Ватты перевести в лошадиные силы
Калькулятор перевода кВт в л.с.
Москва +7(495) 788 7235 | |||
Пилорамы Wood-Mizer: опыт действующих предприятий, идеи для бизнеса и новые рыночные ниши в лесопилении | |||
|
Перевести ватты в лошадиные силы и обратно
Чтобы перевести ватты в лошадиные силы и обратно, воспользуйтесь нашим удобным онлайн конвертером:
Онлайн конвертер
Просто введите данные, и получите результат.
Ватты в лошадиные силы
Лошадиные силы в ватты
Теория
- 1 метрическая лошадиная сила = 735,49875 Вт
- 1 механическая лошадиная сила = 745,69987158227022 Вт
- 1 индикаторная лошадиная сила = 745,69987158227022 Вт
- 1 электрическая лошадиная сила = 746 Вт
- 1 котловая лошадиная сила = 9809,5 Вт
Пример №1
Сколько лошадиных сил (электрических) соответствуют 120кВт?
Формула
Л.С. = Вт/746
120⋅1000/746 ≈ 160 л.с.
Пример №2
Какова мощность автомобиля в ваттах если его мощность в лошадиных силах равна 110 л.с.?
Формула
кВт = Л.С. ⋅ 0,73549875
110 ⋅ 0,73549875 = 80. 9 кВт
Перевести ватты (Вт) в лошадиные силы (лс): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести ватты (Вт) в лошадиные силы (л.с.), введите мощность P в Вт, затем нажмите кнопку “Рассчитать”. В результате, будет получено значение в л.с.
Калькулятор Вт в л.с.
Метрическая система
Формула для перевода Вт в л.с.
Pл.с. = PВт / 735,49875
Мощность P в лошадиных силах (л.с.) равняется мощности P в ваттах (Вт), деленной на число 735,49875 (т.к. 1 л.с. = 735,49875 Вт).
Английская система
Формула для перевода Вт в л.с.
Pл.с. = PВт / 745,69988
Мощность P в лошадиных силах (л.с.) равна мощности P в ваттах (Вт), деленной на число 745,69988 (т. к. 1 л.с. = 745,69988 Вт).
Перевести лошадиные силы (лс) в ватты (Вт): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести лошадиные силы (л.с.) в ватты (Вт) введите мощность P в л.с., затем нажмите кнопку “Рассчитать”. В результате, будет получено значение в Вт.
Калькулятор л.с. в Вт
Метрическая система
Формула для перевода л.с. в Вт
PВт = Pл.с. ⋅ 735,49875
Мощность P в ваттах (Вт) равняется мощности P в лошадиных силах (л.с.), умноженной на число 735,49875 (т.к. 1 л.с. = 735,49875 Вт).
Английская система
Формула для перевода л.с. в Вт
PВт = Pл.с. ⋅ 745,69988
Мощность P в ваттах (Вт) равняется мощности P в лошадиных силах (л. с.), умноженной на число 745,69988 (т.к. 1 л.с. = 745,69988 Вт).
Калькулятор перевода киловатт в лошадиные силы
Лошадиная сила представляет собой внесистемную единицу измерения параметра мощности. На самом деле во всём мире сразу несколько разных единиц называют «лошадиной силой». В РФ обычно термин «лошадиная сила» подразумевает «метрическую» л. с., которая эквивалентна 735,49875 Вт.
Сейчас в РФ формально эту единицу вывели из применения, но поныне её используют для расчётов сумм транспортных налогов, а также ОСАГО. Система СИ давно в качестве официальной единицы установила Ватт.
Английская система измерения в качестве единицы мощности признает фунто-фут/сек, однако в действительности в Великобритании данную единицу уже не используют, в США — используют чрезвычайно редко.
Что такое лошадиная сила и как она появилась
По какой причине лошадиная сила начала использоваться как единица мощности? Как она выражается через другие единицы? Дж. Уатт предложил в 18 в. устройство для выкачки вод из шахт. Однако нужно было как-то объяснить владельцам шахт, что конкретно он предлагает им приобрести, в чём заключаются плюсы изобретения.
Для оценки мощности нового двигателя было предпринято такое мероприятие. Конь был запряжен в обыкновенный насос для подъёма воды, который работал с помощью лошадиной тяги. Затем оценили, сколько именно за 1 день будет поднято лошадью воды.
Потом соединили с этим насосом паровой двигатель и увидели результат, полученный в течение 1 дня работы. 2-е число разделили на 1-е, с помощью данных цифр объяснив владельцам шахт, что насос может заменить столько-то коней. Полученное вследствие 1-го эксперимента значение мощности сделали мерилом, обозначив его ему словосочетанием «лошадиная сила».
Таким образом, формулировка «лошадиная сила» появилась благодаря официальному изобретателю паровой машины, инженеру Дж. Уатту из Англии. Он должен был провести наглядную демонстрацию того факта, что созданная им машина способна стать заменой для множества коней. Ради этого потребовалось бы как-либо определить в единицах работу, к выполнению которой лошадь способна за определённое время.
Выполнив свои наблюдения в шахтах с углём, Уатт продемонстрировал способность среднестатистической лошади на протяжении длительного времени осуществлять подъём из шахты грузов массой примерно 75 кг на скорости 1 м/с.
1 л. с. — единица мощности, а не силы. Метрическая л. с. равна 0,736 кВт.
Что такое киловатты (кВт)
Ватт является принятой в СИ единицей мощности, названной по фамилии изобретателя Дж. Уатта, создавшего универсальную паровую машину. Ватт в качестве единицы мощности приняли в ходе 2-го конгресса научной ассоциации Великобритании в 1889-м. Ранее для расчёта преимущественно использовали лошадиные силы, которые ввёл Дж. Уатт, реже — фут-фунты/мин. 19-я генеральная конференция мер в 1960-м постановила включить Ватт в СИ.
Один из главных параметров любого электрического прибора — мощность, которую он потребляет. По этой причине на каждом электрическом приборе (либо в прилагаемой к нему инструкции) можно прочитать данные о том количестве Ватт, которое требуется для функционирования прибора.
1 Ватт — это единица мощности, которая позволяет в течение 1 секунды выполнить работу в количестве 1 Дж.
Различают не только механическую мощность. Известны также тепловая мощность и электрическая. 1 Ватт для потока тепла равноценен 1 Ватту механической мощности. 1 Ватт для электрической мощности равноценен 1 Ватту механической и представляет собой по сути мощность постоянного электротока, имеющего силу 1 А, который совершает работу в условиях напряжения 1 В.
Сколько киловатт в лошадиной силе и наоборот: формулы
Все знают об устаревшей уже единице — «лошадиной силе». Она сегодня вытеснена стандартной единицей — Ватт. Но доныне первая сохраняет обширное применение, к примеру, в автомобильной отрасли. В науке уже нечасто применяется данная единица по причине неоднозначности её толкования. Что она собой представляет? Одна л.с, равна 75 кгс*м/с, или 735,49875 Вт.
Таблица для перевода л. с. в кВт
Чтобы вычислить мощность мотора в кВт, нужно воспользоваться пропорцией 1 кВт = 1,3596 л. с. Обратный её вид: 1 л. с. = 0,73549875 кВт. Именно так взаимно переводятся друг в друга 2 эти единицы.
кВт | л.с. | кВт | л.![]() | кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. |
1 | 1.36 | 30 | 40.79 | 58 | 78.86 | 87 | 118.29 | 115 | 156.36 | 143 | 194.43 | 171 | 232.50 |
2 | 2.72 | 31 | 42.15 | 59 | 80.22 | 88 | 119.65 | 116 | 157.72 | 144 | 195.![]() | 172 | 233.86 |
3 | 4.08 | 32 | 43.51 | 60 | 81.58 | 89 | 121.01 | 117 | 160.44 | 145 | 197.15 | 173 | 235.21 |
4 | 5.44 | 33 | 44.87 | 61 | 82.94 | 90 | 122.37 | 118 | 160.44 | 146 | 198.50 | 174 | 236.57 |
5 | 6.80 | 34 | 46.![]() | 62 | 84.30 | 91 | 123.73 | 119 | 161.79 | 147 | 199.86 | 175 | 237.93 |
6 | 8.16 | 35 | 47.59 | 63 | 85.66 | 92 | 125.09 | 120 | 163.15 | 148 | 201.22 | 176 | 239.29 |
7 | 9.52 | 36 | 48.95 | 64 | 87.02 | 93 | 126.44 | 121 | 164.51 | 149 | 202.![]() | 177 | 240.65 |
8 | 10.88 | 37 | 50.31 | 65 | 88.38 | 94 | 127.80 | 122 | 165.87 | 150 | 203.94 | 178 | 242.01 |
9 | 12.24 | 38 | 51.67 | 66 | 89.79 | 95 | 129.16 | 123 | 167.23 | 151 | 205.30 | 179 | 243.37 |
10 | 13.60 | 39 | 53.03 | 67 | 91.09 | 96 | 130.52 | 124 | 168.59 | 152 | 206.66 | 180 | 144.73 |
11 | 14.96 | 40 | 54.38 | 68 | 92.45 | 97 | 131.88 | 125 | 169.95 | 153 | 208.02 | 181 | 246.09 |
12 | 16.32 | 41 | 55.74 | 69 | 93.81 | 98 | 133.24 | 126 | 171.31 | 154 | 209.38 | 182 | 247.45 |
13 | 17.67 | 42 | 57.10 | 70 | 95.17 | 99 | 134.60 | 127 | 172.67 | 155 | 210.74 | 183 | 248.81 |
14 | 19.03 | 43 | 58.46 | 71 | 96.53 | 100 | 135.96 | 128 | 174.03 | 156 | 212.10 | 184 | 250.17 |
15 | 20.39 | 44 | 59.82 | 72 | 97.89 | 101 | 137.32 | 129 | 175.39 | 157 | 213.46 | 185 | 251.53 |
16 | 21.75 | 45 | 61.18 | 73 | 99.25 | 102 | 138.68 | 130 | 176.75 | 158 | 214.82 | 186 | 252.89 |
17 | 23.9 | 46 | 62.54 | 74 | 100.61 | 103 | 140.04 | 131 | 178.9 | 159 | 216.18 | 187 | 254.25 |
18 | 24.47 | 47 | 63.90 | 75 | 101.97 | 104 | 141.40 | 132 | 179.42 | 160 | 217.54 | 188 | 255.61 |
19 | 25.83 | 48 | 65.26 | 76 | 103.33 | 105 | 142.76 | 133 | 180.83 | 161 | 218.90 | 189 | 256.97 |
20 | 27.19 | 49 | 66.62 | 78 | 106.05 | 106 | 144.12 | 134 | 182.19 | 162 | 220.26 | 190 | 258.33 |
21 | 28.55 | 50 | 67.98 | 79 | 107.41 | 107 | 145.48 | 135 | 183.55 | 163 | 221.62 | 191 | 259.69 |
22 | 29.91 | 51 | 69.34 | 80 | 108.77 | 108 | 146.84 | 136 | 184.91 | 164 | 222.98 | 192 | 261.05 |
23 | 31.27 | 52 | 70.70 | 81 | 110.13 | 109 | 148.20 | 137 | 186.27 | 165 | 224.34 | 193 | 262.41 |
24 | 32.63 | 53 | 72.06 | 82 | 111.49 | 110 | 149.56 | 138 | 187.63 | 166 | 225.70 | 194 | 263.77 |
25 | 33.99 | 54 | 73.42 | 83 | 112.85 | 111 | 150.92 | 139 | 188.99 | 167 | 227.06 | 195 | 265.13 |
26 | 35.35 | 55 | 74.78 | 84 | 114.21 | 112 | 152.28 | 140 | 190.35 | 168 | 228.42 | 196 | 266.49 |
27 | 36.71 | 56 | 76.14 | 85 | 115.57 | 113 | 153.64 | 141 | 191.71 | 169 | 229.78 | 197 | 267.85 |
28 | 38.07 | 57 | 77.50 | 86 | 116.93 | 114 | 155.00 | 142 | 193.07 | 170 | 231.14 | 198 | 269.56 |
Как пользоваться онлайн-калькулятором
Чтобы воспользоваться предложенным интернет-калькулятором для перевода мощности из одной единицы в другую, достаточно выбрать единицу, ввести количество единиц мощности в этой единице и нажать на кнопку получения результата на дисплее.
Мне нравится4Не нравится1Калькулятор перевода кВт в л.с. (киловатты в лошадиные силы)
Основными единицами измерения мощности двигателя или какого-либо электрического прибора являются ватты (Вт) или киловатты (кВт). Однако помимо этого на практике очень часто используется устаревшая внесистемная единица измерения мощности – лошадиные силы (л с).
Главным неудобством “лошадок” является то, что эта единица измерения не является метрической единицей измерения, поэтому переводить киловатты в лошадиные силы достаточно неудобно. К счастью, сегодня есть наш онлайн калькулятор, который очень быстро переводят одни единицы измерения в другие.
Как пользоваться онлайн калькулятором
Перевод киловатт в лошадиные силы с помощью калькулятора осуществляется так:
- Сверху слева выберите метрические единицы измерения – ватты или киловатты.
- Снизу выберите тип “лошадок” – метрические, английские или электрические (на практике чаще всего используются именно метрические).
- Сверху введите число в соответствующую ячейку: если Вам нужно перевести кВт в лс – введите число в левую ячейку, если наоборот – в правую ячейку.
- Для введения дробных чисел используйте разделительный символ “запятая” (“,”).
Сколько лс в 1 кВт
Количество лошадиных сил в 1 кВт зависит от типа лс:
- В 1 кВт – 1,36 метрических лошадей.
- В 1 кВт – 1,38 английских лошадей.
- В 1 кВт – 1,34 электрических лошадей.
Сколько кВт в 1 лс
Количество киловатт в 1 лс также зависит от типа лошадиных сил:
- 1 метрическая лс = 0,735 кВт.
- 1 английская лс = 0,745 кВт.
- 1 электрическая лс = 0,746 кВт.
Таблица для перевода лс в кВт
Киловатты в лошадиные силы можно перевести и с помощью специальных таблиц. Ниже представлена таблица, которая адаптирована под нужды расчета транспортного налога:
Тип лошадей | Метрические | Английские | Электрические |
1 | 0,735 | 0,745 | 0,746 |
100 | 73,5 | 74,5 | 74,6 |
125 | 91,86 | 93,13 | 93,25 |
150 | 110,25 | 111,75 | 111,9 |
175 | 128,63 | 130,38 | 130,55 |
200 | 147,00 | 149,00 | 149,20 |
225 | 165,38 | 167,63 | 167,85 |
250 | 183,75 | 186,25 | 186,50 |
В чем измеряется мощность двигателя
На практике чаще всего используются ватты/киловатты, а лошади применяются только в одной области – вычисление мощности движка авто. Дело все в том, что в России практически все владельцы автомобилей обязаны платить транспортный налог, а его размер напрямую зависит от количества “лошадок” двигателя.
Также обратите внимание, что на практике встречаются три “лошади” – метрические, английские и электрические. На первый взгляд может показаться, что они являются взаимозаменяемыми единицами измерения, поскольку они лишь незначительно отличаются друг от друга. Однако это не совсем так – при расчете крупных двигателей небольшие отличия могут дать серьезную погрешность, что приведет к некорректному подсчету транспортного налога.
Рассмотрим, когда нужно использовать для расчетов ту или иную лошадку:
- Метрические – представляют собой основные единицы измерения мощности двигателя, поскольку на практике они используются чаще всего.
- Английские – применяются для подсчета мощности автомобилей, которые изготовлены на некоторых английских, американских, канадских, австралийских и новозеландских заводах.
- Электрические – нужны для подсчета мощности авто с электрическим и комбинированным движком.
Приборы для измерения мощности двигателя
Для вычисления используется специальный прибор под названием динамометр, который подключается непосредственно к двигателю авто. Для определения силы движка машину помешают на специальную платформу, а потом выполняется холостой разгон движка с подключенным динамометром. На основании измерения некоторых технических показателей (ускорение, скорость разгона, стабильность работы и другие) при разгоне динамометр определяют общую мощность, а результаты выводятся на цифровой или аналоговый экран.
Также сегодня существуют полностью электронные динамометры, которые можно подключить к компьютеру – обработка информации в таком случае осуществляется с помощью специальных программ, которые и определяют точную мощность движка. Также обратите внимание, что существует два показателя силы движка – нетто-мощность и брутто-мощность.
Рассмотрим, чем они отличаются и какой из этих показателей более надежный:
- Брутто-мощность – этот показатель измеряется при разгоне “голого” авто (то есть без глушителя, вторичных амортизаторов и других вспомогательных деталей).
- Нетто-мощность – этот показатель измеряется при разгоне “нагруженного” авто с учетом всех необходимых деталей, которые нужны для комфортной езды.
Обратите внимание, что при определении транспортного налога нужно определять именно “нагруженную” нетто-мощность. Дело все в том, что брутто-мощность обычно на 10-20% выше нетто-показателя (ведь автомобилю не приходится в таком случае “разгонять” дополнительные важные детали). Подобная уловка часто используется недобросовестными производителями и маркетологами, которые хотят выставить свой автомобиль в более лучшем свете, что нужно помнить при проведении замеров.
Что такое лошадиная сила [ЛС]
Единицу измерения ЛС придумал Джеймс Уатт в конце XVIII века. Предполагается, что подобное название связано с тем, что Уатт хотел доказать преимущество своих паровых машин над более традиционной тягловой рабочей силой – над лошадьми. Популярная легенда гласит, что после создания первых прототипов одну из паровых машин купил местный пивовар, которому движок нужен был для работы водяного насоса. Во время испытания пивовар сравнил паровую машину со своей самой сильной лошадью – и оказалось, что лошадь в 1,38 раз слабее паровой машины (а 1 киловатт – это как раз и есть 1,38 лс).
Что такое киловатты [кВт]
В начале XIX века лошадиные силы стали использоваться для обозначения мощности, которую в пределе может создать одна сильная лошадь. Однако некоторые инженеры и ученые в качестве точки отсчета стали использовать не абстрактных лошадей, а вполне конкретные первые машины Уатта фиксированной мощности. Эта практика закрепилась в конце XIX века, когда в качестве единицы мощности были признаны ватты. Впрочем, далеко не все государства признали новые единицы, поэтому сегодня лошадиные силы все еще используются в качестве вспомогательных или основных единиц мощности.
Конвертер величинВт в лошадиные силы (лс)
Ватт (Вт) в лошадиные силы, преобразование мощности: калькулятор и как преобразовать.
Калькулятор преобразованияватт в лошадиные силы
Вт (Вт) в мощность, калькулятор преобразования мощности.
Введите мощность в ваттах и нажмите кнопку Convert :
Конверсия из лошадиных сил в ватты ►
Как преобразовать ватт в мощность
Вт на мощность механика / гидравлики
Одна механическая или гидравлическая мощность равна 745.699872 Вт:
1 л.с. (I) = 745,699872 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 745.699872
Пример
Преобразование 10 Вт в механическую мощность:
P (л.с.) = 10 Вт / 745,699872 = 0,01341 л.с.
Ватт на электрическую мощность
Одна электрическая лошадиная сила равна 746 Вт:
1 л.с. (E) = 746 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) /746
Пример
Преобразование 10 Вт в электрические лошадиные силы:
P (л.с.) = 10 Вт / 746 = 0.013405 л.с.
Вт в метрическую мощность
Одна метрическая лошадиная сила равна 735,49875 Вт:
1 л.с. (М) = 735,49875 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 735.49875
Пример
Преобразование 10 Вт в метрическую мощность:
P (л.с.) = 10 Вт / 735,49875 = 0,013596 л.с.
Таблица преобразования ватт в лошадиные силы
Вт (Вт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
1 Вт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
2 Вт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
3 Вт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
4 Вт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
5 Вт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
6 Вт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
7 Вт | 0.009387 л.с. | 0.009383 л.с. | 0.009517 л.с. |
8 Вт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
9 Вт | 0,012069 л.с. | 0,012064 л.с. | 0,012237 л.с. |
10 Вт | 0,013 410 лс | 0,013405 л.с. | 0,013596 л.с. |
20 Вт | 0.026820 л.с. | 0,026810 л.с. | 0,027192 л.с. |
30 Вт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
40 Вт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
50 Вт | 0,067051 л.с. | 0,067024 л.с. | 0,067981 л.с. |
60 Вт | 0,080461 л.с. | 0,080429 л.с. | 0,081577 л.с. |
70 Вт | 0.093871 л.с. | 0,093834 л.с. | 0,095174 л.с. |
80 Вт | 0.107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
90 Вт | 0,120692 л.с. | 0.120643 л.с. | 0,122366 л.с. |
100 Вт | 0.134022 л.с. | 0,13 40 48 л.с. | 0.135962 л.с. |
200 Вт | 0.268204 л.с. | 0.268097 л.с. | 0.271924 лс |
300 Вт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
400 Вт | 0,536409 л.с. | 0,536193 л.с. | 0,543849 л.с. |
500 Вт | 0,670511 л.с. | 0,670241 л.с. | 0,679811 л.с. |
600 Вт | 0.804613 л.с. | 0.804290 л.с. | 0,815773 л.с. |
700 Вт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
800 Вт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
900 Вт | 1.206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1000 Вт | 1.341022 л.с. | 1.340483 л.с. | 1.359622 л.с. |
2000 Вт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3000 Вт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4000 Вт | 5.364088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5000 Вт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
Конверсия из лошадиных сил в ватты ►
См. Также
.Калькулятор преобразованиялошадиных сил в ватты (Вт)
Мощность (л.с.) в ватт (Вт), преобразование мощности: калькулятор и как преобразовать.
Конвертер величиниз лошадиных сил в ватты
Введите мощность в лошадиных силах и нажмите кнопку Преобразовать :
Ватт в лошадиные силы, преобразование ►
Перевод лошадиных сил в ватты
Механическая / гидравлическая мощность в ваттах
Одна механическая или гидравлическая мощность равна 745.699872 Вт:
1 л.с. (I) = 745,699872 Вт
Таким образом, преобразование мощности из лошадиных сил в ватты определяется по формуле:
P (Вт) = 745,699872 ⋅ P (л.с.)
Пример
Преобразование 10 л.с. в ватт:
P (Ш) = 745.699872 ⋅ 10 л.с. = 7456.99872 Вт
Электрическая мощность в ваттах
Одна электрическая лошадиная сила равна 746 Вт:
1 л.с. (E) = 746 Вт
Таким образом, преобразование мощности из лошадиных сил в ватты определяется по формуле:
P (Ш) = 746 ⋅ P (л.с.)
Пример
Преобразование 10 л.с. в ватт:
P (Ш) = 746 ⋅ 10 л.с. = 7460 Вт
Метрическая мощность в ваттах
Одна метрическая лошадиная сила равна 735.49875 Вт:
1 л.с. (М) = 735,49875 Вт
Таким образом, преобразование мощности из лошадиных сил в ватты определяется по формуле:
P (Вт) = 735,49875 ⋅ P (л.с.)
Пример
Преобразование 10 л.с. в ватт:
P (Ш) = 735,49875 ⋅ 10 л.с. = 7354,9875 Вт
Таблица преобразования из ватт в мощность
Вт (Вт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
1 Вт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
2 Вт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
3 Вт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
4 Вт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
5 Вт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
6 Вт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
7 Вт | 0.009387 л.с. | 0.009383 л.с. | 0.009517 л.с. |
8 Вт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
9 Вт | 0,012069 л.с. | 0,012064 л.с. | 0.012237 л.с. |
10 Вт | 0,013 410 лс | 0,013 405 л.с. | 0,013596 л.с. |
20 Вт | 0.026820 л.с. | 0,026810 лс | 0,027192 л.с. |
30 Вт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
40 Вт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
50 Вт | 0,067051 л.с. | 0,067024 л.с. | 0,067981 л.с. |
60 Вт | 0,080461 л.с. | 0.080429 л.с. | 0,081577 л.с. |
70 Вт | 0.093871 л.с. | 0,093834 л.с. | 0.095174 л.с. |
80 Вт | 0.107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
90 Вт | 0.120692 л.с. | 0.120643 л.с. | 0,122366 л.с. |
100 Вт | 0.134022 л.с. | 0,13 4048 л.с. | 0.135962 л.с. |
200 Вт | 0.268204 л.с. | 0.268097 л.с. | 0.271924 лс |
300 Вт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
400 Вт | 0.536409 л.с. | 0,536193 л.с. | 0,54 3849 л.с. |
500 Вт | 0,670511 л.с. | 0,670241 л.с. | 0,679811 л.с. |
600 Вт | 0.804613 л.с. | 0.804290 л.с. | 0,815773 л.с. |
700 Вт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
800 Вт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
900 Вт | 1.206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1000 Вт | 1.341022 л.с. | 1.340483 л.с. | 1.359622 л.с. |
2000 Вт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3000 Вт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4000 Вт | 5.36 4088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5000 Вт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
Преобразование из ватт в мощность ►
См. Также
.Преобразование ватт в мощность (Вт → л.с.)
1 Ватт = 0,0013 Мощность | 10 Вт = 0,0134 Лошадиные силы | 2500 Вт = 3,3526 л.с. |
2 Вт = 0,0027 Мощность | 20 Вт = 0,0268 л.с. | 5000 Вт = 6,7051 Лошадиная сила |
3 Ватт = 0.004 Мощность | 30 Вт = 0,0402 Лошадиные силы | 10000 Вт = 13,4102 Лошадиные силы |
4 Вт = 0,0054 Мощность | 40 Вт = 0,0536 л.с. | 25000 Вт = 33,5256 л.с. |
5 Вт = 0,0067 л.с. | 50 Ватт = 0.0671 Мощность | 50000 Ватт = 67,0511 Лошадиная сила |
6 Вт = 0,008 Мощность | 100 Ватт = 0,1341 Лошадиная сила | 100000 Ватт = 134,1 Лошадиная сила |
7 Вт = 0,0094 л.с. | 250 Ватт = 0,3353 Лошадиная сила | 250000 Ватт = 335.26 Мощность |
8 Вт = 0,0107 Мощность | 500 Ватт = 0,6705 Лошадиная сила | 500000 Ватт = 670,51 Лошадиная сила |
9 Вт = 0,0121 л.с. | 1000 Вт = 1,341 л.с. | 1000000 Вт = 1341,02 Лошадиные силы |
Вт в лошадиные силы (Вт в л.с.)
Введите мощность в ваттах ниже, чтобы получить значение, переведенное в лошадиные силы.
Как преобразовать ватты в лошадиные силы
Чтобы преобразовать ватт в лошадиные силы, используйте одну из формул ниже.
Вт в Механическая мощность
Формула для преобразования ватт в механическую мощность:
л.с. (I) = Вт ÷ 745.699872
Поскольку механическая мощность равна 745,699872 Вт, формула для определения механической мощности представляет собой мощность в ваттах, деленную на 745,699872.
Например, вот как преобразовать 5000 ватт в механическую мощность.5000 Вт = (5000 ÷ 745,699872) = 6,70511 л.с. (л)
Вт в электрическую мощность
Формула для преобразования ватт в электрические лошадиные силы:
л.с. (E) = Вт ÷ 746
Поскольку электрическая мощность равна 746 ваттам, формула для определения электрической мощности представляет собой мощность в ваттах, деленную на 746.
Например, вот как преобразовать 5000 ватт в электрическую мощность.5000 Вт = (5000 ÷ 746) = 6,702413 л.с. (эл.)
Вт в Метрическая мощность
Формула для преобразования ватт в метрическую мощность:
л.с. (М) = Вт ÷ 735,49875
Поскольку метрическая мощность равна 735,49875 ватт, формула для определения метрической лошадиных сил представляет собой мощность в ваттах, деленную на 735.49875.
Например, вот как преобразовать 5000 ватт в метрическую мощность.5000 Вт = (5000 ÷ 735,49875) = 6,798 · 108 л.с. (М)
Вт на мощность котла
Формула преобразования ватт в мощность котла:
л.с. (S) = Вт ÷ 9 809,5
Поскольку мощность котла равна 9 809,5 Вт, формула для определения мощности котла представляет собой мощность в ваттах, деленную на 9 809.5.
Например, вот как преобразовать 5000 ватт в мощность котла.5000 Вт = (5000 ÷ 9 809,5) = 0,50971 л.с. (S)
Ватты и лошадиные силы — это единицы измерения мощности. Продолжайте читать, чтобы узнать больше о каждой единице измерения.
Один ватт — это мощность, равная энергии одного джоуля в секунду в электрической цепи. [1] Один ватт также равен мощности, производимой в цепи с потенциалом напряжения в один вольт при токе в один ампер.
Ватт — производная единица измерения мощности в системе СИ в метрической системе. Ватты можно обозначить как Вт ; например, 1 ватт можно записать как 1 Вт.
Закон Ватта устанавливает взаимосвязь между мощностью, током и напряжением. Используя закон Ватта, можно выразить мощность в ваттах как выражение, используя ток и напряжение.
P W = I A × V V
Мощность в ваттах равна току в амперах, умноженному на разность потенциалов в вольтах.
Объединив это с законом Ома, также можно выразить мощность в ваттах, используя сопротивление в дополнение к вольтам и амперам.
Термин «лошадиные силы» был использован шотландским изобретателем Джеймсом Ваттом для измерения выходной мощности его парового двигателя и сравнения этой мощности с мощностью лошадей. [2] лошадиных сил позже использовались для измерения выходной мощности поршневых и турбинных двигателей и электродвигателей.
В настоящее время существует несколько различных типов лошадиных сил, включая механическую, электрическую, метрическую, котельную, тормозную и указанную, и все они имеют различные применения в промышленности.Механический и электрический — наиболее часто используемые типы.
Механическая мощность
Механическая мощность в лошадиных силах часто используется для измерения мощности двигателей и моторов в Северной Америке. Одна механическая мощность равна 745,69987158227022 Вт.
Механическая мощность в лошадиных силах — это стандартная и британская единица измерения мощности в США. Механическая мощность может быть сокращена до л.с. (I) ; например, 1 механическая мощность может быть записана как 1 л.с. (I).
Электрическая мощность
Электрическая мощность используется для измерения мощности электродвигателей и других электрических машин в США. Одна электрическая лошадиная сила равна ровно 746 Вт.
Электрическая мощность — это обычная американская имперская единица измерения мощности. Электрическая мощность может быть сокращена до л.с. (E) ; например, 1 электрическая лошадиная сила может быть записана как 1 л.с. (E).
Метрическая мощность в лошадиных силах
Одна метрическая лошадиная сила — это мощность, необходимая для одной метрической лошадиных сил, чтобы поднять 75-килограммовую массу со скоростью один метр в секунду. [3] Одна метрическая лошадиная сила равна 735,49875 Вт.
Метрическая мощность — это единица измерения мощности вне системы СИ. Метрическая мощность может быть сокращена как л.с. (M) , а также иногда сокращенно как PS , cv , hk , pk , ks или ch . Например, 1 метрическая лошадиная сила может быть записана как 1 л.с. (M), 1 л.с., 1 cv, 1 hk, 1 pk, 1 ks или 1 ch.
Котельная мощность
Мощность котла используется для измерения мощности котла для выработки пара.Мощность одного котла равна мощности, необходимой для испарения 34,5 фунтов за один час. [4]
Мощность котла сокращенно можно обозначить как л.с. (S) ; например, мощность 1 котла можно записать как 1 л.с. (S).
Попробуйте наш калькулятор мощности двигателя, чтобы рассчитать мощность двигателя.
.Как преобразовать ватт в мощность (л.с.)
Как преобразовать мощность в ваттах (Вт) в лошадиные силы (л.с.).
Вт на механическую / гидравлическую мощность
Одна механическая или гидравлическая лошадиная сила равна 745,699872 Вт:
1 л.с. (I) = 745,699872 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 745.699872
Пример
Преобразование 10 Вт в механическую мощность:
P (л.с.) = 10 Вт / 745.699872 = 0,01341 л.с.
Ватт на электрическую мощность
Одна электрическая лошадиная сила равна 746 Вт:
1 л.с. (E) = 746 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 746
Пример
Преобразование 10 Вт в электрические лошадиные силы:
P (л.с.) = 10 Вт / 746 = 0,013405 л.с.
Ватт в метрическую мощность
Одна метрическая лошадиная сила равна 735.49875 Вт:
1 л.с. (М) = 735,49875 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 735.49875
Пример
Преобразование 10 Вт в метрическую мощность:
P (л.с.) = 10 Вт / 735,49875 = 0.013596 л.с.
Как преобразовать л.с. в ватты ►
См. Также
.Калькулятор преобразованиякиловатт в лошадиные силы (л.с.)
киловатт (кВт) в лошадиные силы (л.с.) преобразование мощности: калькулятор и как преобразовать.
Введите мощность в киловаттах и нажмите кнопку Конвертировать :
* Для электродвигателей и кондиционеров используется электрическая мощность
Преобразованиел.с. в кВт ►
Как перевести киловатты в мощность
Киловатт в мощность для механика / гидравлики
Одна механическая или гидравлическая мощность равна 0.745699872 киловатт:
1 л.с. (I) = 745,699872 Вт = 0,745699872 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,745699872
Пример
Преобразование 10 кВт в механическую мощность:
P (л.с.) = 10 кВт / 0,745699872 = 13,41 л.с.
Киловатт в электрические лошадиные силы
Одна электрическая лошадиная сила равна 0.746 киловатт:
1 л.с. (E) = 746 Вт = 0,746 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,746
Пример
Преобразование 10 кВт в электрическую мощность:
P (л.с.) = 10 кВт / 0,746 = 13,405 л.с.
Киловатт в метрическая мощность
Одна метрическая лошадиная сила равна 0,73549875 киловатт:
1 л.с. (М) = 735.49875 Вт = 0,73549875 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,73549875
Пример
Преобразование 10 кВт в метрическую мощность:
P (л.с.) = 10 кВт / 0,73549875 = 13,596 л.с.
Таблица преобразования киловатт в лошадиные силы
Кило- Вт (кВт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
0.001 кВт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
0,002 кВт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
0,003 кВт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
0,004 кВт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
0,005 кВт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
0,006 кВт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
0,007 кВт | 0.009387 л.с. | 0.009383 л.с. | 0.009517 л.с. |
0,008 кВт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
0,009 кВт | 0,012069 л.с. | 0.012064 л.с. | 0.012237 л.с. |
0.01 кВт | 0,013 410 лс | 0.013405 л.с. | 0,013596 л.с. |
0,02 кВт | 0,026820 л.с. | 0,026810 л.с. | 0,027192 л.с. |
0,03 кВт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
0,04 кВт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
0,05 кВт | 0,067051 л.с. | 0.067024 л.с. | 0,067981 л.с. |
0,06 кВт | 0.080461 л.с. | 0.080429 л.с. | 0,081577 л.с. |
0,07 кВт | 0,093871 л.с. | 0,093834 л.с. | 0.095174 л.с. |
0,08 кВт | 0.107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
0,09 кВт | 0.120692 л.с. | 0.120643 л.с. | 0.122366 л.с. |
0.1 кВт | 0.134022 л.с. | 0.134048 л.с. | 0.135962 л.с. |
0,2 кВт | 0.268204 л.с. | 0.268097 л.с. | 0,271924 л.с. |
0,3 кВт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
0,4 кВт | 0.536409 л.с. | 0,536193 л.с. | 0.543849 л.с. |
0,5 кВт | 0,670511 л.с. | 0,670241 л.с. | 0.679811 л.с. |
0,6 кВт | 0.804613 л.с. | 0.804290 л.с. | 0.815773 л.с. |
0,7 кВт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
0,8 кВт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
0,9 кВт | 1.206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1 кВт | 1.341022 лс | 1.340483 л.с. | 1.359622 л.с. |
2 кВт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3 кВт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4 кВт | 5.364088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5 кВт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
л.с. в кВт ►
См. Также
.Перевод единиц измерения Мощности. БТЕ/час (Btu/h), БТЕ/с (Btu/s), фут-фунт/сек (ft-lb/s), лошадиная сила (hp), калорий/сек (cal/s), Ватт (Вт, W), Киловатт (кВт,kW).
Перевод единиц измерения величины мощности = «нагрузки» (у электриков), «тепловыделения, теплопроизводительности» у тепловиков. БТЕ/час (Btu/h), БТЕ/с (Btu/s), фут-фунт/сек (ft-lb/s), лошадиная сила (hp), калорий/сек (cal/s), Ватт (Вт, W), Киловатт (кВт,kW), ВА (VA), кВА (kVA)Справочно: В чем отличие единиц мощности кВт и кВА?
|
Перевод лошадиных сил
Лошадиные силы
Лошадиная сила – это внесистемная единица измерения мощности, которая официально выведена из употребления в России, однако по-прежнему находит применение, к примеру, в автомобильной сфере.
Пожалуй, многие из нас ,представляя лошадиную силу, используют примерно следующую аналогию: если к автомобилю мощностью в 100 л.с. привязать канат, на другом конце которого будет табун из 100 лошадей, то начав движение в противоположных направлениях, они не смогут сдвинуться с места. И это не совсем верно. На практике лошади, скорее всего, выиграют и просто выведут из строя трансмиссию автомобиля еще на старте. Дело в том, что мощность двигателя в лошадиных силах – это номинальная величина. Для превращения потенциальной энергии двигателя в кинетическую необходимо развить определенную частоту вращения коленчатого вала и передать нужный крутящий момент на колеса. Кроме того, лошадиная сила является величиной относительно строго установленной, а возможности лошадей могут сильно разниться и отличаться от этого параметра.
Единица мощности лошадиные силы и соотношение с ВаттамиПервым термин «лошадиные силы» стал использовать знаменитый английский (шотландский) механик-изобретатель Джеймс Уатт. Эта мысль пришла ему в голову, когда он наблюдал за работой на угольных копях, где лошадей использовали для подъема породы на поверхность земли. Посмотрев на процесс с точки зрения физики, ученый определил, что лошадь обладает некоторой мощностью, которую можно вычислить по соотношению выполненной работы ко времени. За основу была взята масса угля, поднимаемого с глубины в 30 метров за одну минуту. Получилось 150 кг/1 м – эту величину он и определил равной 1 л.с.(HP – horse power) Позднее, в 1882 году, Британская организация инженеров ввела в использование ватт – единицу измерения, равную 0,736 л.с.
Кстати, последующий пересчет показателей, вычисленных Уаттом, показал, что в действительности ни одна лошадь не способна развить достаточную мощность для вертикального подъема 150 кг груза со скоростью 1 м/с. Более того – в копях, где Уатт проводил свои расчеты, для работы использовались пони. Считается, что он посчитал производительность одной лошади в минуту по соотношению фут-фунт и увеличил это значение на 50%. По одной из версий, изобретатель специально уравнял мощность своего двигателя с мощностью лошади, чтобы продемонстрировать большую продуктивность агрегата с целью продать его.
Как переводить ватты в лошадиные силы
В 1784 году Джеймс Уатт представил общественности первый паровой двигатель. Для измерения мощности изобретенного и сконструированного им агрегата, Уатт ввел термин «лошадиная сила», разработанный им ранее.
Дальнейшее развитие механики породило возникновение целого ряда аналогичных «лошадиных сил», обозначавших разную величину. Наличие нескольких одноименных единиц приводит к необходимости проведения перевода мощности между различных измерительных систем. В 1960 году в международной системе СИ официальной единицей измерения мощности был установлен ватт. Несмотря на это, лошадиная сила по-прежнему используется в некоторых сферах деятельности, в частности, в автомобильной промышленности.
Для осуществления перевода 1 л.с. в ватты требуется умножить показатель мощности на 736: 1 л.с. =736 Вт. Соответственно, обратный перевод производится путем деления значения на это же число. Примеры:
- 5 л.с. = 3,68 кВт;
- 10 кВт = 13,57 л.с.
Но не все так просто! Поэтому читаем текст ниже под видео, которое тоже может быть полезным для понимания основных физических величин электрика.
Такие разные эталоны
После определения Уаттом новой единицы измерения свои «лошадиные силы» появились не только в разных системах измерений, но и в отдельных странах. На сегодня эта единица не является официально признанной, но используется в 4 различных вариантах:
- Метрическая лошадиная сила (используется в России). Равна мощности, необходимой для подъема 75-килограммового груза со скоростью 1 м/с. Для перевода в ватты умножается на 735,5. Пример: 2 л.с. = 1471 Вт.
- Электрическая лошадиная сила. Используется в электромеханике и электрике. Чтобы перевести ватты в эту единицу, нужно разделить их на 746. Например, 4000 Вт (4 киловатт) = 5,362 эл. л.с.
- Механическая л.с. Соответствует значениям английской системы мер. Одна мех. л. с. равна 745,7 Вт (1,014 от метрической л.с).
- Котловая лошадиная сила. Применяется в промышленной и энергетической отрасли. Для перевода в киловатты используется следующее соотношение: 1 к. л.с. = 9,809 кВт.
Традиция использования лошадиных сил в автомобильной отрасли связана с удобством – эта величина является характерной и всегда понятна даже тем, кто далек от тонкостей автомеханики. Гораздо больше людей смогут сориентироваться, на что способна машина с заявленной мощностью в 150 л.с., а вот 110,33 киловатт введут большинство в заблуждение. Хотя на самом деле это одно и то же.
Это может быть интересно:UnitJuggler unit converter
Absorbed dose converter
Convert Gray, Rad, J/kg.Acceleration converter
Convert ms-2, fts-2, gal, etc.Angle converter
Convert degrees, radians, grads, arc units, angular mils, etc.Area converter
Convert metric units, square miles, square inches, etc.Bandwidth converter
Density converter
Convert Pounds per Gallon, Kilogram per cubic metre, Gramm per Millilitre, etc.Electric charge converter
Convert coulomb, amperehour, faraday, etc.Energy converter
Convert Kilojoules to Kilocalories, convert Joules to Calories, KiloWattHours to Ergs, etc.Equivalent dose converter
Convert Sievert to rem.Force converter
Convert pounds (pound-force), kiloponds, newton, etc.Foreign exchange converter
Convert Euro, Dollar, Pounds, Rupies, Yen, etc. Also convert from and to old european currencies. Daily updated exchange rates !Frequency converter
Convert Hertz, Fresnel, cycler per second & periodsFuel consumption converter
Convert Litre/100km, Miles/Gallon, Gramm CO2 per km, etc.Illuminance converter
Convert lux, phot, nox, lumen per square meter, etc.Length converter
Convert metric units, miles, inches, feet, nautical miles, light-years, astronomical units, etc.Mass converter
Convert kilograms, tonnes, (avoirdupois, troy and metric) pounds, hundredweights, carats, etc.Memory size converter
Convert CD’s, DVD’s, KiloBytes, MegaBytes, TeraBytes, MebiBytes, Bits, etc.Number Systems converter
Convert hexedecimal numbers, binary numbers, octal numbers, decimal numbers, Binary coded decimal numbers.Power converter
Convert Watt, horsepowers, Kilowatts, etc.Pressure converter
Convert Pascal, mmHg, Bar, Atmospheres, etc.Radioactive decay converter
Convert Becquerel, Curie & Rutherford units.Speed converter
Convert meters per second, kilometers per hour, miles per hour, minutes per kilometer, seconds per mile, knots, speed of light, Mach, etc.Temperature converter
Convert between Kelvin, Celsius, Fahrenheit, Rankine, Delisle and more …Time converter
Convert years, weeks, days, hours, minutes, secondes, etc.Volume converter
Convert litres, cubic meters, oil barrels, pints, teaspoons, fluid ounces, gallons (imperial or u.s. liquid), etc.Volumetric flow rate converter
greek alphabet
Please counter-check the results. Despite thorough controls by our means, rounding errors and other errors are possible. Use at your own risk.search | contact | imprint | privacy | terms of use
©2008-2016 (UnitJuggler v.40)
Калькулятор перевода лошадиных сил в киловатты и обратно
Измерять мощность Двигателей Внутреннего Сгорания (ДВС) принято в лошадиных силах. Однако проведенные исследования в представленной сфере показали, что более точным параметром измерения мощности ДВС являются единицы измерения системы СИ , а именно — киловаттыВ некоторых случаях, например при проектировании различных агрегатов или подбора аналогов существующим механизмам, возникает необходимость конвертировать киловатты в лошадиные силы и обратно. Для этих расчетов, воспользуйтесь нашим калькулятором, позволяющим точно определить нужные параметры.
Калькулятор перевода метрический 1л.с. = 1.3596 кВт
Калькулятор перевода промышленный (электроаналог) 1л.с. = 1.34 кВт
Калькулятор перевода английский 1л.с. = 1.378 кВтСогласно акту № БГ-3-21/177 от 09.04.2003 г., на территории РФ принят за образец вариант — метрический (75кгс*м/с), с переводным коэффициентом в 1 кВт = 1,35962 л.с. Соответственно при попытке подсчета разнообразными способами, показатель будет отличаться.
Если речь идет о мощности ДВС автомобиля — это метрика, область промышленности либо энергетики — электроаналог. Английский стандарт применяется в США и Великобритании.
Как перевести киловатта в лошадиные силы
Лошадиные силы как единица измерения мощности впервые появились в 18 веке, когда в эксплуатацию пустили паровые машины. Джеймс Уатт, известный изобретатель, использовал эти слова для объяснения превосходства технологий над животными. Он сделал вывод, что одна лошадь способна поднять 180 фунтов товара на 181 фут.
Проведя расчеты, Уатт решил, что лошадиная сила равняется 33 тысячам животных фунто-футов в минуту. Со временем его теория изменялась, вычисления проверялись и корректировались. Так возникло несколько единиц измерения, а вместе с ними и калькуляторы перевода киловатт в лошадиные силы.
В разных странах лошадиные силы понимают по-разному. В России, странах СНГ и нескольких других их называют метрическими и приравнивают к ваттам. В Европейских странах она считается мощностью, которая требуется при поднимании товара весом в 75 кг со скоростью метр/сек при ускорении 75 кгс·м/с.
Эти расчеты приближены к расчетам Уатта и более точно показывают, сколько бы требовалось животных, чтобы заменить работу одной машины. В 2019 году они используются в других целях, но идея осталась прежней.
Когда Уатт популяризировал свою теорию, появились не только разные системы измерения, но и разные формулировки и причины использования лошадиных сил.
Они не являются официальными при измерении двигателя машины, но используются в 4 вариантах:
- в России принята метрическая система измерения. Она равна мощности, которая требуется для поднятия груза определенного веса с определенной скоростью. Чтобы посчитать силы, требуется умножить их на ватты;
- в электрике и электромеханике признана электрическая сила. Чтобы посчитать что-либо в лошадях, нужно их разделить на 746. Например, 4 тысячи ватт равняются 5.37 лошадиных сил;
- в Великобритании и некоторых других странах используется механическая сила. Чтобы посчитать в лошадях, достаточно их умножить на 745.7 ватт;
- в энергетической и промышленной отраслях применяется котловая сила. Чтобы посчитать что-либо в лошадях, требуется использовать следующую формулу: 9,809 кВт = 1 к. л.с.
Лошадиные силы обрели большую популярность во всем мире благодаря удобству, их значение понятно каждому пользователю, не требуется изучать автомеханику и технические характеристики.
Гражданам понятно, на что способен транспорт с мощностью в 100 лошадиных сил, а это же число в киловаттах вводит в заблуждение, хотя выражают цифры одно и то же.
После того как Уатт вывел первоначальную формулу ученые несколько раз пересчитывали показатели и доказали, что лошади не способы развивать достаточную мощность, чтобы поднимать 75 кг товара вверх с требуемой скоростью. Уатт рассчитывали силы в копях, где использовались маленькие пони.
Оказалось, что он умножил свои расчеты на половину, чтобы показать эффективность машин. Уатт смог успешно продать паровые машины, преувеличив реальность, а лошадиные силы стали использоваться во всех странах мира.
Таблица соответствия
Существует 2 основные таблицы: для перевода из киловатт в лошадиные силы и наоборот:
Таблица перевода из киловатт в лошадиные силы:
| ||||||||||||||||||
Если требуется сделать обратный перевод, используется следующая таблица:
|
Формула перевода
В России давно разработали особую формулу, позволяющую перевести одно значение в другое.
Граждане, которые хотят посчитать сумму в метрических лошадиных силах, должны подставить следующие цифры:
1 л.с.=735,499 Вт
Это уравнение является приблизительным и в профессиональных бумагах его применять нельзя, однако он отлично подходит для проверки размера налога на автомобиль или стоимости полиса.
В России в технических описаниях машин часто используются лошадиные силы, а в международных документах используются ватты. Формула помогает избежать недопониманий.
Когда требуется посчитать мощность, получается, что такому обозначению соответствует вертикальное поднятие товара весом 75 кг со скоростью 1 м/с при обычном ускорении. Одна сила в лошадях в России равняется 735,49875 Вт. Важно помнить, что эти цифры не являются системной единицей измерения.
Механика шагнула далеко вперед с 18 века, развитие отрасли привело к возникновению множества лошадиных сил, каждая имеет свое применение.
Наличие нескольких единиц измерения привело к необходимости регулярно переводить мощность из одной системы в другую.
В 1960 была принята единая система СИ, в большинстве государств официально стали считать в ваттах. Лошади используются в автомобильной сфере автомобилистами-любителями, профессионалы перешли на ватты.
В Великобритании до сих пор используют откорректированное значение, которое рассчитывается по формуле:
745,69988145 Вт = 1 л.с.
Чтобы понять, с учетом какой страны указаны лошадиные силы, в технических характеристиках ставят обозначения:
- PS Германия;
- CH Франция;
- HP Великобритания;
- PK Голландия.
Чтобы перевести значение из киловатт в российские лошадиные силы потребуется применить формулу:
1 кВт = 1,3596 л. с.
В США используются электрические силы, которые считаются по следующим значениям:
746 Вт = 1 Boiler horsepower
Это значение в Америке в основном применяются в энергетической промышленности.
Как пользоваться калькулятором онлайн
Чтобы перевести самостоятельно одни единицы измерения в другие, достаточно воспользоваться онлайн калькулятором:
- ввести киловатты или;
- ввести лошадиные силы.
Калькулятор самостоятельно выдаст актуальное значение.
Понятия, которые появились в прошлом, постепенно исчезают. Все чаще можно найти ватты вместо лошадиных сил. Чтобы не запутаться, существуют онлайн калькуляторы для удобного перевода.
Видео по теме:
Внимание!
- В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
- Все случаи очень индивидуальны и зависят от множества факторов. Базовая информация не гарантирует решение именно Ваших проблем.
Поэтому для вас круглосуточно работают БЕСПЛАТНЫЕ эксперты-консультанты!
ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.
Перевести ватты в киловатты: конвертер
На данный момент, чтобы совершить грамотный подсчет общего числа домашнего электрического оборудования в сети, сделать правильный выбор электросчетчика при покупке или измерить изоляцию необходимо понять, что измеряется в ваттах и киловаттах, а затем научиться переводить эти величины. О том, как ваты перевести в киловатты, какого их соотношение и какие есть правила перевода далее.
Что измеряется
Ватт является измерительной мощностной единицей, а также тепловым потоком, потоком звуковой электроэнергии, мощностью постоянного электротока, активной и полной мощностью электротока, потоком излучения и энергопотоком ионизирующего излучения в международной измерительной системе. Стоит указать, что это скалярная измерительная величина.
Перевод вт в квтЧтобы было удобно применять ватт, международной системой принято использование приставок, которые определяют десятичную кратность к исходному показателю. Как правило, для ватта используется киловатт. В переводе с греческого приставка кило обозначает тысячу. Использование приставки обозначает увеличение исходной величины на 103 раза.
Киловатт в час является несистемной измерительной единицей, которая показывает, когда произведена или потреблена энергия и в каком количестве. Также она показывает механическую выполненную работу и теплоту. Используется, для того чтобы измерять бытовое потребление электрической энергии или измерять выработку электрической энергии в энергетике.
Для чего нужны мощностные данные? Это необходимо для вычисления суммарной приборной мощности и вычисления необходимого проводного сечения, выбора подходящего автомата, который мог бы выдерживать их нагрузку.
Обратите внимание! Киловатты используются для обозначения мощности многих машин с агрегатами, окружающего человека в плане быта и производства. Электроплиты с кухонными электроприборами, бытовыми кондиционерами, стиральными машинами и пылесосами являются неполным перечнем электрических устройств, на которых возможно посмотреть, как обозначается номинальная мощность в киловаттах. Это относится к двигателю внутреннего сгорания современных машин. Наряду с тем, что используется киловатт, часто мощность обозначается в лошадиной силе.
Это внесистемная единица, которая была создана со времени появления паровой машины, приведшей на конной тяге. Для понимания соотношения, перевести киловатты в лошадиные силы, можно, используя следующую формулу: 1 киловатт = 1,36 лошадиных сил.
Потребление мощности осветительных приборовСоотношения вт и квт
Из-за того, что киловатты и ватты похожи, часто пользователи путаются, используя их в повседневной жизни. Особенно это касается бытовых электроприборов. Стоит учесть, что они являются двумя различными измерительными единицами, которые относятся к разным физическим величинам. Ватты и киловатты измеряют мощность, что является измерительной скоростью энергии, а также передачей, преобразованием и потреблением электроэнергии.
Те величины, что имеют приставку часы, выражают энергию, которая была произведена, передана, преобразована, потреблена в течение определенного времени. Если приборная мощность является постоянной, то произведенная с переданной, преобразованной и потребленной энергией равна мощностному приборному произведению на период работы электрооборудования.
К примеру, при 100-ваттной мощности лампы и работы на протяжении одного часа, потреблении и выделении света с теплом в 100 ваттов, перемноженной на исходящую энергию, произойдет выделение света с теплом за 2,5 часа. Указанное будет иметь силу в момент производимой электрической энергии. Так электрическая мощность измеряется в мегаваттах, но число электроэнергии, которая будет поставлена потребителям в течение времени, равна мощностному перемножению показателей электрической станции на время и выражено в киловаттах и часах.
Обратите внимание! Стоит указать, что сегодня можно использовать специальный онлайн-калькулятор, где нужно будет только подставить известные скалярные измерительные величины. Цифра будет справедлива для электрической, тепловой, механической и электромагнитной энергии.
Соотношение ватт с киловаттамиПравила перевода
Один ватт определяется как мощность, при которой за секунду совершается джоульная работа. Так, ватт — это производная измерительная единица, которая связана с другими единицами. Ватт равен килограмму, перемноженному на квадратные метры и поделенные на кубические секунды.
Через другие системные измерительные единицы, ватт можно выразить следующим образом: через джоуль, поделенный на секунды и перемноженные на ватты, а также через ньютон, перемноженный на метры и поделенный на секунды с ваттами. Так ватт равен вольту, перемноженному на ампер. Кроме того, что мощность бывает механическая, она бывает также тепловая и электрическая.
Приставка кило обозначает перемножение на 1000. Такой же принцип применяется и в мощностных показателях, то есть в 1 киловатте находиться 1000 вт, как и в 1 киловатте находится 1000 вольт. Это обозначает, что 1 вт является 0,001 квт наоборот. То есть, если сделать перевод мощности, то электроприбор в 3 квт будет равен 3000 вт.
Если вычислить вышеобозначенные данные, то суммарный мощностный показатель бытовых электрических приборов будет равен 6,385 киловатт. Данная цифра может быть округлена в больший показатель. Благодаря этой сумме возможно вычисление проводного сечения и выбора нужной защитной автоматики. Так можно понять расход электрической энергии.
В противном случае, узнать и конвертировать данные показатели электроэнергии будет почти невозможно. Интересно, что в новых моделях электросчетчика подобная информация имеет место быть о каждом подключенном аппарате в сети.
Правила перевода единицыПеревод вт в квт и наоборот
Перевести вт в квт можно, перемножив вт на 103 и поделив на 1000. Для осуществления обратного перевода, необходимо киловатты перемножить на 103 или же известные показатели умножить на 1000. Также можно воспользоваться простым в работе конвертером. Благодаря нему подобное действие выполняется дистанционным образом. Все, что нужно пользователю, это вставить имеющиеся данные в поле и нажать кнопку пуска.
Перевод ваттов в киловаттыСтоит указать, что существуют разные конвекторы. Некоторые переводят данные ватты, а некоторые сразу в киловатты. Перевести без его помощи можно, используя простой пример, приведенный ниже. Также можно узнать эту информацию, открыв руководство к эксплуатации любого электрического прибора.
Перевод киловаттов в ваттыВ целом, для того чтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять для этой работы таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.
200 миллиампер в амперы. Конвертер ватт в амперы. Ватты в лошадиные силы
На бытовых приборах (миксер, фен, блендер) производители пишут потребляемую мощность в ваттах, на устройствах, которые требуют больших объемов электрической нагрузки (электрическая плита, пылесос, водонагреватель), – в киловаттах. А на розетках или автоматических выключателях, через которые подключаются к сети приборы, принято указывать силу тока в амперах. Чтобы понять, выдержит ли розетка подключаемое устройство, нужно знать, как переводить амперы в ватты.
Единицы мощности
Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.
Перевод ампера в ватты и киловатты
Знать, как посчитать соответствие ампер ваттам, нужно для того, чтобы определить, какое устройство способно выдержать мощность подключаемых потребителей. К таким устройствам относят защитную аппаратуру или коммутационную.
Перед тем как выбрать, какой автоматический выключатель или устройство защитного отключения (УЗО) установить, нужно посчитать мощности потребления всех подключаемых приборов (утюг, лампы, стиральная машина, компьютер и т.д.). Или же наоборот, зная, какой стоит автомат или защитное устройство отключения, определить, какое оборудование выдержит нагрузку, а какое нет.
Для перевода ампера в киловатты и наоборот существует формула: I=P/U, где I – амперы, P – ватты, U – вольты. Вольты – это напряжение сети. В жилых помещениях используется однофазная сеть – 220 В. На производстве для подключения промышленного оборудования работает электрическая трехфазная сеть, значение которой равно 380 В. Исходя из этой формулы, зная амперы, можно посчитать соответствие ваттам и наоборот – перевести ватты в амперы.
Ситуация: имеется автоматический выключатель. Технические параметры: номинальный ток 25 А, 1-полюс. Нужно посчитать, какую ваттность приборов способен выдержать автомат.
Проще всего технические данные внести в калькулятор и рассчитать мощность. А также можно использовать формулу I=P/U, получится: 25 А=х Вт/220 В.
х Вт=5500 Вт.
Чтобы ватты перевести в киловатты,необходимо знать следующие меры мощности в ватт:
- 1000 Вт = 1 кВт,
- 1000 000 Вт = 1000 кВт = МВт,
- 1000 000 000 Вт = 1000 МВт = 1000000 кВт и т.д.
Значит, 5500 Вт =5,5 кВт. Ответ: автомат с номинальным током 25 А может выдержать нагрузку всех приборов общей мощностью 5,5 кВт, не более.
Применяют формулу с данными напряжения и силы тока для того, чтобы подобрать тип кабеля по мощности и силе тока. В таблице приведено соответствие тока сечению провода:
Медные жилы проводов и кабелейСечение жилы, мм² | Медные жилы проводов, кабелей | |||
---|---|---|---|---|
Напряжение 220 В | Напряжение 380 В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Как перевести ватт в ампер
Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.
Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500 Вт. Подставляем значения в формулу и получаем: 1500 Вт / 220 В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.
Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6 Вт, утюг мощностью 2 кВт и телевизор 30 Вт. Сначала все показатели нужно перевести в ватты, получается:
- лампы 6*10= 60 Вт,
- утюг 2 кВт=2000 Вт,
- телевизор 30 Вт.
60+2000+30=2090 Вт.
Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10 А. Ответ: потребляемый ток около 10 А.
Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.
Ампер (А) | Мощность (кВт) | |
220 В | 380 В | |
2 | 0,4 | 1,3 |
6 | 1,3 | 3,9 |
10 | 2,2 | 6,6 |
16 | 3,5 | 10,5 |
20 | 4,4 | 13,2 |
25 | 5,5 | 16,4 |
32 | 7,0 | 21,1 |
40 | 8,8 | 26,3 |
50 | 11,0 | 32,9 |
63 | 13,9 | 41,4 |
Все автоматы, которые имеются в продаже, содержат в маркировке величину предельно допустимого тока (но никак не поддерживаемой мощности в ваттах), а большинство потребителей имеют пометку на бирке о потребляемой мощности. Чтобы правильно подобрать кабель и автоматический выключатель нужно знать, как перевести амперы в киловатты и обратно. Об этом мы и расскажем читателям сайта далее.
Краткие о напряжении, токе и мощности
Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.
В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:
P=I*U*cosФ
Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.
Как выполнить перевод
Постоянный ток
В сфере автоэлектрики и декоративной подсветки используются цепи 12 В. Давайте рассмотрим на практике, как перевести амперы в ватты на примере светодиодной ленты. Для её подключения зачастую необходим блок питания, но подключить «просто так» его нельзя, он может сгореть, или наоборот, вы можете купить слишком мощный и дорогой БП там, где он не нужен и зря потратить деньги.
В характеристиках блока питания на бирке указываются такие величины, как напряжение, мощность и ток. Причем количество Вольт указываются обязательно, а вот мощность или ток могут быть описаны вместе, а может быть и такое, что только одна из характеристик указана. В характеристиках светодиодной ленты указаны те же характеристики, но мощность и ток с учетом на метр.
Представим, что вы купили 5 метров ленты 5050 с 60 светодиодами на 1 метр. На упаковке написано «14,4 Вт/м», а в магазине на бирках БП указан только ток. Подбираем правильный источник питания, для этого умножим количество метров на удельную мощность и получим общую мощность.
14,4*5=72 Вт – необходимо для питания ленты.
Значит нужно перевести в амперы по этой формуле:
Итого: 72/12=6 Ампер
Итого нужен блок питания минимум на 6 Ампер. Более подробно узнать о том, вы можете узнать из нашей отдельной статьи.
Другая ситуация. Вы установили на свой автомобиль дополнительные фары, но на лампочках указана характеристика, допустим 55 Вт. Подключение всех потребителей в авто лучше производить через предохранитель, но какой нужен для этих фар? Нужно перевести ватты в амперы по формуле выше – разделив мощность на напряжение.
55/12=4,58 Ампера, ближайший номинал – 5 А.
Однофазная сеть
Большинство бытовых приборов рассчитаны на подключение к однофазной сети 220 В. Напомним, что в зависимости от страны, в которой вы живете, напряжение может быть и 110 вольт и любым другим. В России принятая за стандарт величина именно 220 В для однофазной и 380 В для трёхфазной сети. Большинству читателей чаще всего приходится работать именно в таких условиях. Чаще всего нагрузку в таких сетях измеряют в киловаттах, при этом автоматические выключатели содержат маркировку в Амперах. Рассмотрим немного практических примеров.
Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Здесь эффективна та же формула, связывающая силу тока и напряжение в мощность.
P=I*U*cosФ
Для удобства расчетов принимаем cosФ за единицу.Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.
С помощью таблицы можно быстро перевести амперы в киловатты при выборе автоматического выключателя:
Немного сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Чтобы определить, сколько у вас будет потреблять киловатт в час такой двигатель, нужно обязательно учитывать коэффициент мощности в формуле:
P=U*I*cosФ
Следует отметить, что cosФ должен быть указан на бирке, обычно от 0,7 до 0,9. В данном случае, если полная мощность двигателя 5,5 киловатт или 5500 Ватт, то потребляемая активная мощность (а мы платим, в отличие от предприятий, только за активную):
5,5*0,87= 4,7 киловатта, а если точнее то 4785 Вт
Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.
Еще один пример, сколько ампер потребляет чайник на 2 кВт? Делаем расчет, сначала нужно выполнить : 2*1000 = 2000 Ватт. После этого переводим ватты в Амперы, а именно: 2000/220 = 9 Ампер.
Это значит, что пробка на 16 Ампер выдержит чайник, но если вы включите еще один мощный потребитель (например, обогреватель) и в суммарная мощность будет выше 16 Ампер – она через время выбьет. Также дело обстоит и с автоматами, и предохранителями.
Для подбора кабеля, который выдержит определенное количество ампер чаще, чем формулы используют таблицу. Вот пример одной из них, кроме тока в ней и указана мощность нагрузки в киловаттах, что очень удобно:
Трёхфазная сеть
В трёхфазной сети есть две основных схемы соединения нагрузки, например обмоток электродвигателя – это звезда и треугольник. Формула определения и перевода мощности в ток несколько иная, чем в предыдущих вариантах:
P = √3*U*I*cosФ
Так как наиболее частым потребителем трёхфазной электросети является электродвигатель, рассмотрим на его примере. Допустим, у нас есть электродвигатель мощностью в 5 киловатт, собранный по схеме звезды с напряжением питания 380 В.
Нужно запитать его через автоматический выключатель, но чтобы его подобрать, нужно знать ток двигателя, значит нужно перевести из киловатт в амперы. Формула для расчета будет иметь вид:
I=P/(√3*U*cosФ)
На нашем примере это будет 5000/(1,73*380*0,9)=8,4 А. Таким образом мы без труда смогли перевести киловатты в амперы в трехфазной сети.
Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.
Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?
Смежные, но разные
Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.
Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.
Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.
Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:
- фиксированным;
- постоянным;
- переменным.
С учетом этого и производится сопоставление показателей.
«Фиксированный» перевод
Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:
При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.
Онлайн калькулятор
Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).
Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.
«Переменные нюансы»
Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:
Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.
Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.
Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.
Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.
Ампер — ватт таблица:
6 | 12 | 24 | 48 | 64 | 110 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,10 | 0,08 | 0,05 | 0,02 | 0,01 | Ампер |
6 Ватт | 1 | 0,5 | 0,25 | 0,13 | 0,09 | 0,05 | 0,03 | 0,02 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,15 | 0,11 | 0,06 | 0,03 | 0,02 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,17 | 0,13 | 0,07 | 0,04 | 0,02 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,19 | 0,14 | 0,08 | 0,04 | 0,02 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,21 | 0,16 | 0,09 | 0,05 | 0,03 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,42 | 0,31 | 0,18 | 0,09 | 0,05 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,63 | 0,47 | 0,27 | 0,14 | 0,03 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,83 | 0,63 | 0,36 | 0,13 | 0,11 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 1,04 | 0,78 | 0,45 | 0,23 | 0,13 | Ампер |
60 Ватт | 10,00 | 5 | 2,50 | 1,25 | 0,94 | 0,55 | 0,27 | 0,16 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 1,46 | 1,09 | 0,64 | 0,32 | 0,18 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 1,67 | 1,25 | 0,73 | 0,36 | 0,21 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 1,88 | 1,41 | 0,82 | 0,41 | 0,24 | Ампер |
100 Ватт | 16,67 | 3,33 | 4,17 | 2,08 | 1,56 | ,091 | 0,45 | 0,26 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 4,17 | 3,13 | 1,32 | 0,91 | 0,53 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 6,25 | 4,69 | 2,73 | 1,36 | 0,79 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 8,33 | 6,25 | 3,64 | 1,82 | 1,05 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 10,4 | 7,81 | 4,55 | 2,27 | 1,32 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 12,50 | 9,38 | 5,45 | 2,73 | 1,58 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 14,58 | 10,94 | 6,36 | 3,18 | 1,84 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 16,67 | 12,50 | 7,27 | 3,64 | 2,11 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 13,75 | 14,06 | 8,18 | 4,09 | 2,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 20,33 | 15,63 | 9,09 | 4,55 | 2,63 | Ампер |
1100 Ватт | 183,33 | 91,67 | 45,83 | 22,92 | 17,19 | 10,00 | 5,00 | 2,89 | Ампер |
1200 Ватт | 200 | 100,00 | 50,00 | 25,00 | 78,75 | 10,91 | 5,45 | 3,16 | Ампер |
1300 Ватт | 216,67 | 108,33 | 54,2 | 27,08 | 20,31 | 11,82 | 5,91 | 3,42 | Ампер |
1400 Ватт | 233 | 116,67 | 58,33 | 29,17 | 21,88 | 12,73 | 6,36 | 3,68 | Ампер |
1500 Ватт | 250,00 | 125,00 | 62,50 | 31,25 | 23,44 | 13,64 | 6,82 | 3,95 | Ампер |
Для того, чтобы ответить на этот, в общем-то, несложный вопрос, нам необходимо еще раз коротко рассмотреть такие физические величины, как сила тока (А ), напряжение (В ) и мощность (Вт ). Они очень тесно связаны между собой и не могут существовать друг без друга.
Зависимость от электрического поля
Нам хорошо известно, что создание и поддержание электрического тока полностью зависит от электрического поля. напрямую зависит от величины электрического поля. Для лучшего понимания этой зависимости попробуем охарактеризовать эти понятия в количественном выражении.
Сила тока — это не совсем удачное название для данного процесса. Оно появилось в то время, когда далеко не совсем было понятно, что это такое. Ведь это вовсе не сила, как таковая, а количество электронов (электричества), которое протекает через поперечное сечение проводника за одну секунду. Эту величину можно было бы отобразить в виде количества электронов, проходящих через проводник за секунду. Однако заряд электрона — очень маленькая величина. Она непригодна для применения на практике.
Например: через нить накаливания лампочки обычного карманного фонарика за одну секунду проходит 2х1018электронов. Поэтому единицей измерения величины электрического заряда стали считать заряд, который имеют 6,25х1018 электронов. Этот заряд получил название кулон. Поэтому окончательно единицей считают такой ток, при котором за одну секунду через поперечное сечение проводника проходит заряд в 1 кулон. Такая единица получила название ампер и по сей день используется в электротехнике для измерения силы тока.
Для того, чтобы определить зависимость электрического тока от электрического поля необходимо уметь измерять величину поля. Ведь поле — это сила, которая действует на какой-либо заряд, электрон, или кулон. Именно наличие такой силы и характерно для электрического поля.
Измерение силы поля
Измерить силу поля очень трудно, ведь в разных местах проводника оно неодинаковое. Пришлось бы проводить большое число сложный измерений в различных точках. В связи с этим величина поля характеризуется не силой, действующей на заряды, а работой, совершаемой ею, при перемещении одного кулона из одного конца проводника — до другого. Работа электрического поля называется напряжением. Еще ее называют разность потенциалов (+ и -) на концах проводника. Единицей напряжения называют вольт .
Таким образом, можно сделать вывод, что понятие электрического тока характеризуется двумя основными величинами: сила тока — это непосредственно электрический ток, напряжение — величина поля, при котором создается сам ток. Получается, что сила напрямую зависит от напряжения.
Что такое мощность
И, наконец, коротко рассмотрим, что же такое мощность. Мы уже знаем, что U (напряжение) — работа, которая выполняется при перемещении 1 кулона. I — это сила тока, или количество кулонов, проходящих за одну секунду. Таким образом I х U — есть показатель полной работы, выполненной за 1 секунду. Фактически, это и есть мощность электрического тока. Единицей измерения мощности является ватт .
Как перевести ватты в амперы
Ватт = Ампер х Вольт или Р = I х U
Ампер = Ватты/Вольт или I = P/U
В качестве наглядного примера можно рассмотреть такой вариант
4,6 Ампер = 1000Вт/220В
2,7 Ампер = 600Вт/220В
1,8 Ампер = 400Вт/220В
1,1 Ампер = 250Вт/220В
Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.
Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.
Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.
Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.
Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.
Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.
Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.
Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.
Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.
Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.
Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.
Историческая справка
С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.
Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.
Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.
Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.
Электрический ток. Определения
Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:
I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах
Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:
I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах
Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).
Размерность тока в системе СИ определяется как
[А] = [Кл] / [сек]
Особенности протекания электрического тока в различных средах. Физика явлений
Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках
При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.
Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.
С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.
В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.
Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.
Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.
Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.
Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.
Электрический ток в жидкостях (электролитах)
Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.
Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.
Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.
Электрический ток в газах
Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.
Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.
Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.
Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.
Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.
Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.
Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.
Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.
При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.
Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.
Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.
Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.
Электрический ток в вакууме
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.
Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.
Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.
Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.
Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.
При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.
В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.
Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.
Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.
Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.
Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.
Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.
Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.
Электрический ток в биологии и медицине
Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.
При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.
Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.
Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.
Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.
В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.
Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.
К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.
Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.
Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.
У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.
Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.
Характеристики электрического тока, его генерация и применение
Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.
Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.
Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.
Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.
В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.
Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.
Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.
Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.
В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.
Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.
Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.
Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.
Измерение электрического тока
Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.
По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.
Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:
- мгновенное,
- амплитудное,
- среднее,
- среднеквадратичное (действующее).
Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.
Амплитудное (пиковое) значение тока I m — это наибольшее мгновенное значение тока за период.
Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.
Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.
Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.
Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.
Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.
Измерение тока с помощью осциллографа
Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).
Общая схема эксперимента №1 представлена ниже:
Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта R s =100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта R s . Значение сопротивления шунта выбирается из условия R s
Опыт 1
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор R s определяется по закону Ома:
I RMS = U RMS /R = 0,31 В / 100 Ом = 3,1 мА,
что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен
I P-P = U P-P /R = 0,89 В / 100 Ом = 8,9 мА
Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить I RMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).
Опыт 2
Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:
I RMS = U RMS /R = 0,152 В / 100 Ом = 1,52 мА,
что приблизительно соответствует показаниям мультиметра (1,55 мА).
Опыт 3
Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.
Опыт 4
Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе R s =100 Ом.
Техника безопасности при измерении тока и напряжения
Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии
- Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
- Не проводить измерения токов, требующих определённых профессиональных навыков (при напряжении свыше 1000 В).
- Не производить измерения токов в труднодоступных местах или на высоте.
- При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
- Пользоваться исправным измерительным инструментом.
- В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
- Пользоваться измерительным прибором с исправными щупами.
- Строго следовать рекомендациям производителя по использованию измерительного прибора.
Таблицы конвертации величин
Таблицы величин для быстрой конвертации одних единиц в другие.
Соотношение единиц давления
bar | mbar | Па | кПа | МПа | кгс/мм2 | кгс/см2 | физ.атм. | мм рт.ст. | м вод.ст. | мм вод.ст. | psi | |
1 bar | 1 | 1000 | 100000 | 100 | 0,1 | 0,0101971 | 1,019716 | 0,986923 | 750,062 | 10,19716 | 10197,16 | 14,50377 |
1 mbar | 0,001 | 1 | 100 | 0,1 | 0,001 | 0,0000101 | 0,001019 | 0,000986 | 0,750062 | 0,0101971 | 10,19716 | 0,0145037 |
1 Па | 0,00001 | 0,01 | 1 | 0,001 | 0,000001 | 0,0000001 | 0,000010 | 0,000009 | 0,007500 | 0,0010197 | 0,1019716 | 0,0001450 |
1 кПа | 0,01 | 10 | 1000 | 1 | 0,001 | 0,0001019 | 0,010197 | 0,009869 | 7,50062 | 0,1019716 | 101,9716 | 0,1450377 |
1 МПа | 10 | 10000 | 1000000 | 1000 | 1 | 0,1019716 | 10,19716 | 9,86923 | 7500,62 | 101,9716 | 101971,6 | 145,0377 |
1 кгс/мм² | 98,0665 | 98066,5 | 9806650 | 9806,65 | 9,80665 | 1 | 100 | 96,7841 | 73555,9 | 1000 | 100000 | 1422,3344 |
1 кгс/см² | 0,98066 | 980,6 | 98066,5 | 98,0665 | 0,09806 | 0,01 | 1 | 0,967841 | 735,559 | 10 | 10000 | 14,223344 |
1 физ. атм. | 1,01325 | 1013,2 | 101325 | 101,325 | 0,10132 | 0,010332 | 1,033227 | 1 | 760 | 10,33227 | 10332,27 | 14,6959 |
1 мм рт.ст. | 0,00133 | 1,3332 | 133,322 | 0,13332 | 0,00013 | 0,000013 | 0,001359 | 0,001315 | 1 | 0,01360 | 13,60 | 0,019336 |
1 м вод.ст. | 0,09806 | 98,0665 | 9806,65 | 9,80665 | 0,00980 | 0,001 | 0,1 | 0,0967841 | 73,556 | 1 | 1000 | 1,4223274 |
1 мм вод.ст. | 0,00009 | 0,09806 | 9,80665 | 0,00980 | 0,000009 | 0,000001 | 0,0001 | 0,0000967 | 0,073556 | 0,001 | 1 | 0,0014223 |
1 psi | 0,06894 | 68,9475 | 6894,75 | 6,89475 | 0,006894 | 0,0070307 | 0,070307 | 0,068046 | 51,71521 | 0,70307 | 703,07 | 1 |
Соотношение единиц длины
Единица измерения |
Сокращенное обозначение | Х-единица | Ангстрем | Нанометр | Микрометр | Миллиметр | Сантиметр | Дюйм |
Х-единица | Х | 1 | 1.001·10-3 | 1.001·10-4 | 1.001·10-7 | 1.001·10-10 | 1.001·10-11 | 3.95·10-12 |
Ангстрем | Ǻ | 0.998·103 | 1 | 39823 | 39913 | 40004 | 40035 | 3.937·10-9 |
Нанометр | нм | 0.998·104 | 10 | 1 | 39882 | 39974 | 40004 | 3.937·10-8 |
Микрометр (микрон) | мкм | 0.998·107 | 104 | 103 | 1 | 39882 | 39913 | 3.937·10-5 |
Миллиметр | мм | 0.998·1010 | 107 | 106 | 103 | 1 | 39823 | 3.937·10-2 |
Сантиметр | см | 0.998·1011 | 108 | 107 | 104 | 10 | 1 | 0.3937 |
Дюйм | дюйм | 0.254·1012 | 2.540·108 | 2.540·107 | 2.540·104 | 25.40 | 2.540 | 1 |
Фут | фут | 0.304·1013 | 3.048·109 | 3.048·108 | 3.048·105 | 3.048·102 | 30.48 | 12 |
Метр | м | 0.998·1013 | 1010 | 10 | 106 | 103 | 102 | 39.37 |
Ярд | ярд | 0.913·1013 | 9.144·109 | 9.144·108 | 9.144·105 | 9.144·102 | 91.44 | 36 |
Километр | км | 0.998·1016 | 1013 | 1012 | 109 | 106 | 105 | 3.937·104 |
Сухопутная миля | — | 1.606·1016 | 1.609·1013 | 1.609·1012 | 1.609·109 | 1.609·106 | 1.609·105 | 6.336·104 |
Морская миля | — | 1.849·1016 | 1.853·1013 | 1.853·1012 | 1.853·109 | 1.853·106 | 1.853·105 | 7.296·104 |
Световой год | — | 9.441·1028 | 9.46 ·1025 | 9.46·1024 | 9.46·1021 | 9.46·1018 | 9.46·1017 | 3.724·1017 |
Соотношение единиц температуры
Сравнение температурных шкал
Шкала | Обозначение | Точка таяния льда | Точка кипения воды | Интервал |
Цельсия | t, ºC | 0 | 100 | 100 |
Абсолютная | T, ºK | 273.16 | 373.16 | 100 |
Реомюра | t, ºR | 0 | 80 | 80 |
Фаренгейта | t, ºF | 32 | 212 | 180 |
Формула пересчета: (T-273)ºK/5 = tºC/5 = tºR/4 = (t-32)ºF/9 |
Cоотношение единиц мощности
Соотношение между единицами работы и энергии
Единица
измерения | Сокращенное
обозначение | Эрг | Джоуль | Килограмм-
метр | Ватт-час | Калория | Литр- атмосфера | Электрон вольт |
Эрг | эрг | 1 | 40004 | |||||
Джоуль | Дж (Вт·с) | 107 | 1 | |||||
Килограмм- метр | кГм | 1 | ||||||
Ватт-час | Вт· ч | 1 | ||||||
Калория | кал | 1 | ||||||
Литр- атмосфера | л· атм | 1 | ||||||
Электрон вольт | эВ | 1 |
Единица
измерения | Сокращенное
обозначение | Эрг в секунду | Ватт | Килограмм- метр
в секунду | Лошадиная сила | Лошадиная сила
английская | Калория в
секунду |
Эрг в секунду | эрг/с | 1 | |||||
Ватт | Вт (Дж/с) | 1 | |||||
Килограмм- метр в
секунду | кГм/с | 1 | |||||
Лошадиная сила | л.с. | 1 | |||||
Лошадиная сила
английская | л.с. | 1 | |||||
Калория в секунду | кал/с | 1 |
Соотношение единиц массы
Из | кг | тонна | фунт | UK cwt | UK тонна | US cwt | US тонна |
кг | 1 | 0.001 | 2.20462 | 0.019684 | 0.000984 | 0.022046 | 0.001102 |
тонна | 1000 | 1 | 2204.62 | 19.6841 | 0.984207 | 22.0462 | 1.10231 |
фунт | 0.453592 | 0.000454 | 1 | 0.008929 | 0.000446 | 0.01 | 0.0005 |
Англ. cwt | 50.8023 | 0.050802 | 112 | 1 | 0.05 | 01.дек | 0.056 |
Англ. тонна | 1016.05 | 1.01605 | 2240 | 20 | 1 | 22.апр | 01.дек |
Амер. cwt | 45.3592 | 0.045359 | 100 | 0.892857 | 0.044643 | 1 | 0.05 |
Амер. тонна | 907.185 | 0.907185 | 2000 | 17.8517 | 0.892857 | 20 | 1 |
Соотношение единиц объема
cм3 | м3 | литр
(дм3) | дюйм3 | фут3 | ярд3 | UK | UK | US | US | |
cм3 | 1 | — | 0.001 | 0.061024 | 0.0000353 | — | 0.001760 | 0.00022 | 0.002113 | 0.000264 |
м3 | — | 1 | 1000 | 61023.7 | 35.3147 | 1.30795 | 1759.75 | 219.969 | 2113.38 | 264.172 |
литр (дм3) | 1000 | 0.001 | 1 | 61.0237 | 0.035315 | 0.001308 | 1.75975 | 0.219969 | 2.11338 | 0.264172 |
дюйм3 | 16.3871 | — | 0.016387 | 1 | 0.0005787 | 0.0000214 | 0.028837 | 0.003605 | 0.034632 | 0.004329 |
фут3 | 28316.8 | 0.028317 | 28.3168 | 1728 | 1 | 0.037037 | 49.8307 | 6.22883 | 59.8442 | 7.48052 |
ярд3 | 764555 | 0.764555 | 764.555 | 46656 | 27 | 1 | 1345.429 | 168.1784 | 1615.793 | 201.974 |
UK | 568.261 | 0.0005683 | 0.568261 | 34.6774 | 0.020068 | 0.000743 | 1 | 0.125 | 1.20095 | 0.150119 |
UK
галлион | 4546.09 | 0.0045461 | 4.54609 | 277.42 | 0.160544 | 0.005946 | 8 | 1 | 1525499 | 1.20095 |
US
пинта | 473.176 | 0.0004732 | 0.473176 | 28.875 | 0.01671 | 0.000619 | 0.832674 | 0.104084 | 1 | 0.125 |
US
галлион | 3785.41 | 0.0037854 | 3.785411 | 231 | 0.133681 | 0.004951 | 6.661392 | 0.832674 | 8 | 1 |
Возврат к списку
Санкт-Петербург
197341, Коломяжский пр, д. 27, лит. А, БЦ Содружество, 10 эт.
тел.: + 7 (812) 702-12-42
Москва
127238, Дмитровское шоссе 71Б 6 этаж, офис 614
тел.: + 7 (495) 988-46-83
Челябинск
454085, ул. Танкистов, д. 177 А, офис 303
тел.: +7 (351) 225-01-38
Кемерово
650040, ул. Баумана, д.55,
офис 202
тел.: +7 (3842) 650-409
Загрузка…
Как перевести киловатты в лошадиные силы
Автомобилисты привыкли мерить мощность собственного «железного коня» в единицах, которые называются «лошадиная сила». Этот параметр известен еще с позапрошлого века, однако, применяется даже к ультрасовременным спорткарам, которые с большой натяжкой можно приравнять к какому-либо виду «табунов».
Данная единица не является производной от базовых исчислений в СИ, да и значение ее в разных странах может вычисляться по-разному. Более точным показателем мощности может служить Ватт, который одинаково рассчитывается в любой точке мира. Рассмотрим, как перевести киловатты в лошадиные силы, а также, почему это надо делать.
История появления «лошадиных сил»
В начале девятнадцатого века изобретатель и ученый из Шотландии Джеймс Уатт пытался пропагандировать внедрение паровой машины вместо применения лошадей. Одним из первых покупателей этого механизма оказался пивовар, у которого животные работали в качестве тягового усилия для вращения водяного насоса. Сравнивая усилие, которое развивалось от животной тяги с мощностью искусственного механизма, ученый высчитал эталонное значение.
Расчетными величинами, которые Джеймс Уатт брал в качестве базовых, оказались бочка с водой весом 380 фунтов или 1 баррель (172,4 кг), восьмичасовой рабочий день, две лошади массой по 500 кг, способные выдавать примерно 15% полезной работы от своей массы. За такое время животные проходили 20 миль (28,8 км) со скоростью 2 мили/час (3,6 км/ч). При таких расчетах традиционная английская лошадиная сила (л.с.) должна высчитываться по формуле:
0,5 барреля * 2 миль/час = 1 л.с.
Баррель выступает в данном случае не в качестве единицы массы, а в качестве единицы силы.
Лишь спустя почти столетие, в конце 19 века Британская научная Ассоциация ввела новую единицу мощности, посвятив ее шотландскому ученому – ватт (Вт или W). Этот параметр вычислялся в общепризнанных единицах СИ.
Измерения для Российской Федерации
Для того чтобы привести этот параметр к единому стандарту, в нашей стране было принято обозначение условной «метрической лошадиной силы». Поэтому перевод киловатт в лошадиные силы в России опирается на значение:
1 л.с.=735,49875 Вт
В математических расчетах данный параметр стараются не применять, но на него опираются при вычислении стоимости обязательного страхования ОСАГО или транспортного налога. Это связано с тем, что в характеристиках своих изделий автопредприятия используют чаще не Вт, а л.с., хотя в международной системе единиц СИ установлен ватт, как параметр мощности.
Международные метрологические организации рекомендуют переходить в обозначении всех характеристик автомобиля на классификацию СИ.
Международное измерение л.с.
Для большинства стран европейского континента принят параметр:
1 л.с.= 75 кгс·м/с
Выясняя, сколько киловатт в лошадиной силе, получим, что такой мощности соответствует поднятие груза массой 75 кг со скоростью 1 м/с при нормальном значении ускорения свободного падения. Переведя в ватты, получим 735,49875 Вт, что соответствует российским стандартам. Хотя л.с. и является внесистемной единицей измерения.
Соединенные штаты вместе с Великобританией используют откорректированный ими параметр. В их исчислениях:
1 л.с.= 745,69988145 Вт
Чтобы различать, в какой системе указано значение лошадиной силы, иногда ставят измерительную единицу страны:
- немецкая – PS;
- французская – ch;
- английская – hp;
- голландская – pk.
Для обратного вычисления киловатт и метрического (российского) значения л.с. можно пользоваться формулой:
1 кВт = 1,3596 л. с.
Для США применимо также значение «электрическая лошадиная сила». Ее параметр высчитываем по формуле:
1 Boiler horsepower =746 Вт
Это значение применяется в промышленности и энергетике.
Заключение
Понятия, которые внесистемных единиц уходят в прошлое. Все чаще значения мощности автомобилей пишется в ваттах. При этом есть сайты, где можно в режиме онлайн вычислить прямое или обратное значение в любой единице. За формулу обычно берется российская единица л.с.
Интересное по теме:
загрузка…
Вконтакте
Одноклассники
Google+
Конвертер величинВт в лошадиные силы (л.с.)
Ватт (Вт) в лошадиные силы, преобразование мощности: калькулятор и как преобразовать.
Калькулятор преобразованияватт в лошадиные силы
Вт (Вт) в лошадиные силы, калькулятор преобразования мощности.
Введите мощность в ваттах и нажмите кнопку Convert :
Конверсия из лошадиных сил в ватты ►
Как преобразовать ватт в мощность
Вт на мощность механика / гидравлики
Одна механическая или гидравлическая мощность равна 745.699872 Вт:
1 л.с. (I) = 745,699872 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 745.699872
Пример
Преобразование 10 Вт в механическую мощность:
P (л.с.) = 10 Вт / 745,699872 = 0,01341 л.с.
Ватт на электрическую мощность
Одна электрическая лошадиная сила равна 746 Вт:
1 л.с. (E) = 746 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) /746
Пример
Преобразование 10 Вт в электрические лошадиные силы:
P (л.с.) = 10 Вт / 746 = 0.013405 л.с.
Вт в метрическую мощность
Одна метрическая лошадиная сила равна 735,49875 Вт:
1 л.с. (М) = 735,49875 Вт
Таким образом, преобразование мощности из ватт в лошадиные силы определяется по формуле:
P (л.с.) = P (Вт) / 735.49875
Пример
Преобразование 10 Вт в метрическую мощность:
P (л.с.) = 10 Вт / 735,49875 = 0,013596 л.с.
Таблица преобразования ватт в лошадиные силы
Вт (Вт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
1 Вт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
2 Вт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
3 Вт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
4 Вт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
5 Вт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
6 Вт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
7 Вт | 0.009387 л.с. | 0.009383 л.с. | 0.009517 л.с. |
8 Вт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
9 Вт | 0,012069 л.с. | 0,012064 л.с. | 0.012237 л.с. |
10 Вт | 0,013 410 лс | 0,013405 л.с. | 0,013596 л.с. |
20 Вт | 0.026820 л.с. | 0,026810 л.с. | 0,027192 л.с. |
30 Вт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
40 Вт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
50 Вт | 0,067051 л.с. | 0,067024 л.с. | 0,067981 л.с. |
60 Вт | 0,080461 л.с. | 0,080429 л.с. | 0,081577 л.с. |
70 Вт | 0.093871 л.с. | 0,093834 л.с. | 0,095174 л.с. |
80 Вт | 0.107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
90 Вт | 0.120692 л.с. | 0.120643 л.с. | 0,122366 л.с. |
100 Вт | 0.134022 л.с. | 0.134048 л.с. | 0.135962 л.с. |
200 Вт | 0.268204 л.с. | 0.268097 л.с. | 0.271924 лс |
300 Вт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
400 Вт | 0,536409 л.с. | 0,536193 л.с. | 0,543849 л.с. |
500 Вт | 0,670511 л.с. | 0,670241 л.с. | 0,679811 л.с. |
600 Вт | 0.804613 л.с. | 0.804290 л.с. | 0,815773 л.с. |
700 Вт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
800 Вт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
900 Вт | 1.206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1000 Вт | 1.341022 л.с. | 1.340483 л.с. | 1.359622 л.с. |
2000 Вт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3000 Вт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4000 Вт | 5.364088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5000 Вт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
Конверсия из лошадиных сил в ватты ►
См. Также
Перевести ватты в л.с.
Укажите значения ниже для преобразования ватт [Вт] в лошадиные силы (метрические единицы) или наоборот .
Ватт
Определение: Ватт (символ: Вт) — производная единица мощности в Международной системе единиц (СИ). Он определяется как 1 джоуль в секунду и используется для количественной оценки скорости передачи энергии.
История / происхождение: Ватт назван в честь Джеймса Ватта, шотландского изобретателя. Впервые он был предложен в 1882 году Уильямом Сименсом, который определил его как «мощность, передаваемую током в ампер через разность потенциалов в вольт». Это определение использовалось в то время в существующей системе единиц.В 1908 году были даны определения «международных» определений, при этом определение Сименса было принято как международный ватт. Они использовались до 1948 года, когда Генеральная конференция мер и весов переопределила ватт в абсолютных единицах, используя только массу, время и длину. 1 абсолютный ватт равен 1.00019 международных ватт. Абсолютный ватт был принят в качестве единицы мощности СИ в 1960 году.
Текущее использование: Ватт во всех его кратных и дольных единицах используется во многих приложениях по всему миру, от радиопередачи до использования в электроэнергетика.Ватт как единицу мощности не следует путать с его энергетическим эквивалентом, ватт-часом (и всеми его кратными / долями).
Лошадиная сила (метрическая система)
Определение: Единица лошадиных сил (символ: л.с.) — это единица измерения мощности (скорость, с которой выполняется работа). Механическая мощность, также известная как имперская лошадиная сила, определяется как примерно 745,7 Вт (550 фунт-сила-сила / с), в то время как метрическая мощность составляет примерно 735,5 Вт (75 кгс · м / с). Мощность котла, хотя и менее распространенное измерение, чем британская или метрическая, используется для оценки паровых котлов и эквивалентна 34.5 фунтов воды испарялись в час при 212 градусах по Фаренгейту или 9809,5 Вт. Кроме того, при рейтинге электродвигателей одна лошадиная сила равна 746 Вт.
История / происхождение: Термин «лошадиные силы» был принят в конце 18 -го века Джеймсом Ваттом для сравнения мощности паровых двигателей с мощностью тягловых лошадей. Ватт был не первым, кто сравнил мощность лошадиных сил с мощностью двигателей. Еще в 1702 году Томас Савери ссылался на лошадей при описании мощности двигателя.Считается, что Ватт, опираясь на эту идею, ввел термин «лошадиные силы», в основном, чтобы продвигать свой паровой двигатель. Позднее этот термин был расширен, чтобы включить другие типы выходной мощности, такие как единицы измерения мощности в британских и метрических единицах, обычно используемые сегодня.
Ватт в мощность (метрическая) Таблица преобразования
Ватт [Вт] | Мощность (метрическая) |
---|---|
0,01 Вт | 1,35962E-5 л.с. (метрическая) |
0.1 Вт | 0,0001359622 л.с. (метрическая) |
1 Вт | 0,0013596216 л.с. (метрическая) |
2 Вт | 0,0027192432 л.с. |
5 Вт | 0,0067981081 л.с. (метрическая) |
10 Вт | 0,0135962162 л.с. (метрическая) |
20 Вт | 0,0271924323 л.с.0679810809 лошадиных сил (метрических) |
100 Вт | 0,1359621617 лошадиных сил (метрических) |
1000 Вт | 1,3596216173 лошадиных сил (метрических) |
2 1 916 916 9165 Вт (метрических) мощность (метрическая)
1 лошадиная сила (метрическая) = 735,49875 Вт
Пример: преобразовать 15 Вт в мощность (метрическая):
15 Вт = 15 × 0,0013596216 лошадиных сил (метрическая) = 0,0203943243 л.с. (метрическая)
Popular Power Преобразование единиц
Преобразование ватт в другие блоки питания
Преобразование ватт в лошадиные силы | преобразование мощности
Преобразование ватт в лошадиные силы | преобразование мощностиПреобразование ватт (Вт) по сравнению с лошадиных сил (л.с.)
в обратном направлении
из лошадиных сил в ватты
Или используйте страницу использованного преобразователя с многофункциональным преобразователем мощности
результат преобразования для двух блоков питания : | ||
Из блока Symbol | Equal Result | To unit Symbol |
1 Вт Вт | = 0.0013 | л.с. |
Какой международный акроним обозначает каждый из этих двух энергоблоков?
Префикс или символ для ватт: Вт
Префикс или обозначение лошадиных сил: л.с.
Инструмент для преобразования технических единиц измерения мощности. Заменить показание в единицах мощности Вт Вт на единицы мощности л.с.
Один ватт в лошадиных силах равен 0,0013 л.с.
1 Вт = 0,0013 л.с.
Поиск страниц при преобразовании в с помощью системы пользовательского поиска Google в Интернете
Для перехода на страницу конвертера единиц
ватт — Вт в мощность — hp требуется активный JavaScript в вашем браузере. Вот конкретные инструкции о том, как включить JS на вашем компьютере Как включить JavaScriptИли для вашего удобства загрузите браузер Google Chrome для просмотра веб-страниц в высоком качестве.
- Страниц
- Разное
- Интернет и компьютеры
Сколько лошадиных сил содержится в одном ватте? Для ссылки на эту мощность — конвертер единиц ватт в мощность , только вырежьте и вставьте следующий код в свой html.
Ссылка будет отображаться на вашей странице как: в Интернете конвертер единиц из ватт (Вт) в лошадиные силы (л.с.)
Онлайн-калькулятор перевода из ватт в лошадиные силы | конвертировать в.преобразователи единиц измерения © 2021 | Политика конфиденциальности
Перевести ватты в лошадиные силы [вода]
›› Перевести ватты в лошадиные силы [вода]
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большую часть рекламы здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация от конвертера величин
Сколько ватт в 1 лошадиных силах [воды]?
Ответ 746.043.
Мы предполагаем, что вы конвертируете ватт в лошадиных сил [вода] .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
ватт или
лошадиные силы [вода]
Производная единица СИ для мощности — ватт.
1 ватт равен 0,0013404053117582 лошадиных сил [вода].
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать ватты в лошадиные силы.
Введите свои числа в форму для преобразования единиц!
›› Таблица преобразования ватт в лошадиные силы [вода]
1 ватт в лошадиные силы [вода] = 0.00134 лошадиные силы [вода]
10 ватт в лошадиные силы [вода] = 0,0134 лошадиные силы [вода]
50 ватт в лошадиные силы [вода] = 0,06702 лошадиные силы [вода]
100 ватт в лошадиные силы [вода] = 0,13404 лошадиные силы [вода]
200 ватт в лошадиные силы [вода] = 0,26808 лошадиных сил [вода]
500 ватт в лошадиные силы [вода] = 0,6702 лошадиные силы [вода]
1000 ватт в лошадиные силы [вода] = 1,34041 лошадиные силы [вода]
›› Хотите другие юниты?
Вы можете произвести обратное преобразование единиц измерения из мощность [вода] в ватт, или введите любые две единицы ниже:
›› Обычные преобразователи мощности
ватт в тераватт
ватт в грамм-сила сантиметр / час
ватт в эрг / час
ватт в миллион БТЕ / час
ватт в ньютон-метр / час
ватт в килограммы в час
ватт в дин-сантиметр / час
ватт в эрг в минуту
ватт в килограмм-сила-метр в минуту
ватт в киловатт
›› Определение: Watt
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ.Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 В · А).
›› Определение:
лошадиных силединица мощности равна примерно 550 фут-фунтам работы в секунду
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести ватты в лошадиные силы [международные]
›› Перевести ватты в лошадиные силы [международные]
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что большинство объявлений можно отключить здесь:
https: // www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация от конвертера величин
Сколько ватт в 1 лошадиных силах [международная]?
Ответ 745,69987158227.
Мы предполагаем, что вы конвертируете ватт и лошадиных сил [международный] .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
ватт или
мощность [международная]
Производная единица СИ для мощности — ватт.
1 ватт равен 0.001341022089595 лошадиных сил [международная].
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать ватты в лошадиные силы.
Введите свои числа в форму для преобразования единиц!
›› Таблица преобразования ватт в лошадиные силы [международная]
1 ватт в лошадиные силы [международный уровень] = 0,00134 лошадиных силы [международный уровень]
10 ватт в лошадиные силы [международное значение] = 0,01341 л.с. [международное значение]
50 ватт в лошадиные силы [международный уровень] = 0.06705 лошадиные силы [международная]
100 ватт в лошадиные силы [международная] = 0,1341 лошадиная сила [международная]
200 ватт в лошадиные силы [международный уровень] = 0,2682 лошадиных сил [международный уровень]
500 ватт в лошадиные силы [международная] = 0,67051 лошадиная сила [международная]
1000 ватт в лошадиные силы [международная] = 1,34 · 102 лошадиные силы [международная]
›› Хотите другие юниты?
Вы можете произвести обратное преобразование единиц измерения из мощность [международная] в ватт, или введите любые две единицы ниже:
›› Обычные преобразователи мощности
ватт на фут фунтал в минуту
ватт на киловатт в минуту
ватт на гигаватт
ватт на фут фунтал в час
ватт на грамм-силу сантиметр в секунду
ватт на гектоватт
ватт на метр в минуту
ватт на килограмм-силу метр в минуту
ватт в эрг / минуту
ватт в дециватт
›› Определение: Watt
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ.Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 В · А).
›› Определение:
лошадиных силТермин «лошадиная сила» был изобретен инженером Джеймсом Ваттом в 1782 году. Механическая мощность определяется следующим образом:
1 л.с. = 33 000 фут · фунт-сила · мин -1 = точно 745,69987158227022 Вт
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения.Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Ватт в лошадиные силы Калькулятор преобразования
Используйте следующий калькулятор для преобразования в Вт и лошадиных сил .Если вам необходимо преобразовать Вт в другие единицы измерения, попробуйте наш универсальный Конвертер единиц мощности. | |||||||
| |||||||
Как использовать калькулятор преобразования ватт в лошадиные силы | |||||||
Загрузить преобразователь блоков питания наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения — скачать бесплатную демо-версию прямо сейчас! Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения | |||||||
Мгновенно добавьте бесплатный виджет Power Converter на свой веб-сайт Это займет меньше минуты, это так же просто, как вырезать и наклеить.Конвертер органично впишется в ваш веб-сайт, поскольку его можно полностью изменить. Щелкните здесь, чтобы просмотреть пошаговое руководство по размещению этого конвертера единиц на своем веб-сайте. | |||||||
|
Что такое мощность в лошадиных силах (л.с.)? Как рассчитать мощность
Что такое лошадиные силы? Как я могу рассчитать свою мощность в лошадиных силах? Это общие вопросы, которые мы получаем от наших клиентов.Чтобы ответить на этот вопрос, давайте сначала определим, что такое лошадиные силы.
Лошадиная сила, как и любая единица мощности, — это просто скорость, с которой выполняется работа. Буквально, единица лошадиных сил возникла в результате эксперимента по измерению мощности отдельной лошади. Было установлено, что лошадь способна выполнять работу 33000 фунт-сила-футов в минуту. Мы обратимся к этому номеру позже в объяснении.
Во-первых, несколько уравнений, которые помогут вам рассчитать вашу мощность в лошадиных силах:
Мощность = Работа / Время Мощность = (Сила x Расстояние) / ВремяДля электродвигателей мощность или мощность в лошадиных силах можно рассчитать по крутящему моменту и скорости.Например, если у вас есть двигатель, рассчитанный на 3000 об / мин и 6 дюйм-фунтов, то мощность в лошадиных силах рассчитывается ниже.
л.с. = (3000 x 6) / 63025 = 0,28663025 является константой при использовании оборотов в минуту для скорости и фунт-сил для единиц крутящего момента. 5252 — еще одна распространенная константа, если скорость выражена в об / мин, а крутящий момент — в фут-фунт-силах. Если единицы измерения разные, просто произведите преобразование единиц.
Получение этих констант выполняется с использованием 33 000 фунт-сила-футов / мин = 1 л.с.Хотя единицы мощности являются производными от 33000 фунт-сила-футов в минуту, это не критично для понимания того, как рассчитать мощность двигателя в зависимости от скорости и крутящего момента.
Еще одна распространенная единица мощности, которую определяют двигатели, — это ватты. Преобразование ватт в лошадиные силы составляет 745,7 Вт = 1 л.с.
Чтобы помочь конструкторам с иногда трудным преобразованием единиц измерения, Groschopp разработал калькулятор MOTORTEC STP, бесплатную загружаемую программу, которая обеспечивает быстрый и простой способ расчета скорости, крутящего момента или мощности.