Принцип работы турбонаддува бензинового двигателя: Как работает турбина на бензиновом двигателе — устройство турбокомпрессора

Содержание

Принцип работы турбины на дизельном двигателе

Воплощение идеи по использованию выхлопных газов с целью разгона ротора позволила увеличить мощность дизельного мотора примерно на 30%. Мотор, на который установлен турбонаддув, называется турбодизелем.

Содержание:

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Чтобы выполнять возложенные функции с необходимой эффективностью, турбонаддув имеет особую конструкция, состоящую из двух элементов:

  • турбины;
  • компрессора.

Главная функция компрессора заключается в усилении поступления воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри него располагается ротор, закрепленный на оси турбины.

Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Как работает турбонаддув

Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.

Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.

Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.

Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).

Работа турбины дизельного двигателя также требует контроля давления:

  1. компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
  2. когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.

Минусы использования турбокомпрессора

Казалось бы, установка турбодизеля влечет за собой сплошные преимущества, но это не так. У устройства есть определенные недостатки:

  1. возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
  2. температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.

Турбированный мотор: правила эксплуатации

Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:

  • придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
  • использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
  • не трогаться сразу после включения мотора – движок должен быть прогрет;
  • сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.

Как работает турбина: видео

Система двойного турбонаддува TwinTurbo: описание, принцип работы

Основной проблемой использования турбонаддува является инерционность системы или возникновение так называемой “турбоямы” (временная задержка между увеличением оборотов двигателя и фактическим увеличением мощности). Для ее устранения была разработана схема с использованием двух турбокомпрессоров, получившая наименование TwinTurbo. У некоторых производителей эта технология также известна как BiTurbo, но отличия конструкций заключается только в коммерческом названии.

Особенности работы Твин Турбо

Система наддува TwinTurbo

Системы с двумя компрессорами применяются и на дизельных, и на бензиновых двигателях. Однако для последних требуется использование более качественного топлива с высоким октановым числом, что позволяет снизить вероятность детонации (негативное явление возникающее в цилиндрах двигателя, разрушающее цилиндро-поршневую группу).

Помимо основной функции уменьшения времени турбозадержки, схема Твин Турбо позволяет получить более высокую мощность двигателя автомобиля, снижает расход топлива и сохраняет максимальный крутящий момент в широком диапазоне оборотов. Это достигается использованием различных схем подключения компрессоров.

Виды схем наддува с двумя турбокомпрессорами

В зависимости от способа подключения пары турбокомпрессоров различают три основных схемы системы TwinTurbo:

  • параллельная;
  • последовательная;
  • ступенчатая.

Параллельная схема подключения турбин

Предусматривает подключение двух одинаковых турбокомпрессоров, работающих параллельно (одновременно). Сущность применения конструкции заключается в том, что две меньших по объему турбины имеют меньшую инерционность, чем одна большая.

Перед подачей в цилиндры воздух, нагнетаемый обоими турбокомпрессорами, поступает в один впускной коллектор, где смешивается с топливом и распределяется в камеры сгорания. Эта схема чаще используется на дизельных двигателях.

Последовательное включение

Последовательная схема подключения Твин Турбо

Последовательно-параллельная схема предполагает установку двух одинаковых турбин. Одна работает постоянно, а вторая подключается при повышении оборотов двигателя, увеличении нагрузки или других особых режимах. Переключение режимов работы осуществляется с помощью клапана, приводимого в действие ЭБУ двигателя автомобиля.

Эта система прежде всего ориентирована на устранение турбоямы и получение более плавной динамики разгона автомобиля. По аналогичной схеме работают системы с тройным турбонаддувом TripleTurbo.

Ступенчатая схема

Ступенчатая схема Битурбо

Двухступенчатый турбонаддув представляет собой два турбокомпрессора разного размера, которые установлены последовательно и подключены к впускному и выпускному каналам. Последние оснащены перепускными клапанами, регулирующими потоки воздуха и отработавших газов. Ступенчатая схема имеет три режима работы:

  • При малых оборотах двигателя клапаны находятся в закрытом положении. Отработавшие газы проходят через обе турбины. Поскольку давление газов низкое, крыльчатки большой турбины практически не вращаются. Воздух проходит через обе ступени компрессоров, получая минимальное избыточное д

Турбонаддув — Энциклопедия журнала «За рулем»

В турбокомпрессоре используются центробежные насосы. Под действием центробежных сил, вызванных вращением колеса с лопатками, воздух отбрасывается к периферии колеса, а в его центре создается разрежение, что обеспечивает всасывание воздуха. Для эффективной работы турбокомпрессора частота вращения колеса компрессора должна быть очень высокой не менее 50–100 тыс. мин–1.
При работе ДВС из выпускного трубопровода под давлением выбрасываются продукты сгорания, которые имеют высокую температуру. Поток газов приводит во вращение колесо турбины, которое передается закрепленному на общем вале колесу компрессора.

Для достижения фазы наддува, т. е. момента, когда давление воздуха на впуске превысит атмосферное, необходимо, чтобы была достигнута определенная частота вращения турбины (не менее 60 000 мин–1). При малых оборотах двигателя турбокомпрессор работает в дежурном режиме (частота 5 000–10 000 мин–1). Необходимо учитывать, что наличие турбины в выпускном тракте создает сопротивление выходу отработавших газов.

Очень важный вопрос — выбор правильного размера турбины для конкретного двигателя. В первых двигателях с турбонаддувом для легковых автомобилей 1970-х гг. использовались готовые конструкции, разработанные, как правило, для дизелей больших грузовых автомобилей. Такие устройства давали хороший результат для увеличения максимальной мощности, но были неэффективными для получения большого крутящего момента в среднем диапазоне частот вращения двигателя, т. е. для получения достаточной приемистости автомобиля. Большие турбины требовали некоторого времени на «раскрутку», когда при небольших нагрузках открывалась дроссельная заслонка, что приводило к задержке нарастания давления наддува. Этот эффект получил название

турбоямы.


Схема работы турбокомпрессора с изменяемой геометрией

Большинство современных турбокомпрессоров легковых автомобилей имеют небольшие размеры и высокую частоту вращения. Для того чтобы увеличить диапазон частот вращения двигателя, при которых турбонаддув обеспечивает повышение давления, применяются по два турбокомпрессора на одном двигателе. Один турбокомпрессор работает при низких оборотах, а второй при высоких. В последних поколениях наддувных двигателей стали применяться

турбокомпрессоры с переменной геометрией, которые сохраняют высокую скорость газов при малых нагрузках, так что турбина всегда вращается с нужной скоростью. В таких турбокомпрессорах поток направляемых на турбину газов управляется с помощью специальных поворачивающихся заслонок. Одновременный поворот заслонок производится с помощью штока вакуумной камеры. Разрежение в камере регулируется электромагнитным клапаном по сигналу компьютера.

При работе системы турбонаддува происходит сильный нагрев турбины, а компрессор остается сравнительно холодным. Очень важным узлом, определяющим долговечность турбокомпрессора, является узел подшипников вала. Обычно масло для смазки подшипников подается под давлением из системы смазки двигателя. Иногда для повышения работоспособности наддува применяют охлаждение корпуса турбины жидкостью из системы охлаждения двигателя. После продолжительного движения на высокой скорости автомобиля с турбонаддувом турбина может раскрутиться до высоких скоростей (сотни тысяч оборотов в минуту). После остановки двигателя турбокомпрессор останавливается не сразу, а масло уже не поступает к подшипникам. Чтобы не произошло повреждения подшипников, рекомендуется перед выключением двигателя дать ему возможность некоторое время поработать на холостом ходу.


Дизельный двигатель с турбонаддувом

Очень хорошо система турбонаддува работает в дизелях. Отработавшие газы в дизеле холоднее, чем в бензиновых двигателях, что облегчает работу турбокомпрессора, и, кроме того, в дизеле не существует опасности возникновения детонации. Поэтому неслучайно, что турбонаддув устанавливается почти на всех современных дизельных двигателях легковых автомобилей.

В многоцилиндровых двигателях с большим рабочим объемом некоторых грузовых автомобилей отработавшие газы продолжают обладать большой энергией, даже после прохождения турбокомпрессора.

Эту энергию можно использовать для дальнейшего повышения мощностных характеристик двигателя, создавая так называемые турбокомпаундные двигатели. В таком двигателе часть энергии отработавших газов используется для раскручивания дополнительной турбины, которая через гидравлическую муфту связана с коленчатым валом. Такая конструкция дает возможность, увеличить крутящий момент на вале двигателя.
Подробнее о турбонаддуве — в главе Турбокомпрессор

что это такое в автомобиле, принцип работы, плюсы и минусы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования. 

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто. 

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма. На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива.  Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Похожие публикации

Принцип работы турбины. Как работает турбонаддув в автомобиле

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Принцип работы турбонаддува

Схема работы турбонаддува двигателя

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий  из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

Читайте также:  Устройство и принцип работы ДМРВ

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Устройство турбонаддува

Турбонаддув состоит из турбокомпрессора и самой турбины. Вся система соединяется с цилиндрами мотора при помощи интеркулера и различных трубочек. Корпус турбокомпрессора и турбины имеет форму улитки, благодаря чему механизмы, которые находятся внутри, защищены от внешних повреждений. Между компрессором и турбиной проходит множество трубок, по которым курсирует масло, омывающее движущиеся детали турбонаддува.

Принцип работы автомобильного турбокомпрессора

Турбокомпрессор является сложным устройством, используемым в целях увеличения мощностных характеристик двигателя благодаря большему количеству воздуха, который подается в цилиндры. Принцип работы турбокомпрессора сводится к следующему:

  • при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной уже во впускном коллекторе;
  • поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
  • так, в мотор поступает большее количество воздушной массы, а значит, в него подается и больше топлива. Как известно, чем больше сгорает топливной смеси, тем мощнее становится двигатель. Задача автомобильного турбокомпрессора как раз и состоит в том, чтобы поставлять в силовой агрегат больше воздуха для сжигания большего количества топлива, за счет чего и достигается значительная прибавка мощности.

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Турботаймер

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Специфика работы наддува

Принцип работы турбины заключается в том, что компрессор нагнетает воздух в цилиндры, благодаря чему газовая смесь делает работу движка эффективней до 30 %! При неизменном количестве используемого топлива мощность авто возрастает. Для понятия особенностей турбонаддува необходимо сначала разобраться в принципах работы обычного мотора.

Также советуем прочитать статью нашего эксперта, в которой рассказывается о том, что такое нагнетатель воздуха в автомобиле.

Работа четырёхтактного двигателя состоит из 4 этапов.

  1. Впуск. При движении поршня открывается клапан и в камеру попадает горючая смесь, состоящая из топлива из воздуха.
  2. Компрессия. Воздушно-топливная система сжимается для более эффективного горения.
  3. Рабочий ход. Свечи выдают искру, которая воспламеняет горючую смесь и приводит к движению поршня вниз, благодаря чему происходит вращение коленчатого вала. Энергия расширения газов является основной силой, которая приводит автомобиль в движение.
  4. Выпуск. Отработанная смесь выпускается из камеры. Газ очищается и выводится из выхлопной системы в атмосферу.

Данная схема работает для бензиновых двигателей, а вот дизельные моторы работают несколько иначе. В первую очередь в движок попадает воздух, который разогревается до температуры 700 — 800 градусов по Цельсию. Далее впрыскивается дизель, который самовоспламеняется при сжатии, что приводит механизм в движение.

Для того, чтобы понять, что такое турбонаддув, необходимо уточнить особенности его работы. Турбина нагнетает воздух в камеру горения при помощи компрессора, благодаря чему повышается содержание кислорода в смеси и улучшается её горение.

Большинство компрессоров способно сжимать воздух на 80 %!больше в сравнении с обычным наполнением камер.

Схема турбины с изменяемой геометрией (VNT)

 

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей. 

Следует напомнить о том, что некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Базовые компоненты и теория турбонаддува

Послушайте, не говоря уже о технической чепухе, турбонаддув — это на самом деле довольно простая концепция. Цель здесь состоит в том, чтобы преобразовать энергию, содержащуюся в вашем выхлопном потоке, которая обычно расходуется впустую, в положительное давление во впускном коллекторе, нагнетая воздух в двигатель и тем самым производя больше мощности. Теперь мы понимаем, что это очень много, чтобы рассказать о нем — достаточно, чтобы написать книгу, — но цель этой конкретной статьи — познакомить всех, включая читателей, которые никогда раньше не видели турбо, в кратчайшие сроки с концепциями. участвует.Говоря прямо, это турбокомпрессоры 101-A, которые покрывают самую верхушку айсберга с расстояния 1000 футов. В этой первой статье мы надеемся создать базовый словарь и рабочие знания, которые можно использовать в будущем, поэтому, если вы опытный турбо-гуру, который ищет советы по чтению карт компрессоров или настройке корпусов турбин для вашего конкретного применения , не бойтесь — эти истории еще впереди. А пока мы собираемся охватить основы турбонаддува, рассматривая каждый компонент, определяя его назначение и объясняя теорию его работы.

17.02

Турбокомпрессор

3/17

На самом базовом уровне турбокомпрессор состоит всего из трех основных компонентов: турбины, компрессора и подшипниковой системы, которая поддерживает вал турбины, соединяя вместе колеса турбины и компрессора. Понимание того, как все три части работают вместе, имеет решающее значение, и даже базовое понимание взаимосвязи компонентов друг с другом значительно упростит выбор турбо-режима для вашего проекта.

Турбина

17.04

Турбинное колесо отвечает за преобразование тепла и давления во вращательную силу.Чтобы понять, как происходит этот процесс, нам нужно углубиться в некоторые из основных законов термодинамики, но в рамках этой статьи необходимо понимать, что высокое давление (из выпускного коллектора) всегда будет стремиться к низкому давлению и, в рамках этого процесса, турбинное колесо преобразует кинетическую энергию во вращение. Когда колесо турбины вращается, оно вращает вал турбины, который, в свою очередь, вращает колесо компрессора. Выбор турбинного колеса, о котором часто забывают, имеет решающее значение для правильно построенной системы турбонагнетателя, поскольку слишком маленькое турбинное колесо вызовет чрезмерное противодавление и может задушить двигатель, что приведет к потере мощности. С другой стороны, выбор слишком большой турбины приведет к увеличению задержки и может затруднить достижение конкретных целевых значений наддува.

Конечно, турбинное колесо действует не в одиночку. Он является частью корпуса турбины, который представляет собой гигантский, иногда ржавый кусок железа или стали, который вы всегда видите прикрученным к выпускному коллектору или сливному коллектору на турбомоторе. Из-за огромного количества тепла, связанного с сбором и перемещением выхлопных газов под давлением, корпус турбины изготавливается из толстого железа или стали и всегда состоит из опоры турбины (фланец, который соединяется с трубопроводом выпускного коллектора), выходного патрубка (большое отверстие который соединяется с водосточной трубой) и спиральной камерой, которая представляет собой путь, по которому горячий выхлоп проходит через колесо турбины от опоры турбины к выпускному отверстию.Когда кто-то называет турбо «турбо T4», они говорят об этом фланце. Выхлопные газы входят через фланец, вращаются вокруг колеса внутри улитки и выходят через выпускное соединение в выхлопную трубу, которую энтузиасты называют спускной трубой.

Компрессор

17.05

Как и турбина, компрессорная секция состоит из двух основных компонентов: крыльчатки компрессора и крышки компрессора.Работа компрессора заключается в том, чтобы буквально сжимать свежий воздух и направлять его к корпусу дроссельной заслонки. Поскольку оно напрямую соединено с турбинным колесом через вал турбины, компрессорное колесо вращается с той же скоростью, что и турбинное колесо, и, когда двигатель и турбинное колесо ускоряются, то же самое происходит и с колесом компрессора. Этот процесс создает давление во впускном тракте, которое мы называем «наддувом», и это причина, по которой кто-либо вообще установил бы турбокомпрессор. Опять же, чтобы полностью понять этот процесс, нам нужно будет объяснить несколько законов термодинамики, включая закон идеального газа, но для нашей цели понять, что работа компрессорного колеса состоит в том, чтобы собирать свежий воздух и сжимать его — вот и все. Когда колесо вращается, оно забирает окружающий воздух, поворачивает его на 90 градусов вдоль лопасти колеса и нагнетает его в крышку компрессора, где он собирается и затем нагнетается во всасывающую трубу.

Колеса компрессора — одна из наиболее часто упоминаемых частей турбокомпрессора. Даже если вы никогда раньше не видели турбомотора, вы, вероятно, слышали, как кто-то сказал: «Это 88-миллиметровый турбонаддув» или «Не могу поверить, что они объявили 116 вне закона». Мы говорим о диаметре крыльчатки компрессора, измеренном на конце или, точнее, на конце индуктора.Колесо компрессора и крышка также являются наиболее фотогеничными частями турбокомпрессора, поскольку они сделаны из блестящего алюминия, и, следовательно, людям нравится фотографировать их с долларовыми купюрами, банками из-под колы или другими предметами, чтобы показать, насколько велик компрессор. колесо на самом деле есть. Теперь, помимо всего прочего, важно понимать, что компрессор является источником денег в этой системе, и это одна часть турбокомпрессора, которая выполняет всю перекачку, поэтому важно правильно выбрать ее размер для вашего приложения.

Центральный корпус / вращающийся узел (CHRA)

17.06

На CHRA может не хватать чернил, но это одна из наиболее важных частей любого узла турбокомпрессора. Фактически, CHRA служит точкой крепления для обоих корпусов и должен быть изготовлен из прочного материала, чтобы выдерживать тепло и напряжение турбины.Конечно, удерживание корпусов вместе — детская игра по сравнению с реальной работой CHRA, которая заключается в поддержке и смазке подшипников турбокомпрессора. При частоте вращения вала турбины, превышающей 100000 об / мин, работа подшипника намного, намного сложнее, чем у традиционного подшипника распределительного вала, и поэтому производители турбин потратили много времени и денег на создание серьезных подшипников для выполнения этих работ. Если вы когда-нибудь слышали о том, чтобы кто-то «перестраивал турбину», скорее всего, речь идет о замене подшипников, которые могут начать изнашиваться из-за множества факторов, включая состояние масла, осевые нагрузки или движение вала. Традиционно в CHRA будут установлены два бронзовых подшипника с полным поплавком и отдельный бронзовый упорный подшипник. Сегодня многие качественные производители предлагают модернизированные подшипниковые системы, в том числе керамический шарикоподшипник Turbonetics, который устраняет традиционный упорный подшипник, позволяя турбо-двигателю выдерживать «до 50 раз большую нагрузочную способность по сравнению с обычным узлом». Многие другие производители также перешли на системы с шарикоподшипниками, в том числе Garrett, чтобы снизить сопротивление и увеличить срок службы турбокомпрессора.

Интеркулер

17.07

Понимая, что турбокомпрессор работает за счет сжатия воздуха, легко понять, почему промежуточный охладитель важен. Не вдаваясь в математику (мы снова говорим о законе идеального газа …), давайте просто скажем, что по мере увеличения давления в фиксированном объеме создается тепло. Это закон термодинамики, и, что бы ни говорили, он присутствует в любом применении двигателя с турбонаддувом, даже при настройках «низкого наддува». В любом случае, зная, что тепло присутствует, нам нужен способ охлаждения поступающего воздушного заряда, прежде чем он попадет во впускной коллектор, и для этого мы обычно используем промежуточный охладитель. На самом деле промежуточный охладитель — это не что иное, как теплообменник, и его задача — отводить тепло от всасываемого заряда, который мы создали путем его сжатия. Если вы понимаете, как работает радиатор, вы понимаете, как работает интеркулер — это действительно так просто!

Как это работает?

17.08

На сегодняшнем рынке производительности преобладают два типа промежуточных охладителей: воздух-воздух и воздух-вода.Интеркулер типа «воздух-воздух», вероятно, самый распространенный в уличных автомобилях, и вы, вероятно, видели, как они болтаются за бампером некоторых из ваших любимых модельных автомобилей GMHTP . Как и радиатор, промежуточный охладитель воздух-воздух пропускает горячий воздух от компрессора через ряд трубок, которые физически соединены с рядом тонких алюминиевых ребер. Поскольку окружающий воздух проходит через поверхность промежуточного охладителя и тонкие ребра, он отводит тепло от сжатого воздуха, что обеспечивает охлаждающий эффект.В обычных уличных автомобилях, которые ездят в течение длительного времени, воздухо-воздушный интеркулер является одним из наиболее эффективных способов удержания температуры наддува под контролем. С другой стороны, промежуточный охладитель воздух-вода использует те же принципы, что и блок воздух-воздух, хотя вместо окружающего воздуха, проходящего по поверхности, он использует охлажденную воду, которая обеспечивает невероятную охлаждающую способность. Однако то, что система воздух-вода получает от падения температуры и эффективности, со временем она теряет, так как вода в конечном итоге нагревается и обеспечивает гораздо меньшее охлаждение.

Wastegates

17. 09

Вестгейт — это просто устройство, которое отводит выхлопной газ до того, как он достигнет входа в корпус турбины. Чтобы полностью понять концепцию, давайте посмотрим на турбо-систему без вестгейта. Когда выхлопные газы заполняют коллекторы, они направляются к турбонагнетателю и входят в корпус турбины, прежде чем расширяться через турбинное колесо и выходить через спускную трубу.В закрытой системе турбина будет видеть весь выхлоп во всем рабочем диапазоне двигателя, и наддув будет продолжать бесконтрольно повышаться, пока либо дроссельная заслонка не будет закрыта, либо колесо турбины не достигнет точки дросселирования. Для большинства двигателей это приведет к чрезмерному увеличению наддува / воздушного потока и разрушит детали, оставив в лучшем случае пару расплавленных поршней или гигантскую дыру в блоке (гораздо более вероятно). Для управления наддувом и общей мощностью двигателя системы турбонагнетателя полагаются на перепускные клапаны, которые устанавливаются перед корпусом турбины (или внутри него в случае турбины с внутренними затворами) и действуют как контролируемый байпас для процентного содержания выхлопных газов в регулировать частоту вращения турбины и, таким образом, общий наддув.

Как это работает?

17.10

Конструкция перепускного клапана может быть разной, но, проще говоря, каждая перепускная заслонка имеет впускной и выпускной порт, в который может поступать выхлопной газ, клапан, регулирующий поток выхлопного газа через впускной порт, и пружинный / диафрагменный привод, который контролирует, когда клапан открывается и закрывается.В нормальных условиях движения перепускной клапан остается закрытым, и весь выхлопной газ направляется непосредственно в корпус турбины. Когда давление наддува растет, давление действует на пружинный узел и начинает поднимать клапан, отводя выхлопной поток от турбины и регулируя скорость турбины для регулирования давления наддува. Чтобы отрегулировать целевые уровни наддува, вестгейты полагаются на разные пружины, которые можно менять местами, чтобы увеличить или уменьшить целевое давление наддува.

Продувочные клапаны

17.11

Выпускной клапан — это, по сути, клапан сброса давления, который установлен на стороне компрессора турбо-системы.Его работа, в буквальном смысле, состоит в том, чтобы сбрасывать избыточное давление наддува, оставшееся в системе, когда дроссельная заслонка закрывается. Представьте себе турбонагнетатель, производящий 10 фунтов на квадратный дюйм, с трубопроводом, соединяющим выходное отверстие крышки компрессора непосредственно с корпусом дроссельной заслонки. Когда дроссельная заслонка широко открыта, а двигатель находится под полной нагрузкой, сжатый воздух попадает прямо во впускной коллектор и может легко заполнять цилиндры. Когда водитель отпускает (поднимает) педаль газа и закрывает заслонку дроссельной заслонки, турбонагнетатель все еще вращается и производит наддув (помните, что колесо компрессора может вращаться со скоростью свыше 150 000 об / мин!), Что создает нежелательное состояние в системе.Турбонагнетатель перемещает много воздуха, но, поскольку дроссельная заслонка закрыта, воздуху некуда идти, кроме как назад к крыльчатке компрессора, что может привести к помпажу компрессора. Помпаж компрессора может повредить турбокомпрессор из-за чрезмерной нагрузки на опорные поверхности и, в крайних случаях, может даже привести к остановке колеса компрессора.

Как это работает?

17.12

Выпускной клапан по конструкции аналогичен перепускному клапану, хотя обычно он меньше по размеру и построен с гораздо меньшей устойчивостью к высокой температуре, поскольку он установлен на стороне компрессора турбонагнетателя.В нормальных условиях эксплуатации фактический клапан закрыт относительно седла, и воздух задерживается в трубопроводе наддува компрессора. Когда дроссельная заслонка закрыта, пружина / диафрагма выпускного клапана видит изменение давления (от атмосферного до вакуума), и клапан открывается, выпуская сжатый воздух из заправочной трубы в атмосферу. В отличие от перепускных клапанов, большинство продувочных клапанов поставляются с одной предварительно установленной пружиной, а настройка скорости открытия клапана осуществляется путем небольших корректировок предварительной нагрузки пружины.Обратите внимание на то, что опорный источник наддува продувочного клапана должен быть расположен после корпуса дроссельной заслонки во впускном коллекторе, чтобы он мог точно считывать разрежение при закрытой дроссельной заслонке.

Трубопроводы и коллекторы

13/17

Трубопроводы могут быть последним, что большинство энтузиастов рассматривают при создании турбо-системы, но правильное применение и размер имеют важное значение для обеспечения оптимальной производительности.В типичной системе турбонагнетателя трубопроводы можно разделить на три отдельных участка: коллекторы, горячая и холодная стороны.

Коллекторы

14/17

Коллекторы

Turbo живут невероятно сложной жизнью. Экстремальные перепады температуры, невероятное противодавление и высокое напряжение делают эти участки одной из наиболее вероятных областей турбо-системы для развития проблем.Понимая крайности, которые коллектор должен выдерживать изо дня в день, лучше всего разработать коллектор, основанный на долговечности и прочности, даже если это означает снижение производительности. Кроме того, зная, что турбинное колесо работает за счет тепла и скорости, нужно построить коллектор для эффективного и быстрого отвода тепла, сохраняя как можно больше тепла внутри, без образования трещин или замедления движения выхлопных газов. Таким образом, следует рассмотреть возможность использования чугунных коллекторов, если таковые имеются, и, как показали гонщики LSX, даже стандартные агрегаты, такие как пара коллекторов для грузовиков GM, могут производить более 2000 л.с. в стандартной комплектации.Если такой коллектор не существует для вашего приложения или вы работаете в определенном пространстве, которое не может вместить их, изготовление пары коллекторов будет вашим лучшим вариантом, и вы можете обратиться ко многим превосходным производителям, чтобы выполнить эту работу.

Трубопровод горячей стороны

15/17

Любой трубопровод, связанный с отводом выхлопных газов к турбонагнетателю или от него, обычно называют трубопроводом горячей стороны.Из-за чрезмерного нагрева выхлопных газов в корпус турбины критически важно использовать здесь прочный материал, и для многих производителей нержавеющая сталь является предпочтительным материалом. Что касается диаметра, это действительно зависит от множества факторов, включая кубические дюймы, конструкцию турбинного колеса, диапазон оборотов, противодавление и т. Д., Но, как правило, трубка с внутренним диаметром 2,5 дюйма от выпускных коллекторов к корпусу турбины работает очень хорошо. Следует отметить, что некоторые строители теперь по возможности переходят на трубы меньшего размера, чтобы увеличить скорость к турбине, которая должна работать хорошо, хотя результаты будут варьироваться в зависимости от конкретного применения.Когда воздух выходит из турбинного колеса, он попадает в секцию выпуска, известную как спускная труба, и здесь чем больше, тем лучше. Вы не можете действительно увеличить водосточную трубу, а это значит, что если у вас есть место для 4- или 5-дюймовой водосточной трубы, сделайте это!

Трубопровод холодной стороны

16/17

«Холодная сторона» турбонагнетателя относится к любым трубопроводам, связанным с перемещением сжатого воздуха от турбокомпрессора к корпусу дроссельной заслонки.Если вы устанавливаете интеркулер, он также является частью холодной стороны и должен быть правильно подключен, чтобы все работало. Поскольку тепло не вызывает особого беспокойства, алюминиевые трубки обычно считаются оптимальным выбором, поскольку с ними легко работать, они легкие и достаточно прочные, чтобы выдерживать относительно умеренные температуры, связанные с холодной стороной. Диаметр трубопровода зависит от размера турбонагнетателя, промежуточного охладителя и корпуса дроссельной заслонки, хотя большинство энтузиастов GM найдут, что алюминиевые трубки с внутренним диаметром 3 дюйма работают идеально.Любая область, где должно быть выполнено полупостоянное соединение, например, соединение секции 3-дюймовой трубы с концевым баком промежуточного охладителя, может быть выполнена с использованием высококачественных силиконовых муфт и традиционных зажимов, которые хорошо подходят для большинства приложений. Для тех из вас, кто хочет получить большое количество наддува, такие компании, как Vibrant Performance, предлагают быстроразъемные зажимы с двойным уплотнительным кольцом, которые могут выдерживать более 100 фунтов наддува без сдувания или утечки.

Что еще мне нужно знать?

17/17

Очень много.Серьезно, понимание турбо-систем — это не то, что можно сделать за одну ночь, и, как и создание двигателя или настройка подвески, могут потребоваться годы, чтобы правильно понять все нюансы конструкции турбонаддува. Но это не значит, что вам не следует начинать изучать и исследовать эту увлекательную форму принудительной индукции прямо сейчас! Если вы хотите узнать больше сегодня, рекомендуем вам ознакомиться с двумя отличными книгами, которые мы всегда держим под рукой. Первая — это классическая работа Корки Белла под названием «Максимальное ускорение», охватывающая проектирование системы от теории до реального применения, не делая при этом излишне технологичной или научной.Вторая книга, которую мы рекомендуем, — это Turbo: Real World High-Performance Turbocharger Systems Джея К. Миллера. Turbo имеет отличный раздел по анатомии турбокомпрессора и вникает в такие темы, как схемы компрессоров и восстановление турбокомпрессора, для тех из вас, кто хочет действительно расширить свои рабочие знания. И последнее, но не менее важное: мы приглашаем вас присоединиться к нам в ближайшие месяцы, поскольку мы объединяемся с одними из лучших в отрасли, чтобы изготовить и установить единую турбо-систему на нашем новейшем проектном автомобиле

Письменные источники:

Белл, Корки.Максимальное усиление.
Кембридж, Массачусетс: Bentley Publishers, 1997

Миллер, Джей. Турбо.
North Branch, MN: Cartech Books, 2008

Бензиновый двигатель | Британника

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, малые грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные установки среднего размера, осветительные установки и т. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

V-образный двигатель

Поперечный разрез V-образного двигателя.

Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое при сгорании бензина, создает силу на головке поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.

бензиновые двигатели

Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8.

Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.

Типовая схема поршневой цилиндр бензинового двигателя.

Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов рекуперации энергии процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания: четырехтактный цикл

Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал.

Encyclopædia Britannica, Inc. Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Недостатком четырехтактного цикла является то, что завершается только половина тактов мощности по сравнению с двухтактным циклом ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и повторную загрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

Новая конструкция бензинового двигателя имеет 4-кратный КПД поршней.

Выглядит многообещающе. По сути, это турбина с непрерывной волной горения. По словам исследователя, хотя этот ранний дизайн не был сверхмощным и не предназначался для замены V-8, он может быть вскоре выпущен на рынок для применения в гибридных автомобилях.Смотрите видео ниже. Хотя они по обычным причинам сосредоточились на CO2, я в любой момент возьмусь за повышение эффективности.

Схематическая модель двигателя с волновым диском, показывающая горение и ударные волны в каналах. Источник: Университет штата Мичиган.

Исследователи из Университета штата Мичиган получили 2,5 миллиона долларов от программы ARPA-E Министерства энергетики для завершения разработки прототипа нового бензинового двигателя с волновым диском и генератора электроэнергии, который обещает быть в пять раз более эффективным, чем традиционные автомобильные двигатели. производство электроэнергии, на 20% легче и на 30% дешевле в производстве.

Двигатель с волновым диском, новое воплощение технологии волнового ротора, был ранее разработан группой штата Мичиган в сотрудничестве с исследователями из Варшавского технологического института. Новый сверхэффективный двигатель размером примерно с большую кастрюлю может заменить современные технологии двигателей / генераторов для подключаемых к сети гибридных электромобилей.

Эта награда позволит группе инженеров и ученых МГУ во главе с Норбертом Мюллером, доцентом кафедры машиностроения, начать работу над созданием двигателя / генератора с волновым диском размером с транспортное средство в течение следующих двух лет, основываясь на существующем моделировании. анализ и лабораторные эксперименты они уже завершили.

Наша цель — сделать так, чтобы сверхэффективные гибридные автомобили удовлетворяли потребности потребителей в отношении дальности пробега 500 миль, более низких цен на автомобили, полноразмерных транспортных средств, улучшенных характеристик шоссе и очень низких эксплуатационных расходов. WDG также может сократить выбросы углекислого газа на 95 процентов по сравнению с современными двигателями автомобилей внутреннего сгорания.

Из ARPA-E

Генератор волнового диска революционизирует эффективность автомобилей при более низких затратах на автомобиль. В настоящее время в двигательных установках используется 15% автомобильного топлива; остальные 85% теряются.Гибридный генератор волнового диска использует 60% топлива для движения автомобиля.

Ударно-волновой генератор горения

MSU размером с кастрюлю вырабатывает электричество очень эффективно. Этот революционный генератор заменяет сегодняшние 1000 фунтов двигателя, трансмиссии, системы охлаждения, выхлопных газов и жидкостей, в результате чего электромобиль становится более легким и экономичным. Эта технология обеспечивает дальность поездки более 500 миль, на 30% легче и на 30% дешевле, чем современные новые гибридные автомобили с подзарядкой от сети.Он преодолевает проблемы стоимости, веса и запаса хода электромобилей с батарейным питанием.

Эта разработка превышает национальные цели по сокращению выбросов CO2 для транспорта. Рассчитано сокращение выбросов CO2 на 90% по сравнению с автомобилями с бензиновыми двигателями. Приложение Wave Disk Generator масштабируется до размеров мотороллеров и грузовиков из-за своего небольшого размера, малого веса и низкой стоимости. Эта технология позволяет радикально улучшить атмосферу и здоровье людей в крупных городах мира.

На прошлой неделе прототип был представлен Агентству перспективных исследовательских проектов (ARPA), было выпущено это видео:

Нравится:

Нравится Загрузка …

Связанные

Основные компоненты управления бензиновым двигателем BOSCH.pdf

Скачать BOSCH Gasoline-Engine Management Basics components.pdf …

Программа

Номер для заказа

Автомобильная электрика / Автомобильная электроника Аккумуляторы 1987 722 153 Генераторы переменного тока 1 987 722 156 Системы запуска 1987 722 170 Светотехника 1987 722 176 Электрические символы и схемы 1 987 722 169 Системы безопасности, комфорта и комфорта 1 987 722 150 Управление дизельным двигателем Впрыск дизельного топлива: обзор Электронное управление дизельным двигателем EDC Дизельный аккумулятор Система впрыска топлива Common Rail CR Дизель Системы впрыска топлива Система насос-форсунок / Система насос-агрегатов Радиально-поршневой распределитель Топливные насосы типа VR Diesel Распределительные насосы впрыска топлива VE Дизельные насосы впрыска топлива PE регуляторы для дизельных насосов впрыска топлива Управление бензиновым двигателем Контроль выбросов (для бензиновых двигателей) Система впрыска бензина K-Jetronic Система впрыска бензина Система KE-Jetronic Бензиновая система впрыска топлива L-Jetronic Бензиновая система впрыска топлива Свечи зажигания Mono-Jetronic Зажигание M-Motronic Управление двигателем ement ME-Motronic Engine Management Управление бензиновым двигателем: основы и компоненты Системы вождения и безопасности дорожного движения Обычные тормозные системы Тормозные системы для легковых автомобилей Электронная система стабилизации ESP Пневматические системы для коммерческих автомобилей (1): Системы и принципиальные схемы Пневматические системы Системы для коммерческого транспорта (2): оборудование

ISBN

3-934584-21-7 3-934584-22-5 3-934584-23-3 3-934584-24-1 3-934584-20-9 3 -934584-25-X

1987 722104 1987 722135

3-934584-35-7 3-934584-47-0

1987 722175

3-934584-40-3

1 987 722 179

3-934584-41-1

1987 722 174

3-934584-39-X

1987 722 164 1987 722 162

3-934584-38-1 3-934584- 36-5

1987 722163

3-934584-37-3

1987 722102 1987 722 159 1987 722101 1987 722 160

3-934584-26-8 3-934584-27 -6 3-934584-28-4 3-934584-29-2

90 002 1 987 722 105 1 987 722 155 1 ​​987 722 154 1 987 722 161 1 987 722 178

3-934584-30-6 3-934584-32-2 3-934584-31-4 3-934584-33- 0 3-934584-34-9

1987 722136

3-934584-48-9

1987 722 157 1 987722103 1987 722 177

3-934584-42-X 3-934584- 43-8 3-934584-44-6

1987 722165

3-934584-45-4

1987 722166

3-934584-46-2

Управление бензиновым двигателем: основы и компоненты

2001

The Bosch Yellow Jackets Edition 2001

The Bosch Yellow Jackets

AA / PDI-02.01-En

Техническая инструкция

Номер заказа 1 987 722 036

Техническая инструкция

Управление бензиновым двигателем

Управление бензиновым двигателем Основы и компоненты

Æ • Электронное управление дроссельной заслонкой EGAS • Прямой впрыск бензина • Аккумулятор NOx- тип катализатор

Automotive Technology

Robert Bosch GmbH

Выходные данные

Издатель: © Robert Bosch GmbH, 2001 Postfach 300220, D-70442 Stuttgart.Сектор послепродажного обслуживания автомобилей, отдел AA / PDI2 Маркетинг продукции, программные продукты, технические публикации. Главный редактор: дипл. Инж. (FH) Хорст Бауэр Редакторы: дипл. Инж. Карл-Хайнц Дитше, дипл. Инж. (BA) Юрген Крепин. Авторы: дипл. Инж. Майкл Одер (Основы, управление бензиновым двигателем, непосредственный впрыск бензина), дипл. Инж. Георг Маллебрайн (Системы контроля наддува цилиндров, изменение фаз газораспределения), дипл. Инж. Оливер Шлезингер (рециркуляция выхлопных газов), дипл. Инж. Михаэль Бойерле (наддув), дипл.-Ing. (FH) Клаус Йоос (Подача топлива, впрыск), дипл. Инж. Альберт Герхард (электрические топливные насосы, регуляторы давления, демпферы давления), Dipl.-Betriebsw. Михаэль Циглер (Топливные фильтры), дипл. Инж. (FH) Экхард Боденхаузен (Топливная рампа), д-р инж. Дитер Ледерер (Система контроля выбросов парниковых газов), дипл. Инж. (FH) Аннетт Виттке (инжекторы), дипл. Инж. (FH) Бернд Кудике (Типы впрыска топлива), дипл. Инж. Вальтер Голлин (зажигание), дипл. Инж. Эберхард Шнайбель (Контроль выбросов) в сотрудничестве с ответственными отделами Robert Bosch GmbH.Перевод: Питер Гирлинг. Если не указано иное, все вышеперечисленные лица являются сотрудниками Robert Bosch GmbH, Штутгарт.

Воспроизведение, копирование и перевод этой публикации, включая выдержки из нее, осуществляются только с нашего предварительного письменного согласия и с указанием сведений об источнике. Иллюстрации, описания, принципиальные схемы и другие данные служат только для пояснительных целей и для представления текста. Их нельзя использовать в качестве основы для проектирования, установки и объема поставки.Robert Bosch GmbH не несет ответственности за соответствие содержания национальным или местным нормам. Все права защищены. Мы оставляем за собой право вносить изменения. Напечатано в Германии. Imprimé en Allemagne. 1-е издание, сентябрь 2001 г. Английский перевод немецкого издания, датированного: февраль 2001 г.

Robert Bosch GmbH

Управление бензиновым двигателем Основы и компоненты

Bosch

Robert Bosch GmbH

Содержание

4 4 7 8

Основы бензинового (SI) двигателя Принцип действия Крутящий момент и выходная мощность КПД двигателя

10 10 12 15 18

Управление бензиновым двигателем Технические требования Контроль заряда цилиндров Образование смеси A / F Зажигание

20

Системы цилиндров -Регулирование наддува Регулирование наддува Регулируемые фазы газораспределения Рециркуляция отработавших газов (EGR) Динамический наддув Механический наддув Турбонаддув ОГ Промежуточное охлаждение

20 22 25 26 29 30 33 34 34 35 36 37 39 41 42 44 45

Впрыск бензина : Обзор Внешнее образование смеси A / F Внутреннее образование смеси A / F Подача топлива Подача топлива для впрыска в коллектор Контур низкого давления для непосредственного впрыска бензина Система контроля паров топлива Электрический топливный насос Топливный фильтр Рейка, регулятор давления топлива, демпфер давления топлива, топливный бак, топливопроводы

48 49 50 52

Коллекторный впрыск топлива Принцип действия Электромагнитные топливные форсунки Типы топлива впрыск

54 55 56 58 59 60 62 63 64

Непосредственный впрыск бензина Принцип работы Распределитель, насос высокого давления Клапан регулирования давления Датчики давления в рампе Форсунка высокого давления Процесс горения Формирование A / F-смеси Режимы работы

66 66 66

Зажигание: обзор Обзор Разработка систем зажигания

68 68 69 70 71 72

Катушка зажигания Ступень привода зажигания Катушка зажигания Высоковольтное распределение Свечи зажигания Электрическое подключение и устройства подавления помех Напряжение зажигания, энергия зажигания Точка зажигания

73 75 76 76 77 80 82 84

Каталитический контроль выбросов Каталитический нейтрализатор окислительного типа Трехкомпонентный катализатор NOx аккумуляторного типа Каталитический нейтрализатор Лямбда-регулирование Нагревание каталитического нейтрализатора

85 85 87

Указатель технических терминов Технические термины Сокращения

Robert Bosch GmbH

Требование к экологически безопасным и экономичным автомобилям, которые, тем не менее, должен по-прежнему удовлетворять требованиям к высокой производительности, требует огромных усилий для разработки инновационных концепций двигателей.Ужесточение законодательства о выхлопных газах изначально вызывало основное внимание.

Бензиновый двигатель — определение бензинового двигателя из The Free Dictionary

В 1876 году не было ни небоскребов, ни тележек, ни электрического освещения, ни бензиновых двигателей, ни самокрепляющих устройств, ни велосипедов, ни автомобилей. 7-7,5 л.с. Открытая категория (бензиновый двигатель, однопоршневой двигатель). Четырехцилиндровый бензиновый двигатель с многоточечным впрыском (MPI) мощностью 89 л.с. при 5500 об / мин и максимальным крутящим моментом 132 Нм при 3800 об / мин в сочетании с пятиступенчатой ​​механической коробкой передач.Nissan Note e-POWER приводится в движение электродвигателем, который приводится в действие бензиновым двигателем. Система привода со 100% электродвигателем обеспечивает водителям мощное ускорение, бесшумную работу и исключительную топливную экономичность. (MHI) откроет свой бизнес по производству небольших бензиновых двигателей с воздушным охлаждением — линейку двигателей Meiki. Результаты проекта NHTSA предполагают, что для грузовиков среднего размера должно быть возможно приблизительно соответствовать тепловому КПД современного дизельного двигателя, использующего форсированный бензиновый двигатель с D-EGR.Титан будет оснащаться 5,6-литровым бензиновым двигателем Nissan Endurance V8 мощностью 390 лошадиных сил и 401 фунт-фут крутящего момента. PTX40 оснащен бензиновым двигателем Kubota WG1605 мощностью 46,8 л.с. PTX40 с центральным шарниром колеблется в точке сочленения, обеспечивая маневренность и производительность на пересеченной местности и в узких местах .. Линейка двигателей для совершенно нового MX-5 будет адаптирована для каждого рынка и будет иметь либо 1,5 -литровый или 2,0-литровый бензиновый двигатель SKYACTIV-G, настроенный исключительно для модели и установленный продольно.Седан предлагается с 1,8-литровым бензиновым двигателем, 1,4-литровым бензиновым двигателем с турбонаддувом или 2,0-литровым турбодизелем, он также предлагается в виде пятидверного хэтчбека и универсала с двумя дополнительными двигателями, 1,6-литровым бензиновым двигателем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *