Принцип работы топливной системы инжекторного двигателя: Принцип работы инжектора, устройство системы + видео

Инжекторная система впрыска топлива. Устройство системы питания инжекторного двигателя


Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т. п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный — все форсунки открываются одновременно. Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

По теме: методические разработки, презентации и конспекты

План-конспект урока по устройству автомобиля.

Создать условия для изучения и осмысления блока учебной информации по изучению системы охлаждения двигателей, применения знаний и способов в лабораторных условиях.

Урок посвящен системе питания карбюраторного двигателя.

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Конспект урока повторения и обобщения темы «Тепловые двигатели», первоначальных знаний о системе питания дизельного двигателя; определение физических законов, используемы.

Презентация повторения и обобщения темы «Тепловые двигатели», первоначальных знаний о системе питания дизельного двигателя; определение физических законов, используемых в.

Двигатель Внутреннего Сгорания (далее – ДВС) не зря считается сердцем автомобиля. Именно производимый им крутящий момент является первоисточником всех механических и электрических процессов.

Код для использования на сайте:

Скопируйте этот код и вставьте себе на сайт

Устройство системы питания инжекторного двигателя

Рис. 1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль «газа», водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя.

1.Устройство инжектора

Основная задача системы питания инжекторного двигателя

заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

1.1.Устройство системы питания инжектора:

1. Электробензонасос

— устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен

для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр

— предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы

— служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками

— конструкция рампы обеспечивает равномерное распределение топлива по форсункам
.
На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива

— предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

1.1.1.

Как работает система питания инжекторного двигателя?
Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси. Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии . Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается — смесь обогащается, если уменьшается — смесь обедняется.

Похожие материалы:

  1. Снятие краски с деревянной двери механическим воздействием
  2. Почему моргает или мигает светодиодная лампа
  3. Универсальный бортовой компьютер – контроль важных параметров в авто!
  4. Диммер что это такое, как выбрать и подключить правильно

Особенности дизтоплива и двигателей на нем

Как и бензиновый двигатель, дизель работает на принципе сгорания жидкого топлива в цилиндрах. Но солярка обладает некоторыми специфическими особенностями, из которых происходят и отличия в конструкции дизельных и бензиновых моторов.

С точки зрения состава дизтопливо – смесь газойлевых и керосиновых фракций, получаемая после того, как из сырой нефти отгонят бензин.

Основное свойство дизтоплива – показатель воспламеняемости, который называют цетановым числом (аналогично октановому числу для бензина). Стандартные типы дизтоплив, имеющиеся в продаже на АЗС, имеют это число в пределах от 45 до 50.

Дизтопливо проходит предварительную очистку уже на заводе, а устранением посторонних фракций «на месте» занимается топливный фильтр. Очищенное горючее поступает по магистрали к ТНВД (входящий в состав дизельного мотора топливный насос высокого давления, назначение которого – создать давление на выходе), подающему его в форсунки, которые распыляют топливо в камеру сгорания. Там частицы дизтоплива смешиваются с разогретым от сжатия воздухом, и происходит воспламенение.

Свечи дизеля:

Среди прочих важных особенностей дизтоплива – его повышенная плотность и хорошая смазывающая способность. Другие существенные характеристики:

  • чистота горючего;
  • вязкость;
  • температура застывания.

По последнему параметру принято делить солярку на:

  • летнее дизтопливо;
  • зимнее;
  • арктическое.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство

Сегодня мы узнаем, что представляет из себя инжекторная топливная система двигателя автомобиля, каково ее строение, устройство и принцип работы, а также чем отличается механизм от карбюраторных установок

ЧТО ТАКОЕ ТОПЛИВНАЯ СИСТЕМА ИНЖЕКТОРА. ПРИНЦИП РАБОТЫ, ОСОБЕННОСТИ, СТРОЕНИЕ И УСТРОЙСТВО


Добрый день, сегодня мы узнаем, что представляет из себя инжекторная топливная система двигателя автомобиля, каково ее строение, устройство и принцип работы, а также чем отличается механизм от карбюраторных установок. Кроме того, расскажем про то, из каких компонентов и узлов состоит топливная система инжекторного типа, насколько она эффективна в работе, а также каков уровень ремонтопригодности установка.  В заключении поговорим о том, какие детали топливной системы играют ключевую роль в ее оптимальном функционировании и на что стоит обращать внимание при эксплуатации бензинового двигателя оснащенного инжекторным механизмом, чтобы устройства отработали весь свой срок службы без поломок.


Сама по себе топливная система автомобиля — это своего рода его «кровеносная« система машины, срок службы которой зависит от большого количества факторов и условий эксплуатации. Эффективность работы инжекторной системы бензинового двигателя напрямую зависит от производственных свойств узлов, их конструкторских особенностей, строения компонентов, надежности деталей, которыми оснащен механизм, а также от своевременной замены расходных элементов (на примере топливного фильтра, свечей зажигания), качества заправляемого топлива и в положенный ли регламентом срок проводится техническое обслуживание транспортного средства.

 

ЧТО ТАКОЕ СИСТЕМА ВПРЫСКА ТОПЛИВА COMMON RAIL

 

 

Современные автомобильные топливные системы оснащенные инжектором зачастую идут с электронным впрыском топлива. Такие системы имеют ряд особенностей по сравнению с карбюраторным мотором. Как мы знаем каждое новое поколение той или иной автомобильной системы становится сложнее, более технологичней, проще в эксплуатации, но к сожалению дороже в обслуживании, да и срок службы таких механизмов порой значительно сокращается. Чтобы знать, как работает инжекторный топливный механизм своего автомобиля, необходимо в первую очередь понимать основные задачи, функции и устройство системы. Эти вопросы мы и рассмотрим в нашей статье, чтобы у нас появилось четкое понятие всей совокупности деталей и узлов, которые обеспечивают функционирование топливной системы двигателя машины.

1. Особенности, строение, устройство и задачи топливной системы инжектора

Главной задачей любой инжекторной топливной системы автомобиля является обеспечение подачи нужного количества горючего в силовую установку на всех рабочих режимах. Подача топлива в системе осуществляется при помощи специальных форсунок, которые устанавливаются во впускной трубе. Сама по себе топливная система автомобиля является довольно сложным механизмом, без которой не сможет функционировать не один двигатель.


Строение топливной системы инжектора основывается на следующих компонентов:


— Бензонасос электрического типа (электробензонасос): конструктивно входит в специальный модуль предназначенный для насоса и зачастую устанавливается на машинах оборудованных системой инжектора внутри топливного бака. Данный модуль бензонасоса включает в свой состав не только насос, но также датчик контроля уровня топлива, топливный фильтр и завихритель, который удаляет пузырьки пара из горючего.

Главной задачей бензонасоса электрического типа является нагнетание горючего из топливного бака машины в подающий топливопровод. Что касается инжекторных двигателей, то в таких системах применяется модуль погружного вида, который располагается в самом бензобаке и охлаждается он за счет топлива. Справочно заметим, что создаваемое бензонасосом давление топлива намного больше необходимого для оптимальной работы силовой установки, причем независимо от того или иного режима работы мотора.

Стоит отметить, что бензонасос электрического типа на инжекторных двигателях управляется при помощи контроллера системы через специальное реле, которое предназначено сугубо для этих целей. Что касается реле, то оно останавливает подачу топлива, как при работающем моторе, так и при неработающей силовой установке.

— Топливный фильтр: системы топливной подачи необходим для четкой и точной регулировки объема поступающего топлива в силовую установку. Дело в том, что зачастую топливо на заправках идет с различными примесями в виде отложений и грязи, которая приводит к тому, что работа форсунок, а также регулятора давления становится неустойчивой. В свою очередь загрязненность топлива приводит к ускоренному износу форсунок и регулятора давления, а затем как следствие к их ремонту или замене. Таким образом, к чистоте топлива, независимо бензин это или солярка должны предъявляться особые требования.

Заметим, что в системе топливоподачи предусматривается специальный фильтр, основу или сердцевину которого составляет компонент на бумажной основе с особой пористостью, составляющей около 10 милимикрон. Стоит также помнить, что интервал обслуживания, то есть замены топливного фильтра напрямую зависит от объема фильтрующего элемента, а также степени его загрязнения.

— Подающий и сливной трубопроводы системы: необходимы для транспортировки топлива по инжекторной системе. Трубопроводы подразделяются на прямой и обратный. Что касается прямого, то он необходим для топлива, которое поступает из модуля электрического бензонасоса в топливную рампу. В свою очередь обратный трубопровод системы осуществляет доставку избытка топлива после регулятора давления назад в бензобак.

— Топливная рампа с форсунками: представляет из себя металлическую трубку с отверстиями, по которой топливо равномерно курсирует, а затем распределяется на все форсунки. Кроме форсунок на топливной рампе зачастую располагаются штуцер контроля давления в системе и регулятор давления горючего. Благодаря определенным размерам и конструкции, топливная рампа позволяет устранить локальные колебания давления горючего из-за возникающих в нем резонансов при функционировании форсунок.

— Регулятор давления топлива: отвечает за количество впрыскиваемого топлива в камеры сгорания цилиндров. Заметим, что количество подаваемого горючего регулятором давлениязависит от длительности впрыска, то есть от периода времени открытого состояния инжекторной форсунки. Исходя из этого давление топлива в рампе и показатель давления во впускной трубе, то есть перепад на форсунках, должен всегда быть постоянным. Вот именно для этого и нужен специальный регулятор, который поддерживает необходимое давление в системе. Кроме того, образующиеся излишки топлива, регулятор направляет снова в бензобак.

— Штуцер для контроля давления топлива: является очень важным компонентом, который отвечает за нужную дозировку топлива. Форсунка электромагнитного типа оснащается клапанной иглой, которая снабжена магнитным сердечником. В обычном режиме работы, спиральная пружина форсунки, как бы прижимает клапанную иглу к уплотнительному седлу распылителя и тем самым закрывает выходное отверстие предназначенное для топлива. В тот момент, когда поступает электрический ток на сердечник с клапанной иглой, то он приподнимается примерно на 50-100 милимикрон и в этот момент происходит впрыскивание горючего через четко откалиброванное выходное отверстие

Заметим, что в зависимости от способа впрыска топлива с частотой вращения, а также от текущей нагрузки силовой установки, время включения подачи горючего равняется в среднем 10 милисекундам. Кроме того, стоит учитывать, что важнейшим показателем функционирования той или иной форсунки является зависимость количества прошедшего через данный элемент топливной системы горючего от времени открытияотверстия при постоянной разности давлений.

Справочно стоит сказать, что не стоит менять форсунки на отечественном автомобиле на дорогие по цене от иномарки, так как уже неоднократно установлено многими автовладельцами, что никакого положительного эффекта этот процесс не дает. Наиболее эффективным вариантом обновления форсунок является их очистка методом промывки. Таким образом, как можем видеть такой элемент топливной системы инжектора, как форсунка является особенно важной и ценной деталью всего механизма впрыска. Вот поэтому данная деталь требует к себе особого отношения и систематического обслуживания.

2. Принцип работы инжекторной топливной системы двигателя

Чтобы силовая установка функционировала в штатном режиме, необходимо обеспечить нужный объем поступления в камеру сгорания мотора топливно-воздушной смеси, причем оптимального состава. Как мы знаем топливная смесь создается во впускной трубе, когда происходит смешивание горючего с воздухом, причем в определенной пропорции компонентов. Далее после приготовления смеси, контролер системы подает на форсунку специальный управляющий импульс электрического типа, который производит открытие закрытого клапана форсунки. После этих действий, топливо под нужным давлением устремляется во впускную трубу, которая располагается перед клапаном.

В связи с тем, что перепад давления горючего поддерживается на постоянной основе, то количество направляемого топлива пропорционально периоду времени, в течение которого такие элементы системы, как форсунки находятся в режиме открытого состояния. Что касается оптимального соотношения топливно-воздушной смеси, то за это отвечает специальный контроллер, который при помощи изменения длительности импульсов меняет параметры впрыска топлива. 

Чтобы смесь была больше обогащена воздухом, контроллер увеличивает длительность электрического импульса на форсунки. А для того, чтобы смесь наоборот была обедненная, то контроллер уменьшает длительность электрического импульса на форсунки, тем самым происходит, как бы замедление процесса впрыска топлива в камеру сгорания цилиндра двигателя.


В заключении отметим, что кроме точной и необходимой дозировки впрыскиваемого объема горючего, довольно важное значение в процессе работы топливной системы инжектора двигателя играет такой показатель, как момент подачи. Вот поэтому количество форсунок инжектора всегда соответствует количеству цилиндров силовой установки и никак иначе.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Сигналы цепи топливной форсунки — UnderhoodService

Диагностика

Электрический топливный инжектор существует уже более 50 лет. Принципы работы просты. Электромагнитная катушка перемещает штифт в камере с топливом под давлением с одной стороны и соплом с другой. Катушка обычно возбуждается драйвером, замыкающим цепь на землю. Когда катушка насыщается энергией, штифт движется вверх против пружины. Это позволяет впрыскивать топливо в двигатель.

Электрический топливный инжектор существует уже более 50 лет. Принципы работы просты. Электромагнитная катушка перемещает штифт в камере с топливом под давлением с одной стороны и соплом с другой.

Катушка обычно запитывается драйвером, замыкающим цепь на землю. Когда катушка насыщается энергией, штифт движется вверх против пружины. Это позволяет впрыскивать топливо в двигатель.

Напряжение

Большинство форсунок используют 12 вольт для питания катушки, а драйвер подает питание на цепь, замыкая ее на землю. Когда на форсунку подается питание, напряжение падает почти до нуля. Если это не так, это может означать обрыв или слабый контакт в жгуте проводов или обрыв катушек внутри форсунки.

При отключении напряжения игла начинает закрываться. Когда он закрывается, он генерирует всплеск напряжения, известный как индуктивный толчок. Это генерируемое магнитное поле, разрушающееся в катушках. Этот всплеск может варьироваться от 50 до 100 вольт. В некоторых схемах используется диод для ограничения напряжений, видимых на драйвере, чтобы предотвратить повреждение. Эти диоды будут сбрасывать напряжение на землю, если оно достигнет определенного диапазона. Это может привести к обрезанию пика на осциллограмме.

На обратной стороне индукционного удара вы можете увидеть небольшой положительный выступ или выпуклость. Это штифт ударяется о седло форсунки и закрывается. Это очень мощный диагностический инсайт.

Ток

Форма сигнала тока топливной форсунки представляет собой линейную характеристику, которая показывает насыщение катушки током. Ток начинает увеличиваться, как только драйвер подает напряжение. Рампу можно разделить на две части.

В первой части форсунка закрыта, а катушка еще не накопила достаточную электродвижущую силу, необходимую для противодействия пружине на задней части штифта.

Когда в катушке достаточно тока, стрелка двигается. Это событие можно рассматривать как небольшой подъем склона. Где он появляется на склоне, спорный вопрос. Многие переменные, такие как характеристики форсунок, давление топлива и другие факторы, могут изменить положение события на осциллограмме. Однако некоторые прицелы могут быть недостаточно быстрыми, чтобы поймать его.

Диагностика

Диагностика насыщения цепи впрыска топлива переключателя с помощью осциллографа может помочь вам подтвердить исправность драйверов и форсунок. Вы можете сравнить сигналы с другими форсунками на автомобиле или с заведомо исправными сигналами, найденными в Интернете или в сервисной информации. Сами по себе кривые тока и напряжения могут подтвердить движение внутренних частей форсунки. Это может быть очень полезно при попытке отследить проблему пропусков зажигания из-за открытой, негерметичной или застрявшей форсунки.

Песня о воздухе и топливе: истоки впрыска топлива

Образ жизни

Чтение на 6 мин.

В предыдущих выпусках нашей серии о приготовлении топливных смесей для двигателей внутреннего сгорания мы рассмотрели «первую эпоху» — карбюраторы. Это элегантное и (в большинстве случаев) чисто механическое устройство, наконец, достигло своего предела в конце 1980-х и начале 1990-х годов. Пришло время уступить место новой системе – впрыску топлива. Но так ли все было ново?
 
На самом деле, хотя впрыск топлива стал обычным явлением в бензиновых двигателях относительно недавно, эта идея существует уже более века. Даже более современная система непосредственного впрыска скоро отметит свое 100-летие. Эволюция впрыска топлива настолько интересна, а ее преимущества настолько важны, что мы должны рассмотреть ее поближе.

 
В предыдущих частях мы говорили, что не будем обсуждать двигатели с воспламенением от сжатия или дизельные двигатели. Те, в принципе, требуют какого-то впрыска топлива, но – опять же из-за их особенностей – в автоспорте они почти не используются. Однако в нашем путешествии по истории впрыска топлива мы должны хотя бы кратко взглянуть на них. И не все двигатели с воспламенением от сжатия являются дизелями!

Первая система впрыска топлива, хоть сколько-нибудь похожая на современные, была изобретена британским инженером и моторостроителем Гербертом Акройдом Стюартом. Он был достаточно «ловок», чтобы вылить фляжку с керосином в котел, полный расплавленного олова в 1885 году. Последовавший за этим пожар привел к полезному открытию, что, хотя жидкий керосин неохотно воспламеняется, горячие пары керосина действительно воспламеняются очень охотно. Хорошо знать.

Инцидент с пожаром в лаборатории в конечном итоге привел к созданию двигателя с горячим термометром, который был запущен в производство по лицензии в 189 г.1. Это означает, что Акройд Стюарт был на самом деле быстрее, чем Рудольф Дизель, чей прототип был впервые запущен в 1894 году. сельское хозяйство и судоходство с этого момента. Обычно это были одноцилиндровые двигатели с двухтактным циклом и низкой степенью сжатия от 3:1 до 9:1 (типичный дизельный двигатель имеет степень сжатия где-то между 15:1 и 23:1). Это был не типичный дизель, но он был похож в принципе на двигатель с воспламенением от сжатия, хотя для воспламенения в нем использовался внешний источник тепла, а не сжатие.

Первый двигатель с впрыском топлива и воспламенением от сжатия был сконструирован в 1902 году и запущен в производство в 1906 году.

Как будто это не было достаточно большим прорывом, это был также первый в истории серийный двигатель V8. Вы можете подумать, что этот двигатель родом из США, земли обетованной восьмицилиндрового двигателя, но вы ошибаетесь. Рассматриваемый двигатель был французским. Он назывался Antoinette 8V и был разработан не кем иным, как знаменитым изобретателем и пионером авиации Леоном Левавассером. Двигатель V8 с воздушным охлаждением и рабочим объемом восемь литров выдавал 50 лошадиных сил, что для того времени было солидным показателем. Благодаря продуманной конструкции он также весил всего 95 кг. Левавассер также разработал первый двигатель V16.

Авиационный двигатель Antoinette V8

Еще одним интересным примером в истории впрыска топлива является двигатель Хессельмана. По сути, это гибрид бензинового и дизельного двигателя. Свеча зажигания используется для воспламенения топливно-воздушной смеси, как и в двигателе с искровым зажиганием, но она предназначена для сжигания более тяжелых видов топлива, таких как дизельное топливо, керосин или даже мазут.

Он зажигается на бензине, который сжигает до тех пор, пока не прогреется, а затем переключается на тяжелое топливо. Перед выключением необходимо снова дать ему поработать некоторое время на бензине, чтобы очистить систему от тяжелых топливных отложений.
 
Этот двигатель был изобретен шведским инженером Йонасом Хессельманом и впервые представлен в 1925 году. Он использовался в автобусах и грузовиках с конца 1920-х до начала 1940-х годов такими производителями, как Volvo и Scania. Двигатель Hesselman был первым двигателем с воспламенением от сжатия с прямым впрыском, когда-либо использовавшимся в дорожных транспортных средствах, хотя и не был настоящим дизельным двигателем. Его конструкция была больше похожа на бензиновый двигатель.
 
Основными преимуществами двигателя Хессельмана были его способность сжигать низкокачественное, более дешевое топливо и более высокая топливная экономичность по сравнению с бензиновыми двигателями аналогичной производительности того времени. С другой стороны, поскольку ему не приходилось выдерживать такое высокое давление, как дизельному двигателю, ему было довольно сложно достичь рабочей температуры. Топливо не всегда сгорало идеально, и тогда свечи зажигания становились грязными, а выхлоп выпускал клубы ядовитого дыма, которые заставили бы сегодняшних защитников окружающей среды съежиться.


Как и во многих других подобных областях, разработки в области впрыска бензинового топлива получили широкое распространение во время Второй мировой войны. Деньги и ресурсы вкладывались в изучение нововведений, даже самых причудливых, в надежде, что любое техническое усовершенствование приведет к ценному преимуществу над противником. Вероятно, самый известный пример этого произошел в небе над Великобританией. В остальном чрезвычайно продвинутые истребители Supermarine Spitfire и Hawker Hurricane Королевских ВВС столкнулись с проблемами в воздушных боях с Messerschmitt Bf 109.с немецкого люфтваффе.

Двигатели Rolls-Royce Merlin на британских истребителях питались от карбюраторов, что приводило к прерыванию подачи топлива при маневрах с отрицательной перегрузкой, но двигатели Daimler-Benz 601 V12 на немецких самолетах не страдали от этой проблемы.
 
Было много других немецких авиационных двигателей, в которых использовался впрыск топлива, например, 42-литровый радиальный 14-цилиндровый двигатель BMW 801 с воздушным охлаждением, который приводил в действие страшные истребители Focke-Wulf Fw 190, а также бомбардировщики Junkers Ju 88. Junkers Jumo 210 в пикирующем бомбардировщике Ju 87 Stuka, Jumo 211 в Heinkel He 111 и другие использовали системы впрыска топлива. Знаменитые Мерлины сохранили карбюраторы, хотя и были модернизированы и с решенной проблемой отрицательной перегрузки, но первые экземпляры с впрыском топлива также начали появляться по другую сторону Атлантики. Типичным примером был дуплексный циклон Wright R-3350. Советы придумали Швецов Аш-82, свой вариант «Циклона».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *