причины, как устранить, последствия, видео
Неконтролируемое воспламенение топливно-воздушной смеси способно привести к разрушению деталей цилиндропоршневой группы. В статье рассмотрим, что такое детонация двигателя, причины, которые ее провоцируют, и последствия.
Горение топливно-воздушной смеси
Невозможно понять, почему происходит детонация, без представления о нормальном воспламенении топливно-воздушной смеси (далее ТПВС):
- за несколько градусов до ВМТ свеча подает искру, воспламеняя ТПВС;
- фронт пламени начинает расходиться от электрода, где был первоначальный очаг, к стенкам камеры сгорания;
- если угол опережения зажигания (далее УОЗ) был подобран верно, то примерно к 10º после ВМТ в камере сгорания образуется максимальное давление горения. В этот момент поршень занимает позицию, при которой воздействие энергии на плечо сформирует максимальную вращательную силу кривошипа.
Несмотря на то что поджигание смеси происходит до ВМТ, следовательно, на поршень действует замедляющая его энергия, положительная сторона гораздо более значительна. Ведь самый важный момент – приложить усилие к поршню в момент, когда рычаг позволит получить максимальный крутящий момент. Именно плавное возгорание смеси позволяет достигнуть такого эффекта.
Определение
Детонация двигателя – самопроизвольное воспламенение ТПВС, характеризующееся высокой скоростью распространения фронта пламени. Как вы можете теперь увидеть, «детон» имеет противоположную нормальному горению природу.
Основная характеристика детонационного воспламенения – скорость распространения волны (в этом случае очень удачно сравнение со взрывной волной). После подачи искры средняя скорость розростания горения 20-30 м/с. Скорость взрывной волны в момент, когда топливо детонирует, достигает 2000 тыс. м/с.
Разумеется, ничем хорошим для двигателя это не кончиться. Ударная волна «сносит» очаг воспламенения, спровоцированный свечей зажигания, ударяясь о стенки камеры сгорания. Взрывная волна создает резонирующее воздействие, которое проявляет себя звонким звуком во время работы двигателя. Именно по этому звуку можно понять, что в одном либо сразу нескольких цилиндрах происходит детонирование.
Природа возникновения
С тем, что такое детонация двигателя, мы разобрались. Но что служит предпосылкой для ее возникновения?
Детонирует в камере сгорание не только топливо, но и масло, которые при неполном сгорании топливно-воздушной смеси остаются в камере сгорания. Вернемся к процессу горения. Во время начала воспламенения топливно-воздушной смеси от искры, пропорционально распространению фронта пламени, происходит повышение давления в камере сгорания. Также неминуемо повышается температура. В этот момент на периферии, то есть в полости камеры сгорания, куда еще не дошла волна горения смеси, начинаются предпламенные реакции. Иными словами, молекулы бензина начинают распадаться под действием температуры и давления. Распавшиеся частицы топлива очень легко поджечь. Поэтому, если в каком-то месте камеры сгорания температура слишком высока, это провоцирует самопроизвольное воспламенение частиц топлива.
Причины
Факторы, провоцирующие появление детонации:
- несоответствие октанового числа топлива;
- несоответствие степени сжатия. Если вследствие проведения ремонтных работ, была увеличена степень сжатия, то заправка прежней маркой бензина может привести к детонации. Допустить такую оплошность очень легко, если шлифовать ГБЦ либо сам блок, а затем установить прежнюю по толщине прокладку ГБЦ. Если вы не хотите «умертвить» мотор, к вопросу степени сжатия стоит подходить очень серьезно. Учтите, что детонация двигателя может проявляться в жаркую погоду либо в определенном диапазоне оборотов;
- УОЗ. Слишком ранний угол может привести к «паразитному» давлению в некоторых местах камеры сгорания, что приведет к самопроизвольным взрывам;
- неправильное соотношение топлива и воздуха. Детонация мотора может возникнуть как в случае обедненной смеси, так и при переобогащении;
- нагар в камере сгорания.
Образование отложений способствует закреплению частиц, которые после такта выпуска не покидают камеру сгорания. Сохраняя высокую температуру, они способствуют появлению в цилиндре детонации. Большое количество нагара приводит к заполнению полезного объема камеры сгорания, что может привести к появлению детонации.
Методы борьбы
Учитывая приведенные выше причины детонации, вам нужно следить за состоянием систем питания и зажигания. А также помнить о правилах выбора бензина.
Последствия
К основным поломкам можно отнести:
- прогорание либо частичное оплавление поршня, вследствие аномально большой температуры. Также может произойти поломка перегородок между кольцами. Устранить неисправность поможет дорогостоящая капиталка;
- ускоренный износ ЦПГ.
Детонация разрушает масляную пленку на стенках цилиндра, что приводит к сухому трению поршней;
- прогорание выпускных клапанов;
- перегрев двигателя;
- повышение температуры турбины, что может привести к ее поломке;
- высокая температура стенок цилиндра и поршня требует от колец проводить через себя большее количество тепла. Слишком высокая температура пагубно влияет на эластичность колец;
- оплавление электрода. Ситуация редкая и случается лишь в крайне запущенном состоянии.
Любителям экономить
Если вы заправляете современный автомобиль 92 бензином, в надежде сэкономить, то вас приятно удивит информация о системе зажигания инжекторного двигателя. Регистрируя возникновение детонации, ЭБУ «отодвигает» УОЗ. Такие меры помогают устранить детонацию, но приводят к потере динамических характеристик автомобиля. Соответственно, повышается расход, что сводит на нет все попытки экономии.
Тюнерам
Также будьте аккуратны с расчетами при форсировании мотора. В особенности детонации подвержены неправильно построенные турбированные моторы. Но не обходит стороной эта проблема и атмосферные ДВС. На отечественных просторах есть любители устанавливать 16-клапанные ГБЦ в моторы с поршневой от 8-клапанных двигателей. Многие даже не подозревают, что 16-клапанные Вазовские моторы имеют масляное охлаждение поршней. Поэтому установка одной лишь ГБЦ чревата увеличением температуры в цилиндре.
Езда внатяг
Движение внатяг – езда под нагрузкой на повышенной передаче. Случается такое, когда водитель резко добавляет газ, будучи на повышенной передаче, когда обороты двигателя не превышают 2500 тыс. Спровоцировать такую ситуацию может затяжной подъем, при котором водитель не сбрасывает скорость, а сильнее нажимает на педаль.
youtube.com/embed/fgK3pIU0fIw» frameborder=»0″ allowfullscreen=»allowfullscreen»>Езда внатяг, особенно на турбированном ДВС с малым объемом, создает благоприятные условия для возникновения детонации. Именно поэтому от такого способа вождения лучше отказаться.
Датчик детонации
Почему детонирует двигатель при глушении автомобиля
Исправное состояние мотора характеризуется ровной работой без лишних резких шумов. Любое отклонение от «нормы» не приветствуется – различные стуки и посторонние лязги указывают на критический режим работы деталей. Игнорировать такую симптоматику не рекомендуется – силовая установка может выйти из строя в самый неподходящий момент. Безответственность оценивается не мелкими расходами на диагностику, а крупными затратами на капитальный ремонт.
Содержание
- 1 Что такое детонация и как ее определить
- 1.1 Определение и суть
- 1.2 Последствия
- 1.3 Признаки неисправности
- 1.4 Основные причины и как их устранить
- 2 А может ли при глушении двигатель автомашины детонировать: разбираемся в аспектах
- 2.
1 Дизелинг
- 2.2 Вред или польза
- 2.3 А не калильное ли это зажигание?
- 2.
- 3 Коротко о главном
Что такое детонация и как ее определить
Любой автолюбитель может столкнуться с тем, что детонирует двигатель при глушении автомобиля. Но не каждый расценит необычный звук с правильной стороны. Ликвидировав пробелы в вопросе неустойчивых режимов работы мотора, наступит ясность в понятии, допустимо ли это явление или нет.
Определение и суть
Детонация – это процесс горения топливно-воздушной смеси с критически высокой скоростью, приводящий к резкому повышению давления и температуры. Возникает явление на этапе резкого повышения давления в цилиндре и догорания смеси в пристеночных слоях во время такта сжатия.
Мгновенное сгорание подготовленных продуктов вызывает распространение в камере сгорания ударных волн со скоростью до 1 200 м/с. При кондиционном горении также возникают волны ударного характера, однако интенсивность их распространения не превышает 50 м/с.
При столкновении ударной волны с преградами в виде стенок цилиндров и поршней издается характерный детонационный стук. Мнение о том, что это стучат поршневые пальцы, не имеет под собой никакого основания.
Последствия
Чем опасна детонация – логически предположить можно исходя из определения явления. Вполне ясно, что действие ударных волн далеко не лучшим образом сказывается на работоспособности мотора:
- Повышение отдачи тепловой энергии в днище поршня и стенки камеры сгорания и попутный их перегрев.
- Разрушение межцилиндровых перегородок и поршней.
- Ликвидация масляного слоя на стенках цилиндра.
Признаки неисправности
Прежде чем разобраться, из-за чего происходит детонация, необходимо ее выявить. Проявляется нежелательное явление исключительно на работающем моторе. Отсюда следствие – при глушении или после выключения зажигания двигатель детонировать не может. Да и на холостых оборотах встретить ее довольно трудно, разве что при запуске на газу.
А вот под нагрузкой услышать металлические стуки можно. Особенно при разгоне в гору на повышенной передаче и малых оборотах. Ударная волна также противодействует ходу поршня вверх, что выражается в потере мощности и повышенном расходе топлива.
Зеленоватый или черный дым из выхлопной указывает на то, что дело худо. Неприятное явление имело место быть и уже закончилось. Несвоевременная фиксация факта привела к тому, что отколовшиеся части алюминиевых деталей вылетают через выпуск.
Основные причины и как их устранить
Стоит проанализировать и недавние изменения, повлекшие за собой возникновение сильных или легких стуков:
- Посещалась заправка и был залит некачественный или низкооктановый бензин. Руководствуйтесь рейтингом АЗС при выборе автозаправочной сети. В крайнем случае поможет присадка для повышения октанового числа.
- Система зажигания карбюраторного двигателя подвергалась регулировке. Детонация любит ранее зажигание, поэтому необходимо соблюдать баланс в регулировке угла опережения.
- «Инжектор» перепрошивался с целью повышения экономичности. Бедная смесь создает благоприятные условия для нестабильной работы.
Детонационный стук может проявляться на холодную или на горячую только при низкой частоте вращения коленчатого вала. На высоких же оборотах он возникает при резком изменении нагрузки или при движении на максимальной скорости.
К сведению. Нагруженные турбодвигатели более подвержены возникновению неустойчивых режимов, нежели атмосферные.
А может ли при глушении двигатель автомашины детонировать: разбираемся в аспектах
Причислять неравномерную работу двигателя или любой другой стук к проявлению детонации ошибочно. Чтобы не ошибаться, лучшим вариантом будет узнать, как звучит детонационный режим на практике. Например, посмотреть тематические видеофайлы.
Дизелинг
Как уже отмечалось, нежелательное явление может появиться исключительно на функционирующем моторе. Как же тогда квалифицировать работу силовой установки при выключенном зажигании? Ответ механиков краток – дизелинг. Природа его иная: самовоспламенение бензина, идентичное рабочему процессу дизельного двигателя.
Наверставшие базу знаний по бензиновому ДВС новички сразу же возразят, приведя пару аргументов «против»: высокооктановое топливо обладает плохой способностью к самостоятельному воспламенению, да и степень сжатия в бензомоторе меньше. Все это верно, но при остановке агрегата создаются благоприятные условия для дизелинга.
Исправный двигатель может якобы детонировать при глушении при двух условиях:
- Подача топлива в цилиндры.
- Низкие обороты коленвала.
На деле процесс выглядит таким образом. Заглушили силовую установку, частота вращения коленчатого вала падает, топливо подается. Время, отведенное на воспламенение смеси, увеличивается.
При таких условиях искры от свечи для поджигания топлива не нужно – достаточно постепенного увеличения давления и температуры. Отработав рабочий такт, обороты коленвала увеличиваются, самовоспламенение не происходит. Далее частота снова падает и дизелинг возникает вновь. И так несколько циклов «дерганья».
Вред или польза
В отличие от стука при качании рулем, ничего опасного в том, что двигатель неустойчиво работает после обесточивания, нет. Наоборот, наличие данного эффекта косвенно подтверждает хорошую герметичность камеры сгорания, что свидетельствует об общей исправности ДВС. Данное явление может происходить только на карбюраторных моторах, потому как на инжекторных силовых установках подача топлива прекращается с выключением зажигания.
Отсюда вывод – отсутствие подергивания после остановки агрегата вовсе не является признаком плохого состояния. К слову, правильно настроенный и ухоженный карбюратор защищает двигатель от появления дизелинга. Реализовано это с помощью электромагнитного клапана системы ЭПХХ, который в исправном состоянии перекрывает подачу горючки в цилиндры при выключении ДВС.
А не калильное ли это зажигание?
Бывалые шоферы часто заменяют понятие дизелинг на калильное зажигание (КЗ), что в корне считается неверным. Элементарные различия раскрывает определение КЗ – это воспламенение топливно-воздушной смеси от нагретого источника, которым может быть:
- Перегретая поверхность свечи.
- Выпускной клапан.
- Нагар.
Как уже определились, двигатель проявляет признаки детонации при глушении от самовоспламенения ТВС при ее сжатии (свечка обесточена). Калильное зажигание подразумевает наличие отклонений именно при работающей свече зажигания: нагретые поверхности или слой нагара воспламеняют смесь раньше, чем необходимо.
Последствия КЗ опасны. Оно может вызвать:
- Оплавление свечей.
- Перегрев поршней.
- Оплавление клапанов.
Примечательно, что «калильные» моторы работают устойчиво во всем диапазоне рабочих оборотов. Устойчивость объясняется тем, что у нагретого источника температура продолжает возрастать и поддерживаться.
Коротко о главном
После остановки двигателя детонации быть не может – это неустойчивое «дерганье» именуется дизелингом. Ничего опасного в себе это явление не несет. Причина его появления – поступление топлива в цилиндры при выключенном зажигании. Встречается, как правило, на карбюраторных двигателях с неисправным ЭМК.
Детонация возникает исключительно на работающем двигателе и сопровождается характерным металлическим звоном. Проявляется при движении на малых оборотах под нагрузкой, при трогании, после заправки низкооктановым бензином и вследствие неправильной установки угла опережения зажигания на карбюраторном моторе. На инжекторной силовой установке за последнее отвечает датчик детонации двигателя и ЭБУ.
Детонация и предварительное зажигание
Детонация (также называемая «искровым стуком») является неустойчивой формой
сгорания, что может привести к выходу из строя прокладки головки блока цилиндров, а также к другим повреждениям двигателя.
Детонация возникает при избыточном нагреве и давлении в камере сгорания
привести к самовоспламенению топливно-воздушной смеси. Это создает несколько фронтов пламени.
внутри камеры сгорания вместо одного ядра пламени. Когда эти
несколько языков пламени сталкиваются, они делают это с взрывной силой, которая вызывает внезапный
повышение давления в цилиндре, сопровождающееся резким металлическим лязгом или стуком
шум. Молоткообразные ударные волны, создаваемые детонацией, поражают голову.
прокладку, поршень, кольца, свечу зажигания и шатунные вкладыши к сильным перегрузкам.
Слабая или случайная детонация может возникать практически в любом двигателе и
обычно не причиняет вреда. Но продолжительная или сильная детонация может быть очень разрушительной.
Поэтому, если вы слышите стук или звон при ускорении или тяге двигателя,
скорее всего у вас проблема с детонацией.
1. Попробуйте топливо с более высоким октановым числом. Октановое число данного сорта
бензин является мерой его детонационной стойкости. Чем выше октановое число
число, тем лучше топливо сопротивляется детонации. Большинство двигателей в хорошем состоянии
Состояние будет работать нормально на обычном бензине с октановым числом 87. Но двигатели с высоким
степени сжатия (более 9:1), турбокомпрессоры, нагнетатели или с накопленным
Нагар в камере сгорания может потребовать топлива с октановым числом 89 или выше.
То, как используется автомобиль, также может влиять на требования к октановому числу. Если транспортное средство
используется для буксировки или другого применения, когда двигатель вынужден работать
под нагрузкой может потребоваться топливо с более высоким октановым числом для предотвращения детонации.
Если переход на топливо с более высоким октановым числом не устраняет
постоянная проблема с детонацией, скорее всего, что-то еще не так.
Все, что увеличивает нормальную температуру сгорания или давление, обедняется.
воздушно-топливной смеси или заставляет двигатель работать горячее, чем обычно, может вызвать
детонация.
2. Проверьте отсутствие EGR. Система рециркуляции отработавших газов (EGR)
система является одним из основных средств контроля выбросов двигателя. Его цель состоит в том, чтобы
уменьшить выбросы оксидов азота (NOX) в выхлопные газы. Он делает это, «протекая»
(рециркуляция) небольшое количество выхлопных газов во впускной коллектор через
клапан ЕГР. Хотя газы горячие, они на самом деле оказывают охлаждающее действие на
температуры сгорания путем небольшого разбавления воздушно-топливной смеси. Снижение
температура сгорания снижает образование NOX, а также октановое число
требования двигателя.
Информацию о конфигурации и прокладке шлангов см. в руководстве по обслуживанию. системы рециркуляции отработавших газов вашего двигателя, а также рекомендуемую процедуру проверки работу системы ЕГР.
3. Соблюдайте компрессию в разумных пределах. Статическое сжатие
соотношение 9:1 обычно является рекомендуемым пределом для большинства безнаддувных
уличных двигателей (хотя некоторые новые двигатели с датчиками детонации могут выдерживать более высокие нагрузки).
степени сжатия).
Степень сжатия выше 10,5:1 может привести к
проблема с детонацией даже на бензине премиум-класса с октановым числом 93. Так что если двигатель
будучи построенным для работы на гоночном топливе, держите степень сжатия в пределах
разумный диапазон для насоса бензина. Это, в свою очередь, может потребовать использования более низких
поршни сжатия и/или головки цилиндров с большими камерами сгорания.
Другим вариантом было бы использовать медную прокладку головки блока цилиндров со стандартной головкой.
Замедление фазы газораспределения также может снизить давление в цилиндрах до
уменьшить детонацию на низких оборотах, но это вредит крутящему моменту на низких оборотах, который
не рекомендуется для уличных двигателей или автомобилей с автоматикой.
Для двигателей с наддувом или турбонаддувом статическое сжатие
соотношение 8:1 или меньше может потребоваться в зависимости от величины давления наддува.
Еще один момент, о котором следует помнить, это расточка цилиндров двигателя.
использование поршней увеличенного размера также увеличивает статическую степень сжатия. Так же
занимается фрезерованием головок цилиндров. Если такие модификации необходимы для
компенсировать износ цилиндра, деформацию или повреждение головки, вам, возможно, придется использовать
более толстая прокладка головки блока цилиндров, если она доступна для применения, или прокладка головки блока цилиндров
прокладка (мертвая мягкая медная прокладка), чтобы компенсировать увеличение сжатия.
4. Проверьте опережение зажигания. Слишком большое опережение искры
может вызвать слишком быстрое повышение давления в цилиндрах. Если сбросить время на
стоковые характеристики не помогают, задерживая время на пару градусов
и/или может потребоваться повторная калибровка кривой опережения распределителя, чтобы сохранить
детонация под контролем.
5. Проверьте исправность датчика детонации. Многие двигатели последних моделей
иметь «датчик детонации» на двигателе, реагирующий на частоту
вибрации, характерные для детонации (обычно 6-8 кГц).
Датчик детонации выдает сигнал напряжения, который сигнализирует компьютеру о том, что на мгновение
замедление опережения зажигания до прекращения детонации.
Датчик детонации обычно можно проверить, постукивая гаечным ключом по
коллектор рядом с датчиком (никогда не ударяйте по самому датчику!) и следите за
изменение времени во время работы двигателя на холостом ходу. Если время не замедлится,
датчик может быть неисправен — или проблема может быть в электронной искре
схема управления синхронизацией самого компьютера. Чтобы определить причину, вы
необходимо обратиться к соответствующей диагностической таблице в руководстве по обслуживанию и следовать
пошаговые процедуры проверки для выявления причины.
Иногда стук
Датчик будет реагировать на звуки, отличные от звуков детонации. шумный
механический топливный насос, плохой водяной насос или подшипник генератора, или ослабленный шток
все подшипники могут производить вибрации, которые могут заставить датчик детонации замедлить
сроки.
6. «Прочитайте» ваши свечи зажигания. Возьми их
заменен, если
необходимый. Неправильный штекер нагревательного диапазона
может вызвать детонацию, а также преждевременное зажигание. Если изоляторы вокруг
электроды на свечах кажутся желтоватыми или покрытыми волдырями, они могут быть слишком горячими для
приложение. Попробуйте следующий температурный диапазон холоднее
свеча зажигания. Искра с медным сердечником
свечи обычно имеют более широкий температурный диапазон, чем обычные
пробки, что снижает
опасность детонации.
7. Проверьте двигатель на предмет перегрева. Горячий двигатель скорее всего
страдать от детонации искры, чем тот, который работает при нормальной температуре. Перегрев может
быть вызвано низким уровнем охлаждающей жидкости, проскальзыванием муфты вентилятора, слишком маленьким вентилятором, слишком
горячий термостат, неисправный водяной насос или даже отсутствующий кожух вентилятора. Плохая жара
проводимость в напорной и водяной рубашках может быть вызвана отложением извести
отложения или паровые карманы (которые могут возникать из-за захваченных воздушных карманов).
8. Проверить работу системы подогрева впускного воздуха. Работа воздухоочистителя с термостатическим управлением заключается в обеспечении карбюраторного двигателя
горячим воздухом при холодном пуске двигателя. Это способствует испарению топлива.
во время прогрева двигателя. Если дверца управления подачей воздуха заедает или медленно открывается
чтобы карбюратор продолжал получать нагретый воздух после прогрева двигателя,
добавленного тепла может быть достаточно, чтобы вызвать проблему детонации, особенно во время
жаркая погода. Проверьте работу дверцы управления потоком воздуха в воздухе.
чище, чтобы увидеть, что он открывается, когда двигатель прогревается. Отсутствие движения может означать
вакуумный двигатель или термостат неисправен. Также проверьте клапан нагревателя, чтобы
убедитесь, что он открывается правильно, так как это тоже может повлиять на систему впуска воздуха.
9. Проверьте обедненную топливную смесь. Богатые топливные смеси сопротивляются
детонации а тощих нет. Утечки воздуха в вакуумных магистралях, впускном коллекторе
прокладки, прокладки карбюратора или впускной патрубок после топливного бака.
Если топливная смесь становится слишком бедной, могут возникнуть «обедненные пропуски зажигания».
возникают при увеличении нагрузки на двигатель. Это может вызвать колебания, спотыкаться
и/или проблемы с грубым холостым ходом.
Также может быть затронуто соотношение воздух/топливо.
по изменению высоты. По мере подъема на высоту воздух становится менее плотным.
Карбюратор, откалиброванный для вождения в условиях высокогорья, будет работать на обедненной смеси, если
едет на более низкой высоте. Изменения высоты, как правило, не являются проблемой для
двигатели с карбюраторами с электронной обратной связью или электронным впрыском топлива
потому что датчики кислорода и барометрического давления компенсируют изменения в воздухе
плотность и соотношение топлива.
10. Удалить нагар. Накопление углеродистых отложений в
камера сгорания и верхняя часть поршней могут увеличить компрессию до
момент, когда детонация становится проблемой. Углеродистые отложения – обычное дело
причиной детонации в двигателях с большим пробегом и может быть особенно густым, если
двигатель потребляет масло из-за износа направляющих и сальников клапанов, изношенных или сломанных
износ поршневых колец и/или цилиндра. Редкая езда и не замена масла
достаточно часто также может ускорить накопление отложений.
В дополнение к
увеличивая сжатие, углеродистые отложения также обладают изолирующим эффектом, который
замедляет нормальный перенос тепла из камеры сгорания в
глава. Поэтому толстый слой отложений может повысить температуру горения и
способствуют «преждевременному воспламенению», а также детонации.
Углерод
отложения часто можно удалить с двигателя, который все еще находится в эксплуатации, с помощью
химический «очиститель». Этот тип продукта заливают в холостой ход. двигатель через карбюратор или дроссельную заслонку. Затем двигатель выключается, поэтому
растворитель может впитаться и разрыхлить отложения. Когда двигатель перезапускается
отложения выдуваются из камеры сгорания.
Если химическая очистка
не удается удалить отложения, возможно, потребуется снять головку блока цилиндров и
соскребите отложения проволочной щеткой или скребком (будьте осторожны, чтобы не поцарапать
поверхности головки блока цилиндров или моторного отсека!).
11. Проверьте давление наддува. Управление количеством наддува в
двигатель с турбонаддувом абсолютно критичен для предотвращения детонации. турбо
вестгейт сбрасывает давление наддува в ответ на подъем впускного коллектора
давление. На большинстве двигателей последних моделей соленоид с компьютерным управлением помогает
регулировать работу вестгейта. Неисправность с коллектором
датчик давления, соленоид управления вестгейтом, сам вестгейт или утечка
в вакуумных соединениях между этими компонентами может позволить турбо
дать слишком большой наддув, который разрушает прокладку головки блока цилиндров, а также двигатель в
короткий заказ, если не исправлено.
Улучшенное промежуточное охлаждение может помочь уменьшить
детонация при разгоне. Работа интеркулера заключается в понижении входящего воздуха.
температура после выхода из турбокомпрессора. Добавление интеркулера в
турбомотор без промежуточного охлаждения (или установка более крупного или более эффективного
промежуточный охладитель) может устранить проблемы детонации, а также позволяет двигателю
безопасно справиться с большим импульсом.
12. Измените свой стиль вождения. Вместо того, чтобы тянуть двигатель, попробуйте
переход на более низкую передачу и/или более плавное ускорение. Иметь ввиду,
Кроме того, двигатель и трансмиссия должны соответствовать условиям применения. Если
вы слишком сильно нагружаете двигатель, возможно, вам нужна коробка передач с
более широкое передаточное число или более высокое передаточное число главной передачи в дифференциале.
Другим состоянием, которое иногда путают с детонацией, является «преждевременное зажигание». Это происходит, когда точка внутри камеры сгорания становится настолько горячей, что
становится источником воспламенения и вызывает воспламенение топлива раньше свечи зажигания.
пожары. Это, в свою очередь, может способствовать или вызвать проблему детонации.
Вместо воспламенения топлива в нужный момент, чтобы дать
коленвал плавный пинок в нужную сторону, топливо воспламеняется преждевременно
(рано), вызывая мгновенный люфт, когда поршень пытается повернуть кривошип
неправильное направление. Это может быть очень разрушительным из-за стрессов, которые оно
создает. Он также может локализовать тепло до такой степени, что оно может частично плавиться.
или прожечь дырку в верхней части поршня!
Преждевременное зажигание также может проявляться при выключении горячего двигателя.
выключенный. Двигатель может продолжать работать, даже если зажигание было выключено.
выключен, потому что камера сгорания достаточно горячая для самовоспламенения. двигатель может продолжать работать или «дизельно» и хаотично пыхтить в течение
несколько минут.
Чтобы этого не произошло, некоторые двигатели имеют
отсечной соленоид» на карбюраторе, чтобы остановить подачу топлива в двигатель
как только зажигание выключено. Другие используют «соленоид холостого хода».
который полностью закрывает дроссельную заслонку, чтобы перекрыть подачу воздуха в двигатель. Если
любое из этих устройств неправильно отрегулировано или не работает, приработка может стать проблемой.
Двигатели с электронным впрыском топлива не имеют этой проблемы, потому что
Форсунки перестают распылять топливо при выключении зажигания.
Углеродные отложения образуют тепловой барьер и могут
фактор преждевременного зажигания. Другие причины включают в себя: Перегретая свеча зажигания (слишком
горячий тепловой диапазон для применения). Светящийся нагар на горячем выхлопе
клапана (что может означать, что клапан слишком горячий из-за плохой посадки,
слабая пружина клапана или недостаточный зазор клапана).
Острая кромка в камере сгорания или на верхней части поршня (скругление острых кромок болгаркой может устранить эту причину).
Острые кромки клапанов, которые были перешлифованы неправильно (недостаточно поля, оставленные по краям).
Бедная топливная смесь.
Низкий уровень охлаждающей жидкости, пробуксовка муфты вентилятора, неработоспособный электродвигатель охлаждающий вентилятор или другая проблема с системой охлаждения, из-за которой двигатель перегревается чем обычно.
Напишите мне по телефону [email protected]
Возвращение в дом брата Боба Страница
Вернуться на главную страницу (верхний уровень)
Copyright © 1997 by Bob Hewitt — Все права защищены
Как низкоскоростное предварительное зажигание может повредить ваш турбодвигатель с непосредственным впрыском
Божи Татаревич Производители всегда стремятся к повышению эффективности. Одной из последних тенденций является уменьшение размеров двигателей и добавление турбонаддува, поскольку мы видим, что многие шестицилиндровые двигатели заменяются четырехцилиндровыми двигателями с турбонаддувом в различных областях применения. Это явление привело к массовому внедрению автопроизводителями вспомогательных технологий, таких как непосредственный впрыск. Системы прямого впрыска работают под гораздо более высоким давлением, чем традиционные системы впрыска через порт, а турбонаддув еще больше увеличивает нагрузку на двигатель, поэтому эти двигатели должны быть разработаны с учетом требований безопасности.
Несмотря на то, что современное компьютерное программирование двигателя снижает вероятность перенапряжения двигателя и причинения ущерба, некоторые непреднамеренные явления все же могут возникать, хотя и редко. Одним из них является эффект нерегулярной детонации, называемый преждевременным зажиганием на низкой скорости (LSPI). LSPI может привести к катастрофическому повреждению двигателя при правильных условиях. Условия, которые я наблюдал воочию, когда Focus ST моего брата, на котором мы проводили техническое обслуживание, внезапно потерял мощность и начал сжигать масло.
Мы проверили машину и обнаружили, что в одном из цилиндров почти полностью пропала компрессия. Мы решили вытащить двигатель и обнаружили, что кольцо одного из поршней треснуло, что навело нас на мысль, что в двигателе произошел какой-то стук, вызвавший отказ. Объяснить, как это произошло, оказалось непросто, учитывая, что автомобиль был заправлен бензином с октановым числом 93 (как рекомендует Ford), а предыдущие журналы ЭБУ вообще не показывали детонации. Немного покопавшись, мы наткнулись на концепцию LSPI, которая, казалось, объясняла нашу неудачную ситуацию. Мало что зная о LSPI, я решил обратиться к эксперту за дополнительной информацией о том, как нам с братом так повезло.
LSPI и турбодвигатели с непосредственным впрыском топлива
LSPI чаще всего используется в двигателях малого объема с турбонаддувом и непосредственным впрыском. Эффект классифицируется как ненормальное сгорание и происходит аналогично традиционному стуку или детонации двигателя, при котором смесь непреднамеренно воспламеняется и часто не от свечи зажигания.
В нормальном сценарии сгорания топливо впрыскивается в цилиндр, и свеча зажигания воспламеняется, создавая взрыв, который перемещает поршень и, в свою очередь, приводит в движение коленчатый вал. Эти операции тщательно рассчитаны по времени, чтобы их можно было синхронизировать и сбалансировать. Однако когда происходит событие LSPI, этот баланс нарушается и может привести к катастрофическим повреждениям из-за случайной детонации.
Мы поговорили с Майклом Уорхоликом, менеджером по технологиям смазочных материалов для легковых автомобилей в Valvoline, чтобы узнать больше об этом явлении и о том, как должны волноваться владельцы транспортных средств. LSPI можно в некоторой степени уменьшить с помощью правильной формулы моторного масла. Уорголик — ученый, который ранее разрабатывал такие масла, и он уже почти десять лет занимается исследованиями и смягчением последствий LSPI.
Проблема LSPI, отмечает Уорхолик, возникла, когда такие технологии, как непосредственный впрыск и турбонаддув, начали широко использоваться в серийных автомобилях. Промышленность отреагировала в 2011 году, когда производители и поставщики объединились, чтобы создать консорциум для изучения проблемы в Юго-западном исследовательском институте (SwRI) в Техасе.
SwRI настроил двигатели для мониторинга и обнаружил, что этот тип детонации наиболее заметен в ситуациях с низкой скоростью и высокой нагрузкой. Наблюдение указывало на скачки высокого давления и горячие точки в цилиндрах в таких ситуациях, и первая догадка SwRI заключалась в том, что на стенках цилиндров были масляные или топливные отложения, которые могли самовоспламеняться. После дополнительных исследований исследователи обнаружили, что в случайных областях цилиндров есть пятна, которые нагреваются достаточно, чтобы самовоспламеняться при правильных условиях сгорания, прежде чем свеча зажигания сработает, вызывая этот стук или детонацию. Уорголик назвал эти пятна самовоспламенения «светлячками», потому что они загорались в цилиндре в разных местах без четкой картины. 9Поршень 0010 Focus ST, за исключением некоторых материалов кольца. Божи Татаревич
Несмотря на то, что эти события могут происходить в двигателе, говорит Уорхолик, они не обязательно могут быть достаточно катастрофическими, чтобы вызвать повреждение двигателя — катастрофическая версия этих событий происходит только в идеальных условиях для LSPI. В этом сценарии воспламеняются капли топлива или масла, создавая всплеск высокого давления, который может привести к поломке шатунов, поршневых колец или колец или даже к треснувшему поршню.
Секрет в масле
Когда исследователи начали выяснять, почему происходят эти события, они обнаружили, что моющее средство, обычно используемое в моторном масле, сульфонат кальция, реагирует на условия LSPI. Тестируя пониженное содержание сульфоната кальция в двигателе, они заметили, что события LSPI значительно сократились. После того, как эти выводы были подтверждены, большинство нефтяных компаний и маркетологов решили изменить баланс детергентов в своих маслах, чтобы уменьшить количество сульфоната кальция и заменить его сульфонатом магния. Это привело к появлению новой спецификации под названием API SN Plus, которая в 2018 году потребовала от нефтяных компаний изменить состав своих масел, чтобы они были совместимы с LSPI. Спецификация была основана на тесте, созданном Ford для измерения событий LSPI в двигателях EcoBoost.
Существуют и другие методы снижения LSPI, такие как увеличение содержания цинка или молибдена, но они часто используются в гоночных маслах. Трамваи требовали дозированного использования таких ингредиентов, поскольку цинк может отравить каталитические нейтрализаторы, а молибден может вызвать коррозию. Производители тестируют различные комбинации моющих средств и присадок, но пришли к выводу, что химический состав масла может сильно повлиять на события LSPI. Все предыдущие тесты и исследования были проведены на свежем масле, и теперь производители разрабатывают тесты для проверки стареющего или отработанного масла. Многие считают, что эффект может ухудшиться по мере старения масла.
Традиционный стук в двигателе был довольно частым явлением в старых двигателях, и он все еще происходит в современных двигателях, когда происходит раннее сгорание. Самая большая разница с LSPI — это огромный скачок давления. Непосредственный впрыск и турбонаддув являются основными виновниками повышенного давления, когда возникает детонация типа LSPI. Двигатели, используемые в испытаниях и исследованиях, имеют датчики, установленные в цилиндрах для контроля давления, регистрируя давление в цилиндрах, которое достигает 1000 фунтов на квадратный дюйм или более во время событий LSPI. Нормальная работа может показать это давление в два раза меньше этого значения. К счастью, такие события происходят нечасто, по крайней мере, при тестировании, поскольку таких всплесков может быть 5 за 100 000 циклов двигателя.
В дополнение к изменениям в составе масла производители также могут вносить изменения в свои системы прямого впрыска, чтобы снизить вероятность LSPI. Снижение давления для систем с непосредственным впрыском или обогащение топливной смеси — это один из подходов, но OEM-производители стараются избегать этих изменений, учитывая, что при этом потребляется больше топлива, тем самым, в первую очередь, сводя на нет цель этих систем.
Стоит ли беспокоиться о LSPI?
Мы спросили Уорхолика, не купит ли он небольшой двигатель с турбонаддувом и прямым впрыском, учитывая то, что он знает о рисках LSPI. Он сказал, что, конечно, будет, но только при использовании правильного масла. (Топливо не является фактором риска для тех, кто живет в Соединенных Штатах, поскольку топливо здесь, как правило, высокого качества.) Warholic рекомендует внимательно прочитать руководство пользователя, чтобы узнать, какой рейтинг API был указан для двигателя, и убедиться, что используйте только эту спецификацию масла, чтобы уменьшить вероятность повреждения LSPI. Он считает, что эти новые двигатели невероятно эффективны — он без колебаний купит один из них.
Владельцы этих двигателей могут найти в своих руководствах следующие спецификации: SN Plus, SP или GF6. SN Plus был первым промежуточным решением для LSPI и усовершенствованием стандарта SN. Моющие средства и присадки в этой спецификации основаны на первых испытаниях LSPI, проведенных с двигателем Ford EcoBoost. GF6, улучшенная версия SN Plus, является новейшей и лучшей спецификацией ILSAC, когда речь идет о предотвращении LSPI. Он включает в себя все предыдущие испытания LSPI, а также новый тест на износ цепи от Ford, более строгие требования к отложениям и более строгие требования к экономии топлива. Спецификация GF6 была выпущена только в прошлом месяце, поэтому, возможно, ее еще нет на прилавках, но Warholic ожидает, что масла с рейтингом GF60 должны появиться на прилавках где-то этим летом. SP — это последняя спецификация API, в основном отражающая спецификацию GF6.
Любая из этих трех спецификаций должна помочь предотвратить LSPI, но владельцы последних версий SP и GF6 должны искать их при покупке, чтобы убедиться, что они получают лучшее для своего двигателя.