Поршень двигателя внутреннего сгорания: Устройство поршня

Поршни двигателя внутреннего сгорания | ЖЕЛЕЗНЫЙ-КОНЬ.РФ

Поршень предназначен для восприятия давления газов и его передачи на кривошип коленчатого вала (через поршневой палец и шатун). Поршень подвержен максимальному воздействию тепловых и механических нагрузок, которые возникают в процессе работы двигателя внутреннего сгорания. Ввиду того, что поршень движется возвратно-поступательно, создаются значительные дополнительные циклические инерционные нагрузки, а также существенные силы трения о цилиндр боковой поверхности поршня. Поршень одновременно выполняет функции уплотняющего элемента КШМ (кривошипно-шатунный механизм) и отводит тепло от горячих газов, расположенных в надпоршневом пространстве. Всё это предъявляет к конструкции поршня высокие требования. Поршень должен обладать достаточной жёсткостью и прочностью при минимальной массе, его перемещение в цилиндре должно происходить с минимальным трением, также он должен иметь высокий ресурс и обеспечивать герметичность рабочей полости.

Поршень [рис. 1, а)] включает в себя днище (1), уплотняющую часть (3) и направляющую часть/юбку (4). На внутренней стороне юбки располагается пара массивных приливов – бобышек (8). Бобышки соединяются с днищем посредством рёбер, за счёт чего прочность поршня увеличивается. В бобышках имеются отверстия для монтажа поршневого пальца (10), а в этих отверстиях, в свою очередь, выполнены кольцевые канавки, предназначенные для стопорных колец (11). Головка поршня образована днищем и уплотняющим поясом. На внешних поверхностях юбки и головки проточены канавки (9) и (12) для установки маслосъёмных и компрессионных колец соответственно. Верхняя часть поршня называется уплотнительный пояс, так как расположенные здесь поршневые кольца предназначены для предотвращения прорыва газов через зазоры между цилиндром и поршнем. По окружности канавок (9) и (13) просверлены сквозные отверстия (14), которые служат для отвода масла в картер двигателя.

Рис. 1. Поршень двигателя внутреннего сгорания.

а) – Поршень дизельного двигателя А-41:

1) – Днище поршня;

2) – Камера сгорания;

3) – Уплотняющая часть поршня;

4) – Юбка (направляющая часть) поршня;

5) – Канал в стержне шатуна;

6) – Шатун;

7) – Втулка верхней головки шатуна;

8) – Бобышка поршня;

9) – Канавка для маслосъёмного кольца;

10) – Поршневой палец;

11) – Стопорное кольцо;

12) – Канавки для компрессионных колец;

13) – Кольцевая канавка;

14) – Отверстие для стока масла;

б) – Головки поршней:

1) – Д-21А1, Д-144;

2) – А-41, СМД-60, А-01, двигателей семейства КамАЗ и ЯМЗ;

3) – Д-160, Д-240;

в) – Поршень бензинового двигателя ЗМЗ-53.

Как правило, поршни современных дизельных двигателей изготавливаются с фигурным днищем [рис. 1, б)]. Это даёт возможность придать расположенной в поршне камере сгорания форму, требуемую для качественного смесеобразования, а также сгорания топлива. Поршни с плоским днищем нашли широкое применение не только в карбюраторных двигателях [рис. 1, в)], но и в вихрекамерных и предкамерных дизельных двигателях, что обуславливается их меньшим нагревом в процессе работы и простотой изготовления.

Число устанавливаемых на поршне колец имеет прямую зависимость от частоты вращения коленчатого вала и от типа двигателя. В карбюраторных и дизельных двигателях широкое распространение получили укороченные поршни, имеющие пару компрессионных и одно маслосъёмное кольцо, которые расположены выше поршневого пальца. В случае уменьшения числа компрессионных колец (с трёх до двух) иногда между ними вводится промежуточная канавка на поршне. В процессе выбора оптимальной формы и объёма кольцевой канавки требуется достигнуть аналогичного температурного состояния и уплотняющей способности поршневой группы при двух компрессионных кольцах, как и при трёх.

Юбка является направляющей частью поршня, передающей при его движении боковую силу стенкам цилиндра от шатуна. В процессе нагрева от горячих газов поршень расширяется больше чем цилиндр, который охлаждается воздухом либо жидкостью, вследствие чего велика вероятность его заклинивания. Во избежание этого, и для обеспечения нормальной работы двигателя, диаметр поршня должен быть меньше диаметра цилиндра. Также в процессе работы двигателя большему нагреву подвержена именно головка поршня, поэтому её диаметр делается меньше, чем диаметр юбки, то есть поршень имеет форму усечённого конуса. Разность между осями верхнего и нижнего основания конуса поршней двигателя ЗМЗ-53 составляет 0,013-0,038 мм, а двигателя ЗИЛ-130 – 0,35-0,05 мм.

Тепловая деформация поршня (в радиальном направлении) складывается с деформациями, которые вызваны овализацией поршня при его нагрузке нормальными силами. Поэтому поперечное сечение юбки поршня выполняется овальным таким образом, чтобы большая часть овала совпала с направлением действия нормальной силы, а малая часть – с продольной осью пальца. У основной массы поршней разность между большой и малой осями овальной юбки составляет 0,14-0,52 мм.

Чтобы получить минимальный зазор между стенкой цилиндра и юбкой поршня в холодном состоянии, а также устранить заедание поршня при его нагревании, в некоторых случаях снимают часть металла на наружной поверхности поршня (в зоне расположения бобышек), формируя неглубокие «холодильники» (вырезы прямоугольной формы). Аналогичная цель преследуется при выполнении разрезов на юбке поршней некоторых двигателей [рис. 1, в]. Разрезы придают пружинящие свойства направляющей части поршня и способствуют плотному их прилеганию к стенкам цилиндров в условиях различных температур. Поршни с разрезанной юбкой обладают повышенным трением и применяются только для карбюраторных двигателей с небольшим давлением газов и малым диаметром цилиндра. Данные поршни устанавливаются в цилиндры таким образом, чтобы ослабленная разрезом сторона испытывала воздействие меньшей нормальной силы.

На некоторых двигателях (ЗИЛ, ЯМЗ, ВАЗ) поршни изготавливаются овально-бочкообразного профиля. Данный профиль сложнее в производстве, но он позволяет уменьшить зазор между цилиндром и юбкой, а также исключить кромочный контакт цилиндра и поршня и соответствует лучшему смазыванию поверхностей в процессе центровки поршня подъёмными гидродинамическими силами.

В двигателях СМД-60 и ЗМЗ-53 [рис. 1, в)] удаляется часть юбки под бобышками для облегчения поршня, а также для прохода противовесов коленчатого вала (при нижнем положении поршня).

В качестве материала для изготовления поршней широкое распространение получили сплавы алюминия с кремнием (легируемые присадки медь и никель). Применение для отливки поршня алюминиевого сплава позволяет уменьшить потери на трение, снизить массогабаритные характеристики двигателя, даёт возможность форсировать его по скоростному режиму. Основным недостатком алюминиевого сплава в качестве материала для изготовления поршня является относительно большой коэффициент линейного расширения, величина которого больше чем у чугуна. Вследствие этого поршни из данных сплавов устанавливаются в цилиндры со значительно большим сравнительным зазором. Из-за увеличенных зазоров не только затрудняется пуск двигателя, но и вызываются стуки в процессе работы непрогретого двигателя (и при работе с малыми нагрузками).

Зазор между юбкой поршня и цилиндром находится в пределах 0,05-0,10 мм при овальном профиле юбки либо наличии у неё разреза, и 0,18-0,26 мм, если юбка поршня имеет цилиндрическую форму (без разреза).

В современных автомобильных и тракторных двигателях внутреннего сгорания используются не только литые, но и штампованные поршни, выполненные из алюминиевого сплава. Использование литых поршней с нирезистовой вставкой под первое компрессионное кольцо позволяет повысить (более чем в 2 раза) износостойкость сопряжения поршня с верхним компрессионным кольцом. Данные поршни применяются в двигателях СМЗ, КамАЗ, ЯМЗ, ЗИЛ и прочих. С целью улучшения приработки с цилиндром трущиеся поверхности поршней в некоторых двигателях (ЗМЗ-53, ЗИЛ-130 и прочих) покрываются тонким слоем (0,004-0,006 мм) олова.

С целью предупреждения возникновения стуков в некоторых двигателях выполняется незначительное смещение оси поршневого пальца относительно оси поршня. Данное смещение оси пальца, как правило, в сторону более нагруженной поверхности поршня приводит к тому, что момент перекладки поршня (от одной стенки цилиндра к другой) не совпадает с моментом резкого возрастания момента сгорания. К примеру, в дизельном двигателе Д-60 смещение оси поршневого пальца относительно оси поршня выполнено на 3 мм в сторону вращения коленчатого вала.

Эффективным способом решения проблемы сохранения подвижности поршня при минимальном зазоре является использование терморегулируемых поршней с принудительным охлаждением.

Терморегулируемые поршни карбюраторных двигателей ВАЗ и прочих имеют ограниченное расширение юбки, которое достигается путём заливки в её тело вставок из материала, имеющего меньший, чем у основного металла поршня, коэффициент расширения. В процессе остывания отливки данного поршня вставками создаётся напряжённое состояние, которое препятствует значительному сокращению диаметра юбки. В процессе нагрева поршня до рабочей температуры вставками наоборот, создаётся ограничение его теплового расширения. В итоге общий диапазон температурного изменения диаметральных размеров поршня, снабжённого вставками, значительно снижается.

В высокофорсированных дизельных двигателях используется принудительное охлаждение поршней посредством опрыскивания маслом внутренней поверхности днища поршня либо организованной циркуляцией масла. Кольцевая полость для циркуляции охлаждающего масла выполняется при отливке поршня посредством введения специальных солевых стержней (растворяются после застывания металла и формируют требуемую полость) либо с помощью соответствующей механической обработки и изготовлением поршня из двух частей (с последующей сваркой половинок).

Чтобы снизить теплонапряжённость алюминиевых поршней применяется нанесение теплоизоляционных керамических покрытий, а также твёрдое анодирование поверхности камеры сгорания в поршне и поверхности днища поршня. Для эффективной защиты камеры сгорания в поршне от формирования термических трещин выполняется армирование её кромки жаропрочным материалом.

17*

Поршень двигателя

В кривошипно-шатунном механизме поршень выполняет несколько функций, среди которых восприятие давления газов и передача усилий на шатун, герметизация камеры сгорания и отвод от нее тепла. Поршень является наиболее характерной деталью двигателя внутреннего сгорания, т. к. именно с его помощью реализуется термодинамический процесс двигателя.

Условия, в которых работает поршень, экстремальны и характеризуются высоким давлением, температурой и инерционными нагрузками. Поэтому поршни на современных двигателях изготавливаются из легкого, прочного и термостойкого материала – алюминиевого сплава, реже из стали. Поршни изготавливаются двумя способами – литьем под давлением или штамповкой, т.н. кованые поршни.

Схема поршня двигателя

Поршень цельный конструктивный элемент, который условно разделяют на головку (в некоторых источниках ее называют днище) и юбку. Форма и конструкция поршня в значительной степени определяются типом двигателя, формой камеры сгорания и процессом сгорания, протекающим в ней. Поршень бензинового двигателя имеет плоскую или близкую к плоской поверхность головки. В ней могут быть выполнены канавки для полного открытия клапанов. Поршни двигателей с непосредственным впрыском топлива имеют более сложную форму.

В головке поршня дизельного двигателя выполняется камера сгорания определенной формы, которая обеспечивает хорошее завихрение и улучшает смесеобразование.

Ниже головки поршня выполняются канавки для установки поршневых колец. Юбка поршня имеет конусообразную или криволинейную (бочкообразную) форму. Такая форма юбки компенсирует температурное расширение поршня при нагреве. При достижении рабочей температуры двигателя поршень принимает цилиндрическую форму. Для снижения потерь на трение на боковую поверхность поршня наносится слой антифрикционного материала (

дисульфид молибдена, графит). В юбке поршня выполнены отверстия с приливами (бобышки) для крепления поршневого пальца.

Охлаждение поршня осуществляется со стороны внутренней поверхности различными способами:

  1. масляный туман в цилиндре;
  2. разбрызгивание масла через отверстие в шатуне;
  3. разбрызгивание масла специальной форсункой;
  4. впрыскивание масла в специальный кольцевой канал в зоне колец;
  5. циркуляция масла по трубчатому змеевику в головке поршня.

Поршневые кольца образуют плотное соединение поршня со стенками цилиндра. Они изготавливаются из модифицированного чугуна. Поршневые кольца основной источник трения в двигателе внутреннего сгорания. Потери на трение в кольцах достигают до 25% всех механических потерь в двигателе.

Число и расположение колец зависит от типа и назначения двигателя. Самая распространенная схема – два компрессионных и одно маслосъемное кольцо. Компрессионные кольца препятствуют прорыву газов из камеры сгорания в картер двигателя. Первое компрессионное кольцо работает в наиболее тяжелых условиях. Поэтому на поршнях дизельных и ряда форсированных бензиновых двигателей в канавке кольца устанавливается стальная вставка, повышающая прочность и позволяющая реализовать максимальную степень сжатия. Компрессионные кольца могут иметь трапециевидную, бочкообразную, коническую форму, некоторые выполняются с порезом (вырезом).

Маслосъемное кольцо удаляет излишки масла с поверхности цилиндра и препятствует попаданию масла в камеру сгорания.

Кольцо имеет множество дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

Соединение поршня с шатуном осуществляется с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Имеется несколько способ установки поршневого пальца. Самый популярный т.н. плавающий палец, который имеет возможность проворачиваться в бобышках и поршневой головке шатуна во время работы. Для предотвращения смещения пальца он фиксируется стопорными кольцами. Значительно реже применяется жесткое закрепление концов пальца в поршне или жесткое закрепление пальца в поршневой головке шатуна.

Поршень, поршневые кольца и поршневой палец носят устоявшееся название поршневая группа.

 

 

Как работает поршень · Технипедия · Motorservice

Настройки

Вернуться к поиску

Информация об использовании

Как работает поршень? Из каких компонентов он состоит? Как охлаждается поршень? Что делают поршневые кольца? Что такое цикл поршневого сгорания? В этом видео вы найдете ответы.

Поршень

В качестве компонента двигателей внутреннего сгорания поршень преобразует энергию, выделяемую при сгорании, в механическое действие и передает ее на коленчатый вал в виде крутящего усилия через поршневой палец и шатун.

Как это работает

Когда двигатель работает, поршень движется вверх и вниз в цилиндре. Когда поршень достигает точки поворота, он замедляется, а затем снова резко ускоряется. Это создает силы инерции, действующие на поршень. При рассмотрении вместе с силами, создаваемыми давлением газа, это образует поршневое усилие, которое передается на шатун и коленчатый вал. Шатуны идеально вертикальны только в верхней и нижней точках поворота. Угол шатуна прижимает поршень к боковой стенке цилиндра. Величина и направление этой силы постоянно меняются в течение цикла сгорания, так как зависят от силы поршня и угла между днищем поршня и осью шатуна. Поршни снабжены поршневыми кольцами. Они герметизируют камеру сгорания и рабочую камеру по отношению к картеру.

Они также удаляют масло со стенок цилиндров, тем самым контролируя расход масла. Поршневые кольца также отводят тепло, поглощаемое поршнем во время сгорания, на охлаждаемую рабочую поверхность гильзы цилиндра.
 

Ключевые слова :
поршень
Группа товаров :
Поршни и компоненты

видео

Как работают поршни (3D анимация)

Группы продуктов на ms-motorservice.com


Это также может вас заинтересовать

Информация по применению

Установка поршней

На что нужно обратить внимание при установке поршней? При установке поршней нужно следить за многими вещами — от обеспечения безупречной сборки поршней и шатунов до.

..

Только для технического персонала. Все содержимое, включая изображения и диаграммы, может быть изменено. Для назначения и замены обратитесь к текущим каталогам или системам, основанным на TecAlliance.

Использование файлов cookie и защита данных

Motorservice Group использует файлы cookie, сохраненные на вашем устройстве, для оптимизации и постоянного улучшения своих веб-сайтов, а также для статистических целей. Дополнительную информацию об использовании нами файлов cookie можно найти здесь, а также информацию о нашей публикации и уведомление о защите данных.

Нажав «ОК», вы подтверждаете, что приняли к сведению информацию о файлах cookie, заявлении о защите данных и деталях публикации. Вы также можете в любое время изменить настройки файлов cookie для этого веб-сайта.

Настройки конфиденциальности

Мы придаем большое значение прозрачной информации, касающейся всех аспектов защиты данных. Наш веб-сайт содержит подробную информацию о настройках, которые вы можете выбрать, и о том, какое влияние оказывают эти настройки.

Вы можете изменить выбранные настройки в любое время. Независимо от того, какой выбор вы выберете, мы не будем делать никаких выводов о вас как о личности (за исключением случаев, когда вы явно указали свои данные). Для получения информации об удалении файлов cookie обратитесь к функции справки в вашем браузере. Вы можете узнать больше в заявлении о защите данных.

Измените настройки конфиденциальности, нажав на соответствующие кнопки

  • Необходимый
  • Удобство
  • Статистика
Необходимый

Файлы cookie, необходимые для системы, обеспечивают правильную работу веб-сайта. Без этих файлов cookie могут возникнуть сбои или сообщения об ошибках.

Этот веб-сайт будет:
  • Сохранить файлы cookie, необходимые системе
  • Сохранить настройки, которые вы делаете на этом веб-сайте

Этот сайт никогда не будет делать следующее без вашего согласия:
  • Сохраните ваши настройки, такие как выбор языка или баннер cookie, чтобы вам не пришлось повторять их в будущем.
  • Анонимно оценивайте посещения и делайте выводы, которые помогут нам оптимизировать наш веб-сайт.
  • Сделать выводы о вас как о личности (за исключением случаев, когда вы явно указали свои данные, например, в контактных формах)
Удобство

Эти файлы cookie упрощают использование веб-сайта и сохраняют настройки, например, чтобы вам не приходилось повторять их каждый раз, когда вы посещаете сайт.

Этот веб-сайт будет:
  • Сохранение файлов cookie, необходимых системе
  • Сохранение ваших настроек, таких как выбор языка или баннер файлов cookie, чтобы вам не пришлось повторять их в будущем.

Этот сайт никогда не будет делать следующее без вашего согласия:
  • Оценивайте посещения анонимно и делайте выводы, которые помогут нам оптимизировать наш веб-сайт.
  • Сделать выводы о вас как о личности (за исключением случаев, когда вы явно указали свои данные, например, в контактных формах)

Конечно, мы всегда будем соблюдать настройку «не отслеживать» (DNT) в вашем браузере. В этом случае файлы cookie для отслеживания не устанавливаются и функции отслеживания не загружаются.

Конструкция поршневых колец для снижения трения в современных двигателях внутреннего сгорания

Автор(ы)
Smedley, Grant, 1978-

Скачать полную версию для печати (13,42 Мб)

Другие участники

Массачусетский технологический институт. Кафедра машиностроения.

Советник

Тиан Тиан и Виктор В. Вонг.

Условия использования

M.I.T. диссертации защищены авторским правом. Их можно просматривать из этого источника для любых целей, но воспроизведение или распространение в любом формате запрещено без письменного разрешения. См. предоставленный URL-адрес для запросов о разрешении. http://dspace.mit.edu/handle/1721.1/7582

Метаданные
Показать полную запись позиции

Abstract

Потери на трение поршневых колец составляют примерно 20% от общих механических потерь в современных двигателях внутреннего сгорания. Таким образом, снижение трения поршневых колец приведет к повышению эффективности, снижению расхода топлива и уменьшению выбросов. Цель этого исследования заключалась в разработке конструкции поршневых колец с низким коэффициентом трения для повышения эффективности двигателя без неблагоприятного влияния на расход масла, прорыв газов, износ или стоимость. Это желательные цели для современных производителей двигателей, поскольку они стремятся улучшить характеристики двигателя, пытаясь соответствовать все более строгим нормам по выбросам. Используя существующую модель трения и смазки поршневых колец, основные факторы, влияющие на трение в современных двигателях внутреннего сгорания, были определены как верхнее кольцо вокруг верхней мертвой точки тактов сжатия/расширения и маслосъемное кольцо на протяжении всего цикла двигателя. Прогнозы модели показали, что трение верхнего кольца можно уменьшить за счет реализации конструкции с перекошенным профилем цилиндра или конструкции с наклоном канавки поршня вверх, а трение маслосъемного кольца можно уменьшить за счет уменьшения натяжения кольца. Было предсказано, что увеличение износа канавки произойдет при конструкции с наклоном канавки поршня вверх, что можно было бы устранить путем введения положительного статического кручения на верхнем кольце. Прогнозировалось, что увеличение расхода масла произойдет из-за конструкции маслосъемного кольца с низким напряжением, которое можно было бы уменьшить либо путем введения отрицательного статического кручения на втором кольце, либо за счет реализации конструкции верхнего кольца с перекосом ствола. Прогнозы модели показали, что путем комбинирования конструкций с низким коэффициентом трения можно добиться снижения трения пакета поршневых колец на 30–35 % без увеличения прорыва газов, износа или расхода масла.

 

(продолжение) Экспериментальные результаты, проведенные на полномасштабном двигателе, работающем на природном газе, подтвердили прогнозы модели для конструкции маслосъемного кольца низкого напряжения. Прогнозируемое снижение трения поршневых колец приведет к увеличению теплового КПД тормозов на 0,5-1%, что приведет к значительному улучшению топливной экономичности и существенному сокращению выбросов в течение срока службы двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *