и грудиной (рукно-грудной сустав), межпозвоночными дисками и лобковым симфизом.
Хрящевые суставы : Изображение демонстрирует синхондрозный сустав с эпифизарной пластиной (временный гиалиновый хрящевой сустав), обозначенный (a), и сустав симфиза (b).
Синовиальный сустав : На этой схеме синовиального сустава показаны суставной хрящ, суставная капсула, кость, синовиальная оболочка и полость сустава, содержащая синовиальную жидкость.
Синовиальные суставы
Это наиболее распространенный и подвижный тип шарнира в теле. Эти суставы (также называемые диартрозами) имеют синовиальную полость. Их кости соединены плотной соединительной тканью неправильной формы, которая образует суставную капсулу, окружающую суставные поверхности костей.
Синовиальный сустав соединяет кости с фиброзной суставной капсулой, которая продолжается с надкостницей костей. Эта суставная капсула составляет внешнюю границу синовиальной полости и окружает суставные поверхности костей.
Синовиальные полости заполнены синовиальной жидкостью. Колени и локти являются примерами синовиальных суставов.
Функциональная классификация суставов
Функциональная классификация шарниров основана на разрешенном типе и степени перемещения.
Цели обучения
Опишите три функциональные категории суставов
Основные выводы
Ключевые моменты
- Суставы при синаррозе неподвижны или имеют ограниченную подвижность, включая фиброзные суставы.
- Амфиартрозные суставы обладают небольшой подвижностью и включают хрящевые суставы.
- Диартрозные суставы — это свободно подвижные синовиальные суставы.
- Синовиальные суставы также можно разделить на неаксиальные, одноосные, двухосные и многоосные.
- Синовиальные суставы могут выполнять различные движения: отведение, приведение, разгибание, сгибание и вращение.
Ключевые термины
- фиброзные суставы : Неподвижные или неподвижные суставы, которые связаны плотной, жесткой соединительной тканью,
богатой коллагеновыми волокнами. - хрящевые суставы : Суставы, соединенные волокнистым или гиалиновым хрящом. Они допускают больше движений, чем фиброзные суставы, но меньше, чем синовиальные суставы.
- Гомфозные суставы : Суставы с очень ограниченной подвижностью. Они находятся в суставе
между зубами и впадинами верхней или нижней челюсти (зубно-альвеолярный сустав).
Суставы или сочленения (соединения между костями) можно классифицировать несколькими способами. Основные классификации — структурные и функциональные. Функциональная классификация основана на типе и степени разрешенного движения.
Типы синовиальных суставов.jpg : Изображение скелета и схематика синовиальных суставов различных классов.
Три категории функциональных соединений
- Синартроз: Эти типы суставов неподвижны или допускают ограниченную подвижность. В эту категорию входят фиброзные суставы, такие как шовные суставы (находящиеся в черепе) и гомфозные суставы (находящиеся между зубами и впадинами верхней и нижней челюсти).
- Амфиартроз: Эти суставы обладают небольшой подвижностью. Большинство суставов этой категории
включают хрящевые суставы, например, между позвонками и лобковым симфизом. - Диартроз: это свободно подвижные синовиальные суставы. Синовиальные суставы дополнительно классифицируются на основе различных типов движения, которые они обеспечивают, в том числе:
- Плоскость
- Шарнирно-гнездовой шарнир
- Шарнир
- Шарнир шарнирный
- Кондилоидный сустав
- Шарнир седельный
Движение синовиальных суставов
Соединения также можно классифицировать по количеству разрешенных осей движения:
- Неаксиальный (скользящий): обнаруживается между проксимальным концом локтевой кости и лучевой кости.
- Одноосное (одноосное): движение происходит в одной плоскости. Пример — локтевой сустав.
- Biaxial: движение может происходить в двух плоскостях. Пример — запястье.
- Мультиаксиальный: Включает шаровые опоры и шарниры. Пример — тазобедренный сустав.
Возможные движения синовиальных суставов:
- Отведение: движение от средней линии тела
- Приведение: движение к средней линии тела
- Разгибание: разгибание конечностей в суставе
- Сгибание: сгибание конечностей в суставе
- Вращение: круговое движение вокруг фиксированной точки
6 типов подвижных суставов
Человеческое тело состоит из 206 отдельных костей.Эти кости соединяются в соединениях, называемых суставами. В то время как некоторые суставы не двигаются свободно, например, в черепе, груди и тазе, другие имеют диапазон движений, что обеспечивает мобильность и способность выполнять задачи, не задумываясь. Хотя они кажутся простыми, суставы представляют собой сложные части тела, возможности которых зависят от их строения.
Проще говоря, сустав — это место, где соединяются две кости. Суставы делятся на две основные категории: фиброзные и хрящевые суставы, которые содержат соединительную ткань и в основном фиксируются на месте, и синовиальные суставы, которые содержат синовиальную жидкость, которая позволяет двигаться, когда одна кость плавно скользит по другой.Наиболее часто изучаются подвижные суставы.
Кости синовиальных суставов покрыты тонким слоем хряща. Тонкостенные мешочки, называемые бурсами, образуют подушку между хрящами, позволяя костям свободно и плавно перемещаться, не трясь друг о друга. Некоторые суставы также имеют специализированный хрящ, такой как диски позвоночника или мениск в коленях, которые служат дополнительной подушкой в местах соединения костей. Связки и сухожилия служат соединителями для этих соединенных костей и важны для правильного функционирования суставов.Связки соединяют кость с костью, сухожилия соединяют мышцы с костью. Связки необходимы для здоровья суставов; растяжение или разрыв связки обычно называют растяжением, а повреждение мышцы или сухожилия — растяжением. Существует шесть типов синовиальных суставов, каждый из которых допускает свой тип движения.
Шарнирные соединения перемещаются из стороны в сторону
Шарнирное соединение обеспечивает вращение только вокруг одной оси. Одна кость вращается вокруг другой внутри вогнутого кольца, образованного во второй кости. Это кольцо покрыто связкой, чтобы движение было плавным.Шарнирный сустав — это то, что позволяет шее вращаться влево и вправо, а предплечью — совершать вращательные движения.
Шарнирные соединения сгибают ваши конечности
Шарнирные соединения позволяют конечностям сгибаться и вытягиваться только по одной оси. Кости идеально подходят друг к другу, одна выпуклая, а другая вогнутая. Локти, пальцы рук и ног — шарнирные суставы. Определенные шарнирные соединения более сложны для обеспечения ограниченного движения в других направлениях и называются модифицированными шарнирными соединениями. Множественные кости встречаются в коленных и голеностопных суставах, что делает их более сложными.Полученная конструкция позволяет слегка вращать колено и вращать лодыжку по кругу.
Шаровые и гнездовые шарниры обеспечивают вращение
Шаровидные шарниры являются наиболее мобильными и допускают широкий диапазон движений. Это плечевой и тазобедренный суставы. Кости в этих суставах подходят друг к другу со сферической костью, находящейся внутри другой кости с вогнутым углублением. Эта структура позволяет сгибать и круговые движения, а также вращать конечность.
Кондилоидные суставы Скручивание и изгиб
Кондилоидные или эллипсоидные суставы — это шаровые и шарнирные соединения, которые имеют скорее эллиптическую, чем круглую форму, допускают изгиб и круговое движение, но делают вращение невозможным.Это обеспечивает движение в двух плоскостях: изгибание и изгибание как шарнирное соединение, а также определенное количество вращения. Эти суставы находятся в запястье и основании указательного пальца.
Седловидные суставы имеют уникальную форму
Седловидные суставы похожи на мыщелковые, но соединительные кости имеют форму, больше напоминающую сцепляющиеся седла. Это обеспечивает больший диапазон движений, чем шарнирные соединения, но не позволяет полностью вращаться, как это обеспечивают шарниры и шарниры. Большой палец — лучший тому пример.
Скользящие суставы обеспечивают плавное движение
Скользящие или плоские суставы — это точки, где кости встречаются как плоские поверхности и могут свободно скользить друг мимо друга в любом направлении. Скользящие суставы встречаются в запястьях, лодыжках и позвоночнике.
Синовиальные суставы позволяют телу человека двигаться. Эти сложные соединители позволяют перемещаться с места на место, есть, работать и отдыхать. Это больше, чем просто места соединения костей, они представляют собой сложную совокупность костей, хрящей и жидкости, скрепленных связками и сухожилиями, которые соединяются с мышцами, которые делают возможным движение.
Суставы — канал лучшего здоровья
Сустав — это часть тела, где две или более костей встречаются, чтобы обеспечить движение. Каждая кость в теле, за исключением подъязычной кости в горле, встречается по крайней мере с одной другой костью в суставе. Форма сустава зависит от его функции. Сустав также известен как сочленение.Вообще говоря, чем больше движения возможно через сустав, тем выше риск травмы. Это связано с тем, что больший диапазон движений снижает прочность сустава.
Типы шарниров
Соединения описываются тем, насколько они допускают движение. К трем широким классам суставов относятся:
- Неподвижные — две или более кости находятся в тесном контакте, но движение не может происходить — например, кости черепа. Суставы черепа называются швами.
- Слегка подвижный — две или более кости соединены так плотно, что разрешены только ограниченные движения — например, позвонки позвоночника.
- Свободно подвижные — большинство суставов человеческого тела относятся к этому типу.Движение — это цель сустава.
Свободно подвижные суставы
Шесть типов свободно подвижных суставов включают:
- Шарнирно-шарнирное соединение — закругленная головка одной кости находится внутри чашки другой, например, тазобедренного или плечевого сустава. Движение разрешено во всех направлениях.
- Седловидный шарнир — он позволяет движение вперед и назад и из стороны в сторону, но не допускает вращения, например сустава у основания большого пальца.
- Шарнирный сустав — две кости открываются и закрываются только в одном направлении (в одной плоскости), как дверь, например, в коленном и локтевом суставах.
- Кондилоидный сустав — позволяет двигаться без вращения, например, в суставах челюсти или пальцев.
- Поворотный сустав — одна кость поворачивается вокруг кольца, образованного другой костью, например сустава между первым и вторым позвонками на шее.
- Соединение скольжения или плоское соединение. Гладкие поверхности скользят друг по другу, обеспечивая ограниченное движение, например суставы запястий.
Типы движения
Для достижения движения сустав может:
- Сдвигать одну широкую и плоскую поверхность по другой — примеры включают кости запястья или лодыжки.
- Увеличивайте или уменьшайте угол между двумя костями — это происходит только в длинных костях тела (руки и ноги): например, когда рука согнута или разогнута.
- Разрешите круговое движение — так работают шаровые шарниры: например, заплечик.
- Разрешить вращение без смещения костей: например, голова, поворачиваясь из стороны в сторону, поворачивает шейные позвонки друг над другом.
Структура сустава
Суставы удерживаются вместе и поддерживаются прочными связками соединительной ткани, называемыми связками.Гладкий хрящ предотвращает трение при движении костей друг о друга. В свободно подвижных суставах весь сустав заключен внутри мембраны, наполненной смазывающей синовиальной жидкостью, что помогает обеспечить дополнительную амортизацию от ударов.
Мышцы прикреплены к костям с помощью толстых жестких полос соединительной ткани, называемых сухожилиями. Там, где сухожилия прилегают к кости, между сухожилием и костью располагаются крошечные мешочки, называемые сумками, чтобы уменьшить трение. Бурса заполнена синовиальной жидкостью.
Заболевания суставов
Общие причины боли в суставах включают:
- артрит — воспаление, которое вызывает скованность и боль в суставах (ревматоидный артрит или подагра) или дегенерацию (остеоартрит)
- бурсит — воспаление сумки (мешков, заполненных жидкостью) эта подушка и кости подушечки)
- инфекция — внутри сустава
- тендинит — воспаление, раздражение и отек сухожилия, прикрепленного к суставу.
- травма — включая растяжение связок или близлежащих сухожилий или мышц, или перелом костей.
Куда обратиться за помощью
| |||||
| |||||
13,13: Скелетная система суставов — Biology LibreTexts
Что позволяет бегать?
Работает.Средство передвижения по земле, позволяющее людям и другим животным быстро передвигаться пешком. Колени, которые соединяют одну часть ноги с другой, должны позволять ногам двигаться. Колено — это сустав, часть скелетной системы, соединяющая кости.
Суставы
Сустав — это место, где встречаются две или более костей скелета. С помощью мышц суставы работают как механические рычаги, позволяя телу двигаться с относительно небольшой силой. Поверхности костей в суставах покрыты гладким слоем хряща , который снижает трение в точках соприкосновения костей.
Типы соединений
Существует три основных типа соединений: неподвижные, частично подвижные и подвижные.
- Неподвижные суставы не допускают движения, потому что кости в этих суставах надежно удерживаются вместе плотным коллагеном . Кости черепа соединены неподвижными суставами.
- Частично подвижные шарниры допускают только очень ограниченное движение. Кости в этих суставах удерживаются хрящами.Ребра и грудина соединены частично подвижными суставами.
- Подвижные шарниры допускают максимальное движение. Кости в этих суставах соединены связками . Подвижные суставы являются наиболее распространенным типом суставов в организме, поэтому они описаны более подробно ниже.
Подвижные суставы
Подвижные суставы также известны как синовиальные суставы . Это связано с тем, что пространство между костями заполнено густой жидкостью, называемой синовиальной жидкостью , , которая смягчает сустав (см. рис. ниже).
Подвижный или синовиальный сустав защищен и смягчен хрящом и синовиальной жидкостью.
Существует множество типов подвижных соединений, которые показаны на рис. ниже. Суставы классифицируются по тому, как они двигаются. Например, шаровой шарнир , такой как заплечик, имеет наибольший диапазон движения, допускающий движение в нескольких направлениях.