Принцип работы охлаждения двигателя: Подрубрика сайта: Система охлаждения двигателя

Содержание

Система охлаждения двигателя: как она работает?

При работе автомобиля сгорает топливная смесь, освобождая огромное количество тепла. Чтобы не перегревался и не подвергался разрушению двигатель, в транспортные средства устанавливается система охлаждения (СО), состоящая из нескольких элементов, о функциях каждого из них расскажем подробно.

Работа системы охлаждения

Как только запускается мотор, начинают вращение лопасти помпы. Они принуждают охлаждающую жидкость (ОЖ) циркулировать по малому кругу обращения СО. Мотор прогревается и выходит на отметки рабочей температуры. После этого открывается термостат, ОЖ переходит в режим циркуляции по большому кругу СО, уже включая и радиатор. Уже в охлаждённом виде технические жидкости попадают в рубашку мотора. Если температура ОЖ поднимается до 100 градусов и выше, включается вентилятор, усиливающий воздушные потоки, которые проходят через радиатор, тем самым, делая процесс охлаждения намного эффективней. У автомобилей, выпущенных пару десятков лет назад, вентилятор соединён с валом помпы ремнём, и потому вращение происходит постоянно.


Что заливать в систему охлаждения?

В качестве ОЖ используются тосол или антифриз. Они имеют в составе химические элементы и соединения, не позволяющие воде превращаться в лёд даже при самых низких температурах. ОЖ также содержат вещества, благодаря которым предотвращается:

  • Вспенивание;
  • Появление коррозии и ржавчины;
  • Смазывается водяной насос.

А вот воду использовать в качестве ОЖ нельзя, поскольку она очень скоро разрушит металл СО. Нагреваясь, ОЖ увеличивается в объёме, и её излишки начинают выбрасываться в расширительный бачок, соединённый с горловиной радиатора гибким шлангом. Через расширительный бачок ОЖ заливают и, при необходимости, доливают.

В салоне машины есть ещё один радиатор, так называемая печка. Зимой автовладельцы, как правило, открывают заслонку печки и нагретая ОЖ циркулирует по теплообменнику, согревая и воздух салона в автомобиле.

СО довольно проста и практически не требует никакого обслуживания. При отсутствии утечек ОЖ система работает без проблем 2 года. По истечении двух лет ОЖ в системе следует заменять, и при этом постоянно отслеживать состояние патрубков: резина от старости может пересохнуть и растрескаться, и произойти это может в дороге. Тогда продолжать движение будет невозможно. Следовательно, через каждые 5 – 6 лет надо производить замену всех резиновых патрубков.

В транспортных средствах, выпущенных недавно, СО ещё работает и для:

  • Охлаждения масла;
  • Воздуха системы вентиляции;
  • Турбонаддува;
  • Кондиционера;
  • Печки салона;
  • Газа в рециркуляционной системе;
  • Рабочей жидкости АКПП.

Виды систем охлаждения

Нужно отметить, что современное автомобилестроение использует три вида систем охлаждения:

  • Жидкостную;
  • Воздушную;
  • Комбинированную.

Жидкостная СО, которая отводит тепло потоком жидкости, применяется чаще всех остальных. Она функционирует с гораздо меньшим шумом, чем её воздушная сестра, причём, равномерно и очень эффективно охлаждает детали мотора.

Типичные поломки в системе охлаждения

Поломки СО не относятся к неисправностям, с которыми движение запрещено, однако, каждый разумный автовладелец весьма заинтересован в продлении срока службы своего железного коня, и его сердца – двигателя. И в первую очередь, это касается необходимости интенсивного отвода тепла.

К самым распространённым причинам поломок в СО относится:

  • Течь;
  • Не герметичность.

Это может произойти из-за резкой смены температуры окружающей среды. Ещё одна популярная поломка – закоксованность шлангов и патрубков системы. Они теряют эластичность под воздействием тех же высоких температур. ОЖ может протекать и ввиду повреждений радиатора от удара, или в результате химического воздействия составляющими тосола. Из строя может выйти и термостат. Он находится в контакте с жидкостью, и потому коррозирует, а потом может и заклинить. Серьёзная неприятность для системы – поломка помпы, или циркуляционного насоса из-за некачественной запчасти, или износа. Понять и уловить это можно по характерному свисту подшипника. Это означает, что пришло время замены циркуляционного насоса. Иногда СО банально засоряется из-за отложения солей в каналах. Циркуляция ОЖ нарушается, отвод тепла при этом ухудшается, что приводит к перегреву двигателя.

Уход за системой охлаждения

Элементарные правила эксплуатации СО и их соблюдение позволяет автовладельцам избегать, или минимизировать негативное воздействие неисправностей на работу машины. Следует постоянно контролировать уровень охлаждающей жидкости в системе. Её объём может меняться, а зависит это от условий эксплуатации автомобиля. Если уровень ОЖ понижается постоянно, значит, нужно искать место утечки тосола. Нередко пятна ОЖ обнаруживаются на узлах и агрегатах в моторном отсеке.

Перегрев двигателя может происходить, когда:

  • Заклинивает термостат,
  • Засоряются каналы,
  • Уровня ОЖ в системе недостаточно.

Причину же недостаточного нагрева двигателя следует искать в заклиненном термостате.

Интерактивная схема системы охлаждения двигателя

1 — Пробка расширительного бачка. 2 — Расширительный бачок. 3 — Подводящий шланг радиатора. 4 — Шланг от радиатора к расширительному бачку. 5

— Отводящий шланг радиатора. 6 — Левый бачок радиатора. 7 — Алюминиевые трубки радиатора. 8 — Датчик включения электровентилятора. 9 — Правый бачок радиатора. 10 — Сливная пробка. 11 — Сердцевина радиатора. 12 — Кожух электровентилятора. 13 — Крыльчатка электровентилятора. 14 — Электродвигатель. 15 — Зубчатый шкив насоса. 16 — Крыльчатка насоса. 17 — Зубчатый ремень привода распределительного вала. 18 — Отводящий патрубок радиатора отопителя. 19 — Подводящая трубка насоса. 20 — Шланг подвода жидкости к пусковому устройству карбюратора. 21 — Блок подогрева карбюратора. 22 — Выпускной патрубок. 23 — Подводящий патрубок отопителя. 24 — Шланг отвода жидкости от блока подогрева карбюратора. 25 — Термостат. 26 — Шланг от расширительного бачка к термостату.

Зачем нужна система охлаждения двигателя уже можно догадаться из названия – работая, двигатель нагревается и охлаждается через радиатор. Это вкратце. На самом деле, задача системы охлаждения двигателя поддерживать его температуру в определенном диапазоне (85-100 градусов), называемом рабочей температурой. При рабочей температуре мотор работает максимально эффективно и безопасно.

Большой и малый круг системы охлаждения двигателя

После запуска, двигатель должен как можно быстрее достичь рабочей температуры. Для этого система охлаждения поделена на две части – малый круг и большой круг обращения. По малому кругу охлаждающая жидкость циркулирует максимально близко к цилиндрам и, соответственно максимально быстро нагревается. Как только она прогревается до наивысшей рабочей температуры, открывается клапан и жидкость уходит на большой круг, где не дает двигателю перегреться. Задача малого круга сохранить рабочую температуру, а большого — отвести лишнее тепло.

Печка как часть системы охлаждения двигателя

Приятно, когда салон быстро прогревается, а ведь это происходит потому, что печка это часть малого круга обращения. Через шланги жидкость уходит на радиатор печки и возвращается обратно. Что это значит? Чтобы печка начала дуть теплый воздух быстрее, ее надо включать тогда, когда согреется двигатель.

Термостат и помпа

Помпа и термостат системы охлаждения

Итак, мы выяснили, что двигатель не перегревается благодаря циркуляции ОЖ. Но что заставляет жидкость двигаться? Ответ – помпа. Это такой специальный насос, который приводится в движение двигателем через ремень, но бывают помпы и с электромотором. Основные неисправности помпы связанные с течью сквозь дренажное отверстие и износом подшипника (сопровождается писком). Также бывают помпы с пластиковой крыльчаткой, которая разъедается от некачественного антифриза.

Термостат, этот самый клапан, который открывается при нагреве ОЖ и пускает ее по большому кругу. Состоит из цилиндра с веществом, которые расширяется при нагреве; достигнув определенной температуры, оно выдавливает шток и открывает клапан. Остыв, шток втягивается, а клапан закрывается.

Радиатор и расширительный бачок системы охлаждения двигателя

Радиатор является частью большого круга и устанавливается впереди автомобиля. В нем циркулирует жидкость, которая охлаждается встречным воздухом и вентилятором.

Вентилятор работает на всасывание, чтобы не препятствовать встречному потоку воздуха.

Крышка радиатора поддерживает давление в системе охлаждения. В ней есть клапан, который открывается, когда давление превышает рабочее, и стравливает лишнюю жидкость по шлангу в расширительный бачок.

Расширительный бачок нужен, чтобы сохранить жидкость, нужную для охлаждения. Когда антифриз в расширительном бачке охладится, он вернется по шлангу обратно в радиатор, исключая попадание воздуха. Есть совмещенные бачки с клапанной крышкой.

Вот как устроена система охлаждения двигателя. Среди основных проблем связанных с этой системой стоит выделить:

  • течь – может появиться везде, от каналов блока до расширительного бачка;

Основная причина – избыточное давление из-за неисправной крышки радиатора/расш. бачка

  • перегрев – возникает неожиданно, но паниковать не стоит. Лучше включить печку на полную, врубив высшую скорость, прекратить движение накатом и заглушить двигатель.

Не производить никаких действий пока система не остыла.

Основные причины – вытекла вся ОЖ в системе, отказал вентилятор, забит радиатор, вышел из строя термостат или помпа.

Основные причины – отсутствие антифриза, сломался термостат в открытом положении.

Автор: Иван Матиешин

Спрашивайте в комментариях. Ответим обязательно!

Устройство и принцип работы системы охлаждения двигателя простыми словами

Рабочие процессы автомобильного двигателя проходят при высоких температурах, поэтому для обеспечения его работоспособности в течение длительного времени необходимо отводить лишнее тепло. Эту функцию обеспечивает система охлаждения (СО). В холодное время года за счет этого тепла производится обогрев салона.

В автомобилях, используемых турбонаддув, в функцию системы охлаждения входит понижение температуры воздуха, подаваемого в камеру сгорания. Дополнительно в один из кругов с системы охлаждения некоторых моделей автомобилей, оснащенных автоматической коробкой передач (АКПП), включается охлаждение масла в АКПП.

Виды систем охлаждения

В автомобилях устанавливается два основных типа СО: водяной и воздушный. Принцип работы системы охлаждения двигателя с водяным охлаждением заключается в нагреве жидкости от силовой установки или других узлов и отдачи такого тепла в атмосферу через радиатор.

В воздушной системе в качестве рабочего охладителя используется воздух. В обоих вариантах есть свои достоинства и недостатки.

Однако, большее распространение получила система охлаждения с циркуляцией жидкости.

Воздушная СО

Воздушное охлаждение

К основным достоинствам этой компоновки можно отнести простоту конструкции и обслуживания системы. Такая СО практически не увеличивает массу силового агрегата, а также не капризна к изменениям температуры окружающего воздуха. К негативу относится существенный отбор мощности мотора приводом вентилятора, повышенный уровень шума при работе, плохо сбалансированный отвод тепла от отдельных узлов, невозможность использования блочной системы двигателя, невозможность аккумулирования отводимого тепла для дальнейшего использования, например, обогрева салона.

Жидкостная СО

Охлаждение жидкостью

Система с применением отвода тепла с помощью специальной жидкости благодаря своей конструкции может эффективно отводить лишнее тепло от механизмов и отдельных деталей конструкции. В отличие от воздушной, устройство системы охлаждения двигателя с жидкостью способствует более быстрому набору рабочей температуру при запуске. Также моторы с антифризами работают существенно тише и подвержены меньшей детонации.

Элементы системы охлаждения

Рассмотрим подробнее, как работает система охлаждения двигателя на современных авто. Существенных различий между бензиновыми и дизельными моторами в этом плане нет.

В качестве «рубашки» для охлаждения мотора выступают конструкционные полости блока цилиндров. Они располагаются вокруг зон, из которых требуется отводить тепло. Для более быстрого отвода установлен радиатор, состоящий из изогнутых медных или алюминиевых трубок. Большое количество дополнительных ребер ускоряют процесс теплообмена. Такие ребра повышают охлаждающую плоскость.

Перед радиатором ставится нагнетающий воздух вентилятор. Приток более холодных потоков начинается после замыкания электромагнитной муфты. Она включается при достижении фиксированных температурных значений.

Работа термостата

Непрерывность циркуляции охлаждающей жидкости обеспечивается работой центробежного насоса. Ременная или шестеренчатая передача для него получает вращение от силовой установки.

Регулировкой направлений потоков занимается термостат.

Если температура охлаждающей жидкости не высокая, то циркуляция проходит по малому кругу, без включения в него радиатора. Если же допустимый тепловой режим превышен, то термостат пускает поток по большому кругу с участием радиатора.

Для закрытых гидравлических систем свойственно использование расширительных баков. Такой бачок предусмотрен и в СО автомобиля.

Циркуляция охлаждающей жидкости

Прогрев салона выполняется с помощью радиатора отопителя. Теплый воздух в данном случае не уходит в атмосферу, а запускается внутрь авто, создавая комфорт водителю и пассажирам в холодное время года. Для большей эффективности такой элемент устанавливается практически на выходе жидкости от блока цилиндров.

Водитель получает информацию о состоянии системы охлаждения с помощью температурного датчика. Сигналы также идут на блок управления. Он может самостоятельно подключать или выключать исполнительные приборы для соблюдения баланса в системе.

Работа системы

В качестве охлаждающих жидкостей применяются антифризы с множеством присадок, в том числе и антикоррозионными. Они помогают увеличить долговечность узлов и деталей, используемых в СО. Такую жидкость принудительно прокачивается по системе центробежным насосом. Начинается движение от блока цилиндров, наиболее горячей точки.

Вначале происходит движение по малому кругу с закрытым термостатом без захода в радиатор, ведь еще не набрана даже рабочая температура для мотора. После выхода в рабочий режим циркуляция происходит по большому кругу, где радиатор может охлаждаться встречным потоком или с помощью подключаемого вентилятора. После этого жидкость возвращается в «рубашку» вокруг блока цилиндров.

Есть автомобили с использованием двух контуров охлаждения.

Первый понижает температуру мотора, а второй заботиться о надувочном воздухе, охлаждая его для образования топливной смеси.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Система охлаждения двигателя. Принцип работы » Автомобили и тюнинг

У каждого современного автомобиля обязательно имеется система охлаждения двигателя. В данную систему входит несколько элементов: расширительный бачок, термостат, вентилятор, насос, соединительные шланги, датчик температуры, рубашка охлаждения блока цилиндров, охлаждающая жидкость, и, конечно же, радиатор.

Радиатор – наиболее главный элемент всей системы охлаждения. Благодаря нему поддерживается рабочая температура двигатели. Он также предотвращает перегрев. Если же рабочая температура двигателя будет превышать допустимые нормы, он может заклинить, и без капитального ремонта двигателя тут не обойтись.

Принцип работы охлаждающей системы заключается в том, что жидкостный насос качает воздух по кругу, таким образом, чтобы охлаждающая жидкость омывала стенки блока цилиндров. Постоянная циркуляция отводит тепло от горячих элементов двигателя. После этого нагретая жидкость перетекает в радиатор, и уже в нем отдает тепло наружу в атмосферу. Далее, уже охлажденная жидкость повторяет этот цикл. Радиатор является своеобразным устройством охлаждения жидкости. Для того чтобы процесс охлаждения жидкости происходил быстрее, устанавливается вентилятор, благодаря которому воздух нагнетается на поверхность радиатора. Данный вентилятор включается в тот момент, когда рабочая температура двигателя повышается.

Как правило, роль охлаждающей жидкости играют тосол и антифриз. Многие водители, ради экономии на охлаждающей жидкости, в систему охлаждения заливают просто дистиллированную воду. Хотя делать этого вовсе не стоит. От постоянного использования воды в качестве охлаждающей жидкости, в системе охлаждения могут образовываться отложения и коррозия. А это приводит к снижению срока службы всей системы охлаждения. Поэтому рекомендуется применять только специальные жидкости. Объем необходимой жидкости зависит от общего объема системы охлаждения.

Радиаторы могут иметь различные конструкции. Наиболее распространенные из них – это ленточные и пластинчатые радиаторы. Так как пластинчатые радиаторы имеют значительно больший вес, они постепенно уходят в прошлое. Современные производители все чаще отдают свое предпочтение ленточным радиаторам. Обычно такие радиаторы изготавливаются из алюминия. Это связано с тем, что он имеет хорошо проводить тепло, улучшая работу всей охладительной системы. А благодаря легкости таких радиаторов, капот автомобиля не перегружается лишней тяжестью, тем самым происходит экономия топлива.

Ниже представлена иллюстрация с описанием деталей системы охлаждения двигателя:

1 — Салонный отопитель
2 — «Горячие шланги» для салонного отопителя
3 — Клапан избыточного давления (заливная горловина)
4 — Термостат
5 — Верхний патрубок (с горячей ОЖ)
6 — Радиатор
7 — Вентилятор
8 — Водяной насос
9 — Охлаждение трансмиссии
10 — Нижний патрубок (с охлажденной ОЖ)
11 — Расширительный бачок

Система охлаждения двигателя автомобиля

Внимание
Система охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения


Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.


Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор


Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.


Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.


Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.


Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

Примечание
Здесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

Примечание
При чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.


Рисунок 4.37 Работа термостата.

Устройство и принцип действия радиатора охлаждения двигателя

Устройство и принцип действия радиатора охлаждения двигателя

Система охлаждения играет очень важную роль, так как именно она предотвращает перегревание двигателя автомобиля, которое неизбежно в процессе работы. Важнейшим элементом охлаждающей системы выступает радиатор, обеспечивающий эффективное охлаждение жидкости.

Система охлаждения автомобиля специально предназначена для того, чтобы охлаждать детали двигателя, которые нагреваются в процессе его работы. Современные автомобили имеют системы охлаждения, которые, помимо своей основной, выполняют целый ряд других важных функций:

— нагревают воздух в системе вентиляции, отопления и кондиционирования;
— охлаждают масло в системе смазки;
— охлаждают отработанные газы в системе рециркуляции отработанных газов;
— охлаждают рабочую жидкость в автоматической коробке передач;
— охлаждают воздух в системе турбонаддува.

На сегодняшний день существует несколько систем охлаждения двигателя: воздушная, жидкостная и комбинированная. В жидкостной системе тепло от разогретых элементов двигателя отводит поток жидкости, в воздушной системе — поток воздуха. В комбинированной системе воздушная и жидкостная системы объединяются.

Большинство современных автомобилей оборудованы жидкостной системой охлаждения, среди преимуществ которой можно выделить эффективное равномерное охлаждение. Кроме этого, жидкостная система охлаждения имеет невысокий уровень шума.

Независимо от того, какой тип двигателя имеет автомобиль — бензиновый или дизельный, конструкция систем охлаждения будет подобной. В состав системы охлаждения входят следующие элементы:

— радиатор системы охлаждения;
— теплообменник отопителя;
— масляный радиатор;
— расширительный бачок;
— термостат;
— центробежный насос;
— вентилятор радиатора;
— патрубки;
— элементы управления;
— рубашка «охлаждения» двигателя.


Устройство радиатора

Важнейшим конструктивным элементом не только системы охлаждения, но и самого двигателя, является радиатор. Прообраз современного радиатора устанавливался даже на самых первых автомобилях, так как без радиатора работа двигателя не представляется возможной. Радиатор системы охлаждения выполняет такую важную функцию, как поддержание рабочей температуры двигателя и защита его от перегрева.

Как правило, автомобильный радиатор состоит из таких элементов, как верхний и нижний баки, сердцевина, детали крепления. Радиатор предназначен для того, чтобы жидкость, поступающая в него непосредственно из водяной рубашки двигателя, охлаждалась до необходимой температуры. Баки радиатора, а также сердцевина, которая к ним припаяна, как правило, изготавливаются из латуни, благодаря чему обеспечивается хорошая теплопроводность.

Сердцевина радиатора представляет собой тонкие поперечные пластины, через которые проходят плоские вертикальные трубки, припаянные к этим пластинам. Жидкость, которая проходит через сердцевину радиатора охлаждения, расходится на множество потоков. Подобное устройство сердцевины позволяет жидкости охлаждаться более интенсивно, так как значительно возрастает площадь соприкосновения жидкости со стенками трубок.

Баки радиатора соединяются с рубашкой охлаждения при помощи патрубков. Нижний бак оснащен специальным краником, предназначенным для слива жидкости из радиатора. Чтобы спускать воду из водяной рубашки, в нижней части блока также имеется краник.

В систему охлаждения жидкость заливается через горловину бака, расположенного вверху и закрываемого крышкой. Жидкостная система охлаждения двигателя отличается наличием двойного регулирования теплового режима: термостатом и шторкой.

Шторка радиатора охлаждения — это своеобразное полотно, один из концов которого закрепляется на сматывающем механизме, который, в свою очередь, монтируется в барабане. Второй конец неподвижно соединяется в нижней части автомобильного радиатора.

Некоторые двигатели внутреннего сгорания вместо шторки оснащены жалюзи створчатого типа, состоящими из пластин. Пластины шарнирно закрепляются в нижней планке, связанной тягой и системой рычагов с рукояткой управления жалюзи, которая находится в кабине. Сами створки могут быть расположены горизонтально или вертикально.


Принцип работы радиатора

Системы охлаждения, которыми оборудуются современные автомобили, учитывают множество важных параметров, среди которых температура двигателя, температура жидкости и масла, температура снаружи салона и т. д.

Принцип работы системы охлаждения следующий. Благодаря жидкостному насосу охлаждающая жидкость находится в постоянном движении, циркулируя по кругу, омывая горячие стенки головки блока и цилиндров. Таким образом удается избежать перегрева двигателя, так как от нагретых деталей отводится тепло. Далее горячая жидкость направляется в радиатор охлаждения, который обеспечивает отвод тепла в окружающую среду. На этом цикл заканчивается, а охлажденная жидкость идет по новому циклу.

Таким образом, можно сделать вывод, что радиатор представляет собой своеобразный теплообменник, который обеспечивает охлаждение жидкости. Чтобы работа радиатора была еще более эффективной, перед двигателем устанавливается специальный вентилятор радиатора, нагнетающий воздух на поверхность радиатора, благодаря чему процесс теплообмена значительно ускоряется.

Вентилятор радиатора запускается автоматически специальным термодатчиком, который срабатывает в тот момент, когда рабочая температура двигателя начинает подниматься выше допустимой нормы. Вентилятор и радиатор охлаждения устанавливают непосредственно перед двигателем.

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14.10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Как охлаждается двигатель

Индекс 4-тактный двигатель 2-тактный двигатель 2-тактный крейцкопф Очистка системы охлаждения Охлаждение Смазка Система топливного масла Система запуска воздуха

Основы

Как двигатель Охлаждаемый

**** Выпадающее меню DHTML на основе JavaScript, созданное NavStudio. (OpenCube Inc. — http://www.opencube.com) ****

Хотя здесь много свободной морской воды доступны, судовые дизельные двигатели не используют его напрямую, чтобы сохранить самые горячие части двигателя остывают. Это из-за коррозии, которая будет образовываться в пространствах с охлаждающей водой, а соли, которые будут оседает на охлаждающих поверхностях, препятствуя тепловому потоку.

Вместо этого вода циркулировала вокруг двигателя пресная вода (или еще лучше, дистиллированная вода), которая затем сама охлаждаются морской водой. Эта пресная вода обрабатывается химикатами, чтобы сохранить он слегка щелочной (для предотвращения коррозии) и для предотвращения образования накипи формирование. Конечно, если дистиллированная вода, из которой используется морская вода с использованием испарителей, что снижает риск образования накипи формирование.

г. насос охлаждающей воды, который может быть двигателем с приводом или отдельным насосом с электрическим приводом, толкает воду вокруг схема. Пройдя через двигатель, где он отводит тепло от гильз цилиндров, головок цилиндров, выпускных клапанов, а иногда и В турбонагнетателях он охлаждается морской водой, а затем возвращается в двигатель. Температура охлаждающей воды тщательно контролируется с помощью трех ходовой регулирующий клапан.Если допустить попадание воды слишком холодно, это вызовет термический шок, который может привести к повреждению компонентов. отказ, а также позволит воде и кислотам конденсироваться на цилиндре отверстия, смывающие смазочную пленку и вызывающие коррозию. Если он получит слишком горячий, тогда он не будет эффективно отводить тепло, вызывая чрезмерное износ и повышенная опасность образования накипи. По этой причине Температура охлаждающей воды на выходе обычно поддерживается на уровне около 78-82 ° C.Поскольку она имеет более высокую температуру, чем охлаждающая вода, используемая для другие цели (известные как охлаждение LT), вода для охлаждения двигателя известна как охлаждающая вода HT (высокотемпературная).

Охлаждение может быть достигнуто используя специальный охладитель или смешав немного воды из LT контур охлаждения. Затем охлаждающая вода LT охлаждается в морской воде. кулеры. Температура регулируется с помощью каскадного управления, которое контролирует температуру на входе и выходе двигателя.Этот позволяет быстро реагировать на любое изменение температуры из-за изменения нагрузка на двигатель.

Для устранения утечек в системе имеется напорный бак, который автоматически восполняет любой недостаток. Вентиляционные отверстия из Система также привела к этому бачку, чтобы для любого расширения в системы и избавиться от воздуха (если вы знакомы с система центрального отопления то вы увидите сходство).Заголовок Танк сравнительно небольшой и обычно размещается высоко в машинном отделении. Это преднамеренно сделано для пополнения вручную и снабжен низким сигнализация уровня. Это сделано для того, чтобы любую крупную утечку можно было сразу заметить. В нормальных условиях резервуар проверяется один раз в часы, и если он необходимо пополнить, затем сумма внесена.

Система также будет содержать обогреватель, который чтобы охлаждающая вода оставалась горячей при остановленном двигателе, или чтобы температура должна быть повышена до подходящего уровня перед запуском.Некоторые корабли использовать центральную систему охлаждения, при которой циркулирует одна и та же охлаждающая вода через главный двигатель (и) и двигатели генератора. Эта система имеет преимущество, заключающееся в том, что остановленные двигатели остаются в тепле и готовы к работе. немедленный запуск работающими двигателями.

А генератор пресной воды (FWG) который используется для производства пресной воды из морской воды.

Сливной бак имеет был включен.Это когда двигатель сливается для обслуживания. целей. Из-за большого количества воды и химического лечение, это экономически нецелесообразно или экологически нецелесообразно каждый раз сливайте очищенную воду за борт. Таким образом, вода может быть повторно используемый.

Для фотографий и описание компонентов нажмите на элементы на картинке.

Эта система показывает типичную охлаждающую воду. схема для одного среднеоборотного двигателя с приводом от двигателя главной насос и вспомогательный циркуляционный насос с электрическим приводом и нагреватель для поддержание температуры двигателя при остановке.

На этой схеме представлена ​​простая система циркуляции двигателя. Она похожа на основную схему, но на этот раз выделена Используется охладитель HT.

Как работают тепловые двигатели?

Реклама

Криса Вудфорда. Последнее изменение: 7 ноября 2020 г.

В наш век топливных элементов и электромобили, паровозы (и даже автомобили с бензиновым двигателем) может показаться ужасно старой технологией.Но посмотрите на историю шире, и вы увидите, что даже самые старые паровой двигатель — действительно очень современное изобретение. Люди были использование инструментов для увеличения мышечной силы примерно на 2,5 миллионов лет, но только за последние 300 лет или около того мы усовершенствовали искусство создания «мускулов» — машин с приводом от двигателя — которые работают все сами по себе. Другими словами: люди были без двигатели для более чем 99,9% нашего существования на Земле!

Теперь у нас есть двигатели, без которых, конечно, не обойтись. их.Кто мог представить себе жизнь без машин, грузовиков, кораблей или самолеты — все они приводились в движение мощными двигателями. И двигатели не просто перемещают нас по миру, они помогают нам его кардинально изменить. От мостов и туннелей до небоскребов и плотины, практически каждое крупное здание и сооружение, построенное людьми за последние пару веков был построен с помощью двигатели — краны, экскаваторы, самосвалы и бульдозеры среди их. Двигатели также подпитывают современную сельскохозяйственную революцию: значительная часть всех наших еда теперь собирается или транспортируется с помощью двигателя.Двигатели не заставляют мир идти раунд, но они участвуют практически во всем, что происходит на нашей планете. Давайте подробнее разберемся, что это такое и как они Работа!

Artwork: Основная концепция теплового двигателя: машина, которая преобразует тепловую энергию в работу, переключаясь между высокой и низкой температурой. Типичный тепловой двигатель приводится в действие за счет сжигания топлива (внизу слева) и использует расширяющийся-сжимающийся поршень (вверху в центре) для передачи энергии топлива на вращающееся колесо (внизу справа).

Что такое тепловая машина?

« Всем известно, что тепло может вызывать движение. Никто не может сомневаться в том, что он обладает огромной движущей силой …

Николас Сади Карно, 1824

Двигатель — это машина, которая энергия, заключенная в топливе, превращается в силу и движение. Уголь нет очевидное использование кто угодно: это грязный, старый, каменистый материал, похороненный под землей. Сжечь это в двигатель, однако, вы можете высвободить содержащуюся в нем энергию, чтобы силовые заводские машины, автомобили, лодки или локомотивы.То же самое верно других видов топлива, таких как природный газ, бензин, древесина и торф. поскольку двигатели работают, сжигая топливо для выделения тепла, иногда они называется тепловые двигатели . Процесс сжигания топлива включает в себя химическая реакция, называемая сгорание , где топливо сгорает в кислород в воздухе для образования углекислого газа и пара. (Как правило, двигатели также загрязняют воздух, потому что топливо не всегда чистое на 100 процентов и не горит идеально.)

Есть два основных типа тепловых двигателей: внешнего сгорания и внутреннего сгорания. сжигание:

  • В двигателе внешнего сгорания топливо горит снаружи и вдали от основной части двигателя, где сила и движение производятся.Хороший пример — паровая машина: уголь горит на одном конце, который нагревает воду для образования пара. Пар направляется в прочный металлический цилиндр , где он перемещает Плотно прилегающий плунжер называется поршнем вперед-назад. В движущийся поршень приводит в действие все, к чему прикреплен двигатель (возможно, заводской автомат или колеса паровоза). Это внешний двигатель внутреннего сгорания, потому что уголь горит снаружи, а некоторые расстояние от цилиндра и поршня.
  • В двигателе внутреннего сгорания топливо горит внутри цилиндр.Например, в типичном автомобильном двигателе есть что-то вроде четырех-шести отдельных цилиндров, внутри которых бензин постоянно горит кислородом, выделяя тепловую энергию. В цилиндры «зажигаются» поочередно, чтобы двигатель постоянный источник энергии, приводящий в движение колеса автомобиля.

Двигатели внутреннего сгорания обычно намного более эффективны, чем внешние двигатели внутреннего сгорания, потому что энергия не расходуется на передачу тепла от огонь и бойлер к баллону; все происходит в одном месте.

Иллюстрации: В двигателе внешнего сгорания (таком как паровой двигатель) топливо горит за пределами цилиндра, и тепло (обычно в виде горячего пара) необходимо отводить на некоторое расстояние. В двигателе внутреннего сгорания (например, в двигателе автомобиля) топливо горит прямо внутри цилиндров, что намного эффективнее.

Как двигатель приводит в действие машину?

В двигателях

используются поршни и цилиндры, поэтому мощность, которую они производят, равна непрерывное возвратно-поступательное движение, толкающее и вытягивающее или возвратно-поступательное движение движение.Проблема в том, что многие машины (и практически все автомобили) полагаются на на вращающихся колесах — другими словами, вращающихся движение. Существуют различные способы поворота возвратно-поступательного движения. движение во вращательное движение (или наоборот). Если вы когда-нибудь смотрели паровой двигатель гудит, вы заметите, как колеса приводится в движение кривошипом и шатуном: простой рычажный рычаг, который соединяет одну сторону колеса с поршнем, чтобы колесо вращается, когда поршень качается вперед и назад.

Альтернативный способ преобразования возвратно-поступательного движения во вращательное движение использовать шестерни. Вот что гениальный шотландский инженер Джеймс Ватт (1736–1819) решил сделать это в 1781 году, когда обнаружил кривошипно-шатунный механизм. необходимо было использовать в его усовершенствованной конструкции парового двигателя, фактически, уже защищен патентом. Дизайн Ватта известен как Солнце и планетарная передача шестерня) и состоит из двух или более шестерен колеса, одно из которых (планета) толкается вверх и вниз поршнем стержень, вращающийся вокруг другой шестерни (Солнца) и заставляющий ее вращаться.


Фото: Два способа преобразования возвратно-поступательного движения во вращательное: Первое фото: Солнце и планетарная шестерня. Когда поршень движется вверх и вниз, шестерни вращаются. Второе фото: В этом токарном станке с ножным приводом просто решена проблема преобразования вертикального движения в круговое. Когда вы нажимаете на педаль вверх и вниз, вы заставляете струну подниматься и опускаться. Это заставляет вал, к которому прикреплена колонна, вращаться со скоростью, приводя в действие токарный станок и сверло или другой инструмент, прикрепленный к нему.Обе фотографии сделаны в Think Tank, музее науки в Бирмингеме, Англия.

Некоторым двигателям и машинам необходимо преобразовать вращательное движение в возвратно-поступательное движение. Для этого вам нужно что-то, что работает в путь, противоположный коленчатому валу, а именно кулачок. Камера — это некруглое (обычно яйцевидное) колесо, имеющее что-то вроде бар, опирающийся на него. Когда ось поворачивает колесо, колесо заставляет штангу подниматься и опускаться. Не можете себе это представить? Попробуйте представить себе машину, колеса которой яйцевидной формы.Во время движения колеса (кулачки) поворачиваются как обычно, но кузов автомобиля подпрыгивает и вниз одновременно — поэтому вращательное движение производит возвратно-поступательное движение (подпрыгивание) у пассажиров!

Кулачки работают на всех видах машин. Есть камера в электрическая зубная щетка, которая делает щетка движется вперед и назад, когда внутри вращается электродвигатель.

Типы двигателей

Фото: Внешнее сгорание: Эта стационарная паровая машина использовалась для закачки природного газа в дома людей с 1864 года.Фотография сделана в Think Tank.

Существует около полдюжины основных типов двигателей, которые получают энергию за счет сжигания топлива:

Двигатели внешнего сгорания
Балочные двигатели (атмосферные двигатели)

Первые паровые машины были гигантскими машинами, которые заполняли целые здания. и они обычно использовались для откачки воды из затопленных шахт. Первопроходец англичанин Томас Ньюкомен (1663 / 4–1729) в начале 18 века они имели один цилиндр и поршень, прикрепленный к большой балке, которая раскачивалась взад и вперед.Тяжелая балка обычно наклонялась вниз так, чтобы поршень находился высоко в цилиндре. В цилиндр закачивали пар, затем вбрызгивали воду, охлаждающую пар, создавая частичный вакуум и заставляя луч наклоняться назад наоборот, до повторения процесса. Лучевые двигатели были важным технологическим достижением, но они были слишком большими, медленными и неэффективными, чтобы приводить в действие заводские машины и поезда.

Иллюстрация: Как работает атмосферный (пучковый) двигатель (упрощенно).Двигатель состоит из тяжелой балки (серая), установленной на башне (черная), которая может качаться вверх и вниз. Обычно балка наклоняется вниз и вправо под весом присоединенного к ней насосного оборудования. Водогрейный котел (1) выпускает пар (2) в цилиндр (3). Когда цилиндр заполнен, из бака (4) впрыскивается холодная вода. Это конденсирует пар, создавая более низкое давление в цилиндре. Поскольку атмосферное давление (воздух) над поршнем выше, чем давление под ним, поршень толкается вниз, вся балка наклоняется влево, а насос тянется вверх, вытягивая воду из шахты (5).

Паровые двигатели

В 1760-х годах Джеймс Ватт значительно улучшил паровой двигатель Ньюкомена, сделав его меньше, эффективнее и мощнее — и эффективно превращает пар двигатели в более практичные и доступные машины. Работа Ватта привела к стационарному пару двигатели, которые можно использовать на заводах, и компактные движущиеся двигатели которые могли приводить в действие паровозы. Подробнее читайте в нашей статье о паровых двигателях.

Двигатели Стирлинга

Не все двигатели внешнего сгорания огромны и неэффективны.Шотландский священнослужитель Роберт Стирлинг (1790–1878) изобрел очень умную двигатель, имеющий два цилиндра с поршнями, приводящими в действие два кривошипа вождение одного колеса. Один цилиндр постоянно поддерживается горячим (нагревается внешней энергией). источник, который может быть чем угодно, от угольного костра до геотермальной энергии поставка), а другой постоянно остается холодным. Двигатель работает перекачивает тот же объем газа (постоянно запечатанный внутри двигатель) вперед и назад между цилиндрами через устройство, называемое регенератор , который помогает сохранять энергию и значительно увеличивает КПД двигателя.Двигатели Стирлинга не обязательно предполагают сгорание, хотя они всегда питаются от внешнего источника тепла. Узнайте больше в нашей основной статье о двигателях Стирлинга.

Фото: Машинный зал Think Tank (научный музей в Бирмингеме, Англия) представляет собой удивительную коллекцию энергетических машин, датируемых 18 веком. Среди экспонатов — огромный паровой двигатель Сметвик, самый старый действующий двигатель в мире. Это не показано на этом снимке, в основном потому, что оно было слишком большим для фотографирования!

Двигатели внутреннего сгорания
Бензиновые двигатели

В середине 19 века несколько европейских инженеров, в том числе Француз Жозеф Этьен Ленуар (1822–1900) и немец Николаус Отто (1832–1891) усовершенствовал двигатели внутреннего сгорания, которые сжигали бензин.Для Карла Бенца (1844–1929) это был короткий шаг. подключить один из этих двигателей к трехколесному перевозки и создать первый в мире газовый автомобиль. Читать больше в нашей статье о автомобильных двигателях.

Фото: мощный бензиновый двигатель внутреннего сгорания от спортивного автомобиля Jaguar.

Дизельные двигатели

Позже, в 19 веке, другой немецкий инженер, Рудольф Дизель (1858–1913), понял, что может сделать гораздо более мощный внутренний двигатель внутреннего сгорания, который может работать на самых разных видах топлива.В отличие от бензиновых двигателей, дизельные двигатели сжимают топливо намного сильнее. он самопроизвольно загорается и выделяет тепловую энергию заперт внутри него. Сегодня дизельные двигатели по-прежнему являются предпочтительными машинами для вождения. тяжелые транспортные средства, такие как грузовики, корабли и строительные машины, а также многие автомобили. Подробнее читайте в нашей статье о дизельных двигателях.

Роторные двигатели

Одним из недостатков двигателей внутреннего сгорания является то, что они нужны цилиндры, поршни и вращающийся коленчатый вал, чтобы использовать их мощность: цилиндры неподвижны, поршни и коленчатый вал постоянно двигаются.Роторный двигатель — это кардинально другая конструкция двигателя внутреннего сгорания, в котором «цилиндры» (которые не всегда цилиндр по форме) вращаются вокруг неподвижного коленчатого вала. Хотя роторные двигатели восходят к 19 веку, возможно, наиболее известной конструкцией является относительно современный роторный двигатель Ванкеля , особенно используется в некоторых японских автомобилях Mazda. Статья в Википедии о Роторный двигатель Ванкеля — хорошее вступление с прекрасной небольшой анимацией.

Теоретические двигатели

Фото: Машинист: гениальный Николя Сади Карно, 17 лет.

Пионерами двигателей были инженеры, а не ученые. Ньюкомен и Ватт были скорее практическими «деятелями», чем ломающими голову теоретическими мыслителями. И только когда в 1824 году появился француз Николя Сади Карно (1796–1832), то есть спустя более века после того, как Ньюкомен построил свой первый паровой двигатель, были предприняты любые попытки понять эту теорию. о том, как работают двигатели и как их можно улучшить с истинно научной точки зрения. Карно интересовался, как сделать двигатели более эффективными (в другими словами, как можно получить больше энергии из того же количества топлива).Вместо того, чтобы возиться с настоящим паровым двигателем и пытаться его улучшить методом проб и ошибок (такой же подход, который использовал Ватт с двигателем Ньюкомена), он заставил себя теоретический двигатель — на бумаге — и вместо этого поигрался с математикой.

Фото: Паровые двигатели по своей сути неэффективны. Работа Карно говорит нам, что для максимальной эффективности пар в двигателе как будто это нужно перегреть (так что это выше его обычная температура кипения 100 ° C), а затем дать ему максимально расшириться и остыть в цилиндрах, чтобы передать как можно больше энергии поршням.

Цикл Карно

Тепловая машина Карно представляет собой довольно простую математическую модель. о том, как в теории может работать лучший поршневой и цилиндровый двигатель, путем бесконечного повторения четырех шагов, теперь называемых циклом Карно . Мы не собираемся здесь подробно останавливаться на теории или математике (если вам интересно, см. Страница цикла Карно НАСА и превосходные тепловые двигатели: страница цикла Карно Майкла Фаулера с превосходной флэш-анимацией).

Базовый двигатель Карно состоит из газа, заключенного в цилиндр с поршнем. Газ берет энергию от источника тепла, расширяется, охлаждается и выталкивает поршень. Когда поршень возвращается в цилиндр, он сжимает и нагревает газ, поэтому газ завершает цикл с точно такими же давлением, объемом и температурой, с которых был начат. Двигатель Карно не теряет энергии на трение или окружающую среду. Это полностью обратимо — теоретически совершенная и совершенно теоретическая модель работы двигателей.Но это также многое говорит нам о реальных двигателях.

Насколько эффективен двигатель?

Стоит отметить вывод, к которому пришел Карно: эффективность двигателя (реальная или теоретическая) зависит от максимальной и минимальной температур, между которыми работает . С математической точки зрения, эффективность двигателя Карно, работающего от Tmax (его максимальная температура) до Tmin (минимальная температура):

(Tmax − Tmin) / Tmax

, где обе температуры измеряются в кельвинах (К).Повышение температуры жидкости внутри цилиндра в начале цикла делает его более эффективным; уменьшение температуры на противоположном конце цикла также делает его более эффективным. Другими словами, действительно эффективная тепловая машина работает между максимально возможной разницей температур. Другими словами, мы хотим, чтобы Tmax было как можно выше, а Tmin как можно меньше. Вот почему такие вещи, как паровые турбины на электростанциях, должны использовать градирни, чтобы максимально охладить пар: именно так они могут получить максимум энергии из пара и произвести больше электроэнергии.В реальном мире движущиеся транспортные средства, такие как автомобили и самолеты, очевидно, не могут иметь ничего похожего на градирни, и трудно достичь низких температур Tmin, поэтому мы обычно фокусируемся на повышении Tmax. Настоящие двигатели — в автомобилях, грузовиках, реактивных самолетах и ​​космических ракетах — работают. при чрезвычайно высоких температурах (поэтому они должны быть построены из высокотемпературных материалы, такие как сплавы и керамика).

« Мы не должны ожидать, что когда-либо сможем использовать на практике всю движущую силу горючих материалов.

Николас Сади Карно, 1824

Каков максимальный КПД двигателя?

Есть ли предел эффективности теплового двигателя? Да! Tmin никогда не может быть меньше нуля (при абсолютном нуле), поэтому, согласно Согласно приведенному выше уравнению, никакой двигатель не может быть эффективнее, чем Tmax / Tmax = 1, что равно 100-процентной эффективности, и большинство настоящие двигатели даже близко не подходят к этому. Если бы у вас был паровой двигатель, работающий при температуре от 50 ° C до 100 ° C, это будет около 13 процентов эффективности.Чтобы добиться 100-процентной эффективности, вам нужно охладить пар. до абсолютного нуля (−273 ° C или 0K), что, очевидно, невозможно. Даже если бы вы могли охладить его до замерзания (0 ° C или 273K), вы все равно сможете достичь эффективности только на 27 процентов.

Диаграмма

: Тепловые двигатели более эффективны, когда они работают при больших перепадах температур. Если предположить, что минимальная ледяная температура остается постоянной (0 ° C или 273K), эффективность медленно растет по мере увеличения максимальной температуры. Но обратите внимание, что мы получаем убывающую отдачу: с каждым повышением температуры на 50 ° C эффективность с каждым разом растет все меньше.Другими словами, мы никогда не сможем достичь 100-процентной эффективности, просто подняв максимальную температуру.

Это также помогает нам понять, почему более поздние паровые двигатели (впервые разработанные такими инженерами, как Ричард Тревитик) и Оливер Эванс) использовали гораздо более высокое давление пара, чем те, которые производили такие люди, как Томас Ньюкомен. Двигатели с более высоким давлением были меньше, легче и легче устанавливались на движущихся транспортных средствах, но они также были намного эффективнее: при более высоком давлении вода закипает при более высоких температурах, и это дает нам большую эффективность.При двойном атмосферном давлении вода закипает при температуре около 120 ° C (393K), что дает эффективность 30%. с минимальной температурой 0 ° C; при давлении, в четыре раза превышающем атмосферное, температура кипения составляет 143 ° C (417K), а эффективность приближается к 35%. Это большое улучшение, но до 100 процентов еще далеко. Паровые турбины на электростанциях используют действительно высокое давление (в 200 раз превышающее атмосферное давление). типично). При 200 атмосфер вода кипит при температуре около 365 ° C (~ 640K), что дает максимальную теоретическую эффективность около 56 процентов, если мы также можем охладить воду вплоть до замерзания (и если нет других тепловых потерь или неэффективности).Даже в этих экстремальных и идеальных условиях мы все еще очень далеки от 100-процентной эффективности; реальные турбины с большей вероятностью достигнут 35–45 процентов. Сделать эффективные тепловые двигатели намного сложнее, чем кажется!

Узнать больше

На этом сайте

На других сайтах

Один из лучших способов понять движки — это посмотреть, как они работают. Вот два очень хороших сайта, которые исследуют большое количество различных двигателей:

  • Анимированные движки. Этот замечательный сайт охватывает практически все виды движков, о которых вы только можете подумать, с простой для понимания анимацией и очень четкими письменными описаниями.
  • Посмотрите, как работают двигатели: Коллекция очень красиво нарисованных анимаций реальных двигателей из Лондонского музея науки. (Архивировано через Wayback Machine.)

Книги

Вводный
  • Шесть легких пьес Ричарда П. Фейнмана. Penguin, 1998. Глава 4 представляет собой очень оригинальное объяснение сохранения энергии, включая довольно простое объяснение того, почему ни один двигатель или машина не являются более эффективными, чем идеально обратимые (идеальные).
Более сложный
Детские книги

НЕ копируйте наши статьи в блоги и другие сайты

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2019. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.(2009/2019) Двигатели. Получено с https://www.explainthatstuff.com/engines.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Вентилятор охлаждения двигателя — Ваш рабочий

Вентилятор охлаждения двигателя — ваш рабочий — как его проверить

Вентилятор охлаждения двигателя включается только при необходимости для охлаждения двигателя.

Итак, отказ вентилятора охлаждения двигателя; или неисправность реле вентилятора или цепи управления — плохая новость; потому что это может привести к перегреву двигателя.

Датчик охлаждающей жидкости двигателя или отдельный датчик температуры двигателя используется для контроля температуры двигателя.

Дополнительное охлаждение не требуется при первом запуске холодного двигателя; Таким образом, вентилятор охлаждения двигателя не включается, пока двигатель не достигнет нормальной рабочей температуры.

Вентилятор охлаждения двигателя

Затем вентилятор будет включаться и выключаться по мере необходимости для поддержания надлежащей температуры охлаждающей жидкости. Итак, вентилятор работает в основном на холостом ходу или на низкой скорости, когда двигатель имеет нормальную температуру.Большинство вентиляторов должны включаться, когда температура охлаждающей жидкости достигает 200–230 градусов.

Давайте начнем с простых вопросов;

  • Ваш двигатель перегревается
  • Работает ли вентилятор охлаждения двигателя?

Если нет, давайте проверим и попробуем исправить самостоятельно

Первым делом нужно проверить предохранитель.

Перегорел предохранитель

Вентилятор охлаждения двигателя не будет работать, если у вас перегоревший предохранитель. В общем; у большинства транспортных средств есть два типа предохранителей.В старых автомобилях есть стекла; предохранители цилиндрической формы с нержавеющей сталью на концах и стеклом посередине. В большинстве новых автомобилей используется предохранитель другого типа, в котором используется пластиковый корпус; с плавкой вставкой, заключенной в корпус. Самый простой способ проверить это; Визуально проверьте его на наличие сплошного провода без разрывов. Другой хороший способ — использовать мультиметр.

Итак, если вы обнаружили перегоревший предохранитель, замените его. Это может быть все, что вам нужно, чтобы снова отправиться в путь.

Если предохранитель в порядке, переходите к следующему шагу.


Вентиляторы охлаждения двигателя могут изнашиваться и изнашиваются. Ваш может взорваться, поэтому вам нужно будет его проверить.

Вентилятор охлаждения

Отсоедините разъем вентилятора, ближайший к вентилятору.

Сделайте несколько соединительных кабелей; подключите их напрямую от аккумулятора к двигателю вентилятора, чтобы проверить, вращается ли он.

Следовательно, если он не вращается, его выдувают. Замени его, и ты снова в пути.

Если он работает; Перейти к следующему шагу.


Проблемы с вентилятором охлаждения двигателя

Неисправность вентилятора; или неисправность реле вентилятора или цепи управления — плохая новость; потому что это может привести к перегреву двигателя. В приложениях с переменной скоростью вращения вентилятора; двигатель также может перегреться, если скорость вращения вентилятора не увеличивается, когда требуется дополнительное охлаждение. Вентилятор может работать, но работает только на низкой скорости; что может быть недостаточно быстрым, чтобы предотвратить перегрев.

В целом есть шесть факторов, которые могут помешать включению электрического вентилятора охлаждения;

  1. Неисправность реле температуры; датчик охлаждающей жидкости или другой датчик
  2. Термостат двигателя застрял в ОТКРЫТОМ состоянии (двигатель никогда не нагревается настолько, чтобы включить вентилятор)
  3. Неисправное реле вентилятора
  4. Проблема с проводкой (перегоревший предохранитель, ослабленный или корродированный разъем, короткое замыкание, обрыв и т. Д.)
  5. Неисправный мотор вентилятора
  6. Неисправен модуль управления вентилятором

Следующее, что нужно проверить, — переключатель или датчик охлаждающей жидкости

В большинстве систем; есть переключатель температуры охлаждающей жидкости, который включает и выключает вентиляторы.

Найдите переключатель температуры охлаждающей жидкости и отсоедините его. Убедитесь, что у вас правильный. Следовательно, у некоторых автомобилей их целых три;

  • Один для сигнальной лампы приборной панели
  • Или потолочная консоль
  • Один для (PCM)
Датчик температуры охлаждающей жидкости двигателя- (ECT)

Следовательно, при работающем двигателе и отключенном реле температуры охлаждающей жидкости вентилятор должен включиться.(PCM) теперь обнаружит неисправный переключатель; сохраните диагностический код неисправности (DTC) и включите вентилятор (ы).

Если нет, и у вас отечественный автомобиль; Реле температуры охлаждающей жидкости — это нормально разомкнутый тип, который остается разомкнутым, пока охлаждающая жидкость не достигнет заданной температуры. Когда он достигнет этой температуры; выключатель замыкается и включает вентилятор (ы).

Чтобы проверить это, отсоедините однопроводной соединитель и с помощью перемычки заземлите его. В этот момент вентилятор должен включиться.Большинство японских автомобилей имеют нормально замкнутый переключатель. Эти переключатели размыкаются при достижении заданной температуры, что приводит к включению вентилятора (ов).

Заключение

Итак, двигатели вентилятора охлаждения являются важным компонентом любого узла вентилятора охлаждения двигателя; и играют ключевую роль в поддержании безопасных температур в автомобиле на холостом ходу и низких скоростях.

В заключение. если вы подозреваете, что у двигателей охлаждающих вентиляторов возникла проблема; начните проводить некоторое тестирование, чтобы увидеть, сможете ли вы исправить это самостоятельно.

Поделитесь новостями портала DannysEngine

Как работает двигатель?

Вы уже знаете, что завести машину так же просто, как повернуть ключ, но задумывались ли вы, что на самом деле происходит под капотом?

Когда вашему телу нужно топливо, вы кормите его пищей. Когда вашему автомобилю требуется топливо, вы «кормите» его бензином. Точно так же, как ваше тело преобразует пищу в энергию, автомобильный двигатель преобразует газ в движение. Некоторые новые автомобили, известные как гибриды, также используют электричество от батарей для движения автомобиля.

Процесс преобразования бензина в движение называется «внутреннее сгорание». Двигатели внутреннего сгорания используют небольшие контролируемые взрывы для выработки энергии, необходимой для перемещения вашего автомобиля во все места, куда ему нужно ехать.

Если вы создаете взрыв в крошечном замкнутом пространстве, таком как поршень в двигателе, огромное количество энергии выделяется в виде расширяющегося газа. Типичный автомобильный двигатель производит такие взрывы сотни раз в минуту. Двигатель использует энергию и приводит в движение ваш автомобиль.

Взрывы заставляют поршни двигателя двигаться. Когда энергия от первого взрыва почти иссякает, происходит еще один взрыв. Это заставляет поршни снова двигаться. Цикл повторяется снова и снова, давая автомобилю мощность, необходимую для движения.

В двигателях автомобилей используется четырехтактный цикл сгорания. Четыре такта — это впуск, сжатие, сгорание и выпуск. Удары повторяются снова и снова, генерируя энергию. Давайте подробнее рассмотрим, что происходит на каждой фазе цикла сгорания.

Впускной: Во время впускного цикла впускной клапан открывается, и поршень движется вниз. Цикл начинается с подачи воздуха и газа в двигатель.

Сжатие: В начале цикла сжатия поршень перемещается вверх и выталкивает воздух и газ в меньшее пространство. Меньшее пространство означает более мощный взрыв.

Сгорание: Затем свеча зажигания создает искру, которая воспламеняет и взрывает газ. Сила взрыва заставляет поршень снова опускаться.

Выхлоп: Во время последней части цикла выпускной клапан открывается, чтобы выпустить отработанный газ, образовавшийся в результате взрыва. Этот газ перемещается в каталитический нейтрализатор, где он очищается, а затем через глушитель, прежде чем он выходит из автомобиля через выхлопную трубу.

PPT — Как работает система охлаждения вашего автомобиля Презентация PowerPoint

  • КАК РАБОТАЕТ СИСТЕМА ОХЛАЖДЕНИЯ ВАШЕГО АВТОМОБИЛЯ?

  • Двигатель — единственный компонент в вашем автомобиле, который может преобразовывать химическую энергию в форму механической энергии.

  • Но семьдесят процентов химической энергии превращается в тепловую энергию, чем механическую энергию.

  • Для предотвращения перегрева в системе двигателя автомобиль имеет полностью признанную систему охлаждения.

  • Система охлаждения вашего автомобиля, используемая для понижения температуры вашего двигателя, которая может повредить другие части вашего автомобиля.

  • Система охлаждения вашего автомобиля может состоять из нескольких различных подсистем для работы.Такие как: Охлаждающая жидкость двигателя Водяной насос Радиатор Термостат

  • Охлаждающая жидкость двигателя

  • Охлаждающая жидкость является наиболее важной частью системы охлаждения, которая окружает блок двигателя.

  • Он используется для поглощения тепла от двигателя и отвода тепла, когда он продолжает свой путь циркуляции.

  • Избыточное давление в системе охлаждения может привести к обмерзанию в холодную погоду и повреждению двигателя.

  • Водяной насос

  • Водяной насос — это механический насос вашего автомобиля, который может проталкивать охлаждающую жидкость через радиатор и двигатель автомобиля.

  • Он содержит крыльчатку для создания давления для перемещения охлаждающей жидкости через двигатель и радиатор.

  • Его расход всегда увеличивается в той же пропорции согласно оборотов двигателя на единицу.

  • Радиатор

  • Радиатор — это металлический корпус прямоугольной формы, который устанавливается на передней части двигателя.

  • Радиатор содержит ряд ребер и трубок, которые могут обеспечивать большую площадь поверхности для прохождения жидкости.

  • Когда охлаждающая жидкость движется по каналам, тепло передается в ребро для охлаждения воздуха в радиаторе.

  • Когда воздух проходит через промежутки между металлическими ребрами , тепло излучается в воздух и от двигателя.

  • Термостат

  • Как работает реактивный двигатель

    Вы, возможно, задавались вопросом, как работает реактивный двигатель, но отказались от идеи, что сможете понять ракетостроение.Но на самом деле это простая для понимания концепция, которая впечатлит человека рядом с вами во время вашего следующего полета. Итак, мы собираемся объяснить задействованные процессы, чтобы каждый мог хорошо понять основные принципы, лежащие в основе реактивных двигателей.

    Реактивные двигатели, чаще используемые в самолетах, представляют собой тип газотурбинных двигателей. Теперь вы, возможно, знаете паровые турбины, в которых топливо сжигается для получения высокотемпературного парового потока, который приводит в движение турбину, а затем вращает вал перед тем, как его выбросить из системы.Вращение этого вала является выходной мощностью, и именно это вращение приводит в движение вращающийся объект. Газовая турбина похожа на те же основные принципы, однако сжатый газ отвечает за привод турбины. В реактивных двигателях высокотемпературный сжатый газ приводит во вращение компрессор спереди, но, что более важно, то, что выбрасывается из системы, вылетает сзади на высоких скоростях, создавая так называемую тягу.

    Проще говоря, у реактивных двигателей есть сердечник, который разделен на три основные части:

    • Компрессор — в передней части двигателя находятся лопасти вентилятора, некоторые вращающиеся (роторы) и некоторые статические (статоры), которые втягивают воздух в двигатель.Есть много рядов лопастей, и когда воздух проходит через каждый ряд, он становится более сжатым и температура увеличивается.
    • Камера сгорания — этот сжатый воздух затем распыляется с топливом (чаще всего Jet A или Jet A-1, которые относятся к керосиновому типу), а затем электрическая искра воспламеняет смесь топлива и воздуха в камере. Это вызывает горение топливно-воздушной смеси, что значительно увеличивает давление и температуру.
    • Турбины — горячий сжатый газ всасывается из двигателя задней турбиной, которая забирает энергию из газа и вызывает падение давления и температуры.По мере того, как давление уменьшается, газ течет быстрее (подумайте о том, чтобы отпустить надутый баллон). Энергия газа, который приводит в движение заднюю турбину, приводит во вращение компрессор, который втягивает воздух спереди.

    Высокоскоростные газы, выпускаемые через сопло в задней части, являются причиной тяги. Чтобы понять это, мы обратимся к третьему закону движения Ньютона: для каждого действия существует равное и противоположное противодействие. Когда газ вырывается из спины, вперед действует равная противоположная сила.Подумайте о том, когда вы толкаете стену бассейна, чтобы скользить в противоположном направлении; Даже если сила вашего толчка направлена ​​к стене, равная и противоположная сила реакции заставляет вас двигаться в противоположном направлении.

    Примерно на скорости 400 миль в час один фунт тяги равен одной лошадиной силе, но на более высоких скоростях это соотношение увеличивается, и фунт тяги превышает одну лошадиную силу. На скорости менее 400 миль в час это соотношение уменьшается. Эта сила позволяет большим самолетам, таким как 747, летать со скоростью до 600 миль в час.

    Существуют также реактивные двигатели различных типов, например, турбовинтовые. Вы узнаете, является ли это турбовинтовой двигатель, по большим выдавленным гребным винтам спереди, которые отвечают за тягу, поскольку большая часть энергии от газа передается компрессору задними турбинами, поэтому поданный газ не несет ответственности за тяга.

    Турбовальный двигатель используется в винтах вертолетов, силовых установках и даже в танке M1. Процесс аналогичен турбовинтовому, однако вместо привода пропеллеров вращающийся вал может приводить в действие различные устройства, такие как насосы, генераторы, колеса и вообще все, что вращается.

    В современных больших самолетах используется турбореактивный двухконтурный двигатель, который аналогичен стандартному турбореактивному двигателю, за исключением того, что большой передний вентилятор втягивает в двигатель больше воздуха. Однако не весь воздух проходит через компрессор и турбины, при этом большая часть воздуха фактически проходит в обход сердечника и проходит по каналам снаружи сердечника (в среднем в 5 раз больше воздуха пропускается, чем фактически проходит через сердечник).

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *