Принцип действия инжекторного двигателя: Инжекторный двигатель

Содержание

Принцип работы инжекторного двигателя

Принцип работы двигателя внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.

Содержание

  1. Как работает ДВС
  2. О карбюраторе, его достоинствах и недостатках
  3. Про инжекторные моторы
  4. Устройство впрыска
  5. Виды впрысковых систем
  6. Одноточечный впрыск
  7. Многоточечный впрыск
  8. Непосредственный впрыск

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью.

Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Все описанное выше можно увидеть на видео

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.

Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:

  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.

Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

Как это происходит, можно в деталях увидеть на видео

Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора.

Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.

Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Принцип работы инжекторного двигателя, что такое инжекторный двигатель

Что такое инжекторный двигатель? Это разновидность двигателя с инжекторной системой подачи топлива. Данный вид двигателя обеспечивает экономичный расход топлива и уменьшение выбросов продуктов его сгорания в атмосферный воздух.

  • Типы инжекторных систем
  • Как работает инжектор
  • Чем отличается инжекторный двигатель от карбюраторного
  • Применение инжекторных двигателей
  • Достоинства и недостатки инжекторного двигателя
  • Заключение

Основное его отличие от других типов состоит в особенностях работы системы подачи топлива. А именно, впрыскивание топлива осуществляется принудительно при помощи специального элемента для его дозирования (форсунки) в цилиндр или систему трубок и заслонок (впускной коллектор).

Инжекторные двигатели начали устанавливать с 1930х годов, но популярность они смогли завоевать только в конце 90хх годов.

Типы инжекторных систем

Различают несколько типов данных систем в зависимости от способа подачи топлива, а именно:

  • Инжекторная система с центральной подачей топлива. Одна форсунка поставляет смесь топлива и воздуха в коллектор¸ после чего происходит её распределение по всем цилиндрам;
  • С многоточечной подачей. В этом варианте на каждый цилиндр имеется своя форсунка. Этот тип наиболее распространен. Чаще подача смеси осуществляется напрямую по цилиндру с последовательным топливовспрыском.

Выделяют также двух- и четырехтактные системы. Такт – это все процессы, которые происходят в цилиндре за время одного ходя поршня.

Принцип работы инжекторного двигателя основан на сборе и оценке информации о состоянии двигателя и его работы с помощью специальных датчиков:

  • Датчик оборотов. Производит передачу сигнала о скорости, на основании этих данных блок управления рассчитывает необходимый расход топлива;
  • Датчик массового расхода воздуха. Измеряет силу воздушного потока;
  • Температуры антифриза. Проводит замеры температурного режима системы охлаждения и активирует работу вентилятора при необходимости;
  • Дроссельной заслонки.
    Осуществляет контроль положения заслонки дросселя и регулирует распределение топлива, которое попадает в камеру сгорания;
  • Кислорода в выхлопных газах. Фиксирует концентрацию кислорода в выхлопных газах. А также обеспечивает необходимую концентрацию газов и топлива в камере сгорания;
  • Детонации. Определяет силу взрыва в камере сгорания;
  • Положения распределительного вала. Участвует в согласовании подачи топлива и работы двигателя;
  • Температуры воздуха. Определяет температуру, которая поступает в двигатель. Контролёр инжектора (его «мозги») в результате обработки полученной информации, собранной от всех перечисленных приборов и устройств, регулирует работу следующих систем:
  • Форсунок. Это электромагнитный клапан, который осуществляет распыление топлива за счёт давления;
  • Электронасоса подачи топлива. Он контролирует давление в системе;
  • Модуля зажигания. Соответствует количеству свечей зажигания. Управляет их работой;
  • Регулятор холостого хода. Корректирует подачу воздуха в обход дроссельной заслонки на нейтральной передаче;
  • Вентилятор, охлаждающий мотор.

Как работает инжектор

Каждый двигатель оснащен поршнями и цилиндрами. В них происходит преобразование тепловой энергии в механическую.

Для осуществления этого процесса в инжекторном двигателе существует несколько этапов:

1 этап – такт впуска. Поршень в начале этого этапа находится в верхней мертвой точке. С началом работы двигателя стартер проворачивает посредством маховиков коленчатый вал. Датчик коленвала посылает блоку управления инжектора информацию о положении конкретного цилиндра. Датчик фаз анализирует такты. Блок управления получив данную информацию, открывает в нужном цилиндре форсунку на строго определенное время.

А вы знаете, что у некоторых двигателей имеется несколько клапанов впуска? Они увеличивают мощность двигателя, а соответственно и скоростные характеристики автомобиля;

2 этап – сжатие топливовоздушной смеси. Когда поршень достигает нижней мертвой точки, он начинает снова подниматься. Что приводит к сжатию смеси топлива и газов до размеров камеры сгорания. Клапаны в этот момент закрыты;

3 — этап рабочего хода. На этом этапе происходит поджигание свечой зажигания сжатой смеси воздуха и топлива. Что провоцирует взрыв, посредством увеличения давления на дне поршня. Это приводит к тому, что поршень опускается вниз до уровня нижней мертвой точки.

Клапаны впуска и выпуска закрыты для того, чтобы сила давления на поршень была достаточной для проворачивания коленчатого вала. После взрыва блок управления регулирует момент зажигания для последующего цилиндра. А так же нормирует газовый состав топливовоздушной смеси. Это позволяет предельно эффективно использовать топливо и его сгорание;

4 этап – такт выпуска. Предыдущий этап приводит к открытию выпускного клапана. Поршень начинает двигаться вверх, выбрасывая газы, образовавшиеся в результате взрыва и сгорания.

Важно! Прогрев двигателя не оказывает влияния на показания датчика массового расхода воздуха и датчика взрыва, так как блок управления работает по специальным запрограммированным таблицам.

Чем отличается инжекторный двигатель от карбюраторного

В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:

  • В инжекторном двигателе подача смеси газов и топлива осуществляется в специальную камеру, в карбюраторном двигателе образование топливовоздушной смеси происходит в самом карбюраторе;
  • Смесь в инжекторном двигателе подается форсунками в цилиндры и в впускной коллектор принудительно. В карбюраторе этот процесс происходит само по себе;
  • В инжекторном двигателе форсунки подают строго дозированное количество топлива;
  • Инжекторная система обеспечивает мощность двигателя на 15% больше, чем карбюратор;
  • Инжектор более экономичен и экологически безопасен, чем карбюратор.

Применение инжекторных двигателей

Изначально инжекторные двигатели устанавливали в авиации. Особую популярность получили во времена Второй Мировой войны. Авиамоторы тогда создавали именно с этой системой. Затем инжекторы стали устанавливать в автомобили. В процессе ввода в широкие круги, инжекторы стали вытеснять карбюраторные варианты двигателей. И с 2005 года автомобильные двигателя оснащены именно инжекторной системой подачи топлива.

Достоинства и недостатки инжекторного двигателя

К его плюсам можно отнести:

  • Экономичное потребление топлива;
  • Большая динамика двигателя;
  • Отсутствуют проблемы с запуском двигателя в холодное время года;
  • Более надежный в эксплуатации, чем карбюраторный вариант;
  • Нет необходимости ручного регулирования режимов его работы.

К недостаткам относят:

  • Дороговизна запчастей;
  • Сложная диагностика неисправностей;
  • Некоторые детали не подлежат ремонту;
  • Дорогие обслуживание и регулировка работы инжектора, ремонт требуется проводить в автомастерских;
  • Чувствительны к топливу плохого качества.

Заключение

Не смотря на перечисленные недостатки, инжекторные двигатели представляют собой современный вариант топливной системы, обеспечивающий большую мощность и экономичное расходование топлива. А также более безопасную комплектацию двигателей в плане влияния на экологию.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 5 чел.
Средний рейтинг: 5 из 5.

Разбираем принцип работы и устройство инжектора

Здравствуйте, уважаемые автолюбители! Как «железный конь пришел на смену деревенской лошадке», также и инжекторная система впрыска топлива, пришла на смену карбюраторам в автомобилях.

О преимуществах и недостатках систем подачи топлива, пусть спорят специалисты, а задача владельца автомобиля иметь представление о том, что такое инжектор, как устроен инжектор автомобиля.

И не обязательно устройство и принцип работы инжектора вам понадобится для того, чтобы ремонтировать его своими руками. Но, знать о том, как работает и из чего состоит инжектор автомобиля, нужно. Хотя бы для того, чтобы недобросовестные мастера автосервисов не пытались «нагреть» руки на вашем незнании своего авто.

Содержание

  1. Инжектор, как революция в автомобилестроении
  2. Принцип работы инжектора в системе подачи топлива
  3. Схема работы инжектора
  4. Устройство простейшего инжектора

Инжектор, как революция в автомобилестроении

Что такое инжектор автомобиля? Инжектором (лат. injicio, фр. Injecteur, англ. Injector – выбрасываю) – называется форсунка, как распылитель газа или жидкости (топлива) в двигателях, либо часть инжекторной системы подачи (впрыска) топлива в двигателях внутреннего сгорания.

Годом рождения инжекторной системы впрыска считается 1951, когда компания Bosch оснастила ею 2-х тактный двигатель купе Goliath 700 Sport. Затем, в 1954 году, эстафету подхватил Mercedes-Benz 300 SL.

Массовое, серийное внедрение инжекторных систем впрыска топлива началось в конце 70-х годов прошлого века. Работа инжектора, по своим эксплуатационным характеристикам, во многом превосходила работу карбюраторной подачи топлива.

Как результат: первое десятилетие 21 века практически завершило вытеснение карбюраторов. Современные авто снабжаются в основном системами распределенного и прямого электронного впрыска.

Принцип работы инжектора в системе подачи топлива

Fuel Injection System (система впрыска топлива) осуществляет подачу топлива посредством прямого впрыска при помощи форсунки (инжектора) в цилиндр двигателя либо во впускной коллектор. Соответственно, автомобили, оснащенные такой системой, носят название инжекторные.

Классификация инжекторного впрыска зависит от того, какой принцип действия инжектора, а также по месту установки и количеству инжекторов.

Центральный впрыск топлива (моновпрыск) осуществляет впрыск посредством одной форсунки на все цилиндры двигателя. Инжектор, как правило, располагается на впускном коллекторе (на месте карбюратора). Система моновпрыска на сегодняшнее время не пользуется популярностью у автомобилестроителей.

Основная масса современных серийных автомобилей, снабжена системой распределенного впрыска топлива. То есть, отдельная форсунка отвечает за свой цилиндр.

Система распределенного впрыска топлива, классифицируется по типам:

  • одновременный – все форсунки системы подают топливо одновременно во все цилиндры,
  • попарно-параллельный – тип впрыска, когда происходит парное открытие форсунок: одна открывается перед циклом впуска, другая, перед циклом выпуска. Характерно то, что попарно-параллельный принцип открытия форсунок применяется в период запуска двигателя, либо в аварийном режиме неисправности датчика положения распредвала. А во время движения, используется так называемый фазированный впрыск топлива,
  • фазированный –  тип впрыска, когда каждый инжектор открывается перед тактом впуска,
  • прямой – тип впрыска, происходящий непосредственно в камеру сгорания.

Принцип работы инжектора основывается на использовании сигналов микроконтроллера, который в свою очередь получает данные от датчиков.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Устройство простейшего инжектора

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на  видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

Принцип работы инжектора: как работает, устройство

Главная » Топливная система » Вы читаете статью:

по Ольга

Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

Инжекторный двигатель

Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

Содержание

  • 1 История возникновения инжекторной системы впрыска
  • 2 Как работает инжектор?
  • 3 Электронный блок управления
  • 4 Расположение, классификация и маркировка форсунок
  • 5 Нейтрализатор/катализатор
  • 6 Основные датчики
  • 7 Система подачи топлива

История возникновения инжекторной системы впрыска

Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

Установлен инжекторный двигатель

Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

Как работает инжектор?

Обычно он имеет в своей конструкции следующие составляющие:

  1. ЭБУ.
  2. Форсунки.
  3. Датчики.
  4. Бензонасос.
  5. Распределитель.
  6. Регуляторы давления.

Если описывать коротко принцип работы инжектора заключается в следующем:

Электронный блок управления

Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

Различают 3 вида памяти:

  1. Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
  2. Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
  3. Электрически программируемое запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

Расположение, классификация и маркировка форсунок

После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

  1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
  2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

Есть несколько классификаций распределительного впрыска:

  • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
  • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
  • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
  • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

Инжекторные форсунки имеют разный способ подачи струи:

  1. Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Устройство инжектора

  2. Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
  3. Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Система подачи топлива

Узел включает в себя:

Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

Интересное по теме:

загрузка…

Инжекторный двигатель: устройство и принцип работы

Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.

Принцип работы инжектора

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

ЭБУ

Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Форсунки

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

Если материал был для вас интересен или полезен, опубликуйте его на своей странице в социальной сети:

Добавить комментарий

В начало страницы

Принцип работы топливной системы двигателя инжектор

Принцип работы топливной системы двигателя

ТСД или система питания мотора предопределена для пуска, очистки и хранения горючего. Именно ТСД в ответе за выработку топливной смеси, её подачу в цилиндры и регулирование на разных оборотах. В бензиновых ТСД в качества топлива выступает бензин, в дизельных – солярка.

ТСД бензинового агрегата

Содержание

  • 1 ТСД бензинового агрегата
  • 2 ТСД дизельного агрегата
  • 3 Несколько слов по топливу

Сегодня большая часть автомобилей оснащены инжекторными системами. Однако встречаются ещё и карбюраторные автомобили. Рассмотрим, как оснащены ТСД обеих систем подробнее.

ТСД на карбюраторе имеет свою уникальную принципиальную схему. Составляющими элементами в ней выступают топливный резервуар, насос, коммуникации, фильтры. Одной из особенностей карбюраторной системы можно назвать то, что здесь используется воздушный фильтр.

Топливный резервуар способен вмещать от 40 до 80 литров горючего (это в среднем). Устанавливается в большинстве случаев сзади автомобиля, наполняется жидкостью через горловину. Залитый в резервуар бензин обязан проходить фильтрацию. С этой целью устанавливается сетчатый фильтр, задерживающий крупные частички мусора. Кроме того, в баке предусмотрен ДУТ – датчик уровня бензина. Его данные отображаются на приборной панели автомобиля.

Топливный насос

Насос – важное звено, как в карбюраторных, так и в инжекторных ТСД. Только в первом случае он, как правило, устанавливается не внутри резервуара, а снаружи. Именно насос поддерживает нужное рабочее давление в системе, оснащается фильтрами и т.д. На инжекторных системах устанавливается электронный насос, на карбюраторных – механический.

На инжекторных ТСД принято ставить не один, а два фильтра. Один встраивается непосредственно внутрь топливного насоса. Это сетка, задерживающая крупные частички мусора. Другой фильтр называется тонким, его ставят на участке топливных коммуникаций, как правило, под порогом или под капотом.

Нынешние фильтры оснащены также специальным клапаном. Он регулирует давление в системе, путём слива остаточного бензина по обратному каналу назад в резервуар.

Топливные коммуникации состоят из шлангов и трубок. Они должны быть невосприимчивы к бензину, иначе он их просто проест. Топливо постоянно циркулирует по этим трубкам, создаётся постоянное давление.

Воздушный фильтр

Как и говорилось выше, одним из значимых звеньев карбюраторной ТСД является воздушный фильтр. Он предназначен для очистки воздуха, поступающего в карбюратор. Если в воздухе будет много пыли, то мелкие частички осядут на смазанных маслом деталях, и это приведёт к быстрому износу. Принято делить воздушные фильтры на сухие и масляные. Последние отличаются тем, что оснащаются помимо корпуса с фильтром масляной ванной и воздухозаборником. Сухой воздушный фильтр – просто картоновый корпус и воздухозаборник.

Карбюратор – сложное устройство, прибор. Здесь происходит приготовление горючей смеси ТВС. Оно передаётся дальше в цилиндры двигателя. Инжекторные ТСД карбюраторов не имеют, топливо распыляется форсунками в проходящий поток воздуха.

Таким образом, питание ТСД выглядит на карбюраторном двигателе так.

Схема питания карбюраторного ДВС

Бензин в конкретном случае, качаемый насосом, поступает в карбюратор через фильтры. Топливо подаётся из резервуара.

Инжекторная ТСД вместо карбюратора оснащена форсунками. Здесь много различных датчиков, а управление ими выполняет БУ. Однозначно в инжекторной системе питания изменён процесс получения ТВС. Изначально сам насос уже подаёт горючее под сильным давлением. Затем через рейку, на которой установлены форсунки, жидкость подаётся в определённый цилиндр двигателя.

Роль БУ определять, сколько жидкости надо подавать в тот или иной цилиндр. На показатели влияет много чего: объём воздуха, жар двигателя, амплитуда вращения КВШ вала и многое другое. Датчики выдают информацию обо всём этом блоку управления, который считывает информацию и делает соответствующие выводы. Таким образом, осуществляется автоматический контроль подачи горючего.

Принцип работы инжекторного двигателя

На сегодняшний день инжекторные системы по сравнению с карбюраторными имеют много преимуществ. Это и снижение токсичности выхлопа, и уменьшение расхода топлива, и повышение мощности двигателя, и многое другое.

Примечательно, что система питания двигателя по-разному реагирует на те или иные режимы езды.

  1. Богатая ТВС создаётся при заводе мотора «на холодную». И это понятно, ведь требуется такой состав, в котором бензина больше, чем воздуха. Однако в таком режиме движение запрещено, так как это вызывает увеличение расхода топлива и быстрый износ элементов двигателя. Поэтому, особенно на карбюраторных автомобилях рекомендуется сначала прогревать мотор несколько минут, а уже потом стартовать с места.
  2. В режиме ХХ ТВС уже обеднённая. Образуется при движении с горки на спуск или при работе мотора в сильно прогретом состоянии.
  3. Меняется состав смеси и при движении с частичными нагрузками, при ускорении.

ТСД дизельного агрегата

Дизельные моторы для некоторых людей ассоциируются с повышенным шумом, большим количеством вибраций и высокой детонацией. На самом деле, это устаревшая информация. Современные дизельные агрегаты, благодаря использованию новейших самоуправляемых СУ и технологичным корректировкам, работают почти также тихо, как и бензиновые моторы.

Система питания Коммон Рейл

Система питания – одно из важнейших звеньев. Она сформировалась вместе с остальными частями автомобильной системы. Чего только стоит система Коммон Рейл, покорившая миллионы фанатов по всему миру.

Дизельный мотор, как и бензиновый, является двигателем внутреннего сгорания. По конструкции он мало отличается он него, ведь основу агрегатов составляют цилиндры, поршни и другие части. Но в дизельных ДВС степень сжатия и давление намного выше. Из-за этого дизельный силовой агрегат значительно тяжелее бензинового. Это делается для того чтобы мотор лучше противостоял высоким нагрузкам.

Главное отличие дизельного агрегата – в способе формирования ТВС, воспламенении и сгорании. Если в бензиновом двигателе ТВС формируется в системе впуска, и её воспламенение осуществляется от свечи зажигания, в дизельном агрегате всё по-другому.

  1. В первую очередь воздух и солярка поступают в цилиндры ДВС порознь. Первым идёт воздух, который накаляется и сжимается до высоких отметок. Затем поступает солярка, тоже под большим давлением, чтобы воспламенение проходило самопроизвольно, ведь свечей в дизельном автомобиле нет.
  2. Роль свечи в дизельных агрегатах выполняют нагревательные элементы, которые быстренько обогревают воздух в камере, пока ещё двигатель холодный.

Теперь о принципе работы. Дизельное топливо закачивается из резервуара с помощью насоса, и после фильтрации через ТНВД подаётся на форсунки. Последние распыляют солярку.

Как работает дизельный мотор

Примечательно, что в системе дизеля принято говорить о двух типах давления. Низкое образуется в области предшествующей подготовки ТВС, ещё перед отправкой солярки в отдел высокого давления. Что касается высокого давления, то оно образуется непосредственное в отсеке доработки смеси, когда она переходит в рабочую камеру.

ТСД дизельного мотора выполняет разом несколько функций: подаёт горючее в чётко отмеренном объёме, в нужный момент, и под конкретным давлением. Из-за большого количества требований, ТСД дизеля более сложна, чем топливная система бензинового агрегата. И стоит она тоже, дороже.

В дизельных автомобилях большую роль играет ТНВД. Этот насос отвечает за высокое давление, его достаточность. Если в бензиновой машине мощностный режим агрегата варьируется нажатиями на педаль газа, то в новых дизельных автомобилях объём подаваемой солярки от этого не увеличивается, а меняется только программа, управляющая регуляторами.

Несколько слов по топливу

Так, для обеспечения экономичной и надёжной работы двигателя топливо всегда должно обладать достаточной детонастойкостью и хорошо, быстро испаряться. Слово детонационный означает взрывной. Другими словами, топливо сгорать очень быстро, как при взрыве, не должно. Очевидно, что это недопустимо, так как будет иметь место высокая нагрузка на поршни, подшипники. Одновременно увеличится расход топлива, а мощность двигателя уменьшится. При повышенной детонации увеличивается также дымность выхлопа, клапан и поршни прогорают.

Детонационные свойства топлива

Как правило, детонационные свойства связывают в первую очередь с бензиновым топливом. Оно и понятно, ведь в бензине имеется гептан – высокодетанирующее вещество. Если бы не изооктан – второе вещество в бензине, топливо бы просто взрывалось.

Соответственно с этими понятиями выделяют октановое число топлива. Процентное соотношение изооктана и гептана должно быть идеальным, чтобы и детонационные свойства горючего были на должном уровне.

Таким образом, принцип работы ТСД обеих систем в некоторых моментах аналогичен, однако в остальном разница между дизельной и бензиновой системами питания огромная.

Теория двигателя

Впрыск топлива через порт размещает топливную форсунку непосредственно над впускным клапаном во впускном отверстии головки блока цилиндров. Это был автомобильный стандарт с 1980-х годов и архитектура, наиболее подходящая для устаревших авиационных двигателей EFII, SDS, Precision Airmotive и других. (Изображение: предоставлено Robert Bosch Corp.)

Впрыск топлива — это общий термин для любого количества механических или электронных систем подачи топлива. Различий в деталях предостаточно, поэтому немного точности помогает при рассмотрении предмета. Например, когда мы слышим «впрыск топлива» сегодня, мы мысленно по умолчанию «многоточечный последовательный впрыск топлива с электронным портом» или просто «EFI», потому что это то, что автомобили использовали в течение последней четверти века. Но это не то, что у нас есть в авиации (за исключением более новых систем послепродажного обслуживания).

Электронная топливная форсунка EFII демонстрирует хорошо распыленную форму распыления на испытательном стенде EFII.

Спонсор освещения авиашоу:

Bendix Baseline

В начале Второй мировой войны немцы были впереди всех с механическим впрыском топлива прямого цилиндра Bosch (результат развития дизельного двигателя). Попытки многоточечного впрыска топлива в двигателях самолетов союзников в основном были неудачными или не были разработаны вовремя (ваша первая подсказка впрыска топлива не является вашим средним техническим достижением). После войны компания Bendix усовершенствовала свою карбюраторную систему с одноточечным давлением военного времени в систему многоточечного впрыска топлива RS, и к концу 1950s, который был детально улучшен в системе RSA, которая до сих пор с нами, как в исходном виде, так и обновленная несколькими источниками послепродажного обслуживания, в частности, Airflow Performance и Precision Airmotive.

RSA компании Bendix представляет собой механический впрыск топлива с постоянным расходом. Мембранный насос с приводом от двигателя подает топливо в топливный сервопривод; это корпус дроссельной заслонки и дозатор топлива, который обычно устанавливается в том же месте, что и карбюратор. Сервопривод измеряет давление воздуха и использует ряд диафрагм для измерения расхода топлива в зависимости от массы воздуха, проходящего через дроссельную заслонку сервопривода. Но в отличие от карбюратора топливо не подается в воздушный поток на топливном сервоприводе; вместо этого он направляется к делителю потока. Подобно железнодорожной развязке, делитель потока распределяет топливо по небольшим линиям, идущим к впускному отверстию каждого цилиндра. Там топливо проходит через прецизионную форсунку, распыляясь постоянным потоком во впускное отверстие, прямо перед впускным клапаном.

Обратите внимание, пульсация топлива отсутствует; она течет ровным потоком. Давление топлива, подаваемое в топливный сервопривод, зависит от потребности и часто составляет около 20 фунтов на квадратный дюйм, но может возрасти примерно до 45 фунтов на квадратный дюйм. Давление топлива — это энергия, управляющая тем, что можно было бы назвать аналоговым топливным компьютером (топливным сервоприводом), и поэтому давление топлива по своей конструкции расходуется на работу различных диафрагменных пружин, преодоление потерь в трубопроводе и проталкивание топлива через главный жиклер. Поэтому давление топлива в топливных форсунках намного ниже, чем в топливном сервоприводе. Давление в форсунке может быть менее 1 фунта на квадратный дюйм на холостом ходу и около 7 фунтов на квадратный дюйм на полном газу.

Топливный сервопривод Bendix слева и меньший блок EFII справа являются дроссельными заслонками. Но блок Bendix также измеряет топливо, отсюда и название топливного сервопривода; электронный корпус дроссельной заслонки EFII просто дросселирует подачу воздуха и сообщает положение дроссельной заслонки на компьютер.

Очевидно, что большим преимуществом является то, что топливо подается индивидуально в каждый цилиндр, а не в одну точку, как в карбюраторе. Изменения состава смеси ограничены конструкцией впускного коллектора, к чему производитель двигателя может легко приблизиться, плюс вы можете точно настроить состав смеси, заменив форсунки разного размера. Каждый цилиндр может быть более точно оптимизирован для мощности, экономичности и агрессивной работы на обедненных пиках; Таким образом, возможна большая максимальная мощность двигателя по сравнению с рудиментарными карбюраторными системами, а также возможна большая экономичность при наклоне. Система RSA имеет стандартную ручку управления топливной смесью в кабине, а также схему автоматической компенсации высоты, поэтому пилоту не нужно регулировать смесь из-за последующих подъемов или спусков.

В отличие от карбюратора топливо не подается через трубку Вентури внутри топливного сервопривода (все еще есть трубка Вентури для генерации сигнала воздушного потока), поэтому исключается обледенение. Вместо этого предусмотрен альтернативный источник воздуха на тот случай, если воздухозаборник главного двигателя забьется туалетной бумагой, когда вы разрезаете выброшенный за борт рулон — для этого требуется всего один квадрат…

Недостатки: стоимость, сложность и, следовательно, повышенная количество точек отказа. Тем не менее, простую систему Bendix трудно сломать. Мембраны доказали свою пуленепробиваемость, резервный подкачивающий насос спасает положение в случае выхода из строя диафрагменного насоса с приводом от двигателя (редко), оставляя мусор единственной реальной проблемой. Даже в этом случае песок, засоряющий топливный сервопривод, приводит к тому, что система работает на богатой смеси. Простое вытягивание ручки смеси почти до упора на холостом ходу обычно восстанавливает рабочую смесь и, следовательно, мощность.

Что еще более раздражает, маленькие форсунки легко заткнуть мельчайшими кусочками. Обычно это вызывает неровную работу до тех пор, пока форсунки не будут сняты, а мусор не будет промыт обратно. Очевидно, требуется фильтрация топлива и чистота системы.

Без поплавковой камеры система впрыска топлива нуждается в насосе без привода для заливки. На практике электрический насос служит в качестве подкачивающего насоса и в качестве аварийной резервной копии насоса с приводом от двигателя. В остальном система Bendix является чисто механической и не нуждается в электрической системе, тем самым отделяя электрическую систему как точку отказа от топливной системы в полете.

Делитель потока Bendix определяет расход топлива между цилиндрами при низком расходе топлива (холостой ход, очень низкая мощность), обеспечивает принудительное перекрытие потока при выключении двигателя и функционирует как простой распределительный блок при нормальных крейсерских и взлетных режимах мощности. В этих условиях расход топлива определяется размером сопла форсунки.

Редко встречающееся ограничение стандартной системы Bendix заключается в том, что ее окно измерения топлива может быть немного уже, чем необходимо, поэтому измерение топлива на горячем двигателе большого объема может стать все более неточным при сильном наклоне. Это не обычная проблема для обычных двигателей, но с мощными экспериментальными двигателями система подает топливо точно при WOT и крейсерских режимах с высокой мощностью, но различия между цилиндрами проявляются при обеднении. -пик при настройках низкой мощности (давление в коллекторе). Подумайте о RV-10, который чуть не задохнулся на высоте 12 000 футов. Тщательное согласование диаметров форсунок, давления топлива и давления диафрагменной пружины в делителе потока может решить эту проблему.

Электронная топливная форсунка EFII мощностью 60 фунтов в час определенно больше, чем латунная топливная форсунка Bendix справа. Форсунка EFII представляет собой электромагнитный топливный клапан, который срабатывает дискретными импульсами. Деталь Bendix представляет собой дозированное отверстие, которое непрерывно течет.

Электронный впрыск топлива

Имея немного больше, чем маркировку «впрыск топлива», система EFI, известная нам по автомобилям, полностью отличается от авиационного стандарта с механическим впрыском топлива с постоянным потоком. Но автомобильный EFI — это то, к чему, похоже, движется экспериментальная авиация, поэтому здесь требуется описание.

В теперь традиционном автомобильном EFI действие начинается с электрического топливного насоса, подающего топливо под дозированным давлением — обычно около 40 фунтов на квадратный дюйм — в топливную рампу. Это простые галереи, установленные сверху и соединяющие отдельные топливные форсунки. Форсунки представляют собой управляемые компьютером электромагнитные клапаны с электрическим приводом; когда они открыты, они распыляют топливо во впускное отверстие.

Конечно есть фильтры и топливные регуляторы, а топливо может либо бежать по постоянному контуру из топливного бака, через топливные рейки и обратно в топливный бак (старая школа, меньше нагрев топлива на форсунке при горячих пусках ) или иметь одностороннюю безвозвратную конструкцию (новая конструкция, основанная на выбросах, с меньшим нагревом топлива и вызывающим испарение перемешиванием топлива в баке).

Топливные форсунки Bendix уже много лет состоят из двух частей, что упрощает осмотр, очистку и замену форсунок. Нижняя латунная часть содержит внутреннюю камеру, сообщающуюся с атмосферой через перфорированную сетку. Воздух, всасываемый через сетку при низком давлении в коллекторе, смешивается с топливом, способствуя распылению. Маленькая буква «А» на шестиграннике должна быть установлена ​​лицевой стороной вниз; Это удерживает вентиляционное отверстие вверх, чтобы топливо не вытекало при остановке двигателя.

Преимуществом EFI является компьютерное управление. Небольшая армия датчиков измеряет многие параметры, включая частоту вращения двигателя, положение коленчатого вала, распределительного вала и дроссельной заслонки, плюс масса всасываемого воздуха измеряется непосредственно датчиком массы воздуха с термопроводом. Примерно десять раз в секунду компьютер использует всю эту информацию для расчета времени и продолжительности включения форсунок, тем самым контролируя соотношение воздух/топливо в зависимости от количества подаваемого топлива.

Непосредственный впрыск бензина — новая норма в автомобилестроении. Концептуально аналогично дизельной практике, топливо под очень высоким давлением впрыскивается непосредственно в камеру сгорания, получая полезный эффект гашения. Включение GDI 2500 фунтов на квадратный дюйм в устаревшие авиационные двигатели практически потребовало бы полной модернизации двигателя в дополнение к дорогостоящему топливному насосу высокого давления и надежным форсункам.

Стратегии автомобильных компьютеров сильно различаются у разных производителей, и расчеты более сложны, чем измерение оборотов и расхода воздуха, а затем просмотр значений искры и топлива в таблице. И да, компьютер также контролирует момент зажигания и момент распредвала (иногда это четыре распредвала, движущихся независимо друг от друга) и запрограммирован корректировать расчеты топлива (и искры, и распредвала) по мере необходимости, возможно, по 30 различным параметрам. К ним относятся температура охлаждающей жидкости двигателя, скорость ускорения двигателя, входной сигнал датчика детонации, передача трансмиссии, требования к выбросам, такие как функция рециркуляции отработавших газов и продувка угольного фильтра, обогащение WOT, вспомогательные нагрузки от кондиционера и, возможно, генератора переменного тока, декомпрессия двигателя. настройка при переключении АКПП, аварийное воздушное охлаждение двигателя (путем отключения цилиндров) в случае потери охлаждающей жидкости и, по-видимому, при включенном плафоне. Эти системы даже слегка адаптируются к историческому стилю вождения водителя, а иногда также регулируются в соответствии с условиями сцепления (снег, дождь, грязь, сухая дорога) по выбору водителя на циферблате. Адаптация программного кода к конкретному двигателю и автомобильному приложению, называемая картированием, является длительным и трудоемким процессом для производителя; четырем техническим специалистам, имеющим доступ ко всем инструментам, лаборатории климат-контроля и множеству испытательных полигонов по всему миру (в Абу-Даби летом и в Фэрбенксе зимой), может потребоваться три года, чтобы полностью отобразить программное обеспечение для управления новым двигателем. Такие вещи, как настройка стратегии холодного пуска, могут занять недели, чтобы составить карту просто потому, что вы получаете только один холодный пуск за ночное прогревание. Вы поняли идею.

В 1980-х годах такие системы запускали сразу все топливные форсунки (зажигание партии) или по одному ряду цилиндров в V-образном двигателе за раз (зажигание группы). Но с достижениями в области вычислений последовательное срабатывание давно стало нормой, когда срабатывание форсунки синхронизировано с порядком зажигания цилиндра. Эффективность периодического и последовательного сжигания невелика и в основном определяется выбросами и переходной характеристикой (изменениями оборотов двигателя).

В то время как в электронных форсунках используется один игольчатый клапан, они выпускают поток топлива с давлением 35+ фунтов на квадратный дюйм через выпускное отверстие с несколькими отверстиями, чтобы разбить поток на капли. Для сравнения, сопло Bendix впрыскивает постоянный поток через одно большое отверстие при давлении от 1 до 7 фунтов на квадратный дюйм.

EFI on the Fly

Сегодня такие компании, как EFII (помимо описанной здесь системы EFII, существует еще несколько других) предлагают послепродажные электронные системы впрыска топлива через порт для Lycomings. Как и только что описанные автоматические системы, это на самом деле системы управления двигателем, включающие зажигание вместе с топливом. В отличие от автоматических систем, авиационные системы (в том числе разработки Continental и Lycoming, которые еще не вышли на рынок) намного проще в том смысле, что они связаны исключительно с двигателем и не беспокоятся о взаимодействии с остальной частью самолета (реагируя на движение винта). шаг или положение закрылков, скажем). Кроме того, авиационные двигатели работают в гораздо более узком диапазоне оборотов и изменяют обороты намного реже и медленнее, чем автомобильные двигатели, датчики детонации не используются, потому что наши двигатели с воздушным охлаждением с неустойчивым допуском механически слишком шумны, а 100LL универсален. Система EFII также работает в периодическом режиме, что устраняет необходимость в датчике распредвала.

Кроме того, в отличие от автомобильных систем массового воздуха , авиационные системы EFI имеют плотность скорости. Они не измеряют массу воздуха напрямую, а выводят ее из температуры воздуха, атмосферного давления и оборотов двигателя. Это заметно дешевле, но требует сопоставления программного обеспечения с каждым двигателем, и если что-то значимое изменяется (синхронизация кулачка), его необходимо переназначить. К счастью, требования к отображению для наших авиационных приложений значительно упрощены по сравнению с автомобильными. Черт возьми, вашему газонному трактору могло бы потребоваться больше карт, если бы это был EFI.

Такие авиационные системы послепродажного обслуживания являются большим шагом вперед и предоставляют экспериментаторам новые возможности. В конечном счете, такие экипировки, как EFII, SDS, Precision Airmotive и другие, среди прочего показывают путь к снижению рабочей нагрузки пилота и более легкому достижению экономии топлива. Но они являются товарами послепродажного обслуживания с крошечными бюджетами на разработку, а также требуют современного мышления и абсолютно зависят от электричества. Если этот электрический топливный насос выйдет из строя, он станет очень тихим, поэтому самолет с EFI должен быть электрически надежным. Профессиональные стандарты электропроводки, двойные генераторы переменного тока, батареи, шины или их комбинация являются обязательными. Короче говоря, EFI нуждается в интеграции во весь планер и мышление строителя.

При одинаковых рабочих условиях на испытательном стенде EFII форсунка Bendix (слева) выбрасывает ровный, густой поток бензина с давлением 3 фунта на квадратный дюйм, а инжектор EFII выпускает импульсы капель топлива с давлением 35 фунтов на квадратный дюйм. Лучшее распыление EFI увеличивает мощность при частичной нагрузке и более низких оборотах; в WOT резкое изменение давления при открытии впускного клапана превращает даже лужу топлива в распыленное облако.

Горячие и холодные коллекторы

И последнее: горячие впускные коллекторы. В плоскомоторном начале (1940s), обледенение карбюратора было большим страхом, и простой ответ заключался в предварительном подогреве всасываемого воздуха. Простое решение для горизонтально-оппозитного двигателя состоит в том, чтобы упаковать впускные направляющие через масляный поддон. Это уменьшает обледенение на впуске, а также плотность воздуха и, следовательно, мощность.

В ответ рынок запасных частей для авиации предлагает воздухозаборники холодного воздуха для использования с впрыском топлива, и они необходимы, если целью является максимальная мощность или топливная экономичность. В то время как эти воздухозаборники создают мощность, недавние тесты показывают, что большая часть их прироста связана с чем-то другим, помимо более холодного всасываемого воздуха. Оптимизированная длина и форма рабочего колеса, а также объем камеры и другие настройки, вероятно, являются их самыми большими преимуществами.

К сожалению, эти системы слишком дороги в условиях послепродажного эффекта масштаба, чтобы обеспечить экономию топлива, поэтому они остаются хот-родом для пилотажа и гонок. Но они доступны, если вы экспериментируете с максимальной эффективностью или вам нужна скорость.

Впускные трубы Lycoming являются очевидным и удобным местом для добавления электронной топливной форсунки, как показано на этой сборке EFII. На то, чтобы форсунка дула в воздушный поток, требуется секунда, это сделано для того, чтобы топливные магистрали оставались над форсункой, чтобы пузырьки воздуха, образующиеся при остановке двигателя, самопродувались, а не затрудняли горячий пуск.

Будущее

Забегая вперед, электронное управление двигателем (впрыск топлива и зажигание управляются одним компьютером) кажется очевидным, поскольку новые самолеты становятся все более электронными и надежными. Уменьшенная нагрузка на пилота (отсутствие ручки управления смесью), более легкий запуск, более плавная работа, лучшая экономия топлива, большая мощность на высоте (меньше осечек и регулируемое опережение зажигания), беспроблемный крейсерский режим на обедненных пиках и меньшее загрязнение свечей зажигания (на ровной поверхности). эксплуатации) все преимущества. Тем не менее, такие системы более дороги и относительно не испытаны в самолетах. В краткосрочной перспективе финансовая реальность показывает, что у устаревших авиационных систем впуска еще много времени, когда дело доходит до наддува наших простых двигателей с постоянными оборотами. В долгосрочной перспективе марш прогресса продолжится.

Системы впрыска топлива для поршневых двигателей

Система впрыска топлива имеет много преимуществ по сравнению с обычной карбюраторной системой. Меньше опасность обледенения системы впуска, так как падение температуры из-за испарения топлива происходит в цилиндре или рядом с ним. Ускорение также улучшается из-за положительного действия системы впрыска. Кроме того, впрыск топлива улучшает распределение топлива. Это уменьшает перегрев отдельных цилиндров, часто вызываемый изменением состава смеси из-за неравномерного распределения. Система впрыска топлива также обеспечивает лучшую экономию топлива, чем система, в которой смесь для большинства цилиндров должна быть богаче, чем необходимо, чтобы цилиндр с самой бедной смесью работал должным образом.

Системы впрыска топлива различаются по конструкции, устройству и работе. На этой странице обсуждаются системы впрыска топлива Bendix и Continental. Они описаны для обеспечения понимания задействованных принципов работы.

Bendix/Precision Fuel-Injection System

Система впрыска Bendix со штоковым регулятором (RSA) состоит из форсунки, делителя потока и топливной форсунки. Это система с непрерывным потоком, которая измеряет расход воздуха двигателем и использует силы воздушного потока для управления подачей топлива в двигатель. Система распределения топлива по отдельным цилиндрам достигается за счет использования делителя потока топлива и форсунок для стравливания воздуха.

Топливная форсунка

Топливная форсунка в сборе состоит из:

  1. секции воздушного потока,
  2. секции регулятора и
  3. секции дозирования топлива. Некоторые топливные форсунки оснащены блоком автоматического управления смесью.

Секция потока воздуха

Расход воздуха двигателем измеряется путем измерения ударного давления и давления в соплах Вентури в корпусе дроссельной заслонки. Эти давления сбрасываются на две стороны воздушной диафрагмы. Вид в разрезе секции измерения расхода воздуха показан на рис. 1. Движение дроссельной заслонки вызывает изменение расхода воздуха двигателем. Это приводит к изменению скорости воздуха в трубке Вентури. Когда поток воздуха через двигатель увеличивается, давление слева от диафрагмы снижается из-за падения давления в горловине Вентури. [Рисунок 2] В результате диафрагма перемещается влево, открывая шаровой клапан. Вклад в эту силу вносит ударное давление, воспринимаемое ударными трубками. [Рисунок 3] Этот перепад давления называется «силой дозирования воздуха». Эта сила достигается за счет направления ударного давления и давления всасывания в трубке Вентури на противоположные стороны диафрагмы. Разница между этими двумя давлениями становится полезной силой, равной площади диафрагмы, умноженной на разницу давлений.

Figure 1. Cutaway view of airflow measuring section
Figure 2. Airflow section of a fuel injector
Рис. 3. Ударные трубки для давления воздуха на входе

Секция регулятора

Секция дозатора воздуха, противолежащая диафрагме регулятора давления воздуха. Давление подачи топлива подается на одну сторону топливной диафрагмы, а измеряемое давление топлива подается на другую сторону. Перепад давления на топливной диафрагме называется силой дозирования топлива. Давление топлива, указанное на шаровой стороне топливной диафрагмы, представляет собой давление после того, как топливо прошло через топливный фильтр и поворотную пластину ручного управления смесью, и называется измеренным давлением топлива. Давление на входе топлива подается на противоположную сторону топливной диафрагмы. Шаровой кран, прикрепленный к топливной диафрагме, управляет открытием отверстия и потоком топлива за счет приложенных к нему усилий. [Рисунок 4] 9Рис. 4. Топливная диафрагма с присоединенным шаровым краном Эта разница в давлении пропорциональна потоку воздуха через инжектор. Таким образом, объем воздушного потока определяет скорость потока топлива.

При низкой мощности разность давлений, создаваемая трубкой Вентури, недостаточна для последовательного регулирования подачи топлива. Встроенная пружина холостого хода с постоянным напором обеспечивает постоянный перепад давления топлива. Это обеспечивает адекватный конечный поток в диапазоне холостого хода.

Секция дозирования топлива

Секция дозирования топлива присоединена к секции дозирования воздуха и содержит впускной топливный фильтр, клапан ручного управления смесью, клапан холостого хода и главный дозирующий жиклер. [Рисунок 5] Клапан холостого хода соединен с дроссельным клапаном с помощью внешнего регулируемого звена. В некоторых моделях инжекторов в этой секции также находится жиклер обогащения мощности. Назначение секции дозирования топлива состоит в измерении и контроле расхода топлива к делителю потока. [Рисунок 6] Клапан ручного управления смесью обеспечивает полностью обогащенную смесь, когда рычаг находится напротив упора обогащения, и постепенно обедняет смесь, когда рычаг перемещается к отсечке холостого хода. Как обороты холостого хода, так и смесь холостого хода можно регулировать снаружи в соответствии с индивидуальными требованиями двигателя.

Figure 5. Fuel metering section of the injector
Figure 6. Fuel inlet and metering

Flow Divider

Дозированное топливо подается от блока управления подачей топлива к делителю потока под давлением. Этот блок поддерживает дозированное топливо под давлением, распределяет топливо по различным цилиндрам на всех оборотах двигателя и отключает отдельные линии форсунок, когда регулятор находится в положении отсечки холостого хода.

Как показано на рисунке 7, измеренное давление топлива поступает в делитель потока через канал, который позволяет топливу проходить через внутренний диаметр иглы делителя потока. На холостом ходу давление топлива от регулятора должно возрастать, чтобы преодолеть усилие пружины, действующее на диафрагму и узел клапана. Это перемещает клапан вверх до тех пор, пока топливо не сможет пройти через кольцевое пространство клапана к топливной форсунке. [Рисунок 8] Поскольку регулятор измеряет и подает фиксированное количество топлива к делителю потока, клапан открывается только настолько, насколько это необходимо для подачи этого количества к форсункам. На холостом ходу требуемое отверстие очень мало; топливо для отдельных цилиндров делится на холостом ходу делителем потока.

Figure 7. Flow divider
Figure 8. Flow divider cutaway

As fuel flow through the regulator is превышает требования холостого хода, давление топлива увеличивается в линиях форсунок. Это давление полностью открывает клапан делителя потока, и распределение топлива в двигатель становится функцией нагнетательных форсунок.

Манометр давления топлива, откалиброванный в фунтах в час расхода топлива, может использоваться в качестве расходомера топлива с системой впрыска Bendix RSA. Этот манометр соединен с делителем потока и измеряет давление, прикладываемое к нагнетательному патрубку. Это давление находится в прямой зависимости от расхода топлива и указывает на выходную мощность двигателя и расход топлива.


Топливные форсунки

Топливные форсунки имеют конфигурацию с отбором воздуха. На каждый цилиндр приходится по одной форсунке, расположенной в головке блока цилиндров. [Рисунок 9] Выход сопла направлен во впускной канал. Каждая форсунка включает калиброванную струю. Размер жиклера определяется доступным давлением топлива на входе и максимальным расходом топлива, требуемым двигателем. Топливо выбрасывается через эту форсунку в камеру давления окружающего воздуха внутри узла форсунки. Перед подачей в отдельные камеры впускных клапанов топливо смешивается с воздухом, что способствует распылению топлива. Давление топлива перед отдельными форсунками прямо пропорционально расходу топлива; поэтому простой манометр можно откалибровать по расходу топлива в галлонах в час и использовать в качестве расходомера. Двигатели, модифицированные турбонагнетателями, должны использовать сопла с кожухами. С помощью воздушного коллектора эти форсунки вентилируются до давления воздуха на входе в инжектор.

Рисунок 9. Сборка топливного сопла

Континентальная/TCM Fuel-System System

Continental Foup-System System

Continental Fuel-System. [Рис. 10] Система состоит из насоса топливной форсунки, блока управления, топливного коллектора и топливораздаточной форсунки. Это тип с непрерывным потоком, который регулирует расход топлива в соответствии с потоком воздуха двигателя. Система с непрерывным потоком позволяет использовать пластинчато-роторный насос, который не требует синхронизации с двигателем.

Рисунок 10. Система континентальной/TCM-впрыскивания

Pula-Incragion Pulf

. для подключения к системе привода вспомогательных агрегатов двигателя. [Рис. 11] Предусмотрен подпружиненный предохранительный клапан диафрагменного типа. Мембранная камера предохранительного клапана вентилируется до атмосферного давления. Разрез топливного насоса высокого давления показан на рис. 12.

Figure 11. Fuel pump
Figure 12. Fuel injection pump

Fuel enters at the swirl well of паровой сепаратор. Здесь пар отделяется вихревым движением, так что к насосу подается только жидкое топливо. Пар всасывается из верхней части вихревого колодца небольшой струей топлива под давлением и направляется в линию возврата паров. Эта линия переносит пары обратно в топливный бак.

Игнорируя влияние высоты над уровнем моря или условий окружающего воздуха, использование объемного насоса с приводом от двигателя означает, что изменение частоты вращения двигателя пропорционально влияет на общий расход насоса. Поскольку насос обеспечивает большую производительность, чем требуется двигателю, требуется рециркуляционный путь. За счет размещения калиброванного отверстия и предохранительного клапана на этом пути давление подачи насоса также поддерживается пропорционально частоте вращения двигателя. Эти положения обеспечивают надлежащее давление насоса и подачу топлива для всех рабочих скоростей двигателя.

Обратный клапан предназначен для того, чтобы давление нагнетательного насоса в системе могло обходить насос с приводом от двигателя для запуска. Эта функция также подавляет образование паров топлива при высоких температурах окружающей среды и позволяет использовать вспомогательный насос в качестве источника давления топлива в случае отказа насоса с приводом от двигателя.

Блок управления подачей топлива/воздуха

Функция узла управления подачей топлива/воздуха заключается в контроле впуска воздуха в двигатель и установке измеренного давления топлива для правильного соотношения топливо/воздух. Воздушный дроссель установлен на входе в коллектор, а его дроссельная заслонка, расположенная рядом с регулятором дроссельной заслонки в самолете, регулирует подачу воздуха к двигателю. [Рисунок 13]

Рисунок 13. Блок управления топливно-воздушным потоком

Дроссельный узел представляет собой алюминиевую отливку, которая содержит вал и дроссельную заслонку. Размер литейного отверстия соответствует размеру двигателя, и не используется трубка Вентури или другие ограничения.

Блок управления подачей топлива

Корпус управления подачей топлива изготовлен из бронзы для лучшего сцепления с клапанами из нержавеющей стали. Его центральное отверстие содержит дозирующий клапан на одном конце и клапан управления смесью на другом конце. Каждый поворотный клапан из нержавеющей стали имеет канавку, которая образует топливную камеру.

Топливо поступает в блок управления через сетчатый фильтр и проходит к дозирующему клапану. [Рисунок 14] Этот поворотный клапан имеет кулачковую кромку на внешней части торца. Положение кулачка в отверстии подачи топлива контролирует подачу топлива к клапану коллектора и форсункам. Порт возврата топлива соединяется с обратным каналом центральной дозирующей пробки. Совмещение клапана управления смесью с этим каналом определяет количество топлива, возвращаемого в топливный насос.

Рис. 14. Двойной топливный регулятор в сборе

При подсоединении корректирующего клапана к воздушной заслонке расход топлива и воздуха правильно пропорционален расходу топлива/воздуха. Уровень управления установлен на валу клапана управления смесью и подключен к управлению смесью в кабине.

Клапан топливного коллектора

Клапан топливного коллектора содержит впускное отверстие для топлива, мембранную камеру и выпускные порты для линий к отдельным форсункам. [Рис. 15] Подпружиненная диафрагма управляет клапаном в центральном отверстии корпуса. Давление топлива обеспечивает силу для перемещения диафрагмы. Мембрана закрыта крышкой, удерживающей нагрузочную пружину диафрагмы. Когда клапан опущен на притертое седло в корпусе, топливопроводы к цилиндрам перекрыты. Клапан просверлен для прохода топлива из диафрагменной камеры в его основание, внутри клапана установлен шаровой кран. Все поступающее топливо должно проходить через мелкое сито, установленное в диафрагменной камере.

Рисунок 15. Узел клапана топливного коллектора к отдельным цилиндрам. В клапане топливного коллектора диафрагма поднимает или опускает плунжерный клапан, чтобы одновременно открывать или закрывать каналы подачи топлива в отдельные цилиндры.

Форсунка для выпуска топлива

Топливная форсунка расположена в головке блока цилиндров, выходное отверстие направлено во впускной канал. Корпус сопла содержит просверленный центральный канал с раззенковкой на каждом конце. [Рис. 16] Нижний конец используется как камера для смешивания топлива и воздуха перед тем, как струя выйдет из сопла. В верхнем отверстии имеется съемное отверстие для калибровки сопел. Форсунки калибруются в нескольких диапазонах, и все форсунки, поставляемые для одного двигателя, относятся к одному диапазону и обозначаются буквой, отштампованной на шестиграннике корпуса форсунки.

Рисунок 16. Топливные форсунки

Просверленные радиальные отверстия соединяют верхнюю раззенковку с наружной частью корпуса форсунки. Эти отверстия входят в расточенное отверстие над отверстием и всасывают воздух через цилиндрический экран, установленный на корпусе сопла. Экран напрессован на корпус форсунки и проходит на большую часть сетки фильтра, оставляя отверстие у дна. Это обеспечивает как механическую защиту, так и резкое изменение направления воздушного потока, что предотвращает попадание грязи и посторонних материалов внутрь сопла.

СВЯЗАННЫЕ СООБЩЕНИЯ

Впрыск топлива – Инженерная школа USC Viterbi

Химическая технология Выпуск IV Транспорт

Об авторе: Брэндон Францке

В марте 2002 года Брэндон Францке был студентом факультета биомедицины/электротехники со специализацией в области неврологии. После выпуска он намерен поступить в аспирантуру и получить докторскую степень в области ЭЭ для работы в области нейропротезирования.

Внедрение системы впрыска топлива в автомобилях стало основным фактором увеличения мощности двигателей в последние годы. Однако его внедрение изначально было медленным из-за присущих системе сложностей. Компьютерная интеграция произвела революцию в конструкции этой автомобильной подсистемы и стала бортовым контроллером самой системы впрыска топлива. Современные автомобили вынуждены соответствовать строгим стандартам выбросов и топливной экономичности, так как в 19 веке были введены требования о чистом воздухе. 70-х годов, и это по большей части было достигнуто за счет усовершенствования систем подачи топлива в двигатель. Мы начнем с изучения основных концепций автомобильного двигателя внутреннего сгорания и обсудим функции и принципы, лежащие в основе системы впрыска. Затем мы видим, как интеллектуальное компьютерное управление системой впрыска топлива фактически заставило карбюратор устареть.

Введение

Желание создавать мощные автомобили является движущей силой развития технологии двигателей. До начала 19Дополнительная мощность в 70 лошадиных сил была получена за счет более крупных и дорогих двигателей [1], которые исходили из убеждения, что сжигание большего количества бензина — лучший способ увеличить доступную мощность. Однако к началу 1970-х гг. города и села стали покрываться густым черным смогом, побочным продуктом горения [2]. В попытке обратить это вспять были приняты правительственные постановления США, которые повысили минимальные требования к эффективности использования топлива для автомобилей. Чтобы соответствовать этим новым стандартам, производители автомобилей были вынуждены уменьшить размер шасси и двигателя, пытаясь уменьшить общий вес, что в конечном итоге повысило эффективность использования топлива. Это привело к значительной потере мощности и бодрости духа.

Однако с появлением автоматизированных систем управления производители автомобилей обнаружили, что можно создавать двигатели меньшего размера с запасом мощности за счет повышения эффективности процесса сгорания [1]. Большинство этих достижений связано с точным определением времени поступления топлива в камеру сгорания, а также с определением времени самого зажигания [3].

Цикл Отто

Принципы, лежащие в основе двигателя внутреннего сгорания, сосредоточены на одной концепции: сжигание химического вещества для получения энергии, а затем использование этой энергии для выполнения работы. Эта энергия получается путем сжигания бензина, заправленного в автомобиль. В автомобиле для извлечения работы из бензина используется контролируемый процесс, называемый 4-тактным циклом или циклом Отто. Цикл Отто можно рассматривать как четыре отдельных шага:
1. Впуск: Поршень движется сверху вниз, создавая небольшой вакуум. Это втягивает топливо и воздух в камеру. Когда поршень достигает нижней точки своего хода, впускной клапан закрывается. Это положение обычно называют нижней мертвой точкой.
2. Сжатие: впускной клапан закрывается, поршень движется вверх и создает давление в топливно-воздушной смеси. Электрическая искра воспламеняется, чтобы сжечь бензин. Смесь сгорает очень быстро и расширение выхлопных газов вызывает быстрый рост давления в системе
3. Мощность: По мере увеличения давления поршень толкается вниз. Это единственный момент во время цикла, когда полезная мощность фактически вырабатывается двигателем.
4. Выхлоп: поршень начинает двигаться вверх. Одновременно открывается клапан для выпуска выхлопных газов [3].

Armchoir/Wikimedia Commons

Рисунок 1: Изображение цикла Отто.

Когда двигатель проходит этапы 1-4 один раз, это называется циклом (рис. 1), и, повторяя цикл за циклом, двигатель может использовать энергию, полученную от множества небольших воспламенений, для движения автомобиля. Движение реального транспортного средства является результатом преобразования циклического движения поршня во вращательное движение колес. Это распределение облегчается за счет использования коленчатого вала, который соединен непосредственно с поршнями. Когда поршни движутся вверх и вниз, коленчатый вал вынужден вращаться. Это вращение затем косвенно связано с колесами передним и задним дифференциалами после включения трансмиссии. В конечном счете, в результате, когда двигатель работает, колеса можно заставить вращаться, включив передачу автомобиля.

Управление циклом водителя

Теперь мы можем посмотреть на этот процесс с точки зрения знакомых реакций автомобиля во время вождения. Нажимая на газ, вы говорите автомобилю впустить в поршень больший объем бензина и воздуха. Затем, когда вы отпускаете педаль, подается меньше газа. С помощью этого механизма водитель может контролировать количество энергии, получаемой двигателем, и, таким образом, энергию, преобразуемую в движение. До недавнего времени устройством, управляющим механизмом впуска топлива, был карбюратор. Однако с тех пор система впрыска топлива оказалась более эффективной и надежной и сделала карбюратор устаревшим. Каждое из этих устройств контролирует подачу топлива, открывая или закрывая устройство, называемое дроссельной заслонкой, которое регулирует точный объем бензина и воздуха, поступающих в поршень.

Традиционные методы увеличения доступной мощности от цикла Отто

В автомобилях до 1970 года больше энергии получали от каждого такта с помощью двух механизмов: за счет увеличения размера поршня и количества кислорода, доступного во время цикла сгорания.

Большие поршни

Увеличивая размер поршня, мы, в свою очередь, можем увеличить размер хода [4]. На самом деле в этом есть два преимущества: 1. за счет увеличения хода можно доставить больше бензина, и 2. доставленный бензин можно сжать сильнее, вырабатывая больше энергии. Здесь мы получаем такие числа, как 450 кубических сантиметров (кубических сантиметров) или 2,3 литра — эти числа относятся к рабочему объему, который представляет собой разницу объема поршня между НМТ (самое низкое) и его верхним положением. Однако, чтобы увеличить ход поршня, необходимо также увеличить поршневую камеру. Для более крупных двигателей требуется больше сырья, в основном стали, и поэтому они становятся непомерно дорогими. Кроме того, большая часть дополнительной энергии, полученной за счет увеличения размера поршня, теряется. Это связано с тем, что требуется больше энергии для изменения направления более массивного поршня вверх вниз во время цикла, что снижает общую эффективность использования топлива [4]. Кроме того, эффективность использования топлива может упасть настолько, что она упадет ниже минимального уровня, установленного федеральным законодательством, и в этом случае автомобиль не может считаться «продаваемым» в Соединенных Штатах.

Больше кислорода

Второй вариант — увеличить эффективность самого процесса горения. В процессе горения фактически сгорает не все топливо [5]. Это называется неполным сжиганием и приводит к потере эффективности. Кислород необходим для быстрого и эффективного горения вещей. Вы можете наблюдать это, когда дуете на горящую спичку или слегка поджигаете, и пламя становится больше. Обычно воздух и топливо поступают в камеру сгорания из-за градиента давления (пониженное давление внутри поршня из-за движения вниз на первом этапе цикла Отто), но это можно ускорить с помощью турбонаддува и нагнетателя [5]. . Это гораздо более простой способ получить относительно большое количество энергии от двигателя без существенной нагрузки. Поскольку неэффективно сжигаемое топливо обычно связано с вредными выбросами, такими как угарный газ и сульфиды, добавление устройств для повышения эффективности использования топлива имеет дополнительные преимущества за счет создания более чистых автомобилей [5].

Системы впрыска топлива

Несмотря на повышение эффективности, которое можно получить за счет увеличения подачи кислорода к двигателю, существуют определенные ограничения, которые нельзя преодолеть грубой силой. Одна из причин заключается в том, что системы двигателя с наддувом (например, с турбонаддувом или наддувом) состоят из насосов, которые перед воспламенением нагнетают кислород в поршень [5]. Насосы требуют значительного количества энергии для работы и имеют серьезные проблемы с перегревом. Из-за этого они часто выходят из строя в результате тепловой усталости и, таким образом, требуют дорогостоящего обслуживания, чтобы оставаться в рабочем состоянии. Системой, которая работает совместно с механизмами наддува для повышения эффективности, является впрыск топлива [6]. Концепция впрыска топлива заключается в распылении тонкого тумана бензина (например, из аэрозольного баллончика) в поршень, в отличие от больших капель, которые обеспечивают традиционные впускные клапаны карбюратора [6]. При таком впрыске топлива «между» частицами тумана впрыскивается больше кислорода. В конечном итоге это увеличивает эффективность сгорания и доступную мощность. Из-за этих неоспоримых преимуществ карбюраторы были полностью сняты со всех автомобилей, производимых в США, начиная с 19 века.90 и заменены на системы впрыска топлива [7].

Впрыск топлива работает по общеизвестному принципу: гораздо легче сжечь более мелкие ветки и листья (т. е. распыленный бензин, подаваемый с помощью впрыска топлива), чем большое полено (крупную каплю из стандартных впускных клапанов). Однако существует практический и оптимальный предел размера частиц тумана — около 10 микрометров (примерно половина ширины человеческого волоса) [5]. Из-за стремления получить как можно более высокий КПД от сжигаемого бензина, ограниченного точными техническими условиями, такими как размер частиц, системы впрыска топлива стали очень сложными. Это объясняет медленное развитие таких систем до недавнего времени, когда для моделирования их поведения можно было использовать компьютеры.

Расхождение систем впуска топлива

Buschtrommler/Wikipe​dia Commons

Рисунок 2: Тип двигателя M88 от BMW M1.

С введением системы впрыска одновременно была введена новая степень свободы, что привело к расхождению в типах двигателей внутреннего сгорания. Первый называется гомогенным. Этот тип двигателя внутреннего сгорания обсуждался до сих пор, в котором бензин просто подается в поршень через простой впускной механизм. Затем он диффундирует, создавая гомогенную [5] смесь топлива и кислорода по всей камере. Напротив, система впрыска топлива позволяет производителю точно контролировать временное (точное время на этапе 1 цикла Отто, когда впрыскивается топливо), а также пространственное размещение (форма струи, распыляемой форсункой) распылитель топлива. Этот новый тип двигателя называется двигателем со стратифицированным зарядом [5]. В этих двигателях «целью является расслоение заряда в камере сгорания, т. е. наличие богатого (топливного) кармана внутри большего объема слабой топливно-воздушной смеси и обеспечение того, чтобы богатая, легко воспламеняющаяся область окружала камеру сгорания. искра в месте воспламенения» [5]. В целом эти двигатели дают очень желательные результаты, однако они в некоторой степени ограничены «точным контролем состава смеси и производственными затратами» [5].

Компьютеры и системы впрыска топлива

Системы автоматизированного проектирования (САПР)

В то время как промышленность проводила серьезные исследования в области впрыска топлива еще на раннем этапе выполнения мандатов по снижению загрязнения окружающей среды и повышению экономии топлива, в целом основные разработки были достигнуты путем проб и ошибок. [8]. Однако введение эпохи микрокомпьютеров устранило это препятствие в разработке и внедрении систем впрыска топлива, потому что теперь системы можно было смоделировать виртуальным ходом на компьютере, а затем модифицировать для работы с новыми параметрами за считанные минуты; это процесс, который занял бы недели или месяцы, поскольку штампы вырезались и отливались в соответствии с традиционной производственной практикой [9].]. Проектированию также способствовали сложные модели, которые предсказывали, как топливо и кислород будут взаимодействовать в поршне, и рассчитывали эффективность сгорания [10]. В дополнение к этим производственным преимуществам вскоре было замечено прямое повышение эффективности. Например, одно важное достижение в повышении эффективности было достигнуто, когда компьютерное моделирование показало, что путем впрыскивания топлива под разными углами можно получить гораздо более тонкий и более контролируемый туман [10].

Автоматизированное внедрение (CAI)

Цифровая логика и, в частности, микроконтроллеры (маленькие компьютеры) также произвели революцию в реальной реализации систем впрыска топлива. Раньше фактический механизм подачи топлива был механическим и создавался за счет того, что форсунка проталкивала бензин через гребенчатый фильтр, создавая относительно непостоянный туман. Однако с появлением современных технологий обработки можно точно контролировать время работы одной или даже нескольких отдельных форсунок в каждом поршне. Кроме того, время и количество выбрасываемого топлива могут варьироваться в зависимости от требований, предъявляемых водителем к двигателю. Honda внедрила эту технологию впрыска в своей линейке VTEC под торговой маркой. VTEC расшифровывается как Variable Valve Timing and Lift Electronic Control и представляет собой систему, которая постоянно отслеживает требования, предъявляемые к двигателю. Затем он регулирует не только время впрыска топлива, но и другие важные факторы, такие как продолжительность открытия впускного клапана, называемую его «шириной импульса». По словам Honda, «технология [VTEC] решает старый компромисс между настройкой двигателя на максимальный крутящий момент или максимальную мощность и обеспечивает лучшее из обоих миров. С VTEC двигатель обеспечивает достаточный крутящий момент на низких оборотах и ​​мощность на высоких оборотах, не жертвуя ни тем, ни другим».

Дополнения типа VTEC приближают нас к появлению модернизированного хот-рода. Автомобили будут оснащены компьютеризированными системами впрыска топлива, новейшими компьютерными датчиками и улучшенной функциональностью. Это в конечном итоге вернет им силу и мускулы, которыми они когда-то обладали и которых желают американские водители, при одновременном снижении вредных выбросов и повышении общей эффективности каждого сожженного галлона бензина.

Каталожные номера

    • [1] Историческое место старинных грузовиков Chevy, история двигателей Chevy. [24 октября 2001].
    • [2] Ф. Шафер и Р. ван Бассюйен. Снижение выбросов и расхода топлива в автомобильных двигателях.  Нью-Йорк: Springer-Verlag, 1993.
    • [3] Уильям Б. Риббенс. Понимание автомобильной электроники. Бостон: Newnes, 1998.
    • [4] Дэвид Визард. Как создать лошадиную силу . Оцеола, Висконсин: Motorbooks International, 1990.
    • .
    • [5] М. Поултон. Технология экономичных автомобилей. Бостон: Публикации по вычислительной механике, 1997.
    • [6] Петтит
    • [7]  Как работает система впрыска топлива. [28 октября 2001 г.].
    • [8] Линда Трего. «Быстрые разработки прототипов». Автомобильная техника, стр. 110-111, сентябрь 1996 г.
    • .
    • [9] Линда Трего. «Параллельные инженерные инструменты». Автомобильная техника, стр. 100-108, ноябрь 1996 г.
    • .
    • [10] Эл Деммлер. «Разработка соленоида управления впрыском топлива». Автомобильная техника, стр. 63, 19 ноября.97.
    • [11] Юго-Западный научно-исследовательский институт, 03 Брошюра о технологии распыления. [23 октября 2001 г.].

Что такое топливная форсунка?

Компания Bosch создала форсунку для дизельного топлива в 1920 году в ответ на рост спроса и цен на топливо. С момента введения впрыска топлива в транспортных средствах скорость и ускорение многих преувеличены, в результате чего усовершенствования в технологии сделали двигатели более экономичными, эффективными и создали более высокую мощность. Эта технология, хотя и обновленная, сегодня используется как в дизельных, так и в бензиновых двигателях.

Что такое топливная форсунка?

Топливная форсунка — это устройство для распыления и впрыска топлива в двигатель внутреннего сгорания. Форсунка распыляет топливо и нагнетает его непосредственно в камеру сгорания в определенный момент цикла сгорания. Более новые форсунки также могут измерять количество топлива в соответствии с указаниями и контролем электронного модуля управления (ECM). Бензиновые топливные форсунки теперь выступают в качестве альтернативы карбюратору, в котором воздушно-топливная смесь всасывается за счет разрежения, создаваемого ходом поршня вниз.

Как правило, дизельные топливные форсунки устанавливаются в головке двигателя с наконечником внутри камеры сгорания, размер отверстий, количество отверстий и углы распыления могут варьироваться от двигателя к двигателю.

Бензиновые форсунки могут быть установлены во впускном коллекторе (многоточечный впрыск, корпус дроссельной заслонки или, в последнее время, непосредственно в камеру сгорания (GDI).

Зачем нужны топливные форсунки?

Топливные форсунки являются необходимыми компонентами двигателя, потому что :

· Принцип работы двигателей внутреннего сгорания гласит, что чем лучше качество топливно-воздушной смеси, тем лучше сгорание, что обеспечивает более высокий КПД двигателя и более низкий уровень выбросов. 0003

· Неэффективное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания. Это приводит к неправильному распространению пламени сгорания из-за неисправности, известной как «детонация», а также к более высоким выбросам.

· Несгоревшее топливо в виде углерода или несгоревших газов и частиц внутри камеры сгорания отрицательно влияет на эффективность (пробег) и выбросы автомобиля. Чтобы избежать этого, модернизированная технология впрыска топлива стала необходимой.

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных механизмов впрыска топлива, таких как впрыск топлива через дроссельную заслонку, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые варьируются в зависимости от применения.

Основы впрыска топлива

Существует 2 типа топливных форсунок:

1. Форсунки для дизельного топлива

Современные форсунки для дизельного топлива используются для непосредственного распыления и впрыскивания или распыления дизельного топлива (более тяжелого топлива, чем бензин). в камеру сгорания дизельного двигателя для воспламенения от сжатия (без свечей зажигания).

Для дизельных топливных форсунок требуется гораздо более высокое давление впрыска (до 30 000 фунтов на кв. дюйм), чем для бензиновых форсунок, поскольку дизельное топливо тяжелее бензина, и для распыления топлива требуется гораздо более высокое давление.

2. Бензиновые топливные форсунки

Бензиновые топливные форсунки используются для впрыска или распыления бензина непосредственно (GDI) или через впускной коллектор (многопортовый) или корпус дроссельной заслонки в камеру сгорания для воспламенения от искры.

Конструкция бензиновых форсунок различается в зависимости от типа… в более новых форсунках GDI используется сопло с несколькими отверстиями, а в многоканальном корпусе дроссельной заслонки используется сопло с бессмысленным стилем. Давление впрыска бензина намного ниже, чем у дизеля… 3000 фунтов на квадратный дюйм для GDI и 35 фунтов на квадратный дюйм для типа Pinter.

Основы дозирования топлива — форсунки

Существует 2 типа дозирования топлива (контроль продолжительности впрыска, давления и времени подачи топлива) топливных форсунок. Современные двигатели имеют до 5 впрысков в каждом цикле сгорания… чтобы извлечь выгоду из эффективности и сокращения выбросов.

1. Топливные форсунки с механическим управлением

Механические топливные форсунки, в которых управление скоростью, количеством, синхронизацией и давлением топлива осуществляется механически с использованием пружин и плунжеров. Эти детали получают сигнал от кулачка или топливного насоса высокого давления.

2. Топливные форсунки с электронным управлением

Эти топливные форсунки имеют электронное управление, когда речь идет о количестве топлива, давлении и времени. Электронный соленоид получает данные от электронного модуля управления (ECM) автомобиля.

Конструкция топливных форсунок

Упрощенная конструкция топливной форсунки напоминает насадку садового шланга, которая используется для распыления воды на траву. Ту же задачу выполняет топливная форсунка, но разница в том, что вместо воды топливо распыляется и «распыляется» внутри двигателя, попадая в камеру сгорания.

Давайте разберемся в конструкции и работе топливной форсунки, рассмотрев топливные форсунки как с механическим, так и с электронным управлением.

Топливная форсунка с механическим управлением

Топливная форсунка с механическим управлением состоит из следующих частей:

· Корпус форсунки — внешний корпус или «оболочка», внутри которой расположены все остальные части форсунки. Внутренняя часть корпуса форсунки должна содержать точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для распыления и впрыска.

· Плунжер. В топливной форсунке может использоваться поршень, который используется для открытия или закрытия форсунки под действием давления топлива. Он управляется комбинацией пружин и прокладок.

· Пружины. Внутри топливных форсунок с механическим управлением используются одна или две пружины. К ним относятся:

1. Пружина плунжера. Движение плунжера вперед и назад управляется пружиной плунжера, которая сжимается из-за увеличения давления топлива. Когда давление топлива внутри топливной форсунки увеличивается до уровня, превышающего предварительно установленную комбинацию пружины и регулировочной шайбы, игла в форсунке поднимается, топливо распыляется и впрыскивается, при снижении давления форсунка закрывается.

2. Основная пружина. Основная пружина используется для управления давлением открытия впрыска. Основная пружина действует против действия давления топлива, создаваемого топливным насосом.

Топливная форсунка с электронным управлением

Это «интеллектуальный» тип топливной форсунки, которая управляется электронным блоком управления (ECM) двигателя, также известным как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей:

· Корпус форсунки. Как и у механически управляемой топливной форсунки, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.

· Плунжер. Как и в топливных форсунках с механическим управлением, плунжер может использоваться для открытия и закрытия форсунки, но в топливных форсунках с электронным управлением открытие форсунки управляется электронным способом с помощью электромагнитов или соленоидов.

· Пружина. Как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении до тех пор, пока не будет достигнуто давление впрыска, а затем, при необходимости, для закрытия сопла топливной форсунки.

· Электромагниты. В отличие от топливных форсунок с механическим управлением, форсунки этого типа оснащены электромагнитами или соленоидами вокруг плунжера, которые управляют открытием форсунки. Это делается путем получения электронного сигнала от электронного модуля управления двигателем через электронное соединение, соединяющее топливную форсунку с электронным модулем управления двигателем.

· Электронный штекер/соединение. Топливная форсунка с электронным управлением имеет разъем, через который электронный сигнал от ECM двигателя передается на форсунки. Это открывает форсунку для распыления топлива.

Распространенные проблемы и неисправности турбонагнетателя

Распространенные проблемы с топливной форсункой

Принцип электронного впрыска топлива

Принцип, который используется в большинстве автомобилей для регулирования топливных форсунок, следующий:

Одноканальная многоточечная система или «одновременный впрыск»

Цель этого:

Только один драйвер/транзистор запускает все форсунки одновременно.

Это также означает: Все форсунки электронно соединены параллельно друг с другом.

Форсунка впрыскивает относительно большое количество топлива. Поэтому время открытия короткое, но частота последовательностей включения и выключения высока. А частое включение и выключение форсунки/форсунок вызывает турбулентность. Турбулентность вместе с высоким коэффициентом дезинтеграции/распыления топлива улучшит действие смеси газ/жидкость стадии. Мы сейчас говорим о многоточечной системе! Затем все форсунки открываются и закрываются одновременно. Невозможно синхронизируйте каждый цилиндр так, чтобы каждая форсунка распыляла впускное отверстие только тогда, когда оно открыто — для этого требуется последовательная система.

Каждая форсунка находится под давлением топлива, и время открытия очень короткое. Время открытия составляет от 1 мс до 10 мс в зависимости от производителя. ваша система и нагрузка на двигатель. Время закрытия форсунки составляет от 50 мс до 100 мс (на холостом ходу).

Термины «время открытия» и «время закрытия» здесь (и в соответствующих документах с этого веб-сайта) эквивалентны характеристики сигнала — не время открытия или закрытия клапана топливной форсунки. На самом деле можно учитывать как ширину импульса, так и фактическое время открытия таким же образом, но позвольте мне объяснить проблему более подробно: Эффективное время открытия топливной форсунки или интервал, с которым форсунка впрыскивает топливо, занимает место через некоторое время после электрического импульса. Причина такого поведения зависит от электрической индукции в катушке форсунки и механической инерции. задержка составляет примерно 1 мс, а время, необходимое для начала движения клапана, называется мертвым временем или временем запаздывания. Когда электрический импульс закончится, клапан начинают закрываться, но опять же, требуется время, прежде чем клапан закроется. Хотя это время в основном имеет ту же продолжительность, что и интервал мертвого времени, но, как правило, короче. Однако производители топливных форсунок гарантируют, что эти задержки не влияют на линейность. Задержки (или время задержки) варьируются в зависимости от производителем, но масса топлива на единицу всегда зависит от изменений электрического сигнала по линейной функции. Это только в очень короткие часы работы в качестве инжектор может быть нелинейным. Подробнее о линейности форсунки далее на странице.

Частота открытия форсунок зависит от оборотов двигателя. Так что, если скорость/об/мин увеличивается, частота делает то же самое. Время работы также зависит от нагрузки двигателя, как я уже сказал. Никакой связи между частотой и временем открытия нет. Вместо этого они работают совершенно независимо друг от друга. Другой.

Если в качестве топлива используется этанол, каждая форсунка должна быть открыта дольше, чем обычно. Эта проблема была бы легкой проблемой для вычислителя топлива в двигателе, но дополнительные количество топлива слишком далеко от нормальных вариаций бензина разного качества, поэтому компьютер вскоре достигает предела, и этот предел также отличается зависит от изготовления топливного компьютера.

Это просто ограничение электроники, не более того, но есть объяснение как устроить вот такую ​​систему и заклинает собственно для безопасность. Когда компьютер достигает предела того, что он считает слишком большим количеством топлива, он интерпретирует компьютер, что это, вероятно, утечка топлива. Это не в норме и, следовательно, также загорается светодиод неисправности двигателя.

Идея в том, что такая индикация может предотвратить несчастный случай — пожар.

В Интернете ходили слухи, что нельзя увеличивать время открытия форсунки, так как импульсы попадают внутрь каждой другой, когда двигатель достигает определенной скорости. Интерпретируйте рисунок ниже; вы можете легко получить эту идею. На самом деле расстояния между каждым зазором/интервалом равны больше. Если мы запустим двигатель на холостом ходу и посмотрим, как долго может быть открыт впускной клапан, то скорость холостого хода составит около 800 об/мин — это будет около 13 об/сек. Впускное отверстие открыто на пол-оборота коленчатого вала каждые два круга, 1/(13×2) секунды — это 38 мс. Время закрытия или интервал до следующего импульса будет быть 38×3 = 114 мс. Будет ли у нас последовательная система, если у каждой форсунки будет 38 мс для впрыска нужного количества топлива? Сравните тогда с многоточечной системой у которых время открытия на холостом ходу около 2 мс! Для последовательной системы все форсунки синхронизированы, а время открытия немного больше, скажем, 3 мс. Вместе с временем закрытия мы имеем 3 мс плюс время закрытия 114 мс. Таким образом, одна форсунка открыта 2,5% от максимального времени, в течение которого она может быть открыта.

Если мы выберем скорость 10000 об/мин, то будет 167 об/сек. Время открытия впускного клапана становится равным 3 мс, а интервал равен 9 мс. Затем инжектор может оставаться открытым 25% от максимального времени только во время такта впуска. Разве производитель двигателя не рассчитывал бы на определенный избыточный размер, когда нагрузка на двигатель и скорость максимальная? Предположим, что форсунка открыта на 50% при максимальной нагрузке. Тогда еще есть место для удвоения топлива, если вы хотите настроить двигатель! Вместо этого для настройки мы увеличиваем длительность импульса на 40 % для форсунки, которая открыта 50 % от максимального времени, поэтому общее время составит 70 % и то есть еще 30% времени, чтобы выжать из триммера (при максимальной нагрузке). Я думаю, что есть место, как вы думаете?

Дело в том, что не хватает с линейным изменением.

При использовании низкоэнергетического топлива возникает небольшая проблема.

Кривая, применимая к бензину, не применима ко всем низкоэнергетическим видам топлива. Если ваш компьютер откроет дроссельную заслонку для нового топлива, как это было для бензина, двигатель либо обогащается, либо обедняется, по крайней мере, на короткое время, прежде чем компьютер отрегулирует дозировку. Лямбда-зонд знает, что двигатель получил неправильное количество топлива, и система перезагрузится.

Однако при использовании этанола или E85 можно рассчитывать с линейным изменением. Компьютер может открываться для топлива, как это было для бензина — тогда он работает правильно, т.е. следуйте тому же графику (сопоставлению), что и бензин. Некоторые проблемы остаются — и это относится к настройкам при отключенном лямбда-контроле.

Отображение обычно достаточно хорошее, если вы имеете дело с обычными коммерческими транспортными средствами, но гораздо важнее, насколько большим должно быть расширение импульса. сложно предугадать — зависит от линейности форсунки или точнее; наклон графика линейности. Если увеличить длину импульса на 30%, так что это не значит, что топливо увеличится на 30%. Может быть, количество увеличится только на 25% или, может быть, увеличение дойдет до 40%…

Важно понимать, что у топливной форсунки есть время запаздывания перед открытием. Синий инжектор имеет мертвое время 0,8 мс, но как только он открывается, он действует линейно почти сразу. Нелинейная часть обычно присутствует после времени открытия двигателя на холостом ходу и поэтому может быть проигнорирована. Ширина импульса менее 0,8 мс не повлияет на форсунки в приведенном выше примере. Линейность изменяется, если напряжение питания изменяется, но топливный компьютер может компенсировать это довольно легко. С помощью моих схем IPE можно решить, какое расширение импульса лучше всего соответствует линейности форсунки через один или два потенциометры. Хотя линейность импульсов также может быть изменена, но обычно ее следует поддерживать на как можно более высоком уровне.

На этом изображении показано нечто среднее между обычной многоточечной системой и последовательной системой. Один канал — это два канала — два многоточечных канала… или вы можете также видеть это как разделение на группы. Двигатель V8 может иметь такую ​​конфигурацию, в которой два водителя делят одну половину форсунок.

Однако на этом рисунке не показан принцип работы двигателя V8.


РАЗНЫЕ СИСТЕМЫ ВПРЫСКА ТОПЛИВА

Одноточечный впрыск или впрыск через корпус дроссельной заслонки (TBI)

Самый ранний и самый простой тип впрыска топлива, одноточечный просто заменяет карбюратор одной или двумя форсунками. в корпусе дроссельной заслонки, который является горловиной впускного коллектора двигателя. Для некоторых автопроизводителей одноточечный впрыск был ступенькой к более сложная многоточечная система. Хотя они и не такие точные, как последующие системы, TBI измеряет топливо лучше, чем карбюратор, они дешевле и проще. обслуживать.


Распределенный или многоточечный впрыск топлива (MPFI)

Многоточечный впрыск топлива выделяет отдельную форсунку для каждого цилиндра, сразу за его впускным отверстием, поэтому систему иногда называют портовой инъекцией. Выстрел паров топлива так близко к впускному отверстию почти гарантирует, что они будут полностью втянуты в топливный бак. цилиндр. Основное преимущество заключается в том, что MPFI измеряет топливо более точно, чем модели TBI, лучше достигая желаемого соотношения воздух/топливо и улучшая все связанные с этим параметры. аспекты. Кроме того, это практически исключает возможность конденсации или скопления топлива во впускном коллекторе. С TBI и карбюраторами впускной коллектор должен быть спроектирован так, чтобы отводить тепло двигателя, чтобы испарять жидкое топливо. В двигателях, оснащенных MPFI, в этом нет необходимости, поэтому впускной коллектор может изготавливаться из более легкого материала, даже пластика. Результатом является постепенное улучшение экономии топлива. Кроме того, там, где должны быть обычные металлические впускные коллекторы расположенные над двигателем для отвода тепла, те, которые используются в MPFI, могут быть размещены более творчески, предоставляя инженерам гибкость проектирования.


Последовательный впрыск топлива (SFI)

Последовательный впрыск топлива, также называемый последовательным впрыском топлива (SPFI) или синхронизированным впрыском, представляет собой тип многоточечного впрыска. Хотя базовый MPFI использует несколько форсунок, все они распыляют топливо одновременно или группами. В результате топливо может «болтаться» в порту на протяжении до 150 миллисекунд при работе двигателя на холостом ходу. Может показаться, что это не так уж и много, но это достаточный недостаток, который инженеры устранили: Последовательная подача топлива впрыск запускает каждую форсунку независимо. Как и свечи зажигания, они распыляют топливо непосредственно перед открытием впускного клапана или в момент его открытия. Кажется незначительный шаг, но повышение эффективности и выбросов происходит очень небольшими дозами.


Непосредственный впрыск

Непосредственный впрыск максимально расширяет концепцию впрыска топлива, впрыскивая топливо непосредственно в камеры сгорания, мимо клапанов. Более распространенный в дизельных двигателях, непосредственный впрыск начинает появляться в конструкциях бензиновых двигателей и является обычным явлением в наши дни, иногда называемым DIG для бензина с непосредственным впрыском. Опять же, дозировка топлива даже точнее, чем в других схемах впрыска, а непосредственный впрыск дает инженерам еще еще одна переменная, влияющая на то, как именно происходит сгорание в цилиндрах. Наука о конструкции двигателя тщательно изучает, как циркулирует топливно-воздушная смесь. в цилиндрах и как проходит взрыв от точки воспламенения. Такие вещи, как форма цилиндров и поршней; расположение портов и свечей зажигания; время, продолжительность и интенсивность искры; и количество свечей зажигания на цилиндр (можно больше одной) влияют на равномерность и полноту подачи топлива сгорает в бензиновом двигателе. Непосредственный впрыск является еще одним инструментом в этой дисциплине, который можно использовать в двигателях с низким уровнем выбросов, работающих на обедненной смеси.


Источник: Cars.com

Коммерческая тайна | Механическая коробка передач | Zeroshift

Электронный впрыск топлива

(EFI) около десяти лет назад навсегда вытеснил карбюраторы из производства новых автомобилей. Тем не менее, на самом деле мы можем проследить корни EFI задолго до этого — к системам, разработанным Робертом Бошем в конце 60-х и начале 70-х годов для Volkswagen и других европейских автопроизводителей. (Большая часть оригинальной инженерной работы была выполнена корпорацией Bendix в США еще в 19 веке.50s.) Самыми ранними установками Bosch были системы D-Jetronic и L-Jetronic, и мы все еще можем найти их принципы работы в автомобилях 2001 модельного года.

Отечественные автопроизводители широко применяли электронный впрыск топлива на серийных автомобилях в начале 80-х: Ford в 83-м, GM и Chrysler в 83-84. Японские производители также подхватили EFI в конце 70-х и начале 80-х годов. Сегодня EFI является универсальным стандартом практически для всех легковых и легких грузовиков мира.

Требования к двигателю не изменились

Четырехтактному двигателю внутреннего сгорания с циклом Отто около 125 лет, и принципы его работы за все это время не изменились. Двигатели с циклом Отто нуждаются в разных соотношениях воздуха и топлива для различных условий работы, и эти соотношения воздух / топливо являются мерой количества воздуха и бензина, потребляемых по весу. Таким образом, соотношение воздух/топливо 15:1 означает 15 фунтов воздуха на 1 фунт бензина. (Измеряется по объему, это будет около 9000 галлонов воздуха на 1 галлон бензина.)

Соотношение воздух/топливо для четырехтактных бензиновых двигателей может варьироваться от примерно 8:1 в самом богатом режиме до примерно 18,5:1 или 19:1 в самом бедном. Если соотношение выходит за пределы этого диапазона, двигатель не запускается. Наилучшие соотношения для максимальной мощности составляют примерно от 12:1 до 13,5:1. Наилучшая экономия топлива достигается при соотношении от 15:1 до 16:1. Для современных двигателей контроль выбросов является основной целью, поэтому используемое соотношение воздух/топливо представляет собой компромисс между сниженным уровнем выбросов и хорошей мощностью и экономичностью. Это соответствует соотношению 14,7:1, более известному как стехиометрия.

Основные части системы

Каждая топливная система — карбюраторная или инжекторная — имеет в основном одни и те же общие части или подсистемы: топливный бак, насос и трубопроводы, фильтры, воздухозаборник и фильтр, впускной коллектор и корпус дроссельной заслонки, компоненты дозирования топлива (карбюратор или инжекторные форсунки) и средства контроля выбросов в результате испарения. Добавьте еще один важный элемент для системы EFI — устройство измерения воздуха, к которому мы вернемся через минуту.

Работа двигателя с циклом Отто определяется движением поршней вверх и вниз внутри закрытых цилиндров, а открытие и закрытие впускных и выпускных клапанов синхронизировано с движением поршня распределительным валом. Это механическое движение позволяет двигателю накачивать воздух для процесса сгорания и выбрасывать отработавшие выхлопные газы. Количество воздуха, всасываемого двигателем, регулируется ногой водителя на педали, соединенной с механическим дроссельным клапаном. Этот фундаментальный факт управления воздушным потоком является общим как для карбюраторных, так и для инжекторных двигателей.

Дайте воздуху, дайте воздуху!

В карбюраторном двигателе разные области давления воздуха существуют в разных частях карбюратора и во впускном коллекторе. Эта разница в давлении воздуха, известная как перепад давления, воздействует непосредственно на бензин в поплавковой камере и на концы выпускных форсунок, дозируя топливо из карбюратора во всасываемый воздушный поток. Количество воздуха, нагнетаемого двигателем, напрямую влияет на количество бензина, подаваемого карбюратором. Карбюраторы элегантны в своей простоте и прекрасно работали сто лет. Однако сегодняшние требования к большему контролю за выбросами и экономии топлива требуют большей точности дозирования топлива. Электронное управление с помощью цифрового компьютера и топливных форсунок обеспечивает такую ​​точность.

Важным принципиальным отличием системы EFI от карбюратора является то, что в системе впрыска топливо перекрывается за форсунками, куда не может попасть давление воздуха. Однако топливо по-прежнему должно дозироваться в определенных соотношениях с всасываемым воздухом, поэтому системе EFI требуется какой-то способ электронного измерения воздуха. По сути, есть только три способа сделать это: измерение давления воздуха, измерение объема воздуха и измерение веса или массы воздуха.

Скорость-плотность лидирует…

Первые системы Bosch D-Jetronic основывались на электронных датчиках, которые измеряли давление воздуха во впускном коллекторе. Основными измерениями, используемыми для регулирования дозирования топлива, были давление во впускном коллекторе и частота вращения двигателя (об/мин). Этот тип системы EFI стал называться системой плотности скорости, потому что управление подачей топлива основывалось на частоте вращения двигателя и давлении воздуха (плотности) в коллекторе.

Давление воздуха рассчитывается как абсолютное давление в коллекторе (MAP), которое представляет собой разницу между атмосферным давлением и низким давлением в коллекторе, которое мы традиционно называем «вакуумом». Если компьютеру известны обороты двигателя и давление в коллекторе, он может рассчитать вес воздуха, нагнетаемого двигателем, и соответствующим образом дозировать топливо. Системы плотности скорости на основе датчика MAP по-прежнему являются одними из самых популярных систем EFI в производстве в новом столетии.

…С последующим измерением объема воздуха

В середине 70-х компания Bosch представила систему EFI с датчиком для измерения объема поступающего воздуха. Это была система L-Jetronic («L» для luft или «воздух» по-немецки), в которой использовался датчик с подвижной заслонкой, установленный выше по потоку от дроссельной заслонки в воздухозаборнике. Заслонка датчика перемещалась пропорционально потоку всасываемого воздуха и приводила в действие потенциометр, который подавал входной сигнал на компьютер EFI. Эти системы обычно называют системами с регулируемым воздушным потоком, и они использовались Ford и рядом азиатских и европейских производителей. Поскольку компьютер знает объем воздушного потока и скорость двигателя, он может рассчитать вес всасываемого воздуха и соответствующим образом дозировать топливо.

Почему бы просто не взвесить воздух?

Как в системах с регулированием плотности воздуха, так и в системах с регулированием расхода воздуха компьютер должен рассчитывать вес всасываемого воздуха на основе измерений давления или объема. Эти методы работают довольно хорошо, но система могла бы работать с еще большей точностью, если бы она могла напрямую взвешивать воздух. Вот как работают системы массового расхода воздуха (MAF).

Датчики массового расхода воздуха бывают нескольких типов: с нагреваемой проволокой, с нагреваемым толстопленочным резистором и датчиками воздушной турбулентности (вихрь Кармана). Все они используют сложные электронные методы измерения для фактического подсчета молекул воздуха. Поскольку молекулярная масса эквивалентна весу любого объекта (включая воздух) на поверхности земли, измерение массы воздуха эквивалентно измерению веса. Затем компьютер может напрямую и точно рассчитать соотношение воздух/топливо по весу.

Системы EFI с массовым расходом воздуха являются наиболее точными системами контроля топлива, но они также доставляют одни из самых хлопот из-за своей электронной сложности. К счастью, большинство ошибок, которые существовали в некоторых системах десятки лет назад, были исправлены, и системы MAF, похоже, станут стандартными системами измерения воздуха в будущем.

От разнообразия к единообразию

Пятнадцать-двадцать лет назад автопроизводители выпускали примерно одинаковое количество систем с впрыском топлива во впускной коллектор (PFI) и с впрыском через корпус дроссельной заслонки (TBI). Системы PFI поставлялись в нескольких вариантах конструкции с одинарным и двойным пламенем с различными форсунками, сгруппированными вместе. Группы форсунок и то, срабатывала ли каждая группа один или два раза для каждого четырехтактного цикла, усложняли отслеживание различных систем EFI. Чтобы еще больше усложнить жизнь, системы TBI имели либо одну, либо две форсунки, которые работали постоянно и либо одновременно, либо попеременно. Все это разнообразие постепенно исчезло, поскольку производители перешли к единой системе PFI, в которой каждая форсунка срабатывает последовательно в порядке зажигания цилиндра. Есть несколько веских причин для этой тенденции, которая значительно упростила процедуры обслуживания.

Системы TBI были в основном электронными карбюраторами. Короче говоря, инженеры в основном отрезали воздушный рожок и поплавковые камеры и заменили их одной или двумя инжекторными форсунками с электромагнитным управлением. Бензин выплескивался из форсунок через одну или две трубки Вентури в корпусе дроссельной заслонки и попадал во впускной воздушный поток. Топливо распылялось и испарялось, а затем смешивалось с воздухом в коллекторе, как в карбюраторном двигателе.

Системы TBI были экономичным и эффективным переходом от карбюраторов к впрыску топлива и лучше работали с электронным управлением с обратной связью, чем карбюраторы, но системы TBI разделяли некоторые недостатки карбюратора. Смешивание воздуха и топлива в коллекторе было неравномерным, и его было трудно контролировать при работе в очень горячем или очень холодном состоянии. Неравномерное распределение топлива по направляющим коллектора по-прежнему было проблемой для систем TBI, как и для карбюраторов. По этим и другим причинам производство TBI в значительной степени было прекращено к началу 9-го.0 с.

В середине-конце 80-х компьютеры управления двигателями сделали большой, но мало рекламируемый шаг вперед. Скорость компьютерной обработки и пропускная способность шины данных (вычислительная мощность) значительно увеличились. Модули управления двигателем могли обрабатывать больше информации и выдавать больше выходных команд быстрее, чем когда-либо прежде. Это сделало возможным последовательный впрыск топлива. Раньше контроллеры впрыска топлива не могли работать достаточно быстро, чтобы изменять ширину импульса форсунки и синхронизацию от одного цилиндра к другому. Таким образом, групповое или групповое срабатывание было правилом в ранних системах впрыска через порт, хотя более желательно последовательное срабатывание.

К счастью, эти достижения в компьютерных технологиях произошли, когда ограничения на выбросы были ужесточены еще раз. Изменения Закона о чистом воздухе начала 90-х годов и строгие бортовые диагностические требования OBD II сделали практически обязательным контроль и изменение дозирования топлива прямо на впускном клапане для каждого рабочего такта. Это возможно только при последовательном впрыске топлива.

Основы поиска и устранения неисправностей

Системы EFI с последовательным портом в современных серийных автомобилях подкреплены мощными встроенными диагностическими возможностями, помогающими точно определить системные проблемы. Даже более старые системы портов и TBI 15-20 лет назад имели модули управления двигателем (ECM), которые предоставляли коды неисправностей, самопроверки и потоки последовательных данных, чтобы помочь вам в устранении неполадок. ECM управляет дозированием топлива на основе комбинации нескольких входных сигналов. Это означает, что многие проблемы с датчиками и механическими факторами работы двигателя могут проявляться симптомами в топливной системе. В основном, однако, проблемы в самой топливной системе делятся всего на две категории: проблемы с контролем или дозированием воздуха и проблемы с подачей топлива.

Старомодные утечки всасываемого воздуха или вакуумные утечки нарушат управление подачей топлива EFI, как это происходило на карбюраторных двигателях почти сто лет. Вы можете обнаружить утечки на слух — просто прислушайтесь к ним — или обрызгав места предполагаемых утечек мыльной водой или раствором для мытья окон. Пропан тоже хорошо работает.

Среди наиболее распространенных проблем с дозированием топлива — загрязнение или засорение форсунок и неправильное давление топлива. Забитые или иным образом грязные портовые форсунки были большей проблемой в середине 80-х, чем сегодня. В бензинах той эпохи не было моющих присадок, необходимых для поддержания чистоты крошечных отверстий форсунок. Моющие средства, которые хорошо работали в карбюраторах, не сокращали его (буквально) в форсунках с впрыском топлива. Бензиновые компании быстро осознали эту проблему, и в течение нескольких лет количество случаев засорения форсунок значительно сократилось.

Улучшенные присадки к бензину и тонкая, но важная модернизация со стороны автопроизводителей также уменьшили еще одну проблему раннего впрыска через порт — отложения на обратной стороне впускных клапанов. Ранние форсунки PFI подавали топливо на концы впускных каналов и были направлены почти прямо на заднюю часть клапанов. Отложения имели тенденцию к образованию, что сильно ограничивало поток всасываемого воздуха. Небольшое изменение положения форсунок, чтобы топливо имело тенденцию «отскакивать» от клапанов, а также пересмотренные присадки к бензину уменьшили эту проблему. Хотя забитые форсунки и отложения на впускных клапанах встречаются не так часто, как раньше, не исключайте их из своего контрольного списка для устранения неполадок EFI.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *