Проверка обмотки возбуждения генератора: Страница не найдена — EvoSnab

Содержание

Как прозвонить ротор генератора мультиметром

Пропала зарядка? Ищем неисправности самостоятельно.

Проверка генератора мультиметром

Самостоятельно можно проверить обычным тестером, включенным в режим омметра (измерение сопротивления). Сначала проверяем ротор, потом статор и затем диодный мост. Напомню что в генераторе есть еще щеточный узел и регулятор напряжения.

Иногда эти два узла конструктивно объединены в один узел. В общем начните проверки с визуального осмотра щеточного узла. Ведь если щетки не будут доставать до контактных колец, то и выдавать электричество агрегат не будет.

Самая простая проверка системы зарядки

Замерить напряжение аккумулятора на не запущенном двигателе, если аккумулятор не разряжен, то напряжение должно быть 12,5 — 12,8 вольт. Теперь нужно запустить двигатель и замерить напряжение на аккумуляторе. Допустимые пределы напряжения 13,5-14,5. Допустимый максимум зарядки на некоторых автомобилях 14,7 вольт. Учтите что если аккумулятор разряжен, то напряжение на его клеммах при заведенном двигателе может быть и выше.

Простая проверка на автомобиле

Не снимая с автомобиля можно провести ряд простых предварительных проверок.

[box type=»bio»] При выключенном зажигании проверьте при помощи контрольной лампы (5Вт) наличие напряжения на силовом проводе В+. Этот провод практически всегда напрямую соединен с плюсом аккумулятора. На некоторых авто он может идти через мощный предохранитель (от 60 ампер и выше).[/box]

Проверка генератора на автомобиле также допускает использование тестера или мультиметра. При работе мотора включите максимальное количество энергопотребителей и проверьте напряжение на аккумуляторе. Оно не должно падать ниже 12,8 вольт.

Проверка ротора

Мультиметром в режиме измерения сопротивлений прозвоните обмотку возбуждения (на роторе).

Для этого присоедините измерительные щупы к контактным кольцам.

Сопротивление исправной обмотки на должно быть в пределах 2,3 -5,1 Ом.

  • Если сопротивление не показывает совсем, то в обмотке обрыв.
  • Если сопротивление ниже положенного, то скорее всего межвитковое замыкание.
  • Если же выше, то возможно плохой контакт или не пропаяны как следует выводы обмотки к контактным кольцам.

Так же замеряем потребляемый обмоткой возбуждения ток. Для этого подаем на контактные кольца +12 вольт и в разрыв цепи подключаем амперметр постоянного тока. Ток потребляемый обмоткой должен быть в пределах 3-4,5 Ампер. Если ток завышен, значит в обмотке ротора межвитковое зажигание и она требует замены. Максимальный ток реле-регулятора 5 Ампер, поэтому при завышенном токе обмотки ротора регулятор напряжения тоже нужно заменить.

Сопротивление изоляции можно проверить высоким переменным напряжением 220 вольт, подав напряжение через лампу накаливания 220 в, 40 Вт., один контакт подключаем на контактное кольцо, другой на металлический корпус ротора. При отсутствии замыканий на корпус лампа гореть не должна . Если нить лампы хоть чуть-чуть светится, значит имеет место утечка тока на массу. Такая обмотка требует ремонта или замены.

Соблюдайте меры предосторожности при работе с высоким напряжением !

Статор генератора

Обмотки статора можно смотреть только отсоединив или отпаяв выводы от диодного моста. Сопротивление между выводами обмоток должно быть примерно 0,2 Ома. А между выводом любой обмотки и 0 (общим выводом) около 0,3 Ом. Если замыкают обмотки статора или диодный мост, то генератор при работе сильно гудит.

[box type=»info»] Точно так же проверка изоляции на пробой осуществляется через лампу напряжением 220 вольт. Один контакт подсоединяется к выводу обмотки, второй на корпус статора. При исправной изоляции лампа гореть не должна![/box]

Так же внимательно осмотрите состояние внутренних частей статора и наружной части ротора. Они не должны соприкасаться между собой при работе. Как говорится «башмачить». При такой работе генератор издает повышенный шум, что свидетельствует об износе подшипников или втулок.

Видео, проверка на самодельном стенде:

Диодный мост

Диодный мост состоит из двух пластин, одна из которых положительная, а другая отрицательная. Диоды проверяются мультиметром в режиме омметра.

Подсоедините один щуп к выводу «+ » диодного моста, а второй поочередно подсоединяйте к выводам Ф1 Ф2 Ф3 и 0. Чтобы было понятней: один щуп подсоединяем к плюсовой пластине, а другим поочередно касаемся выводов тех диодов, которые впрессованы в эту пластину.

Затем поменяйте щупы местами и проделайте то же самое. В одном случае тестер должен показывать проводимость (какое-либо сопротивление), а в другом нет. Таким образом мы проверили диоды на плюсовой пластине.

Для проверки диодов на отрицательной пластине один щуп соединяем с отрицательной пластиной, а второй с выводами диодов поочередно. Точно так же потом меняем щупы местами и повторяем процедуру. В одном случае проводимость будет, в другом нет.

[box type=»bio»] Обратите внимание что сопротивление не должно равняться нулю! Это говорит о пробое диода. Так же о пробое диода говорит отсутствие сопротивления в обе стороны при подключении. Диодный мост даже с одним неисправным диодом будет давать недозаряд аккумулятора, поэтому требует замены.[/box]

Щетки и контактные кольца

Кольца и щетки можно проверить визуально, оценив их состояние и исправность. Проверить выступающую длину щеток. Она должна быть не меньше 4,5 мм. А в норме 8-10 мм.

Так же диаметр токосъемных колец должен быть минимум 12,8 мм. а в идеале 14,2-14,4. Изношенные кольца можно поменять, если вы найдете их в магазине. Снимаются они специальным съемником, при этом отпаиваются выводы обмотки. После установки новых колец их можно проточить на токарном станке для устранения биений и шлифануть мелкой наждачкой для ликвидации заусенцев.

Проверка обмотки ротора (возбуждения) и обмотки статора генератора

Проверка обмоток возбуждения ротора

Сначала снимаем и разбираем генератор. Чтобы самостоятельно проверить обмотку ротора потребуется омметр (или мультиметр у которого положение поворотного переключателя будет в режиме измерения сопротивления, диапазон до 200 Ом).

Часть 1: Проверка сопротивления обмотки ротора.
Прикасаемся измерительным прибором к кольцам ротора:

  • — если сопротивление обмотки будет в пределах 1,8. 5Ом, значит ротор исправен.
  • — если сопротивление будет бесконечно большим, значит цепь обмотки возбуждения разорвана.
  • — если сопротивление ниже 1,8Ом, значит есть короткозамкнутые витки.

Чаще всего разрыв происходит в месте пайки выводов обмотки к кольцам. Проверку можно осуществить иглой, шевеля выводы обмотки в месте их подпайки. Потемнение и осыпание изоляции можно обнаружить визуально, это свидетельствует о сгорании обмотки, что приводит к обрыву или к межвитковому замыканию в обмотке с уменьшением ее общего сопротивления.

Часть 2: Проверка обмотки на отсутствия замыкания на «массу».
Один вывод омметра подносится к любому кольцу ротора, а другой к его клюву. Если обмотка исправна, значит омметр покажет бесконечно большое сопротивление. В противном случае неисправный ротор следует заменить.

Проверка обмотки статора

Визуально проверяем, что отсутствует растрескивание изоляции и подгорание обмотки (происходит при коротком замыкании в вентилях выпрямительного блока). Статор с поврежденной обмоткой следует заменить.

Проблема с обмоткой это не единственная причина неисправности генератора. Другие советы Вы найдете в рубрике ремонт генератора своими руками.

Приходилось ли Вам выполнять проверку обмотки ротора и статора генератора самостоятельно?

0 0 голос

Рейтинг статьи

Проверка обмотки возбуждения ротора — Энциклопедия по машиностроению XXL

Проверка обмотки возбуждения ротора. Обмотку возбуждения можно проверить, не снимая генератор с автомобиля, сняв только регулятор напряжения вместе с щеткодержателем. Зачистив при необходимости шлифовальной шкуркой контактные кольца, омметром или контрольной лампой  [c.133]

Проверка обмотки возбуждения ротора. Исправность обмотки и надежность прилегания щеток к контактным кольцам можно проверить на стенде без разборки генератора, измерив сопротивление между штекером 67 и корпусом генератора. Если обмотка не имеет коротко-замкнутых витков и щетки хорошо притерты к контактным кольцам, то сопротивление должно быть 4,4 q 2 Ом  [c.163]


Рис. 66. проверка сопротивления обмотки возбуждения ротора  [c.80]

Для проверки начальной частоты вращения ротора генератора независимого возбуждения 1 (рис. 3.3) обмотку возбуждения питают от постороннего источника, которым может быть аккумуляторная батарея 8 или другой источник постоянного тока с пуль-  

[c.64]

Работая в режиме электродвигателя на холостом ходу, генератор не отдает никакой полезной мощности, и вся потребляемая им электрическая энергия расходуется на покрытие собственных потерь. Измеряя силу потребляемого тока, проверяют величину потерь. Если имеет место тугое вращение ротора генератора из-за перекоса при сборке, неисправности шариковых подшипников, неудовлетворительного состояния смазки и других аналогичных причин, возрастают механические потери и, следовательно, возрастает сила потребляемого тока. Если в обмотке якоря или обмотке возбуждения имеется короткое замыкание, возрастают электрические потери и соответственно увеличивается сила тока. Таким образом проверка силы тока при этом испытании позволяет обнаружить ряд неисправностей генератора. Максимально допустимые значения силы тока в режиме холостого хода при проверке генераторов постоянного тока в режиме электродвигателя приведены в табл. 15.  

[c.138]

Контурные характеристики (рис. 3-22) показывают изменение вибрации по контуру исследуемого элемента, что позволяет оценить ослабление жесткости вибрирующей системы. При помощи контурных характеристик обнаруживается ослабление крепления подшипников к фундаментной плите или плиты к фундаменту. По виду характеристики могут быть выявлены такие дефекты, как глубокие трещины в элементах опоры и фундамента. В программу исследований входит также контроль ряда узлов и элементов машины, являющихся обычным источником возбуждения колебаний. Проверке подвергаются центровка роторов, состояние соединительных муфт, шеек роторов и подшипников.

Если вибрационные характеристики указывают на значительную неуравновешенность ротора, вал проверяется индикатором на прогиб, после чего производится балансировка роторов. В тех случаях, когда исследованиями выявлена заметная зависимость вибрации от тока возбуждения или температуры ротора генератора, производится контроль обмотки ротора на отсутствие ВИТКОВЫХ замыканий.  [c.103]


Проверка генератора электронным осциллографом. Осциллограф позволяет по форме кривой выпрямленного напряжения точно и быстро проверить исправность генератора и определить характер повреждений. Для проверки устанавливают частоту вращения ротора генератора 1500 — 2000 об/мин, питая обмотку возбуждения генератора от аккумуляторной батареи, но от зажима 30 батарею отключают. При исправных вентилях и обмотке статора кривая выпрямленного напряжения имеет пилообразную форму с равномерными зубцами (рис. 155, а). Если имеется нарушение соединений в обмотке статора или обрыв, либо короткое замыкание в вентилях, форма кривой резко меняется нарушается равномерность зубцов и появляются глубокие впадины.
[c.163]
Рис. 27. Проверка сопротивления об- Рис. 28. Проверка ротора на отсут-мотки возбуждения ротора ствие замыкания обмотки возбуж-
Сборка генератора произво- полярности, 4 — Минусовая шина дится в порядке, обратном разборке. После сборки генератор необходимо проверить. Исправность генератора и правильность его сборки определяются проверкой частоты вращения ротора, при которой достигается напряжение 14,5 В при работе генератора вхолостую и при полной нагрузке. Проверка производится на испытательном стенде, состоящем из электродвигателя, плавно изменяющего частоту вращения ротора генератора до 3000 мин , вольтметров, амперметра, реостата, создающего нагрузку до 50 А в цепи генератора, батареи 6-СТ-55 и реостата в цепи обмотки возбуждения на 5 А. Для этих целей также можно использовать контрольно-измерительные стенды 532М или Э242.
[c.81]

Для проверки механической части газовой ступени, масляной системы, плотности газовоздушной системы и продувки газовоздуховодов был произведен пуск газовой ступени от действующей паровой турбины АК-30 частотным методом. Сущность метода заключается в следующем. На отдельные шины собираются электрические схемы выводов обмоток статоров генераторов газовой и паровой турбин. На обмотки роторов развертываемого и развертывающего генераторов соответственно подается ток возбуждения 0,5 и 1,0 от номинального. Оба генератора получают возбуждение от своих резервных возбу-  [c.106]


Контрольные проверки генератора Г-221 Классика


Руководство по ремонту и эксплуатации — Электрооборудование ВАЗ-2101 — ВАЗ-2107 — Контрольные проверки генератора Г-221
Контрольные проверки генератора Г-221

ПРЕДУПРЕЖДЕНИЕ
Запрещено проверять исправность генератора его отсоединением (даже кратковременным) от аккумулятора при работающем на автомобиле ВАЗ двигателе. Возникший при этом скачок напряжения выведет из строя выпрямительный блок генератора.

Проверка генератора на стенде позволяет определить исправность генератора и соответствие его номинальным характеристикам. У проверяемого генератора щетки должны быть хорошо притерты к контактным кольцам коллектора, а сами кольца должны быть чистыми. Установите генератор на стенд и подключите его, как показано на рисунке.

Включите электродвигатель стенда, реостатом 5 установите напряжение на выходе генератора 14 В и доведите частоту вращения ротора до 5000 мин. Дайте генератору поработать в этом режиме не менее 2 мин, а затем замерьте силу тока отдачи. У исправного генератора сила тока отдачи должна быть не менее 44 А.

Если замеренная величина отдаваемого тока значительно меньше, то это свидетельствует о неисправностях в обмотках статора и ротора, о повреждении диодов или износе контактных колец и щеток. В этом случае необходима тщательная проверка обмоток и диодного моста генератора, чтобы определить место неисправности.

При подозрении на неисправность диодов выпрямительного блока генератора проверьте силу тока отдачи на прогретом генераторе.

Такая проверка позволяет лучше выявить неисправность диодного моста по резкому снижению тока отдачи при повышении температуры генератора.

Для прогрева дайте генератору поработать не менее 15 мин при частоте вращения ротора 5000 мин и напряжении 14 В на выходе генератора. Затем измерьте силу тока отдачи. На прогретом генераторе сила тока отдачи должна быть не менее 42 А.

Проверка генератора осциллографом позволяет по форме кривой выпрямленного напряжения генератора точно и быстро проверить исправность генератора и определить характер повреждения. Для проверки вращайте ротор генератора с частотой 1500-2000 об/мин, питая обмотку возбуждения от аккумуляторной батареи, но от вывода «30» батарею отключите.

Форма кривой выпрямленного напряжения генератора:
I — генератор исправен;
II — диод пробит;
III — обрыв в цепи диода.

При исправных диодах и обмотке статора кривая выпрямленного напряжения имеет пилообразную форму с равномерными зубцами (I). Если произошел обрыв в обмотке статора, либо обрыв или короткое замыкание диодного моста выпрямителя — форма кривой резко меняется: нарушается равномерность зубцов и появляются глубокие впадины (II и III).

Исправность обмотки возбуждения и надежность прилегания щеток к контактным кольцам генератора можно проверить на стенде, не разбирая генератор, измерив сопротивление между штекером «67» и «массой» генератора.

Если обмотка не имеет короткозамкнутых витков и щетки хорошо притерты к контактным кольцам, то сопротивление должно быть 4,2-4,7 Ом при температуре 20 °C.

После разборки генератора проверяют сопротивление обмотки возбуждения между двумя контактными кольцами, которое должно быть (4,3±0,2) Ом при температуре 20 °C. При этом необходимо следить за надежностью контакта между кольцами ротора и присоединенными к ним проводниками.


Затем проверьте с помощью контрольной лампы, нет ли замыкания обмотки на корпус ротора. Включите контрольную лампу в сеть переменного тока напряжением 220 В (можно использовать аккумуляторную батарею и лампу 12 В). Один из проводов подсоедините к корпусу ротора, а второй — поочередно на каждое кольцо. В обоих случаях лампа не должна гореть. Если лампа загорается, то обмотка замкнута: необходимо заменить ротор.

Статор проверяют отдельно после разборки генератора.

В первую очередь проверьте омметром или с помощью контрольной лампы и аккумуляторной батареи, нет ли обрывов в обмотке статора. Для этого включите контрольную лампу в сеть переменного тока напряжением 220 В (можно использовать аккумуляторную батарею и лампу 12 В). Поочередно подсоедините контрольную лампу между всеми выводами обмотки. Во всех трех случаях лампа должна гореть. Если хотя бы в одном случае лампа не горит, значит, есть обрыв в обмотке и нужно заменить статор или обмотку.

Затем проверьте, нет ли замыкания обмоток статора на корпус. Для этого включите контрольную лампу в сеть переменного тока напряжением 220 В (можно использовать аккумуляторную батарею и лампу 12 В). Подсоедините лампу к выводу обмотки статора, а провод от источника тока к корпусу статора, при этом лампа гореть не должна. Если лампа горит, то происходит замыкание и, следовательно, необходимо заменить статор или обмотку. Изоляция проводов обмотки должна быть без следов перегрева, который происходит при коротком замыкании в диодах выпрямительного блока генератора. Статор с такой поврежденной обмоткой замените. Наконец, необходимо проверить специальным дефектоскопом, нет ли в обмотке статора короткозамкнутых витков.

Исправный диод пропускает ток только в одном направлении. Неисправный может вообще не пропускать ток (обрыв цепи) или пропускать ток в обоих направлениях (короткое замыкание).
Короткое замыкание диодов выпрямительного блока можно проверить, не снимая генератор с автомобиля ВАЗ, предварительно отсоединив провода от аккумуляторной батареи и генератора. Проверить можно омметром или с помощью лампы (1,5 Вт, 12 В) и аккумуляторной батареи, как показано на рисунке.

ПРИМЕЧАНИЕ
Для упрощения крепления деталей выпрямительного блока три диода имеют на корпусе «плюс» выпрямленного напряжения. Это диоды «положительные» и запрессованы в одну пластину выпрямительного блока. Другие три диода «отрицательные», имеют на корпусе «минус» выпрямленного напряжения и запрессованы в другую пластину выпрямительного блока или в крышку генератора.

Сначала проверьте, нет ли замыкания одновременно в «положительных» и «отрицательных» диодах. Для этого «плюс» батареи подсоедините к выводу «30» генератора, а «минус» — через лампу к корпусу генератора. Если лампа горит, то какие-то из «отрицательных» и «положительных» диодов имеют короткое замыкание. Короткое замыкание только «отрицательных» диодов можно проверить, соединив «плюс» батареи со штекером центрального вывода обмотки статора, а «минус» через лампу с корпусом генератора. Горение лампы означает короткое замыкание в одном или нескольких «отрицательных» диодах.

Следует помнить, что в этом случае горение лампы может быть и следствием замыкания витков обмотки статора на корпус генератора. Однако такая неисправность встречается значительно реже, чем короткое замыкание диодов.

Для проверки короткого замыкания только в «положительных» диодах «плюс» батареи соедините с выводом «30» генератора, а «минус» — через лампу со штекером центрального вывода обмотки статора. Горение лампы укажет на короткое замыкание одного или нескольких «положительных» диодов. Обрыв в диодах без разборки генератора можно обнаружить только косвенно при проверке генератора на стенде по значительному снижению (на 20-30%) величины отдаваемого тока по сравнению с номинальным. Если обмотки генератора исправны, а в диодах нет короткого замыкания, то причиной уменьшения отдаваемого тока является обрыв в диодах.

Схемы проверки диодного моста генератора ВАЗ (а — проверка одновременно «положительных» и «отрицательных» диодов; б — проверка «отрицательных» диодов; в — проверка «положительных» диодов):
1 — генератор;
2 — контрольная лампа;
3 — аккумуляторная батарея.

Схема соединений генератора ВАЗ для проверки на стенде:
1 — вольтметр;
2 — выключатель;
3 — амперметр;
4 — аккумуляторная батарея;
5 — реостат;
6 — генератор.

Цитата

ПАРАМЕТРЫ ОБМОТОК ГЕНЕРАТОРОВ

РЕМОНТ ГЕНЕРАТОРНЫХ УСТАНОВОК

Ремонт вентильных генераторов. Генератор, снятый с автомобиля, подвергают наружному осмотру. Если наружная поверхность генератора имеет значительные повреждения, например, трещины на крышках или при вращении его ротора рукой ощущаются заедания, то генератор ремонтируют. Если же наружный осмотр не выявил дефектов, то следует проверить генератор на стенде. Эта проверка описана ранее (см. рис. 1). Проверка производится на соответствие параметров генератора данным, представленным в табл. 3.

Генератор приводится во вращение на холостом ходу с выключенным выключателем SA2 и включенным выключателем SA1, подающим ток подпитки с аккумуляторной батареи на обмотку возбуждения генератора. Ток в генераторе должен возбудиться. Напряжение на нем должно возрасти выше напряжения аккумуляторной батареи. Если этого не произойдет, то следует увеличить частоту вращения. В случае, если ток в генераторе так и не возбудился, следует снять его со стенда. После этого снимается щеткодержатель и проверяются его состояние, состояние щеток и контактных колец. Если неисправностей при проверке не выявлено, то следует установить на него заведомо исправный регулятор напряжения и повторить проверку на стенде. Если ток в генераторе возбудился, то причина отказа — неисправный регулятор напряжения.

В случае возбуждения тока, генератор исследуется на соответствие параметров данным табл. 3 в холодном состоянии в двух режимах: с нагрузкой и без нагрузки. Если частота вращения в обоих исследуемых режимах меньше или равна указанной в табл. 3, то генератор исправен.

В случае, если возбудить ток в генераторе так и не удалось или если частота вращения вала генератора без нагрузки или под нагрузкой не соответствует требованиям, генератор следует отправить в ремонт. Перед ремонтом генератор моют, просушивают в электрическом сушильном шкафу при температуре 90—100 °С в течение 3—4 ч. Генератор разбирают, после разборки отдельные детали моют вторично и просушивают.

Ремонт обмоток статора и ротора. Если при осмотре обмоток статора и ротора генератора выявится повреждение наружной изоляции или изоляции выводов, то она подлежит замене. При наличии почернения или растрескивания эмалевой изоляции обмоточных проводов проводят перемотку обмотки или замену узла с поврежденной обмоткой. Если внешний осмотр не дал отрицательного результата, то следует провести специальным оборудованием проверку обмоток на обрыв, межвитковые замыкания и замыкания на массу. В случае отсутствия специального для этого оборудования проверку производят упрощенным методом. Так, на рис. 5 показана схема проверки обмотки статора и ротора на обрыв. Если обрыва нет, то сигнальная лампа горит.

Рис. 5. Схема проверки обмотки статора и ротора на обрыв.

Проверку замыкания обмоток на массу производят с помощью контрольной лампы на 220 В (рис.6). Если замыкание на массу отсутствует, то сигнальная лампа не горит.

Межвитковые замыкания в обмотках выявляют методом, изложенным ранее (рис. 3).

В случае обнаружения неисправности обмотки желательно устранить ее наиболее простым путем.

Так, в случае обнаружения обрыва в обмотке возбуждения, следует внимательно проверить подпайку выводов этой обмотки к контактным кольцам. Проверку следует осуществить иголкой, шевеля выводы обмотки в месте их подпайки. Если выводы отпаяны, то их следует вновь подпаять.

В случае, если пайка выводов надежна, то следует проверить целостность обмотки и ее выводов, проткнув иголкой как можно ближе к катушке возбуждения изоляцию одного из выводов обмотки. Для этого вывода определяется сопротивление замкнутой электрической цепи между иголкой и обоими контактными кольцами.

Рис. 6. Схема проверки обмотки статора и ротора на замыкание с корпусом.

Если в результате измерений сопротивление между одним из колец и иголкой близко к сопротивлению обмотки возбуждения, а между другим кольцом и иголкой — бесконечно, то имеется разрыв в выводе, изоляция которого проткнута иголкой. Если же одно из сопротивлений близко к нулю, а другое бесконечно, то это свидетельствует, что обрыв имеется либо во втором выводе, либо в самой катушке возбуждения. Для проверки целостности второго вывода протыкается иголкой его изоляция и измерения повторяются так же как для первого вывода.

При обнаружении разрыва в выводе следует удалить изоляцию, найти место разрыва и подпаять перемычку из медного провода с сечением большим, чем у выводного провода к месту разрыва.

После этого на вывод наматывают новую (с перекрытием) изоляцию из хлопчатобумажной ленты и пропитывают асфальтовым лаком воздушной сушки № 13 или печной сушки № 458. Изоляцию высушивают и контролируют ее сопротивление мегомметром. Сопротивление изоляции должно быть не менее 0,5 мОм. Можно также устранить замыкание выводов обмотки возбуждения на массу путем устранения поврежденной изоляции с последующей ее намоткой, пропиткой и проверкой, как указано выше.

В случае, если устранить неисправность в обмотке статора или ротора без перемотки не представляется возможным, то следует заменить узел статора или ротора или перемотать неисправную обмотку.

При перемотке обмотки статора следует выбить из пазов статора клинья и поместить статор в печь при температуре 270—300 ‘С на 8 -10 ч. После охлаждения извлекают обмоточный провод, и статор продувают сжатым воздухом. Изолируют пазы статора электрокартоном или полиэталентерефталатной пленкой, наматывают новую обмотку обмоточным проводом ПЭТ-200, ПЭТД-180, ПЭВ-2, ПЭСВ-3, ПЭТВМ с сечением, указанным в табл. 4.

Схема намотки должна соответствовать схеме снятой со статора обмотки, а число витков в катушке — данным табл. 4. Намотку следует производить секциями. Каждая катушка в секции -наматывается на специальный шаблон. Намотанные катушки укладываются в пазы плотно с числом витков в ряду, аналогичным удаленной обмотке.

После окончания намотки следует забить в пазы клинья, произвести пропитку обмотки лаком МЛ-92 или лаком ГФ-95 с добавлением 15 % смолы К-421-02 или компаундами КП50, ЭД-20. Лак наносят либо путем погружения статора в лак, либо капельным методом, опрыскивая обмотку каплями лака, постоянно вращая статор. После нанесения лака следует подвесить статор, чтобы стекли его излишки. Сушат лак в тепмостате. Так, при использовании компаунда КП50 сушка производится в течение 40 мин при температуре 130+150 ‘С.

При пропитке обмотки эпоксидным компаундом ЭД-20 сушка осуществляется при комнатной температуре.

Для перемотки обмотки ротора на прессе снимают с вала контактные кольца в сборе с правым и левым полюсными.половинами, катушкой возбуждения, втулкой. Отпаивают обмотку возбуждения от контактных колец. Сматывают с каркаса испорченную обмотку, наматывают новую (диаметр провода и число витков указаны в табл. 4). При намотке каркас должен быть надет на втулку. Очищают полюсные половины и втулку с тем, чтобы зазор между втулкой и полюсными половинами был минимальным. Собирают полюсные половины с катушкой возбуждения так, чтобы расстояние между клювами разной полярности были одинаковыми, и напрессовывают их на вал.

При наличии подчеканки полюсных половин перемотка обмотки возбуждения невозможна, так как снятие полюсных половин с вала посредством мощного пресса приводит к необратимым повреждениям вала. В этом случае при отказе обмотки возбуждения заменяют ротор генератора целиком.

Для обеспечения равномерного зазора между полюсными половинами перед запрессовкой на вал вкладывают калибры, которые после выполнения операции удаляют. Проводят закрепление выводов катушки возбуждения согласно конструкции генератора.

Установку контактных колец производят в такой последовательности. На концы катушки возбуждения надевают изоляционную трубку, укладывают их на вал и напрессовывают первое кольцо. Припаивают к нему один из выводов и запрессовывают второе кольцо. После этого ко второму кольцу припаивают второй вывод обмотки возбуждения. Далее пропитывают и просушивают обмотку возбуждения так же как и обмотку статора.

Ремонт ротора. Ремонт обмотки ротора описан ранее. Другими основными неисправностями ротора являются износы: контактных колец, шеек под подшипники и шпоночной канавки.

Изношенные шейки вала под подшипники восстанавливают следующими методами: накатыванием твердосплавным роликом с последующим шлифованием под номинальный размер, осталиванием с последующим шлифованием, постановкой ремонтных втулок с натягом на предварительно проточенную поверхность шеек вала, с последующим шлифованием наружной поверхности втулок под номинальный размер, постановкой ремонтных втулок на эпоксидном клее, с последующим шлифованием наружной поверхности до номинального размера. Биение шеек вала относительно его оси должно быть не более 0,02 мм. Шероховатость шлифованных посадочных поверхностей составляет 0,16—0,32 мкм.

Изношенную шпоночную канавку заваривают, поверхность обрабатывают под, номинальный размер вала и фрезеруют новую шпоночную канавку номинального размера.

Малый износ контактных колец выводят шлифованием стеклянной шкуркой. Изношенные кольца могут быть проточены до диаметра не менее 29,2 мм. Биение проточенной поверхности не должно превышать 0,08 мм. Поврежденные контактные кольца заменяют новыми.

Ремонт выпрямительных блоков. При ремонте определяются вышедшие из строя диоды (рис. 4), после чего неисправные диоды заменяются исправными. Блоки типа ВБГ ремонтируются путем замены теплоотводов (радиаторов) с вышедшими из строя диодами. Для этого выводы плеча выпрямителя, расположенного в теплоотводе, отпаивают от шин «—» и «+». Болт крепления фазового вывода отворачивается и теплоотвод отделяется от выпрямительного блока.

Установка нового теплоотвода производится в обратной последовательности. Положительный и отрицательный выводы плеча выпрямителя, расположенного в теплоотводе, вставляются соответственно в отверстия шин «+» и «—», подпаиваются к шине. Далее устанавливается болт, являющийся фазным выводом.

Замена диодов выпрямительных блоков типа БПВ осуществляется путем отпайки их от соединительных шин и выпрессовки с помощью ручного пресса.

При запрессовке на ручном прессе нового диода особое внимание следует обратить на то, чтобы полярности диодов, расположенных на одной пластине теплоотвода, были одинаковыми и соответствовали полярности заменяемых диодов.

В диодах применена стеклянная изоляция выводов. Поэтому и запрессовку диодов следует проводить осторожно, усиление следует передавать только через металлический корпус диода, для чего используются специальные пуансоны (рис. 7).

Рис.7. Пуансон для выпрессовки (а) и запрессовки (б) диодов из пластины теплоотвода выпрямительного блока типа БПВ

Запрессовку необходимо проводить плавно, увеличивая усилие пресса; перекоса диодов не должно быть. После запрессовки диоды припаивают к соединительным шинам, не допуская их перегрева. Собранный выпрямительный блок проверяют (рис. 4).

Ремонт крышек. Крышки генераторов могут иметь следующие неисправности: износ отверстий в лапах крепления, посадочных гнезд под подшипники; износ посадочных мест в сопряжении со статором; износ резьб.

Крышку выбраковывают при наличии трещин, проходящих через гнездо подшипника, обломе лапы крепления генератора, сильном повреждении посадочного места в сопряжении со статором.

Ремонт гнезд под подшипники может осуществляться постановкой ремонтных втулок с натягом на предварительно расточенную поверхность отверстия в крышке с последующим шлифованием внутренней поверхности втулки до номинального размера, постановкой ремонтных втулок на эпоксидном клее, также с последующим шлифованием внутренней поверхности.

Ремонт стальных гнезд под подшипники может выполняться шлифованием посадочного места под подшипник с последующим его электролитическим осталиванием до диаметра на 0,1 мм меньшим номинального, для получения номинального размера при последующем шлифовании.

Стальные гнезда под подшипники могут наплавляться, а затем растачиваться на токарном станке под номинальный размер. Это производится холодной электродуговой наплавкой электродами МНЧ-1 диаметром 3 мм на постоянном токе 140-150 А обратной полярности при напряжении 20 В, электродами ЦЧ-4 диаметром 3—4 мм на постоянном токе 120—150 А при том же напряжении. Шероховатость посадочных поверхностей под подшипники должна составлять 0,16—0,32 мкм.

Ремонт отверстий в ушках крепления генератора производится аналогично ремонту гнезд под подшипники.

Состояние резьбы в отверстиях контролируют внешним осмотром и путем завертывания нового винта. Сорванную резьбу восстанавливают путем нарезания резьбы ремонтного размера.

Замена подшипников. Проверку подшипников начинают с внешнего осмотра, выявляя трещины в обоймах, выкрашивание металла, наличие коррозии и т. д. Проверяют легкость вращения, предварительно промыв подшипник 10 %-ным раствором дизельного масла в бензине. Измеряют наружный и внутренний диаметры подшипника, радиальный зазор. При износах больше допустимых подшипники заменяют на аналогичные новые.

С подшипников, пригодных к дальнейшей эксплуатации, аккуратно снимают защитное кольцо, промывают в ванне с дизельным топливом, закладывают 2…3 г смазки ЛЗ-31 и устанавливают защитное кольцо на место.

Сборку генераторов производят в последовательности, обратной разборке. После сборки усилие прижатия щеток к контактным кольцам у генераторов должно соответствовать данным, указанным ранее.

Заключительным этапом ремонта является обкатка генератора на холостом ходу в течение 10—15 мин и испытание на стенде.

<< Назад

Как проверить и разобрать ротор генератора, система и способы возбуждения устройства

Как проверить ротор генератора

Автомобильный генератор – устройство с приличным запасом надежности и прочности, однако, как и любой другой механизм, он подвержен износу и поломкам.

О чем расскажет контрольная лампа

На неполадки в работе генератора в большинстве случаев сразу укажет контрольная лампа, размещенная на приборной панели.

При включенном зажигании и неработающем двигателе она должна гореть – такая индикация нужна для проверки исправности самой лампы.

После запуска двигателя, одновременно с началом вращения ротора генератора, лампа должна погаснуть, указывая на то, что генератор вырабатывает ток необходимого номинала.

В случае, когда контрольная лампа не гаснет или сила ее свечения увеличилась, зарядный ток к аккумулятору не поступает вовсе. Поиск причины неисправности следует начинать непосредственно с генератора, проверяя далее всю цепь заряда.

Если при работающем двигателе контрольная лампа светится вполнакала или мерцает, следовательно генератор производит ток низкого напряжения.

Чаще всего причиной такой неисправности является недостаточное натяжение ремня привода генератора, хотя не исключена и неисправность регулятора напряжения.

Основное назначение регулятора напряжения – подавать к аккумулятору автомобиля и в его бортовую сеть постоянный ток напряжением, находящимся в диапазоне от 13,5 до 14,5 В (у разных моделей автомобилей диапазон рабочих значений напряжения может незначительно отличаться).

Измерьте напряжение на клеммах аккумулятора до запуска двигателя. В зависимости от «свежести» аккумуляторной батареи и ее состояния значение разности потенциалов будет составлять от 12 до 12,8 В.

После этого запустите двигатель и мультиметром измерьте напряжение на клеммах аккумулятора. Как уже было сказано, оно должно находится в пределах 13,5 – 14,5 В и не превышать пороговое значение даже в случае работы двигателя на высоких оборотах.

Если регулятор напряжения неисправен, ток зарядки, поступающий от генератора будет возрастать пропорционально увеличению оборотов двигателя, достигая порой критических значений. Результатом перезаряда аккумулятора будет выкипание электролита и выход батареи из строя.

Помимо аккумуляторной батареи, слишком высокое напряжение зарядного тока способно вывести из строя приборы бортовой электроники автомобиля.

Если при работающем двигателе напряжение на клеммах аккумулятора не увеличилось, а наоборот, уменьшилось, значит зарядный ток к батарее не поступает.

Проверка диодного моста

Обычно диодный мост состоит из 6 диодов, 3 из которых являются «отрицательными», а 3 – «положительными».

Переведя мультиметр в режим омметра, первый его щуп подключите к плюсовой пластине, а вторым попеременно прикасайтесь к выводам троих диодов, фиксируя значения сопротивления, показываемые омметром. Затем к плюсовой пластине диодного моста подключите второй щуп, а первым поочередно замеряйте сопротивление на концах диодов.

Омметр должен показать проводимость (зафиксировать какое-либо сопротивление) на всех диодах только в одном случае, после смены щупов местами прибор должен показать отсутствие проводимости.

Если хотя бы один из диодов демонстрирует проводимость в обеих направлениях, следовательно он пробит, а значит диодный мост нуждается в ремонте или подлежит замене на новый.

Аналогичным образом проверяются на пробой «отрицательные» диоды.

Проверка ротора и статора

Мультиметром, переведенным в режим омметра, измерьте сопротивление обмотки возбуждения ротора, присоединив щупы мультиметра к контактным кольцам.

Сопротивление от 2 до 5 Ом засвидетельствует нормальное состояние обмотки. Низкое сопротивление, близкое к нулю, укажет на межвитковое замыкание, а стремящееся к бесконечности – на обрыв в обмотке.

Слишком высокое значение сопротивления – свидетельство плохого контакта между контактными кольцами и выводами обмотки.

Оценить состояние изоляции обмотки возбуждения ротора можно, измерив сопротивление между корпусом ротора и контактным кольцом. В случае утечки тока на массу прибор покажет определенное значение сопротивления.

Перед проверкой статора не забудьте отключить его выводы от диодного моста генератора. Сопротивление между выводами обмоток статора должно составлять примерно 0,2 Ом. Между общим выводом (нулем) и выводом одной из обмоток значение сопротивления должно быть около 0,3 Ом.

Проверка состояния изоляции обмотки статора выполняется способом, аналогичным проверке изоляции ротора.

Удачи вам! Ни гвоздя, ни жезла!

Проверка статора и ротора электроинструментов на межвитковое замыкание

Чтобы проверить статор и ротор на межвитковое замыкание мультиметром, не потребуется много времени. Дольше придется разбирать двигатель. Болгарка, дрель, перфоратор – каждый инструмент можно отремонтировать, определив неисправность. Проверку лучше разбить на несколько основных этапов, и последовательно не спеша выполнять действия.

Разборка болгарки

Чтобы проверить замыкание на статоре и роторе, нужно разобрать двигатель бытового инструмента. Рассмотрим выполнение этой операции для поиска неисправности болгарки.

Для этого:

  • снимаем защитный кожух, открутив один винт на хомуте;
  • откручиваем 4 винта и отсоединяем редуктор с двигателем от рукоятки болгарки;
  • затем со стороны редуктора отвинчиваем 4 болта и отсоединяем редуктор, вместе с ротором двигателя;
  • статор у нас остался в корпусе подсоединенным к кнопке включения и питания.

Разобрав и отсоединив необходимые для проверки детали, переходим к их внешнему осмотру проверке на межвитковое замыкание.

Внешний осмотр

Обнаружить неисправность можно при неравномерном нагреве корпуса инструмента. Касаясь рукой, вы ощущаете перепад температуры в разных местах корпуса. В этом случае инструмент необходимо разобрать и проверить его тестером и другими способами.

При возникновении замыкания витков статора и поиска неисправностей, в первую очередь проводим осмотр витков и выводов. Как правило, при замыкании увеличивается сила тока, проходящая по обмоткам, и возникает их перегрев.

Возникает большее замыкание витков в обмотках статора и повреждается слой изоляции. Поэтому начинаем определение неисправностей проведением визуального осмотра. Если прожогов и поврежденной изоляции не обнаружено, то переходим к выполнению следующего этапа.

Возможно причина поломки в неисправности регулятора напряжения, возникающая при увеличении токов возбуждения. Для обнаружения проблемы проверяются щетки, они должны быть сточены равномерно и не иметь сколов и повреждений. Затем следует выполнить проверку с помощью лампочки и 2 аккумуляторов.

Применение мультиметра

Теперь надо проверить возможность обрыва обмоток статора. На шкале мультиметра выставляем переключатель в сектор замера сопротивления. Не зная величину измерения, выставляем максимальное значение величины для вашего прибора. Проверяем работоспособность тестера.

Касаемся щупами друг друга. Стрелка прибора должна показывать 0. Проводим работу, касаясь выводов обмоток. При показании бесконечного значения на шкале мультиметра обмотка неисправная и статор следует отдать в перемотку.

Проверяем возможность короткого замыкания на корпус. Такая неисправность вызовет снижение мощности болгарки, возможность поражения электротоком и увеличения температуры, при работе. Работа проводится по той же схеме. Включаем на шкале замер сопротивления.

Красный щуп располагаем на выводе обмотки, черный щуп крепим на корпус статора. При коротком замыкании обмотки на корпус на шкале тестера значение сопротивления будет меньшим, чем на исправной. Эта неисправность требует перемотки обмоток статора.

Настало время провести замеры и проверить, есть ли межвитковое замыкание обмотки статора. Для этого измеряется значение сопротивления на каждой обмотке. Определяем нулевую точку обмоток, замерив сопротивление для каждой из них. При показании на приборе наименьшего сопротивления обмотки, ее следует менять.

Нестандартная проверка

Самым точным способом является проверка статора с помощью металлического шарика и понижающего трансформатора тока. Статор подключается к выводам трех фаз из трансформатора. Проверив правильность подключения, включаем нашу цепь с пониженным напряжением в сеть.

Внутрь статора вбрасываем шарик и наблюдаем за его поведением. Если он «прилип» к одной из обмоток – это значит, на ней произошло межвитковое замыкание. Шарик крутится по кругу – статор исправен. Довольно ненаучный, но действенный метод обнаружения межвиткового замыкания на статоре.

Неисправности ротора

В случае оптимального режима использования, ротор не изнашивается. Производятся регламентные работы с заменой щеток при их износе. Но со временем, при сильных нагрузках статор нагревается и образуется нагар. Самая частая механическая поломка – износ или перекос подшипников.

Работать болгарка будет, но при этом быстро изнашиваются пластины, и со временем двигатель ломается. Чтобы избежать поломок, необходимо проверять инструмент и поддерживать нормальные условия службы.

Влага при попадании на металл вызывает образование ржавчины. Повышается сила трения, силы тока требуется больше для работы. Происходит значительный нагрев групп контактов, припоя, появляется сильная искра.

Проверка обмоток двигателя

Электронный тестер роторов – это стандартный цифровой мультиметр. Прежде чем приступать к тестированию замыкания, следует проверить мультиметр и его готовность к работе. Переключатель выставляют на измерение сопротивления и касаются щупами друг друга. Прибор должен показать нули. Выставляют максимальную величину измерения и проводят проверку:

  • сначала следует проверить ротор на обрыв цепи. Прикасаясь черным щупом к контактному кольцу, красным нужно прозвонить обмотки. Стрелка прибора зашкалила, значит, обмотка имеет обрыв цепи витков. Ротор следует отдавать в перемотку;
  • замеряем сопротивление для определения возможности короткого замыкания на корпус. На контактное кольцо крепим черный щуп, красным следует прозвонить на замыкание корпус ротора. В случае низкого показания значения сопротивления и звукового сигнала, такой якорь необходимо отдавать в ремонт;
  • проведение прозвона на межвитковое замыкание витков ротора. Подкрепляем щупы на контактные кольца якоря. При значении на шкале прибора, от 1,5 Ом до 6 Ом, мы проверяли исправный прибор. Все другие значения на шкале означают неисправность мультиметра.

На этом проверка ротора закончена. Следует еще раз напомнить основные этапы определения неисправности. Прежде чем проверять, болгарку или любой другой прибор следует обесточить. Перед проведением замеров, следует визуально осмотреть корпуса, изоляцию и отсутствия нагаров на статоре и роторе.

При разборке инструмента в первый раз, записывайте все свои шаги. Это позволит иметь подсказку в следующий раз, избежать появления лишних деталей при сборке. При выходе щетки за край щеткодержателя менее 5 мм, такие щетки следует заменить. Проверить межвитковое замыкание можно электронным тестером, то есть мультиметром.

Как проверить генератор

Проверка генератора может потребоваться при загорании контрольной лампы заряда аккумулятора на панели приборов, и это означает, что пропала зарядка батареи. Каждому водителю полезно знать способы проверки генератора и его деталей, которые будут подробно описаны в этой статье. 

Отсутствие заряда аккумуляторной батареи может происходить не только по вине генератора, а например из-за выхода из строя реле регулятора. И прежде чем проверять генератор, следует вначале убедиться в исправности реле регулятора.

Как проверить исправность реле регуляторов разных типов я подробно написал вот в этой статье. А об устройстве генератора и его основных неисправностях можно почитать вот тут. Генератор и исправность его некоторых деталей можно проверить без разборки генератора или с разборкой и способы проверки будут описаны ниже.

Если же при проверке будут выявлены какие то неисправности генератора, то устранить их можно будет как описано вот в этой статье, про ремонт генератора.

Проверка генератора по частям.

Проверка статора генератора. Статор генератора проверяется отдельно после разборки генератора. Все выводы статора должны быть отсоединены от диодов (вентилей) выпрямительного блока.

Сначала визуально убедитесь, что лаковая изоляция проводов обмотки статора не имеет следов перегрева (а тем более оплавления), который может произойти при коротком замыкании в вентилях выпрямителя. Статор со следами оплавления изоляции следует заменить.

Включите мультиметр (тестер) в режим измерения сопротивления (омметра) и проверьте с помощью омметра (или контрольной лампочки и батареи) нет ли обрывов в обмотке статора и не замкнуты витки обмотки на массу.

Сопротивление между выводами обмоток статора большинства генераторов проверяем подключив щупы поочерёдно к выводам обмоток (как на рисунке Б) и оно составляет примерно 0,2 Ома, а между выводом любой обмотки и общим (нулевым) выводом примерно 0,3 Ома.

Так же следует проверить не коротит ли обмотка на массу (как на рисунке А ), подсоединив один из щупов тестера к корпусу статора, а второй щуп поочерёдно к каждому выводу обмотки.

В этом случае, если тестер выставленный в режим зуммера зазвонит, то обмотка коротит на корпус и статор следует заменить.

Хотя бывает полезно внимательно осмотреть обмотку, возможно один из проводов обмотки где то с краю касается железа и его следует лишь немного отогнуть и покрыть изоляционным лаком (если лак протёрт).

Но часто бывает, что обмотка коротит там где визуально не видно и устранить короткое замыкание не так то просто.

Проверка ротора генератора, его обмотки возбуждения. Обмотку возбуждения ротора можно проверить даже не снимая генератор с автомобиля, а сняв только лишь реле регулятор с щёткодержателем и подсоединив щупы тестера к контактным кольцам через отверстие для щёткодержателя. Но гораздо удобнее прозвонить ротор отдельно от генератора.

Подсоединяем щупы тестера выставленного в режим омметра (или провода контрольной лампы) к контактным кольцам ротора (см. рисунок А), при этом омметр должен показать сопротивление в пределах 2,5 — 5 Ом (на большинстве моделей мощностью от 500 до 1200 ватт).

Если сопротивление меньше положенного, то возможно межвитковое замыкание, если больше положенного, то значит плохое соединение выводов обмотки с контактными кольцами. Ну а если омметр вообще не показал никакого сопротивления, то значит в обмотке ротора обрыв.

На рисунке Б показана проверка обмотки ротора (не коротит ли она на массу). При этом один из щупов тестера подсоединяем к контактному кольцу (по очереди), а второй к корпусу ротора. Тестер выставляем в режим зуммера и он не должен звенеть. Если же при такой проверке обмотка будет прозваниваться (зуммер пищит) то значит обмотка ротора коротит на массу.

Проверка выпрямительного блока (диодного моста). Сначала напомню, что исправный диод (вентиль) пропускает электрический ток только в одном направлении. А неисправный диод может вообще не пропускать ток (обрыв цепи) или пропускает ток в обоих направлениях (короткое замыкание).

При выходе из строя одного из диодов выпрямителя, как правило заменяют весь блок, так как диоды впрессованы в алюминиевую пластину подковы блока и заменить неисправный диод не так то просто. Короткое замыкание диодов выпрямителя можно проверить даже не снимая генератор с машины. Следует только предварительно отсоединить провода от аккумуляторной батареи и генератора.

Ещё следует отсоединить вывод Б регулятора от клеммы под номером 30 генератора и провод от вывода В реле регулятора. Проверку производим с помощью омметра, или контрольной лампочки.

https://www.youtube.com/watch?v=pnxnXtYZ7hU

Следует учесть, что с целью упрощения крепления деталей выпрямительного блока, три диода имеют на корпусе плюс выпрямленного напряжения. Эти три диода положительные и они запрессованы в одну из двух алюминиевых пластин выпрямителя, которая соединена с тридцатым (30) выводом генератора.

Другие три диода отрицательные и они имеют на корпусе минус выпрямленного напряжения. Эти три отрицательных диода запрессованы во вторую пластину выпрямителя, которая соединена с минусом (массой).

Проверка одновременно и положительных и отрицательных диодов

Сначала проверяем нет ли замыкания одновременно в положительных и отрицательных диодах (рисунок А слева). Для этого плюс аккумулятора через лампочку подсоединяем к выводу 30 генератора, а минус батареи к корпусу генератора.

Если при таком подсоединении лампочка горит, то и положительные и отрицательные диоды имеют короткое замыкание.

Схема проверки отрицательных диодов выпрямителя

Короткое замыкание отрицательных диодов (рисунок Б) проверяем соединив плюс аккумулятора через лампочку с изолированным от корпуса выводом одного из проверяемых диодов, а минус от батареи подсоединяем  к корпусу генератора. Если при таком подключении лампочка горит, то это означает короткое замыкание в одном или в нескольких отрицательных диодах.

Ещё следует учесть, что горение лампочки при таком подключении может означать замыкание витков обмотки статора на корпус генератора. Но такая неисправность бывает реже, чем короткое замыкание диодов.

Схема проверки положительных диодов выпрямителя

Чтобы проверить короткое замыкание в положительных диодах (рисунок В), плюс от аккумулятора через лампочку подсоединяем к выводу 30 генератора, а минус от батареи подключаем опять же к одному из изолированных от корпуса выводов одного из проверяемых диодов (см. рисунок).

Если лампочка при таком подключении горит, то это означает короткое замыкание одного или нескольких положительных диодов выпрямителя.

Обрыв (пробой) в диодах без разборки генератора можно выявить или с помощью осциллографа, или при проверке генератора на стенде, по снижению величины отдаваемого тока (примерно на 20 — 30%). О проверке генератора осциллографом и с помощью стенда будет описано ниже.

Проверку исправности диодов можно осуществить с помощью мультиметра, выставленного в режим омметра. Один щуп подсоединяем к плюсовой пластине, а вторым щупом поочерёдно касаемся выводов трёх диодов, которые запрессованы в эту пластину. Затем меняем щупы омметра местами.

При такой проверке диоды должны иметь проводимость (омметр покажет какое то сопротивление) только в одном направлении, а в другом нет. Точно так же проверяются и отрицательные диоды, только один из щупов уже подсоединяем к отрицательной пластине, а второй щуп поочерёдно подсоединяем к выводам отрицательных диодов. Проводимость отрицательных диодов должна быть только в одном направлении.

Если сопротивление равно нулю, то диод пробит. Отсутствие сопротивления при подключении с разных сторон тоже подтверждает то, что диод вышел из строя (пробит). Неисправность одного из диодов как правило подтверждается постоянным недозарядом аккумуляторной батареи.

Наглядно посмотреть, как проверить с помощью мультиметра (тестера) диоды, ротор, статор и регулятор напряжения можно в видеоролике под статьёй.

Проверка дополнительных диодов. На более современных вазовских машинах и почти на всех иномарках, кроме основных имеются ещё и дополнительные диоды.

Короткое замыкание дополнительных диодов можно проверить не снимая генератор с машины и не разбирая его. Перед проверкой (так же как при проверке выпрямителя) следует отсоединить провода от батареи и от генератора и провод от вывода В реле регулятора напряжения.

Следует всё подключить как на рисунке слева, то есть плюсовой провод от батареи подключаем через 12-ти вольтовую лампочку (1 — 3 вт) к выводу 61 генератора, а минус от батареи к одному из винтов крепления выпрямителя. Если при таком подключении лампочка горит, то в одном из дополнительных диодов произошло короткое замыкание.

Выявить какой из диодов вышел из строя можно только демонтировав выпрямитель и отдельно проверяя каждый диод с помощью тестера, как было описано выше. Пробой (обрыв) в дополнительных диодах можно обнаружить с помощью вольтметра, по напряжению ниже 14 вольт на клемме 61 при вращении ротора генератора на средних оборотах.

Так же обрыв в дополнительных диодах можно выявить с помощью осциллографа (разумеется если он есть), по искажению кривой напряжения на клемме 61.

Проверка щёток и контактных колец. Щётки и контактные кольца проверяются визуально. Контактные кольца не должны иметь заметной (ступенчатой) выработки, а так же рисок, царапин, чёрного налёта. Иначе контакт щёток с кольцами будет плохим, щётки будут быстро стираться и будет много угольной пыли.

Как привести контактные кольца в порядок я описал в статье ремонт генератора, ссылка на статью выше в тексте. Ну а как проверить щётки генератора и как их заменить, подробно описано вот тут.

Проверка генератора с помощью стенда.

Проверка на стенде позволяет наиболее точно определить исправность генератора и соответствие его характеристик номинальным. Чтобы собрать стенд, потребуется закрепить электродвигатель с шкивом на сваренной рамке из уголка (или профильной трубы), затем закрепить генератор на той же рамке так, чтобы шкив электродвигателя вращал шкив генератора с помощью ремня.

Ещё потребуется реостат 4 (см. схему подключения слева) вольтметр 3, контрольная 12-ти вольтовая лампочка (3 вт) 1, амперметр 5, выключатель 6, ну и автомобильный аккумулятор 7 (сам генератор под цифрой 2 на рисунке). Всё подключается согласно схемы на рисунке.

Перед проверкой генератора следует очистить контактные кольца генератора от налёта, а щётки должны быть хорошо притёрты по форме к контактным кольцам. После подключения всех комплектующих стенда согласно рисунку, включаем электродвигатель и реостатом 4 устанавливаем на выходе генератора напряжение равное 13 вольт. Затем доводим обороты ротора генератора до 5000 об/мин.

При таких оборотах даём поработать генератору не менее двух минут, затем замеряем силу тока отдачи. У исправного генератора переднеприводных вазов (ВАЗ 2108 — 09) сила тока должна быть не менее 55 ампер. У более мощных генераторов иномарок сила тока отдачи разумеется больше, а сколько точно ампер — это можно уточнить в технических характеристиках конкретного генератора.

1 — генератор, 2 — вольтметр, 3 — контрольная лампочка, 4 — реостат, 5 — амперметр, 6 — выключатель, 7 — аккумуляторная батарея.

Стен для проверки генераторов иномарок практически такой же, только лишь выводы импортных генераторов имеют другие обозначения (D и В+), как на рисунке чуть выше.

Если выяснится, что сила тока меньше положенной, то это говорит о неисправностях в обмотке статора или ротора генератора, или о повреждениях диодов, или о износе контактных колец или щёток. В таком случае потребуется разборка и проверка обмоток и диодов, как было описано выше.

Проверка напряжения на выходе генератора проверяется при оборотах ротора 5000 об/мин. При этом реостатом устанавливаем ток отдачи 15 ампер и замеряем напряжение на выходе генератора. Оно должно быть 14,1±0,5 вольт, при температуре 25±10° в помещении где находится стенд.

Если напряжение имеет другую величину (меньше или больше 14,1±0,5 вольт) то следует заменить реле регулятор новым или заведомо исправным и заново повторить проверку. Если же замена реле не поможет и напряжение всё равно будет отличаться от нормы, значит дело не в реле регуляторе, а в обмотках статора или ротора, или в неисправных диодах выпрямительного блока.

Проверка генератора с помощью электронного осциллографа.

Электронный осциллограф есть далеко не у всех, но он позволяет по форме кривой выпрямленного напряжения быстро и точно проверить исправность генератора и определить характер повреждения. Поэтому есть смысл написать такой способ проверки генератора.

Для проверки следует собрать схему, как показано на рисунке слева. Затем отсоединяем провод общего вывода трёх дополнительных диодов от клеммы В реле регулятора напряжения и обматываем наконечник отсоединённого провода изолентой (чтобы он не коротнул на корпус генератора).

Далее к клемме В подключаем провод от аккумулятора (см. рисунок) через контрольную лампочку 1. Теперь обмотка возбуждения будет питаться только от аккумулятора. Включаем электродвигатель стенда и добиваемся оборотов ротора генератора примерно 1500 — 2000 об/мин. Затем выключателем 6 отключаем аккумулятор от клеммы 30 генератора и с помощью реостата 4 добиваемся тока отдачи в 10 ампер.

Проверяем по осциллографу напряжение на клемме 30 генератора. При исправных диодах выпрямителя и исправной обмотке статора, кривая выпрямленного напряжения имеет форму равномерных зубьев пилы как на рисунке А (см. рисунок чуть ниже).

А — генератор исправен.Б — диод пробит.

В — обрыв в цепи диода или в обмотке статора.

Если же имеется обрыв или короткое замыкание в диодах выпрямителя или обрыв в обмотке статора, то форма кривой будет с неравномерными зубьями с глубокими впадинами (см. рисунок Б и В).

Когда на клеме 30 проверили и убедились что форма кривой имеет нормальный вид, следует проверить напряжение на штекере 61 или на наконечнике провода, который отсоединён от штекера В реле регулятора. Эти точки являются общим выводом трёх дополнительных диодов, которые питают обмотку возбуждения при работе генератора.

И здесь также форма кривой напряжения должна иметь правильную форму зубьев. Если же форма кривой имеет неправильную форму зубьев, то это говорит о выходе из строя дополнительных диодов.

Ещё о проверке и восстановлении генератора и реле регулятора иномарки можно почитать вот тут.

Ну и напоследок несколько предупреждений, которые важно знать каждому водителю.

  • Минусовой провод от аккумулятора всегда должен соединяться с массой, а плюсовой провод подключаться к клеме 30 генератора. Обратное (ошибочное) подключение аккумулятора моментально вызовет повышенный ток через диоды выпрямителя генератора и диоды выйдут из строя.
  • Нельзя допускать работу генератора при отсоединённой батарее, так как это вызовет возникновение кратковременных перенапряжений на клемме 30 генератора и это повредит реле регулятор напряжения и другие электронные устройства бортовой сети современного автомобиля.
  • Категорически запрещается проверка исправности генератора на искру, даже кратковременным соединением клеммы 30 генератора с массой. При этом через диоды выпрямительного блока протекает большой ток и они выходят из строя. Проверять работоспособность генератора можно только с помощью вольтметра и амперметра.
  • Диоды выпрямителя генератора нельзя проверять мегомметром (он имеет слишком большое для диодов напряжение) или напряжением более 12-ти вольт. Так как диоды при такой проверке будут пробиты (произойдёт короткое замыкание).
  • Так же запрещается проверка электропроводки машины мегомметром или лампой, запитываемой напряжением более 12-ти вольт. Если же такая проводка необходима, то следует предварительно отсоединить провода от клемм генератора.
  • Проверять сопротивление изоляции обмотки статора генератора повышенным напряжением можно только на стенде, но обязательно с отсоединёнными от выпрямителя выводами фазных обмоток.
  • При кузовных работах с использованием электросварки, следует обязательно отсоединить провода от всех клемм генератора и аккумулятора.

Вот вроде бы и всё. Конечно же проверка генератора не такое уж простое дело, но при грамотном подходе и наличии соответствующих знаний, вполне возможно выявить любую неисправность и устранить её без помощи автоэлектрика, успехов всем.

Возбуждение синхронных генераторов



Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

https://www.youtube.com/watch?v=HB86OP5t6Xc

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение – от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот – Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф – так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с.

Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения.

Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт – 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора.

Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы.

К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ.

Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители.

Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств – соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.

4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока – параллельно.

Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение.

Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6.

Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE.

Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей – неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме.

В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах.

Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.



Системы возбуждения синхронных генераторов: разновидности, схемы, достоинства и недостатки

Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

  • начальное возбуждение;
  •  холостой ход;
  • включение в сеть методом точной синхронизации или самосинхронизации;
  • работу в энергосистеме с допустимыми нагрузками и перегрузками;
  • форсировку возбуждения по напряжению и по току с заданной кратностью;
  • разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  • гашение поля генератора в аварийных режимах и при нормальной остановке;
  • электрическое торможение агрегата.
  • Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.

    КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

    Системы тиристорного независимого возбуждения (СТН)

    В отличие от систем самовозбуждения (СТС), в СТН тиристорные выпрямители главного генератора получают питание от независимого источника напряжения переменного тока промышленной частоты – от вспомогательного синхронного генератора, вращающемся на одном валу с главным генератором.

    Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока.

    В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

    Благодаря наличию вспомогательного генератора, сохраняется независимость возбуждения от длительности и удаленности КЗ и других возмущений в энергосистеме, и высокая скорость нарастания напряжения возбуждения: не более 25 мс до достижения максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5%.

    В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

    Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

    В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А.

    Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%.

    Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.

    Система тиристорного самовозбуждения (СТС)

    Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
    Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу.

    Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения.

    Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

    Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

    В системе СТН интенсивное гашение поля генераторов в нормальных условиях эксплуатации достигается за счет перевода тиристорного преобразователя в инверторный режим изменением полярности напряжения возбуждения – время развозбуждения не превышает 100 мс.

    Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

    Действие АГП заключается в уменьшении времени гашения поля при соблюдении предельно допустимой по условиям электрической прочности изоляции величины напряжения на обмотке возбуждения. Защита ротора от перенапряжений выполняется на основе быстродействующих тиристорных разрядников.

    Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.

    Система тиристорного самовозбуждения резервная (СТСР)

    В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

    Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов.

    На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока.

    Система оснащена всеми необходимыми средствами защиты, управления и коммутации.

    Системы бесщеточные диодные (СБД)

    Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.

    Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора.

    Обмотка возбуждения возбудителя расположена на его статоре.

    Это позволяет обеспечить возбуждение сверхмощных машин, токи возбуждения которых превышают 5500А, свойственных системе СТН – рис.5.2. Выпрямленное номинальное напряжение составляет до 600В, а выпрямленный номинальный ток до 7800А. Система охлаждения вращающегося диодного выпрямителя – естественная воздушная.

    Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя.

    Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве.

    В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

    Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ).

    СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

    Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

    В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.

    4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины.

    В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.

    Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора.

    СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

    Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).

    Системы возбуждения для дизель-генераторов

    АО «Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения.

    Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6.

    Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

    Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

    Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

    Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.

    Автоматы гашения поля (АГП)

    Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

    Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО «Электросила” представлены в табл.5.2.

    Контрольные проверки генератора

    Проверка генератора на стенде

    Проверка на стенде позволяет определить исправность генератора и соответствие его характеристик номинальным. У проверяемого генератора щетки должны быть хорошо притерты к контактным кольцам коллектора, а сами кольца чистыми.

    Рис. 1. Схема соединений для проверки генератора на стенде

    1. контрольная лампа 12 В, 3 Вт;
    2. генератор;
    3. вольтметр;
    4. реостат;
    5. амперметр;
    6. выключатель;
    7. аккумуляторная батарея

    Установите генератор на стенд и выполните соединения как показано на рисунке 1. Включите электродвигатель стенда, реостатом 4 установите напряжение на выходе генератора 13 В и доведите частоту вращения ротора до 6000 мин-1. Дайте генератору поработать на этом режиме не менее 10 мин, а затем замерьте силу тока отдачи. У исправного генератора она должна быть не менее 80 А.

    Если замеренная величина отдаваемого тока значительно меньше, то это говорит о неисправностях в обмотках статора и ротора или о повреждении вентилей. В этом случае необходима тщательная проверка обмоток и вентилей, чтобы определить место неисправности.

    Напряжение на выходе генератора проверяется при частоте вращения ротора 5000 мин-1. Реостатом 4 установите ток отдачи 15 A и замерьте напряжение на выходе генератора, которое должно быть 13,2–14,7 В при температуре окружающего воздуха и генератора (25 ±10) °С.

    Если напряжение не укладывается в указанные пределы, то замените щеткодержатель с регулятором напряжения новым, заведомо исправным, и повторите проверку. Если напряжение будет нормальным, то, следовательно, старый регулятор напряжения поврежден и его необходимо заменить. А если напряжение по-прежнему не будет укладываться в указанные выше пределы, то необходимо проверить обмотки и вентили генератора.

    Проверка генератора электронным осциллографом

    Осциллограф позволяет по форме кривой выпрямленного напряжения точно и быстро проверить исправность генератора и определить характер повреждения.

    Рис. 2. Схема соединений для проверки генератора осциллографом
    1. выключатель;
    2. генератор;
    3. вольтметр;
    4. реостат;
    5. амперметр;
    6. выключатель;
    7. аккумуляторная батарея

    Для проверки соберите схему согласно рисунку 2. Отсоедините провод общего вывода трех дополнительных диодов от штекера D+ регулятора напряжения и примите меры, чтобы наконечник отсоединенного провода не замкнулся с массой генератора. К штекеру D+ регулятора присоедините провод от аккумуляторной батареи через выключатель 1. Таким образом, обмотка возбуждения будет питаться только от аккумуляторной батареи.

    Включите электродвигатель стенда и доведите частоту вращения ротора до 1500–2000 мин-1. Выключателем 6 отключите аккумуляторную батарею от клеммы B+ генератора и реостатом 4 установите ток отдачи 10 А.

    Рис. 3. Форма кривой выпрямленного напряжения генератора

    I — генератор исправен;

    II — вентиль пробит;

    III — обрыв в цепи вентиля (обмотке статора)

    Проверьте по осциллографу напряжение на клемме B+ генератора. При исправных вентилях и обмотке статора кривая выпрямленного напряжения имеет пилообразную форму с равномерными зубцами (рисунок 3, I). Если имеется обрыв в обмотке статора либо обрыв или короткое замыкание в вентилях выпрямительного блока — форма кривой резко меняется: нарушается равномерность зубцов и появляются глубокие впадины (рисунок № 3, II и III).

    Проверив форму кривой напряжения на клемме B+ генератора и убедившись, что она имеет нормальный вид, проверяют напряжение на штекере D генератора при отсоединенном проводе от штекера D+ регулятора напряжения. Штекер D является общим выводом трех дополнительных диодов, питающих обмотку возбуждения при работе генератора. Кривая напряжения здесь также должна иметь правильную пилообразную форму. Неправильная форма кривой свидетельствует о повреждении дополнительных диодов.

    Проверка обмотки возбуждения ротора

    Обмотку возбуждения можно проверить не снимая генератор с автомобиля, сняв только защитный кожух и регулятор напряжения вместе со щеткодержателем. Зачистив при необходимости шлифовальной шкуркой контактные кольца, омметром или контрольной лампой проверяют, нет ли обрыва в обмотке возбуждения и не замыкается ли она с массой.

    Проверка статора

    Статор проверяется отдельно, после снятия выпрямительного блока.

    В первую очередь проверьте омметром или с помощью контрольной лампы и аккумуляторной батареи, нет ли обрывов в обмотке статора и не замыкаются ли ее витки на «массу».

    Изоляция проводов обмотки должна быть без следов перегрева, который происходит при коротком замыкании в вентилях выпрямительного блока. Статор с такой поврежденной обмоткой замените.

    Наконец, после разборки генератора необходимо проверить специальным дефектоскопом, нет ли в обмотке статора короткозамкнутых витков.

    Проверка вентилей выпрямительного блока

    Исправный вентиль пропускает ток только в одном направлении. Неисправный — может либо вообще не пропускать ток (обрыв цепи), или пропускать ток в обоих направлениях (короткое замыкание).

    В случае повреждения одного из вентилей выпрямителя необходимо заменять целиком выпрямительный блок.

    Рис. 4. Схемы для проверки вентилей выпрямителя

    1. аккумуляторная батарея;
    2. контрольная лампа;
    3. генератор;

    I — проверка одновременно «положительных» и «отрицательных» вентилей;

    II — проверка «положительных» вентилей;

    III — проверка «отрицательных» вентилей

    Короткое замыкание вентилей выпрямительного блока можно проверить не снимая генератор с автомобиля, предварительно отсоединив провода от аккумуляторной батареи и генератора и сняв кожух с задней крышки генератора. Также отсоединяется провод от вывода D+ регулятора напряжения. Проверить можно омметром или с помощью лампы (1–5 Вт, 12 В) и аккумуляторной батареи, как показано на рисунке 4.

    ПРИМЕЧАНИЕ

    С целью упрощения крепления деталей выпрямителя три вентиля (с красной меткой) создают на корпусе «плюс» выпрямленного напряжения. Эти вентили «положительные» и они запрессованы в одну пластину выпрямительного блока, соединенную с выводом «B+» генератора. Другие три вентиля («отрицательные» с черной меткой) имеют на корпусе «минус» выпрямленного напряжения. Они запрессованы в другую пластину выпрямительного блока, соединенную с массой.

    Сначала проверьте, нет ли замыкания одновременно в «положительных» и «отрицательных» вентилях. Для этого «плюс» батареи через лампу подсоедините к зажиму B+ генератора, а «минус» к корпусу генератора(рисунок 4, I). Если лампа горит, то «отрицательные» и «положительные» вентили имеют короткое замыкание.

    Для проверки короткого замыкания в «положительных» вентилях «плюс» батареи через лампу соедините с зажимом B+ генератора, а «минус» – с одним из фазных выводов обмотки статора (рисунок 4, II). Горение лампы укажет на короткое замыкание одного или нескольких «положительных» вентилей.

    Короткое замыкание «отрицательных» вентилей можно проверить, соединив «плюс» батареи через лампу с одним из фазных выводов обмотки статора, а «минус» с корпусом генератора (рисунок 4, III). Горение лампы означает короткое замыкание в одном или нескольких «отрицательных» вентилях. Следует помнить, что в этом случае горение лампы может быть и следствием замыкания витков обмотки статора на корпус генератора. Однако такая неисправность встречается значительно реже, чем короткое замыкание вентилей.

    Обрыв в вентилях без разборки генератора можно обнаружить либо осциллографом, либо при проверке генератора на стенде по значительному снижению (на 20–30%) величины отдаваемого тока по сравнению с номинальным. Если обмотки, дополнительные диоды и регулятор напряжения генератора исправны, а в вентилях нет короткого замыкания, то причиной уменьшения отдаваемого тока является обрыв в вентилях.

    Рис. 5. Схема для проверки дополнительных диодов:

    1. генератор;
    2. контрольная лампа;
    3. аккумуляторная батарея

    Короткое замыкание дополнительных диодов можно проверить без снятия и разборки генератора по схеме, приведенной на рис 5. Так же как и для проверки вентилей выпрямительного блока, при этом необходимо отсоединить провода от аккумуляторной батареи и генератора, снять защитный кожух генератора и отсоединить провод от вывода «D+» регулятора напряжения.

    «Плюс» батареи через лампу (1–3 Вт, 12 В) присоедините к выводу «D» генератора, а «минус» к одному из фазных выводов обмотки статора.

    Если лампа загорится, то в каком-то из дополнительных диодов имеется короткое замыкание. Найти поврежденный диод можно только сняв выпрямительный блок и проверяя каждый диод в отдельности.

    Обрыв в дополнительных диодах можно обнаружить осциллографом по искажению кривой напряжения на штекере «D», а также по низкому напряжению (ниже 14 В) на штекере «D» при средней частоте вращения ротора генератора.

    Проверка регулятора напряжения

    Работа регулятора напряжения заключается в непрерывном и автоматическом изменении силы тока возбуждения генератора таким образом, чтобы напряжение генератора поддерживалось в заданных пределах при изменении частоты вращения и тока нагрузки генератора.

    Проверка на автомобиле

    Для проверки необходимо иметь вольтметр постоянного тока со шкалой до 15–30 в класса точности не хуже 1,0.

    После 15 мин работы двигателя на средних оборотах при включенных фарах замерьте напряжение между клеммой «В+» и массой генератора. Напряжение должно находиться в пределах 13,2–14,7 В.

    В том случае, если наблюдается систематический недозаряд или перезаряд аккумуляторной батареи и регулируемое напряжение не укладывается в указанные пределы, регулятор напряжения необходимо заменить.

    Проверка снятого регулятора

    Рис. 6. Схема для проверки регулятора напряжения

    1. контрольная лампа;

    2. вывод на «массу» регулятора напряжения;

    3. вывод «DF» регулятора напряжения;

    4. регулятор напряжения;

    5. вывод «D+» регулятора напряжения;

    А — к источнику питания

    Регулятор в сборе с щеткодержателем, снятый с генератора, проверяется по схеме, приведенной на рисунке 6.

    Между щетками включите лампу 1–3 Вт, 12 В. К выводам D+ и «масса» регулятора присоедините источник питания сначала напряжением 12 в, а затем напряжением 15–16 В.

    Если регулятор исправен, то в первом случае лампа должна гореть, а во втором — гаснуть.

    Если лампа горит в обоих случаях, то в регуляторе пробой, а если не горит в обоих случаях, то или в регуляторе имеется обрыв, или нет контакта между щетками и выводами регулятора напряжения. Последнее можно проверить, присоединяя провода от лампы не к щеткам, а непосредственно к выводам D+ и DF регулятора напряжения.

    Проверка конденсатора

    Конденсатор служит для защиты электронного оборудования автомобиля от импульсов напряжения в системе зажигания, а также для снижения помех радиоприему.

    Повреждение конденсатора или ослабление его крепления на генераторе (ухудшение контакта с массой) обнаруживается по увеличению помех радиоприему при работающем двигателе.

    Ориентировочно исправность конденсатора можно проверить мегомметром или тестером (на шкале 1–10 МОм). Если в конденсаторе нет обрыва, то в момент присоединения щупов прибора к выводам конденсатора стрелка должна отклониться в сторону уменьшения сопротивления, а затем постепенно вернуться обратно.

    Емкость конденсатора, замеренная специальным прибором, должна быть 2,2 мкФ ±20%.

    Как проверить обмотку генератора

    Для проверки генераторной установки и поиска неисправности достаточно иметь омметр. Однако более точную информацию об обмоточных узлах можно получить, применяя специальные приборы, которые осуществляют поиск неисправности в обмотках методом сравнения их параметров с заведомо годной обмоткой. Они годны для дефектовки как обмоток статора, так и возбуждения.

    Проверьте обмотку ротора. Для этого включите омметр на измерение сопротивления обмотки, и поднесите его выводы к кольцам ротора. Сопротивление исправного ротора при напряжении 14 В находится в пределах:у генераторов, которые работают с регуляторами напряжения, рассчитанными на максимальную силу тока 3,5—4,0 А — 3-5 Ом, у работающих с регуляторами напряжения, которые рассчитаны на силу тока 5 А — 2,5—3 Ом.Если прибор показал бесконечно большое сопротивление, это значит, что цепь обмотки возбуждения разорвана. Обычно это происходит в месте пайки выводов обмотки к кольцам, при сгорании обмотки или при проворачивании каркаса с обмоткой возбуждения на полувтулках полюсных половин. Также об этом говорит и потемнение, а также и осыпание ее изоляции, что можно обнаружить визуально. Данная неисправность приводит к межвитковому замыканию в обмотке, что сопровождается уменьшением общего сопротивления.Определить частичное межвитковое замыкание, когда сопротивление обмоток изменяется мало, можно только специальным прибором, например ПДО-1. При этом происходит сравнение данной обмотки с заведомо исправной. Обмотку возбуждения бесконтактных генераторов (ГА2, 955.3701) проверяют омметром, выводные концы которого подсоединяются непосредственно к выводам обмотки. Затем проверьте отсутствие у нее замыкания на массу. Для этого следует один вывод омметра поднести к его клюву, другой — к любому кольцу ротора, а у бесконтактных генераторов — к втулке индуктора и любому выводу обмотки. Исправная обмотка должна показать разрыв на омметре, т.е. бесконечно большое сопротивление.

    Проверьте обмотки статора. Для этого подсоедините концы омметра к одному из выводов обмотки и пакету железа, т.е. проверьте замыкание на «массу». Прибор у исправной обмотки должен показать разрыв цепи. Проверьте межвитковое замыкание в обмотках статора. Дляэтого измерьте сопротивление отдельных фаз и сравните полученные результаты между собой, разница не должна быть больше 10%. Сопротивление фазы составляет доли Ом, поэтому для этого требуются высокоточные приборы измерения.Полную информацию о состоянии обмоток генератора может предоставить прибор ПДО-1, подключенный к выводам трех фаз. Когда фазы идентичны, то на экране наблюдается одна осциллографическая кривая, если нет (из-за межвиткового замыкания в фазе) то кривых две. Замер следует повторить, предварительно поменяв фазы местами. Тем самым можно найти и неодинаковость фаз, например, разное количество витков в них, которое может возникнуть после перемотки статора. Обрыв фазы проверяйте омметром, поочередно подсоединяя его к нулевой точке и к выводу каждой фазы.

    Системы и методы управления возбуждением генератора

    Системы возбуждения Системы возбуждения можно определить как систему, которая обеспечивает ток возбуждения обмотке ротора генератора. Хорошо спроектированные системы возбуждения обеспечивают надежность работы, стабильность и быстрый переходный отклик.

    Четыре распространенных метода возбуждения включают:

    • Шунтирующий или самовозбужденный
    • Система усиления возбуждения (EBS)
    • Генератор на постоянных магнитах (PMG)
    • Вспомогательная обмотка (AUX).
    У каждого метода есть свои преимущества. Все методы используют автоматический регулятор напряжения (АРН) для подачи постоянного тока на статор возбудителя. Выход переменного тока ротора возбудителя выпрямляется на вход постоянного тока ротора главного генератора. Более продвинутые системы используют дополнительный вход для AVR. В этой статье будут рассмотрены конструкция, функции и применение каждого метода, а также приведены схемы и иллюстрации для каждого из них.

    Автоматический регулятор напряжения (АРН) Конструкция АРН зависит от используемого возбуждения.Все они получают сигнал от статора генератора, когда он вращается. АРН с возможностью приема второго входа для уменьшения или устранения внутренних гармоник, вызванных сигналами обратной связи нагрузки, используются для приложений с нелинейной нагрузкой. Обычно используются два типа:
    • Силиконовый управляемый выпрямитель (SCR) — определяет уровень мощности статора и определяет его срабатывание для напряжения возбудителя. Может вызвать проблемы при использовании с нелинейными нагрузками.
    • Полевой транзистор (FET) — определяет уровень мощности от статора и преобразует его в сигнал с широтно-импульсной модуляцией (ШИМ) на возбудитель.Этот стиль АРН может использоваться для методов возбуждения. Нелинейные нагрузки не вызывают обратной связи, приводящей к сбоям возбуждения.

    Шунтирующий или самовозбуждающийся

    Шунтирующий метод отличается простой и рентабельной конструкцией, обеспечивающей входное питание АРН. Этот метод не требует дополнительных компонентов или проводки. При возникновении проблем устранение неисправностей упрощается за счет меньшего количества компонентов и проводки для проверки.


    Когда генератор вращается, статор подает входное напряжение на АРН.Кроме того, в АРН есть датчики, контролирующие выход статора.

    АРН питает возбудитель и выпрямляется до постоянного тока. Для вывода нагрузки на статор наводится ток.

    Самым большим недостатком этой системы является то, что на АРН влияет нагрузка, которую питает генератор. Когда нагрузка увеличивается, напряжение начинает уменьшаться, и АРН должен подавать больший ток на возбудитель, чтобы поддерживать спрос. Это доводит AVR до предела возможностей. Если АРН выходит за его пределы, поле возбуждения схлопывается.Выходное напряжение снижено до небольшой величины.

    Если произойдет короткое замыкание в цепи питания АРН, генератор не будет иметь источника возбуждения. Это вызывает потерю выходной мощности генератора.

    Генераторы с шунтирующим или самовозбуждением могут использоваться при линейных нагрузках (постоянная нагрузка). Приложения с нелинейными нагрузками (переменная нагрузка) не рекомендуются для генераторов с этим методом возбуждения. Гармоники, связанные с нелинейными нагрузками, могут вызывать пробои поля возбуждения.

    Система усиления возбуждения (EBS) Система EBS состоит из тех же основных компонентов, которые подают входы и получают выходы от AVR. Дополнительные компоненты в этой системе:
    • Модуль управления усилением возбуждения (EBC)
    • Генератор усиления возбуждения (EBG).
    EBG установлен на ведомом конце генератора. Внешний вид такой же, как у постоянного магнита. EBG подает питание на контроллер при вращении вала генератора.

    Модуль управления EBC подключается параллельно к АРН и возбудителю. EBC получает сигнал от AVR. При необходимости контроллер подает на возбудитель различные уровни тока возбуждения на уровнях, которые зависят от потребностей системы.

    Дополнительная мощность, подаваемая в систему возбуждения, поддерживает требования к нагрузке. Это позволяет генератору запускаться и восстанавливать напряжение возбуждения.

    Эта система возбуждения не рекомендуется для приложений с непрерывным питанием.Он предназначен для аварийного или резервного питания. При запуске генератора система EBS отключается до достижения рабочей скорости. EBG все еще генерирует мощность, но контроллер не направляет ее.

    Система обеспечивает динамический отклик, дешевле и отвечает требованиям по обеспечению 300% тока короткого замыкания. Нелинейные нагрузки, такие как запуск двигателя, улучшаются по сравнению с методом шунтирования или самовозбуждения.

    Генератор постоянных магнитов (PMG) Генераторы, оснащенные постоянными магнитами, являются одними из самых известных методов с раздельным возбуждением.На ведомом конце вала генератора установлен постоянный магнит.

    PMG подает изолированное питание на АРН, когда вал генератора вращается. AVR использует дополнительную мощность при питании нелинейных нагрузок, таких как: запуск двигателей.

    Чистая, изолированная, непрерывная трехфазная форма волны генерируется при вращении вала генератора.

    Некоторые из преимуществ использования генераторов, оснащенных методом возбуждения PMG:

    • Поле возбуждения не разрушается, позволяя устранить устойчивые короткие замыкания.
    • Изменение нагрузки не влияет на поле возбуждения.
    • Напряжение создается при первом запуске и не зависит от остаточного магнетизма в поле.
    • При запуске двигателя поле возбуждения не разрушается из-за отсутствия питания АРН.
    Система PMG увеличивает вес и размер части генератора. Это наиболее часто используемый метод возбуждения для приложений, в которых используются двигатели, которые запускаются и останавливаются, и другие нелинейные нагрузки.

    Вспомогательная обмотка (AUX) Метод вспомогательной обмотки используется уже много лет. Области применения варьируются от морских до промышленных и более практичны в более крупных установках.

    Этот метод имеет отдельное поле возбуждения, однако он не использует компонент, прикрепленный к ведомому концу вала генератора. Эти методы используют вращение вала и постоянный магнит или генератор для обеспечения дополнительного возбуждения.

    В статор установлена ​​дополнительная однофазная обмотка.Когда вал генератора вращается, основные обмотки статора подают напряжение на АРН, как и во всех вышеупомянутых методах.

    Дополнительные однофазные обмотки подают напряжение на АРН. Это создает дополнительное напряжение возбуждения, необходимое при питании нелинейных нагрузок.

    Для приложений с линейной нагрузкой можно использовать шунтирующие методы возбуждения, EBS, PMG и AUX. Шунтирующее возбуждение — наиболее экономичный метод.

    Для приложений с нелинейной нагрузкой можно использовать методы возбуждения EBS, PMG и AUX.Возбуждение PMG является наиболее распространенным и широко используемым.


    >> Вернуться к статьям и информации <<

    Для чего нужен возбудитель в генераторе | by Starlight Generator

    Основное назначение возбудителя в генераторе (генератор переменного тока ) — создание стационарного вращающегося магнитного поля, которое используется для индукции ЭДС в катушке якоря.

    Итак, на возбудитель подается постоянный ток, а возбудитель представляет собой не что иное, как катушку, а возбудитель создает магнитное поле.

    Если на возбудитель подается механическое питание, возникает вращающееся магнитное поле, которое разрезает неподвижные катушки якоря и индуцирует ЭДС в неподвижной катушке якоря.

    Возбудитель — это небольшой генератор, установленный на том же валу, что и основной генератор, который вырабатывает мощность постоянного тока для обмотки возбуждения основного генератора.

    Доступно множество разнообразных возбудителей, но наиболее популярным сегодня является бесщеточный возбудитель.

    В бесщеточном возбудителе мощность возбуждения генерируется небольшим генератором переменного тока, якорь которого приводится в действие валом главного генератора.Выводы якоря подключены к выпрямителю, который также установлен на валу и вращается. Постоянный ток с выхода выпрямителя подается на вращающуюся обмотку возбуждения основного генератора. Поскольку в этой системе не используются контактные кольца, коммутатор или щетки, она называется бесщеточной системой возбуждения.

    Генератор должен иметь относительное движение между магнитным полем и катушкой с проволокой. Магнитное поле создается либо постоянным магнитом, либо электромагнитом (ток, протекающий через катушку с проволокой, намотанную вокруг подходящего магнитного сердечника).

    В больших генераторах они используют небольшой генератор для подачи электрического тока в эту катушку для создания магнитного поля в основном генераторе, а не в постоянном магните. Этот небольшой генератор называется генератором возбудителя. В старой электростанции будет пара небольших генераторов, соединенных тандемом, чтобы производить ток, достаточный для возбуждения основного магнитного поля этих генераторов.

    Ток возбуждения (и напряжение, которое его возбуждает) контролируется регулятором напряжения генератора, который подключен к выходным клеммам через измерительные трансформаторы и измерители напряжения, контролирующие выходное напряжение.Когда выходное напряжение сдвигается, вход измерителя изменяет сигнал регулятора напряжения. Регулятор напряжения (автоматический, электронный или ручной) увеличивает (или снижает) напряжение на обмотках возбуждения, установленных в роторе, либо через набор контактных колец, либо с помощью бесщеточного возбудителя (который использует еще больше обмоток возбуждения и якоря, а также вращающийся трехфазный выпрямитель, но я не буду вдаваться в подробности). Повышенное напряжение на обмотках возбуждения увеличивает ток в обмотках возбуждения, что усиливает магнитное поле, увеличивая выходное напряжение генератора, которое снова тщательно контролируется измерителями напряжения через измерительные трансформаторы.

    Электрогенератор | инструмент | Британника

    Полная статья

    Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

    Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

    Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

    Генераторы синхронные

    Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор разработан для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Ротор

    Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

    Элементарный синхронный генератор.

    Британская энциклопедия, Inc.

    Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

    Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

    Структура ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения скорости ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

    Генератор вспышек A | Сбытовая компания Davidson

    Купить регуляторы напряжения

    Как «прошить» генератор при потере мощности из-за потери возбуждения.

    Остаточный магнетизм в поле возбудителя генератора позволяет генератору повышать напряжение во время запуска.Этот магнетизм иногда теряется из-за срока хранения или неправильной эксплуатации, среди других причин. Восстановление этого остаточного магнетизма возможно, что иногда называют «миганием поля возбудителя».

    Чтобы восстановить небольшой остаточный магнетизм, необходимый для начала нарастания напряжения, подключите 12-вольтовую батарею с устройством ограничения тока к полю возбудителя, когда генератор находится в состоянии покоя, как показано ниже:

    1. Отсоедините провода возбуждения F + и F- от регулятора напряжения.ВНИМАНИЕ: Если не отсоединить провода возбуждения от регулятора во время процедуры прошивки, регулятор может быть поврежден.
    2. Измерьте сопротивление поля возбудителя от F + до F-. Вы должны иметь возможность измерить сопротивление при измерении непрерывной обмотки. Бесконечное показание сопротивления указывало бы на разрыв в поле возбудителя. Также убедитесь, что нет заземления.
    3. Подключите F + к положительному полюсу аккумулятора.
    4. Удерживая F- за изолированную часть свинцового провода, прикоснитесь F- к отрицательному полюсу батареи примерно на 3-5 секунд, затем извлеките. Обратите внимание на дугу при отсоединении F-провода. Дуга подтверждает полное замыкание.
    5. Подключите F + и F- к регулятору. Повторите процедуру, если генератор не выдает напряжение.

    Это общая процедура, и для некоторых концов генератора может потребоваться более высокое напряжение постоянного тока или ограничительный резистор, включенный последовательно с выводами батареи.Специальные руководства по обслуживанию генераторов для продуктов Marathon Electric можно получить в Marathon Electric (715) 675-3311 или связавшись с сбытовой компанией Davidson

    .

    Базовая процедура поиска неисправностей для генераторов переменного тока серии ECP — Welland Power

    ** Важно **

    В этой статье объясняется процедура тестирования генератора переменного тока Mecc Alte ECP. НЕ ПОДХОДИТ для выполнения этой работы неквалифицированным лицам. Если у вас нет технической квалификации для этого, вам не следует пытаться выполнить эти процедуры, поскольку они могут привести к серьезным травмам или смерти.

    ГЛАВНАЯ ОБМОТКА СТАТОРА.

    Отсоедините выходные кабели клиента и отсоедините все соединения с заземлением.

    Отсоедините соединения АРН.

    Отсоедините блок подавления радиопомех, если он установлен.

    Обмотка главного статора мегомметра заземлена. Сопротивление изоляции должно быть выше 1 МВт при 500 Вольт.

    Проверить целостность обмотки вспомогательного статора двумя красными выводами, подключенными к АРН. Если вспомогательная цепь разомкнута, машиной можно управлять, соединив клеммы плюс и ноль на АРН.Однако это устранит устройство защиты от перегрузки. В случае сомнений проконсультируйтесь с Mecc Alte UK.

    См. Руководство по сопротивлению (номинальное значение 1–1,5 Вт).

    При необходимости запустите машину с отключенными проводами возбуждения или удаленным предохранителем и проверьте баланс напряжений между фазами или между фазами и нейтралью. Любой серьезный дисбаланс будет указывать на повреждение статора. Остаточное напряжение должно быть больше 50 вольт. Более низкие значения напряжения могут указывать на обрыв цепи статора возбудителя или неисправность ротора, см. Параграфы 2/4.

    Разделенная нейтральная точка и проверка изоляции между фазами мегомметром.

    ВОЗБУЖДЕНИЕ ПОЛЕ.

    Проверить целостность цепи номинальное сопротивление 13-20Вт. (Желтые и синие провода)

    Проверить сопротивление изоляции относительно земли.

    АРН.

    Проверить предохранитель АРН. При необходимости отдельно возбудите машину, отсоедините желтый и синий провода от АРН. С батареей 12 В подключите положительный полюс к желтому выводу поля возбудителя, а отрицательный — к синему выводу поля возбудителя.Не забывайте бегать таким образом только в течение короткого периода времени. Подключите последовательно резистор 33 Вт, чтобы ограничить ток возбуждения, если требуется, чтобы он работал в течение более длительного периода.

    Если машина работает нормально, возбуждается отдельно. AVR неисправен.

    Убедитесь, что частота вращения двигателя находится в допустимых пределах, например, от 1410 до 1560 об / мин для правильной работы

    АРМАТУРА РОТОРА И ВОЗБУЖДЕНИЯ.

    Отсоедините провода главного ротора от вращающегося выпрямителя в сборе (отмечены красным и синим).

    Измерить сопротивление ротора (см. Руководство) обмотка ротора мегомметра относительно земли, как указано выше.

    Замкните вместе все пластины выпрямителя или отключите трехфазный вход от возбудителя. Обмотка возбудителя меггера на землю.

    Падение испытательного напряжения на каждом диоде должно составлять примерно 0,5 В. Или измеритель сопротивления должен показывать непрерывность в одном направлении и очень высокое сопротивление в другом.

    Проверьте VDR (компонент красной кнопки на выводах главного ротора), он должен показать очень высокое сопротивление при нормальной работе.

    Ответы на семь общих вопросов по эксплуатации генератора и двигателя

    Вращающееся оборудование настолько распространено, но настолько неправильно понимается, что даже опытные электрики и инженеры часто задаются вопросами об их работе. Эта статья ответит на семь наиболее часто задаваемых вопросов. Объяснения краткие и практичные из-за нехватки места; однако они позволят вам лучше понять это оборудование.

    Вопрос №1: Якорь, поле, ротор, статор: что есть что?

    По определению, статор включает в себя все невращающиеся электрические части генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.

    Поле машины — это часть, которая генерирует прямое магнитное поле. Ток в поле не чередуется. Обмотка якоря — это то, что генерирует или имеет приложенное к ней переменное напряжение.

    Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.

    Генераторы переменного тока . Поле синхронного генератора — это обмотка, на которую подается постоянный ток возбуждения. Якорь — это обмотка, к которой подключена нагрузка. В небольших генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.

    Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.

    Машины постоянного тока . В машинах постоянного тока, как в двигателях, так и в генераторах, якорь — это ротор, а поле — статор. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что якорь является ротором всех двигателей и генераторов.

    Вопрос № 2: Я ослабил натяжение пружин на моих щетках, но они все еще изнашиваются слишком быстро. Почему?

    Износ щеток возникает по двум основным причинам: механическое трение и электрический износ.Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызывается искрением и искрением от щетки при ее перемещении по коммутатору. Механическое трение увеличивается с давлением щетки; электрический износ уменьшается с давлением щетки.

    Для любой конкретной установки щетки существует оптимальное давление щетки. Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимальной величины, общий износ снова увеличивается из-за увеличения механического трения.

    Всегда проверяйте, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, вам следует изучить тип и размер используемой щетки. Помните, что плотность тока (в амперах на квадратный дюйм кисти) должна соответствовать области применения. Надлежащая плотность тока необходима для образования смазывающей проводящей пленки на коммутаторе или контактном кольце. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щетки.

    Кроме того, среда с очень низкой влажностью не обеспечивает достаточно влаги для образования смазочной пленки. Если чрезмерный износ щеток является проблемой в такой среде, возможно, вам придется увлажнить область, в которой работает машина.

    Вопрос № 3: Что такое коэффициент обслуживания?

    Сервисный коэффициент — это нагрузка, которая может быть приложена к двигателю без превышения допустимых значений. Например, если у двигателя мощностью 10 л.с. коэффициент обслуживания 1,25, он успешно выдаст 12.5 л.с. (10 x 1,25) без превышения указанного превышения температуры. Обратите внимание, что при приведении в движение таким образом выше номинальной нагрузки на двигатель должны подаваться номинальное напряжение и частота.

    Однако имейте в виду, что двигатель мощностью 10 л.с. с коэффициентом обслуживания 1,25 не является двигателем мощностью 12,5 л.с. Если двигатель мощностью 10 л.с. будет непрерывно работать с мощностью 12,5 л.с., срок его службы изоляции может сократиться на две трети от нормального. Если вам нужен мотор мощностью 12,5 л.с., купите его; коэффициент обслуживания следует использовать только в условиях кратковременной перегрузки.

    Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?

    Вращающееся магнитное поле — это поле, северный и южный полюсы которого движутся внутри статора, как если бы стержневой магнит или магниты вращались внутри машины.

    Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это 2-полюсный статор с тремя фазами, разнесенными с интервалами 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне.Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.

    В позиции 1 B-фаза создает сильный северный полюс в верхнем левом углу и сильный южный полюс в нижнем правом углу. Фаза А создает более слабый северный полюс в нижнем левом углу и более слабый южный полюс внизу. C-фаза создает общее магнитное поле, северный полюс которого находится в верхнем левом углу, а его южный полюс — в нижнем правом углу.

    В позиции 2, фаза А создает сильный северный полюс в нижнем левом углу и сильный южный полюс в верхнем правом углу; таким образом, сильные полюса повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов].) Слабые полюса также повернуты на 60 [градусов] против часовой стрелки. Фактически это означает, что общее магнитное поле повернулось на 60 [градусов] относительно положения 1.

    При более подробном анализе мы можем показать, что напряженность магнитного поля плавно вращается из положения 1 в положение 2, поскольку токи в каждой из фаз изменяются более чем на 60 электрических градусов.Анализ положений 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.

    Скорость вращения магнитного поля называется синхронной скоростью и описывается следующим уравнением:

    S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц) P = количество магнитных полюсов во вращающемся магнитном поле

    Если бы в этот статор был помещен постоянный магнит с валом, который позволял ему вращаться, его бы толкали (или тянули) с синхронной скоростью.Именно так работает синхронный двигатель, за исключением того, что магнитное поле ротора (поле) создается электромагнетизмом, а не постоянным магнитом.

    Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и в обмотках ротора индуцируется ток, когда вращающееся магнитное поле прорезает их. Этот ток создает поле, которое противостоит вращающемуся полю. В результате ротор толкается (или тянется) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора для создания крутящего момента.Разница между синхронной скоростью и фактической скоростью ротора называется проскальзыванием в процентах; он выражается в процентах.

    Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После того, как двигатель наберет нужную скорость, пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.

    Вопрос № 5: Как работает индукционный генератор?

    Асинхронный генератор по конструкции идентичен асинхронному двигателю.Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор индукционного генератора вращается первичным двигателем, который вращается быстрее, чем синхронная скорость. Когда обмотки ротора прорезают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность на нагрузку.

    Таким образом, индукционный генератор получает возбуждение от энергосистемы, к которой он подключен.Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерацию. После того, как индукционный генератор заработает, для возбуждения можно использовать конденсаторы.

    Вопрос № 6: Почему подшипники генератора и двигателя изолированы?

    Магнитное поле внутри двигателя или генератора не полностью однородно. Таким образом, когда ротор вращается, на валу в продольном направлении (непосредственно вдоль вала) создается напряжение. Это напряжение может вызвать прохождение микротоков через смазочную пленку на подшипниках.Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход подшипника из строя. Чем больше машина, тем хуже становится проблема.

    Чтобы избежать этой проблемы, сторона ротора корпуса подшипника часто изолирована от стороны статора. В большинстве случаев, по крайней мере, один подшипник будет изолирован, обычно это самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.

    Вопрос № 7: Как генераторы переменного тока управляют переменными, напряжением и мощностью?

    Хотя элементы управления генератора действительно взаимодействуют, верны следующие общие положения.

    * Выходная мощность генератора регулируется его первичным двигателем.

    * Напряжение и / или переменная мощность генератора регулируются уровнем тока возбудителя.

    Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Дополнительный ток увеличивает силу магнитного поля якоря и замедляет работу генератора. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, потребляемую первичным двигателем.Таким образом, дополнительная мощность, необходимая для генератора, регулируется входом первичного двигателя.

    В нашем примере чистый магнитный поток в воздушном зазоре будет уменьшаться, поскольку увеличение якоря противодействует потоку поля. Если поток поля не увеличивается, чтобы компенсировать это изменение, выходное напряжение генератора будет уменьшаться. Таким образом, ток возбуждения используется для управления выходным напряжением.

    Давайте рассмотрим другой пример в качестве дальнейшего пояснения. Допустим, к нашему генератору добавлена ​​дополнительная нагрузка var.В этом случае выходной ток генератора снова увеличится. Однако, поскольку новая нагрузка не является «реальной» мощностью, первичный двигатель необходимо увеличить ровно настолько, чтобы преодолеть дополнительное падение ИК-излучения, создаваемое дополнительным током.

    В качестве последнего примера предположим, что у нас есть два или более генератора, работающих параллельно и питающих нагрузку. Генератор 1 (G1) несет всю нагрузку (реальную и реактивную), а генератор 2 (G2) работает с нулевой мощностью и нулевой мощностью. Если оператор G2 открывает дроссель первичного двигателя, G2 начинает подавать ватт в систему.Поскольку подключенная нагрузка не изменилась, оба генератора будут ускоряться, если G1 не дросселируется.

    Поскольку G2 принимает на себя дополнительную долю нагрузки, ему требуется увеличенный магнитный поток. Если оператор G2 не увеличивает поле G2, G2 будет получать дополнительное возбуждение от G1, требуя от G1 увеличения уровня возбуждения. Если ни G1, ни G2 не увеличивают уровень возбуждения, общее напряжение системы упадет.

    Cadick, P.E. является президентом Cadick Professional Services, Гарланд, Техас., международная ассоциация электрических испытаний. (NETA) член.

    Что такое система возбуждения?


    ЧТО ТАКОЕ СИСТЕМА ВОЗБУЖДЕНИЯ?

    ВВЕДЕНИЕ

    1. ОСНОВНАЯ ФУНКЦИЯ

    КОНЦЕПЦИИ СИСТЕМЫ ВОЗБУЖДЕНИЯ

    1. УПРАВЛЕНИЕ ЗАМКНУТОМ КОНТУРОМ

    Параметры настройки, связанные с контуром управления, можно легко изменить прямо из HMI. Три (3) набора параметров настройки позволяют настроить оптимальный отклик для случая, когда генератор не подключен к сети, и для режима подключения к сети в зависимости от того, активен стабилизатор энергосистемы (PSS) или нет:

    Пример схемы полного контура управления показан ниже:

    2.ОГРАНИЧИТЕЛИ И ЗАЩИТЫ

    Современные системы возбуждения отвечают за защиту синхронной машины, самой системы возбуждения и других устройств. Ограничители (OEL, UEL, VHz, SCL) и защиты (24, 27, 32, 37F, 40 / 32Q, 50/51, 59, 59F, 76F, 81O / U) — это программные функции, предназначенные для ограничения работы машины в нежелательных ситуациях. условия и реализованы как надстройки к контуру управления AVR. Ограничители будут гарантировать, что машина будет работать в пределах возможностей машины в любое время, в то время как функции защиты будут защищать машину, инициируя отключение.Функции защиты от возбуждения обычно дублируются в отдельном реле защиты блока. Можно отключить защитные функции возбуждения и полагаться только на защитное реле агрегата, или могут использоваться обе защитные функции, и в этом случае необходимо согласование между двумя защитными функциями.

    Наиболее распространенные ограничители и их функции приведены ниже:

    2.1. ОГРАНИЧИТЕЛЬ ПРЕВЫШЕНИЯ ВОЗБУЖДЕНИЯ (OEL)

    Для систем возбуждения производства Reivax ограничители могут быть легко сконфигурированы с HMI.Упрощенная функция передачи и экран конфигурации для OEL, показанный ниже, соответствуют IEEE 421.5 OEL2C. OEL настроен как характеристическая кривая с обратнозависимой выдержкой времени согласно IEEE / ANSI C50.13.

    3. КООРДИНАЦИЯ ЗАЩИТЫ

    Координация между ограничителями, ограничениями оборудования и внешними реле защиты является важным аспектом правильной интеграции системы возбуждения. Обычно координация выполняется как часть исследования защиты или исследования валидации модели, при этом настройки проверяются при вводе оборудования в эксплуатацию.

    Во время ввода в эксплуатацию OEL рассчитывается таким образом, чтобы он перекрывал тепловой предел ротора IEEE / ANSI C50.13.

    4. КРИВАЯ ВОЗМОЖНОСТИ

    Кривая возможностей синхронной машины — это графическое представление рабочих ограничений машины. Кривая мощности представляет собой график зависимости активной мощности машины (МВт) от реактивной мощности (Мвар). Обычно представлены следующие физические рабочие пределы:

    • Ограничение температуры ротора
    • Ограничение турбины
    • Предел практической устойчивости
    • Предел скольжения полюса

    Кроме того, обычно представлены следующие ограничители:

    • Ограничитель перевозбуждения (OEL)
    • Ограничитель недостаточного возбуждения (UEL)

    Системы возбуждения, производимые Reivax, включают кривую динамических характеристик, которую можно использовать для мониторинга рабочих условий в режиме реального времени.Пример такой кривой производительности показан ниже.

    Кривая производительности показывает безопасную рабочую зону машины, обозначенную зеленым цветом, ограниченную ограничителями и физическими ограничениями машины. Он также показывает рабочую точку машины с точки зрения активной и реактивной мощности (обе величины показаны в pu).

    5. СТАБИЛИЗАТОР СИЛОВОЙ СИСТЕМЫ (PSS)

    Стабилизатор энергосистемы (PSS) — это дополнительный компонент к контуру управления системы возбуждения, который улучшает стабильность системы за счет компенсации низкочастотных (0-5 Гц) колебаний в энергосистеме.Это приводит к более стабильной выходной мощности генератора, что может привести к значительной экономии за счет снижения потерь мощности. Стабилизаторы энергосистемы обеспечивают превосходную рентабельность и, как было установлено, приносят миллионы долларов годовой прибыли крупным коммунальным предприятиям.

    Выход PSS добавлен в контур управления АРН. На изображении ниже показан суммирующий переход PSS, как он появляется на передаточной функции системы возбуждения Reivax.

    На графике ниже показан ответ 32.Генератор общего назначения мощностью 5 МВт с PSS и без него. Возмущение вносится на отметках 2 и 12 секунд. Заметно улучшена переходная и установившаяся стабильность. Без PSS колебания продолжаются примерно 10 секунд после возмущения, тогда как они почти сразу же затухают при включении PSS.

    Reivax PSS совместим с моделями IEEE PSS2A и PSS2B .

    ВИДЫ СИСТЕМ ВОЗБУЖДЕНИЯ

    За прошедшие годы в электроэнергетике появились различные типы систем возбуждения.Они подразделяются на две основные категории в зависимости от источника питания, вращающихся возбудителей и статических возбудителей.

    1. ВРАЩАЮЩИЕСЯ СИСТЕМЫ ВОЗБУЖДЕНИЯ

    Во вращающихся системах возбуждения используются два возбудителя: основной возбудитель и пилотный возбудитель. Главный возбудитель питает пилотный возбудитель, а пилотный возбудитель, в свою очередь, напрямую питает синхронную машину. Есть две подкатегории вращающихся систем возбуждения: переменного и постоянного тока.

    1.1. БЕСЩЕТОЧНЫЙ ВОЗБУЖДИТЕЛЬ ПЕРЕМЕННОГО ТОКА

    В системе возбуждения переменного тока основной выпрямитель питания питает промежуточный возбудитель переменного тока. Этот возбудитель переменного тока содержит внутренний выпрямитель мощности, который затем питает обмотку возбуждения синхронной машины.

    Ниже представлена ​​однолинейная схема вращающегося возбудителя переменного тока.

    1.2. ВОЗБУЖДЕНИЕ ПОСТОЯННОГО ТОКА

    В системе возбуждения постоянного тока силовой выпрямитель питает промежуточный возбудитель постоянного тока, который, в свою очередь, питает обмотку возбуждения синхронной машины.

    Ниже показана однолинейная схема вращающегося возбудителя постоянного тока.

    2. СИСТЕМЫ СТАТИЧЕСКОГО ВОЗБУЖДЕНИЯ — TERMINAL-FED

    В системах статического возбуждения силовой выпрямитель напрямую питает обмотку возбуждения синхронной машины. Пилотного возбудителя нет.

    Система статического возбуждения — это с клеммным питанием. (также называемая системой с питанием от шины), когда питание поступает от самой машины через трансформатор силового потенциала (PPT).Первичная обмотка PPT подключена к статору машины, а вторичная подает питание на выпрямитель.

    Статические системы возбуждения по своей природе не являются самовозбуждающими, поэтому им требуется внешний источник питания для запуска процесса возбуждения и создания достаточного магнитного потока. Этот процесс называется перепрошивкой поля .

    2.1. ПРЕИМУЩЕСТВА СИСТЕМ СТАТИЧЕСКОГО ВОЗБУЖДЕНИЯ

    Статические системы возбуждения обладают рядом преимуществ, которые делают их привлекательным вариантом для управления синхронными машинами:

    • Простая, надежная и экономичная конструкция
    • Минимальные требования к техническому обслуживанию
    • Характеристики высокой производительности и быстрого отклика
    2.2. ОСНОВНЫЕ КОМПОНЕНТЫ

    Основные компоненты статической системы возбуждения перечислены ниже:

    2.2.1. АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ (AVR)

    Автоматический регулятор напряжения (АРН), обычно известный как регулятор напряжения, выполняет все функции управления системой, включая следующие:

    • Выключатели рабочие
    • Отправка пусковых импульсов на мосты
    • Реагирование на команды оператора или нарушения в сети
    • Контроль входов / выходов системы и принятие соответствующих мер в ответ на них
    • Поддержание системы возбуждения в пределах безопасности и устойчивости за счет использования ограничителей и защит
    • Отправка уведомлений в систему SCADA предприятия при возникновении аномальных условий
    • Отключение системы возбуждения при возникновении критического отказа или опасного состояния

    Основными элементами АРН являются:

    • Контур управления
    • Ограничители
    • Стабилизатор системы питания

    Решения по управлению с резервированием являются обычным явлением.В конфигурации с резервированием имеется два регулятора напряжения, один из которых выполняет функции управления, а другой находится в режиме горячего резервирования .

    2.2.2. ВЫПРЯМИТЕЛЬ ПИТАНИЯ

    В системах статического возбуждения обычно используется силовой выпрямитель, который преобразует переменный ток в постоянный и подает управляемый ток возбуждения в синхронную машину. В силовых выпрямителях обычно используется тиристорная технология или технология IGBT.

    Выработка тепла является проблемой для выпрямителя мощности. Для мостового охлаждения обычно предусмотрены резервные наборы вентиляторов.

    Распространены конфигурации с резервным мостом. В случае наличия нескольких мостов система возбуждения выполнит выравнивание тока , чтобы сбалансировать выходы моста.

    2.2.3. ПРЕОБРАЗОВАТЕЛЬ ИНТЕРФЕЙСА

    Интерфейс преобразователя состоит из всех промежуточных устройств между контроллером и выпрямителем мощности.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *