Система питания дизеля: Sorry! This site is experiencing technical difficulties.

Содержание

Как устроена система питания дизельного двигателя

Содержание

  1. Дизельный двигатель: устройство системы питания
  2. Особенности дизельного топлива
  3. Схема устройства системы питания дизельного ДВС
  4. Система питания турбодизеля
  5. Система питания дизельного двигателя
  6. Особенности дизельного ДВС
  7. Краткий рабочий цикл топливной системы дизельного агрегата:
  8. Классификация дизельного топлива по температуре застывания:
  9. Работа системы питания дизельного ДВС
  10. Функции системы питания дизеля следующие:
  11. Устройство системы питания дизеля
  12. Из чего состоит топливная дизельная система:
  13. Система питания дизельного двигателя состоит из двух основных частей:
  14. Система питания дизельного ДВС оснащается двумя насосами:
  15. Нераздельная система подачи топлива
  16. Раздельная система подачи топлива
  17. Классификация дизельных форсунок по конструкции:
  18. Схема питания турбодизеля
  19. Классификация турбонаддува по давлению:
  20. Видео
  21. Система питания дизельного двигателя- Устройство и неисправности
  22. Функции системы питания дизельного ДВС
  23. Особенности дизтоплива и двигателей на нем
  24. Как устроена система питания
  25. Питание турбодизеля
  26. Неисправности топливной системы
  27. Затрудненный пуск двигателя.
  28. Двигатель потерял мощность.
  29. Слишком большой расход солярки
  30. Жирный черный выхлоп из трубы
  31. Выхлоп белого или серого цвета, очень дымный.
  32. Мотор по ощущениям работает слишком «жестко»
  33. Двигатель шумит
  34. Неровная работа на холостую и при езде
  35. Двигатель внезапно глохнет
  36. Двигатель невозможно заглушить
  37. Приходится часто менять свечи
  38. Завоздушивание системы
  39. Устройство топливной системы дизельного двигателя
  40. О конструктивных особенностях дизелей, в сравнении с бензомоторами
  41. Принцип и общая схема работы топливной системы
  42. Основная функция топливной системы, описание её работы
  43. Главные составные части топливной системы дизельного двигателя
  44. Топливоподкачивающий насос
  45. Топливный насос высокого давления
  46. Форсунки
  47. Несколько слов о системе «КоммонРэйл»
  48. Заключение
  49. Видео

Дизельный двигатель: устройство системы питания

Система питания современного дизельного ДВС представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:

Особенности дизельного топлива

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью. Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо.

Схема устройства системы питания дизельного ДВС

Система питания дизельного двигателя состоит из следующих базовых элементов:

Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т. д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:

Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.

Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.

В системе питания дизеля присутствуют сразу два насоса:

Топливоподкачивающий насос обеспечивает подачу топлива из топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.

ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.

Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.

Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров (ГБЦ) дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными.

Инжекторные дизельные форсунки бывают двух видов:

Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.

Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки и в момент впрыска дизельного топлива.

Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.

Система питания турбодизеля

Система турбонаддува активно применяется для эффективного повышения мощности как бензинового, так и дизельного двигателя без увеличения рабочего объема камеры сгорания в конструкции силового агрегата. Топливоподводящая система в турбированных ДВС остается практически без изменений, зато схема и способ подачи воздуха в турбомоторах существенно меняется по сравнению с атмосферными агрегатами.

Наддув в дизельном двигателе реализован путем использования турбокомпрессора. Турбина в дизельном моторе использует энергию отработавших газов. Воздух в турбокомпрессоре сжимается, далее охлаждается и нагнетается в камеру сгорания дизельного ДВС под давлением на отметке от 0,15 до 0,2 МПа.

Величина давления позволяет разделить системы турбонаддува на:

Использование турбокомпрессора для ДВС улучшает наполнение цилиндров двигателя воздухом. Автоматически происходит повышение эффективности сгорания порции впрыскиваемого топлива. Турбонаддув позволяет увеличить мощность силового агрегата на 30% и более.

Негативными последствиями в результате использования турбонаддува, особенно с высокими показателями давления нагнетаемого воздуха, является увеличение общей температуры в камере сгорания в результате интенсивного горения топлива, а также значительно возрастающие механические нагрузки на детали кривошипно-шатунного механизма (КШМ) и газораспределительного механизма (ГРМ) по сравнению с атмосферными силовыми установками.

Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

Виды дизельных форсунок в разных системах подачи топлива под высоким давлением. Принцип работы, способы управления форсунками, конструктивные особенности.

Распространенные неисправности дизельного двигателя и диагностика агрегатов данного типа. Проверка топливной системы дизельного мотора, полезные советы.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Назначение топливного насоса высокого давления в системе топливного впрыска дизельного двигателя. Виды ТНВД, конструктивные особенности насосов.

Источник

Система питания дизельного двигателя

Система питания современного двигателя внутреннего сгорания — это совокупность электронных и механических узлов, функция которых заключается не только в стабильной подаче топлива к форсункам, но и делать это под давлением. Если топливо нагнетается под определенным давлением, то оно распыляется и не капает в одну точку, поэтому называется дозированный многоточечный впрыск в рабочие камеры сгорания цилиндров.

Особенности дизельного ДВС

По составу дизельное топливо сильно отличается от всех марок бензина. В диз топливе содержится керосин и газойлевые соляровые фракции. При получении солярки, из нефти сначала отделяют бензин.

Качество бензина зависит от октанового числа, а солярка зависит от значения цетаного числа. На автозаправочных станция сегодня продают дизельное топливо в ценатом от 45 до 50. Для новых дизельных двигателей требуется солярка с высоким цетаном.

Краткий рабочий цикл топливной системы дизельного агрегата:

Кто не знает, основное отличие дизельного двигателя от бензинового не только в топливе, но в система поджига топлива. Если бензин поджигается за счет образования искры свечи, то солярка поджигается от сильного сжатия и высокой температуры.

Классификация дизельного топлива по температуре застывания:

Так же, эти сорта солярки немного отличаются по цвету. Опытные шофера определяют по цвету. Вязкость и плотность дизель топлива намного больше, чем у бензина. Также, солярка обладает смазывающим эффектом, поэтому оно не является обезжиривающей жидкостью, как бензин.

Работа системы питания дизельного ДВС

Функции системы питания дизеля следующие:

Устройство системы питания дизеля

Из чего состоит топливная дизельная система:

Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.

Система питания дизельного двигателя состоит из двух основных частей:

Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.

Система питания дизельного ДВС оснащается двумя насосами:

Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.

Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.

Нераздельная система подачи топлива

Система питания дизельного двигателя нераздельного типа, то есть ТНВД и форсунки расположены в одном корпусе, устанавливается в двухтактные дизельные моторы. Устройство, в котором есть и насос ТНВД и форсунка называется насос-форсункой.

Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.

Раздельная система подачи топлива

В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.

Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.

Классификация дизельных форсунок по конструкции:

В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.

Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.

Схема питания турбодизеля

Чтобы увеличить мощность дизельного аппарата, устанавливают турбину. Конструкция топливной системы дизельного двигателя не изменяется, если мотор с турбонаддувом. Меняется схема и вариант подачи топлива в мотор от схемы атмосферного двигателя.

Турбированный двигатель получается путем установки турбокомпрессора. В дизельном моторе турбина работает на отработавших газах. Сначала турбокомпрессор сжимает воздух, охлаждает его и подает в рабочую камеру сгорания цилиндров дизельного силового агрегата. Воздух нагнетается под давлением 0,15-0,2 МПа (Мега Паскаль).

Классификация турбонаддува по давлению:

Как в бензиновых, так и дизельных двигатель турбина служит для дополнительной подачи воздуха в камеры сгорания. Чем больше воздуха, тем больше и качественнее догорает топливо. Мощность двигателя с турбиной увеличивается на 30%.

Минус турбированных моторов в том, что такие агрегаты работают в более трудных условиях: повышается температура; детали, особенно цилиндро-поршневой группы (ЦПГ), кривошипно-шатунного механизма (КШМ), газораспределительного механизма (ГРМ) испытывают больше давления и, саму турбину обычно надо менять через 100 000 км пробега.

Видео

В этом видео подробно рассказывается о системе подачи топлива в дизель мотор.

Топливная система дизельных двигателей.

Система питания двигателя КАМАЗ.

Источник

Система питания дизельного двигателя- Устройство и неисправности

Дизельные двигатели имеют большую историю: еще в 1897 Рудольф Дизель, именем которого были названы эти силовые агрегаты, создал первую рабочую модель. За годы развития дизельные моторы претерпели множество изменений, в том числе изменилась и система питания дизельного двигателя: эти модификации сделали «дизели» пригодными не только для тяжелой техники и грузовиков, как предназначалось раньше, но и для массовых легковых автомобилей. Широкое распространение автомобилей с дизельными ДВС обусловлено их экономичностью, высоким КПД и относительной дешевизной солярки.

Функции системы питания дизельного ДВС

Назначение системы питания дизельного двигателя – подать горючее к форсункам и далее в цилиндры под высоким давлением. За это отвечает комплекс устройств, обеспечивающих непрерывность, точность и согласованность процесса. Особенности систем питания дизелей:

Особенности дизтоплива и двигателей на нем

Как и бензиновый двигатель, дизель работает на принципе сгорания жидкого топлива в цилиндрах. Но солярка обладает некоторыми специфическими особенностями, из которых происходят и отличия в конструкции дизельных и бензиновых моторов.

С точки зрения состава дизтопливо – смесь газойлевых и керосиновых фракций, получаемая после того, как из сырой нефти отгонят бензин.

Основное свойство дизтоплива – показатель воспламеняемости, который называют цетановым числом (аналогично октановому числу для бензина). Стандартные типы дизтоплив, имеющиеся в продаже на АЗС, имеют это число в пределах от 45 до 50.

Важно: для современных дизельных агрегатов чем выше цетановое число солярки, тем лучше.

Дизтопливо проходит предварительную очистку уже на заводе, а устранением посторонних фракций «на месте» занимается топливный фильтр. Очищенное горючее поступает по магистрали к ТНВД (входящий в состав дизельного мотора топливный насос высокого давления, назначение которого – создать давление на выходе), подающему его в форсунки, которые распыляют топливо в камеру сгорания. Там частицы дизтоплива смешиваются с разогретым от сжатия воздухом, и происходит воспламенение.

Важно: этот принцип отличается от бензиновых двигателей, где топливо воспламеняется от свечей зажигания: системы питания дизельных двигателей предназначена для работы от самовоспламенения топлива под давлением. Но и в дизелях есть свечи: там используются специальные элементы накаливания, обеспечивающие пуск двигателя «на холодную» и поддерживающие нужную температуру – они предварительно подогревают поступающий в цилиндры воздух.

Среди прочих важных особенностей дизтоплива – его повышенная плотность и хорошая смазывающая способность. Другие существенные характеристики:

По последнему параметру принято делить солярку на:

Как устроена система питания

Рассмотрим устройство системы питания дизельного двигателя на примере дизельного двигателя ЗМЗ-5143.10, которым комплектуются автомобили УАЗ.

Схема питания дизельного двигателя:

Эта схема системы питания дизельного двигателя показывает основные конструктивные элементы и направления линий циркуляции солярки.

Схематическое устройство насоса высокого давления:

Основные технические элементы системы питания:

Система питания делится на два больших блока:

Механизм подвода топлива реализуется разными системами, в зависимости от двигателя, но в общем случае сегодня используется аппаратура разделенной компоновки, с отдельно реализованными ТНВД и форсунками.

Работа системы питания дизельного двигателя описывается следующими этапами:

Интересно: в системах неразделенного типа форсунки и насос реализованы одним узлом – насос-форсункой. Такая схема используется в двухтактных моторах на дизтопливе. Широкого распространения эти агрегаты не получили из-за некомфортной для человека вибрации, шумности и недолговечности конструкции.

Форсунки расположены в головке блока цилиндров. Их основная задача – точное распыление топливного факела в пространство камеры сгорания.

Важно: подкачивающий насос подает на ТНВД солярку в избыточном количестве. Избытки горючего и воздух возвращаются обратно в бак по специальным дренажным трубопроводам.

Форсунки дизельного ДВС бывают:

Основная масса двигателей получает закрытые форсунки, у которых сопла в неактивном состоянии закрыты запорной иглой. Таким образом, непосредственное сообщение полости форсунки и камеры сгорания происходит только в момент впрыска или открытия форсунки.

Питание турбодизеля

Выше уже упоминалась возможность оснащения дизельного ДВС системой турбонаддува. Такое решение позволяет значительно повысить мощность любого силового агрегата – и на бензине, и на солярке. При этом нет необходимости в серьезных доработках, таких, например, как расточка цилиндров для увеличения рабочего объема. Система топливоподачи турбированного дизеля практически не меняется, но воздухоподающий тракт подвергается кардинальной переделке.

Наддув осуществляется с помощью одного или нескольких воздушных компрессоров, работающих на энергии выхлопных газов. Компрессор сжимает воздух, который затем поступает в интеркулер (промежуточный блок, охлаждающий сжатую воздушную массу), и затем нагнетается в цилиндры под давлением 0.15… 0.2 Мпа, и выше.

Компрессорные системы принято делить на два вида:

Турбокомпрессор позволяет лучше наполнять цилиндры воздухом, что ведет к повышению эффективности сгорании солярки при ее подаче. Это положительно влияет на мощность двигателя: с турбодизелей снимается на 30% больше лошадиных сил, по сравнению с нетурбированными атмосферными аналогами.

Но есть и некоторые минусы: турбонаддув, особенно развивающий высокие показатели давления, приводит к увеличению температуры в пространстве цилиндра, поскольку топливо горит интенсивнее. Кроме того, увеличиваются механические нагрузки на компоненты двигателя – механизм газораспределения и кривошипно-шатунный блок.

Неисправности топливной системы

Основная причина любых неисправностей системы питания дизельного двигателя – износ конструктивных элементов и узлов. Типичные неисправности, возникающие после определенного пробега двигателя – износ оси рычага регулятора и выход из строя резинового кольца уплотнения в магистрали низкого давления.

Еще одна распространенная проблема – накопление в узлах и магистралях грязи и нагара, от которых следует регулярно избавлять двигатель путем промывки.

Другие типичные неисправности:

Затрудненный пуск двигателя.
Двигатель потерял мощность.
Слишком большой расход солярки
Жирный черный выхлоп из трубы
Выхлоп белого или серого цвета, очень дымный.
Мотор по ощущениям работает слишком «жестко»
Двигатель шумит
Неровная работа на холостую и при езде
Двигатель внезапно глохнет
Двигатель невозможно заглушить

Причина, скорее всего, в неисправном электромагнитном запорном клапане.

Приходится часто менять свечи

Обычно это происходит из-за неисправности форсунок в цилиндрах, соответствующих неисправным свечам.

Большинства неисправностей можно избежать путем своевременного технического обслуживания системы питания дизельного двигателя.

Завоздушивание системы

Выше неоднократно говорилось о попадании воздуха в топливную магистраль. Это крайне опасное для дизельного ДВС явление:

Воздух попадает в систему чаще всего из-за нарушения герметичности одного из элементов аппаратуры топливоподачи. Также возможно возникновение подобной ситуации при опустевшем баке. Если есть проблемы с герметичностью, требуется их устранить, возможно, понадобится также произвести удаление воздуха из системы питания дизельного двигателя.

Прокачку желательно осуществлять вдвоем.

Сначала нужно определить, есть ли в системе воздух: для диагностирования от форсунок отсоединяют топливопроводы высокого давления и отворачивают гайки последних. Затем один из участников проверки крутит стартер, а второй наблюдает за шлангами: если подачи солярки нет, система, скорее всего, нуждается в прокачке.

Следует также продиагностировать все соединения и трубопроводы, заменив негерметичные узлы и укрепив, при необходимости, слабые места.

Для прокачки в корпусе фильтрующего элемента предусмотрен специальный механизм продувания – насос подкачки. Сначала прокачивается фильтр:

Некоторые авто не предусматривают наличия насоса ручной подкачки, тогда вместо него для проведения обслуживания придется крутить коленвал стартером до достижения результата.

Далее делают удаление воздуха из самого ТНВД:

Дальше можно полностью отвинтить болт и покрутить коленчатый вал при помощи стартера. При этом будет видно, как поступает топливо:

Если все в порядке, то болт устанавливается на штатное место и закручивается до конца. После этого отводятся топливопроводы штуцера (9 на рисунке), у 4-цилиндрового ДВС их должно быть 4. Теперь нужно вращать коленвал, из штуцера должна пойти солярка. Шланг ставится на место, операция повторяется с остальными штуцерами.

Источник

Устройство топливной системы дизельного двигателя

Дизельные двигатели изначально имели ярко выраженное «тракторное происхождение», и до сих пор поэтому ассоциируются у многих с шумностью, «львиным рычанием», повышенными показателями вибрации и детонации. Но это явно устаревшее представление. Современные дизели, благодаря применению новых автоматических систем управления и подкорректированным принципам работы топливной системы, в значительной степени избавились от пресловутых дрожи и звука. Сохранив при этом свои лучшие качества – мощную тягу и экономичность. Как эволюционировала, вместе с дизельным мотором, его топливная система, и что она из себя представляет на данный момент, рассмотрим в этой статье.

О конструктивных особенностях дизелей, в сравнении с бензомоторами

И дизель, и бензиновый мотор являются двигателями внутреннего сгорания. В глобальном смысле, по своей конструкции дизель не отличается от бензомотора: и там, и здесь – цилиндры, поршни и шатуны в них. Однако в дизелях степень сжатия гораздо выше (19-24 единицы, а у бензинового – 9-11). Потому и все детали, и клапаны в значительной степени усилены (чтобы противостоять намного более высоким нагрузкам). Потому и вес, и габариты дизельного мотора гораздо более внушительны, чем бензинового.

Главное же различие состоит в способах формирования топливно/воздушной смеси, её воспламенения и сгорания. В бензиновых моторах смесь топлива с воздухом формируется во впускной системе, а воспламеняется она от искры свечи зажигания. В дизельных же моторах горючее и воздух подаются в рабочие полости цилиндров по отдельности. Сначала воздух. Он накаляется до семи-восьми сотен градусов и сжимается. Когда затем в камеру сгорания под большим давлением впрыскивается топливо, то оно самовоспламеняется, практически мгновенно.

Таким образом, искры никакой не требуется. А свечи накаливания, которые установлены в цилиндрической головке представляют собой нагревательные элементы, типа паяльника, и предназначены они для быстрого обогрева воздуха в камере сгорания, покуда мотор ещё не прогрелся. Это называется системой предпускового подогрева.

Когда включается зажигание, свечи накаливания за несколько мгновений разогреваются до 800-900 градусов, прогревая воздух и обеспечивая процесс самовоспламенения. Сигналы о работе данной системы подаёт водителю контрольная лампа. Электропитание снимается со свечей в автоматическом режиме, спустя 15-20 секунд после запуска непрогретого двигателя, когда его устойчивая и стабильная работа уже вполне обеспечена. Решающая же роль в обеспечении подобных показателей работы мотора принадлежит его топливной системе, об устройстве которой и пойдёт речь.

Принцип и общая схема работы топливной системы

Последовательность работы топливной системы дизельного двигателя следующая. Солярка закачивается из топливного бака при помощи топливоподкачивающего насоса (шестерёнчатого, либо помпового типа), а после фильтрации она подаётся топливным насосом высокого давления (ТНВД) на форсунки. Топливо после закачки из бака проходит сначала через фильтр грубой очистки, избавляясь от крупных включений. Далее, уже непосредственно перед топливным насосом высокого давления – сквозь фильтр тонкой очистки. В связке с ТНВД работают форсунки, через которые солярка в распылённом состоянии и впрыскивается в цилиндры.

Схему топливной системы дизельного двигателя двигателя можно не условно, а вполне чётко разделить на два отсека: высокого давления и низкого. На участке низкого давления осуществляется предварительная подготовка, фильтрация топливной смеси, перед его отправкой в отдел высокого давления. Отсек высокого давления, в свою очередь, дорабатывает смесь до конца и переводит её в рабочую камеру.

Основная функция топливной системы, описание её работы

Предназначение топливной системы дизельного двигателя состоит в том, чтобы подавать в цилиндры чётко отмеренный объём дизтоплива, в конкретный момент времени и под определённым давлением. Поэтому, из-за необходимости обеспечения постоянно высокого давления, а также за счёт высоких требований к точности работы, топливная система дизельного двигателя будет посложнее в конструкции, чем у бензинового, и достаточно дорого стоит.

Теперь попробуем представить себе бесперебойную работу топливной системы в поэтапном режиме, а для этого разберём по порядку отдельные её составные части. Итак, топливный бак служит для размещения солярки и обеспечения бесперебойной её подачи в систему. Эту функцию выполняют трубопроводы. Вначале топливоподкачивающий насос высасывает из бака горючее и через фильтры подаёт его в распределительную магистраль низкого давления. При этом в системе поддерживается стабильное давление в три атмосферы. Топливо дважды проходит фильтрацию, проходя через фильтры грубой и тонкой очистки.

В задачу топливных фильтров входит контроль за чистотой горючего и избавлением его от возможных посторонних примесей – от частичек грязи, воды, песчинок. Прошли те времена, когда дизели были весьма непритязательными к качеству топлива. Современные дизельные моторы требуют очень чистой солярки для сохранения достойных показателей своей работы. Чистота горючего сейчас – одно из основных и непременных условий эффективной работы двигателя. Топливо подаётся только в том случае, если в системе нет воздуха.

После фильтрации солярка попадает в магистраль высокого давления. Эта часть топливной системы обеспечивает подачу и впрыскивание необходимого количества топлива в цилиндры двигателя в определённые моменты. Топливный насос высокого давления, в соответствии с порядком работы цилиндров, по топливопроводам высокого давления подаёт солярку к форсункам.

Форсунки, размещённые в головках цилиндров, впрыскивают и распыляют горючее в камеры сгорания двигателя. Так как топливоподкачиваюший насос постоянно подаёт топливному насосу высокого давления топлива «с запасом», то есть несколько больше, чем нужно, то его избыток, а с ним – и попавший в систему воздух, по специальным дренажным трубопроводам, отводится обратно в бак.

Для обеспечения синхронного впрыска горючего устроена специальная топливная рамка, к которой и подсоединяются форсунки. Они своими головками находятся во впускной трубе и распыляют топливо, сразу же в момент его подачи.

Да, нажимая на педаль, водитель или механизатор уже не увеличивает этим непосредственную подачу топлива, как это было в карбюраторных движках прошлых лет. А только изменяет тем самым программы работы регуляторов, которые уже сами варьируют объём единовременной подачи горючего, по строго определённым зависимостям от числа оборотов, давления наддува, от положения рычага регулятора и т.п.

Главные составные части топливной системы дизельного двигателя

Итак, помимо топливного бака и магистральных топливопроводов, с которыми всё более или менее ясно, основными составными частями топливной системы дизельного мотора являются: топливоподкачивающий насос, фильтры грубой и тонкой очистки горючего, топливный насос высокого давления (ТНВД) и форсунки.

Топливоподкачивающий насос

Устройство подкачивающего насоса дизельного топлива довольно несложное. Оно представляет собою две находящиеся в постоянном зацеплении шестерни. Когда происходит процесс вращения, зубья этих шестерней выполняют функцию лопастей, создавая и поддерживая ток горючего по направлению к ТНВД. Главным же действующим элементом подкачивающего насоса, который и непосредственно нагнетает топливо, является поршень. Как уже было отмечено, производительность топливоподкачивающего насоса устроена превышающей производительность насоса высокого давления, поэтому и оборудованы специальные топливопроводы для слива излишков обратно в топливный бак.

Топливный насос высокого давления

ТНВД предназначается для подачи топлива к форсункам под давлением, в соответствии со строго определенной программой, в зависимости от заданных режимов работы двигателя и от управляющих действий водителя. По своей сути, современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления работой двигателя и, в то же время, главного исполнительного механизма, реагирующего на команды шофера.

Далее: по всей длине насоса, во внутренней его полости, расположен вращающийся вал, снабжённый специальными кулачками. Этот вал ТНВД получает энергию вращения от распределительного вала двигателя. Его кулачки при движении воздействуют на толкатели, которые, в свою очередь, и стимулируют нагнетающую работу поршня-плунжера. При своём продвижении вверх этот плунжер создаёт высокое давление топлива внутри цилиндра. Сила этого давления и выталкивает горючее, которое направляется по топливной магистрали к форсункам.

Внутри корпуса, или гильзы, топливного насоса высокого давления расположен плунжер, иначе – специальный поршень, обладающий диаметром, значительно меньшим, чем его длина. Это называется плунжерной парой. Её детали притёрты друг к другу таким образом, что зазор не превышает 4-х мкм.

Поскольку работа дизеля в разных режимах и на разных оборотах требует, соответственно, и разного количества горючего, устройство плунжера было немного изменено: по его поверхности «пустили» специальную спиральную выточку, позволяющую менять величину активного хода при помощи механизма поворота плунжеров.

Это сделано было для того, чтобы плунжер мог не только нагнетать топливо под давлением по направлению к форсункам, но и регулировать количество, объём этой подачи. Для этого служит подвижная часть плунжера, которая, в зависимости от изменения параметров, может открывать или закрывать канавки внутри него. Данная подвижная часть соединена с педалью «газа» в кабине механизатора.

В зависимости от того, каков угол поворота плунжера, устанавливается и соответствующая степень открытия каналов прохождения топлива, и его непосредственное количество, подаваемое на форсунки.

Форсунки

Другой важнейший элемент топливной системы дизельного двигателя – это форсунки, на каждом из его цилиндров. Они, совместно с ТНВД, обеспечивают подачу строго дозированного количества топлива в камеры сгорания. Регулировки давления открытия форсунки формируют рабочее давление в топливной системе, а типы распылителей определяют форму факела топлива, которая имеет важное значение для активизации процессов самовоспламенения и сгорания. В современных дизельных моторах обычно применяются форсунки двух типов: со шрифтовым, или с многодырчатым распределителем.

Форсункам на двигателе приходится работать в очень тяжёлых условиях: игла распылителя совершает возвратно/поступательные движения с частотою в половину меньшей, чем обороты двигателя, и при этом распылитель всё время непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из специальных, высоко-жаропрочных сплавов, делается с особой точностью и является прецизионным элементом.

Распределитель форсунок выполняет функцию равномерного поступления топлива в камеры сгорания и наиболее эффективное его воспламенение. Чем более мелко распыляется топливная смесь, тем устойчивее, в целом, получается работа силового агрегата. Не менее важный фактор – это равномерность распыления горючего, во всех возможных направлениях. Современные форсунки производятся с многочисленными мельчайшими отверстиями, как раз для того, чтобы распыление топливной смеси происходило во всех направлениях, и в равномерном режиме.

Кроме того, работа форсунок поддерживает следующие процессы, с которыми напрямую связана эффективная работа двигателя:

Форсунки бывают с механическим, либо с электромагнитным управлением. В обычных форсунках открытие отверстия распылителя связано с тем давлением, которое имеется на тот момент в топливной магистрали. Отверстие форсунки перекрывается иглой, соединённой со специальным поршнем вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Когда происходит поступление топлива под давлением, поршень перемещается вверх и тянет за собою иглу. Отверстие раскрывается, и распыление начинается.

На эти электромагнитные элементы форсунок поступают сигналы от электронного бока управления (ЭБУ), который, в соответствии с информацией от целого ряда датчиков, подаёт ту или иную команду на установку нужной степени распыления.

Несколько слов о системе «КоммонРэйл»

Говоря о топливной системе современных дизельных двигателей, нельзя не упомянуть такую её модификацию, как «Аккумуляторная топливная система CommonRail» («Общая рамка», или «Общая магистраль» в переводе с английского). Она проявляет очень хорошие показатели экономичности и эффективности, и вполне заслуженно завоёвывает всё большую популярность. В первую очередь – на дизельных двигателях коммерческого автотранспорта, разумеется.

В ней также используется ТНВД, подающий горючее в напорную магистраль, которая играет роль аккумулятора давления. Электронный блок управления регулирует производительность насоса, для поддержания необходимого давления в магистрали по мере расхода топлива.

В «КоммонРэйл» управляемые электроникой электрогидравлические форсунки с электромагнитным или пьезоэлектрическим приводом управляющих клапанов впрыскивают выверенные дозы дизельного топлива под высоким давлением в рабочие полости цилиндров.

Компьютерная система управления подачей горючего позволяет впрыскивать его в камеры сгорания цилиндров максимально точно дозированными дозами. Сначала впрыскивается микроскопическая, всего лишь в районе миллиграмма, порция, которая своим сгоранием накаляет температуру в камере, а за ней следует основной «заряд». Как результат – дизельные двигатели, оснащённые системой «КоммонРэйл», показывают лучшую экономичность (до 20 процентов). Доля новых дизельных двигателей, оснащённых системой «CommonRail», год от года неуклонно растёт.

Заключение

В целом, именно усовершенствованиям, которым подверглась топливная система дизельных двигателей в наше время, значительно укрепили позиции дизельных двигателей на рынке и в экономике. Дизели стали более экономичными и менее шумными, чем были прежде, а потому завоёвывают всё больше сегментов своего непосредственного применения на рынке.

Источник

Видео

Система питания дизельного двигателя.

Принцип работы дизельного двигателя

Устройство и принцип работы дизельного двигателя Основные неисправности

1. (Камаз 740) Система питания дизеля

Система питания дизельного двигателя

Обслуживание и ремонт системы питания дизельных двигателей

Система питания дизельного двигателя

Что такое Common Rail? Принцип работы, строение и особенности

Топливная система дизельного двигателя

СИСТЕМА ПИТАНИЯ ДВИГАТЕЛЯ

Системы питания дизельных двигателей

ВМТ – верхняя мертвая точка
ГБЦ – головка блока цилиндров
КШМ – кривошипно-шатунный механизм
ТНВД – топливный насос высокого давления

Отличие бензинового и дизельного двигателей

На современных автомобилях могут устанавливаться бензиновые и дизельные двигатели. Раньше дизельные двигатели в основном применялись на грузовиках большой грузоподъемности и на тракторах. При их работе можно было наблюдать клубы черного дыма, которые вырывались из выхлопной трубы. Двигатель издавал довольно громкий звук, сопровождающийся стуком. Повышенный шум и вибрации были основными недостатками дизелей. Поэтому такие моторы не устанавливали на легковые автомобили. Современные дизельные двигатели по многим показателям способны конкурировать с бензиновыми моторами. По некоторым характеристикам дизеля серьезно превосходят бензиновые двигатели.

По конструкции бензиновые и дизельные двигатели почти одинаковы. Основное отличие дизеля от бензинового мотора – это использование более прочных материалов при изготовлении его деталей. Это необходимо потому, что дизельный двигатель во время работы испытывает более сильные нагрузки в отличие от своего бензинового собрата. Для повышения прочности некоторые детали изготавливают более массивными, что увеличивает вес мотора.

На дизельном двигателе степень сжатия несколько выше, чем на бензиновом. Поэтому блок цилиндров на дизеле выше, чем на аналогичном бензиновом моторе. С увеличением высоты блока цилиндров увеличивается высота кривошипа коленчатого вала и длина шатунов, что так же сказывается на утяжелении двигателя. Самым главным конструктивным отличием является система питания. На дизеле она кардинально отличается от системы питания бензинового мотора.

На бензиновом моторе топливовоздушная смесь готовится посредством смешивания паров бензина и воздуха. После этого смесь сжимается поршнем в цилиндре при его движении вверх, в ВМТ на свечу зажигания подается электрический ток, искра воспламеняет топливовоздушную смесь, и происходит рабочий ход. Во время работы бензинового двигателя для регулирования мощности нужно изменять количество топлива и количество воздуха, которые подаются для приготовления топливовоздушной смеси. При этом их пропорции должны строго соблюдаться. При недостатке или переизбытке одного из компонентов невозможна нормальная работа двигателя.

Для регулирования подачи воздуха в бензиновом двигателе во впускном воздушном тракте устанавливается дроссельная заслонка (на некоторых моторах подача регулируется другим способом). Подача топлива на современных бензиновых двигателях регулируется электронным блоком управления посредством увеличения или уменьшения времени открытия топливных форсунок. В результате чего изменяется количество топлива, которое впрыскивается за это время.

В дизельный двигатель топливо и воздух подаются раздельно. В воздушном тракте дроссельной заслонки нет (но иногда используется для аварийного отключения подачи воздуха). Чем больше подать воздуха в цилиндр, тем лучше и полнее произойдет сгорание дизтоплива. Топливо в дизельный двигатель подается через форсунки. Смешивания воздуха и топлива как такового не происходит. Воздух необходим для поддержания горения дизтоплива. Как же происходит воспламенение в дизеле? А вот тут самое интересное.

По каким-то причинам во многих источниках этот вопрос затрагивается поверхностно или раскрывается не достаточно точно, а в некоторых случаях не совсем верно. Простому обывателю не так просто понять, что же происходит в процессе воспламенения топлива в дизеле. Некоторые люди пишут, что топливо в дизеле воспламеняется от его сжатия. Если налить на поршень дизтоплива и вращать дизель стартером, в цилиндре воздух в такте сжатия начнет сжиматься и давить на эту «лужицу», но топливо никогда не загорится в цилиндре, хоть весь день крутите. Некоторые люди пишут, что топливо воспламеняется от сжатия воздуха в цилиндре. Пример выше… При таких условиях дизтопливо никогда не воспламенится.

В дизельном двигателе во время такта сжатия воздух в цилиндре разогревается до высокой температуры. Это происходит во время его работы или при запуске в идеальных условиях при плюсовой температуре окружающего воздуха. Некоторые ссылаются именно на высокую температуру сжатого воздуха в цилиндре. Что именно из-за высокой температуры сжатого воздуха дизтопливо самовоспламеняется. В этом есть доля правды, но процесс не раскрыт полностью. Попробуем разобраться в этом более подробно.

Дизтопливо, распыленное форсункой на мелкие частички в дизельном двигателе, воспламеняется в результате его нагрева от трения об сжатый воздух. Чем мельче частички топлива при его распылении, тем больше точек трения и, соответственно, легче воспламенение. Если же в цилиндр под большим давлением подать струю дизтоплива, воспламенения не произойдет, ибо точек трения очень мало. Разогретый воздух в цилиндре способствует лучшему воспламенению дизтоплива за счет более быстрого разогрева частичек топлива от трения. Но нужно понимать, что воспламенение происходит именно от трения. Для примера вспомните спичку и как её поджигают. Оказывается, все просто, достаточно вспомнить физические процессы, которые известны из школьного курса физики.

Плотность воздуха в цилиндре так же влияет на процесс воспламенения. Чем плотнее среда, которая образуется в такте сжатия, тем сильнее происходит трение. Если впрыснуть дозу дизтоплива в объем воздуха с атмосферным давлением, и, соответственно, с недостаточной плотностью, воспламенения не произойдет. И не произойдет воспламенения, если впрыснуть дизтопливо в бензиновый мотор. Степень сжатия в бензиновом моторе ниже, чем в дизеле. Существует некий порог, ниже которого дизтопливо не способно воспламеняться. Поэтому в дизелях степень сжатия выше по отношению к бензиновым моторам.

Системы подачи воздуха

Система питания дизельного двигателя включает в себя систему подачи воздуха и систему подачи топлива в двигатель. В зависимости от способа подачи воздуха в двигатель различают атмосферные дизеля и турбодизеля. В атмосферных моторах воздух поступает в цилиндры посредством всасывания во время такта впуска, то есть за счет естественного разряжения. В турбодизелях используется нагнетатель воздуха, в основном это турбокомпрессор, работающий от выхлопных газов.

На одном валу находится две крыльчатки. За счет выхода выхлопных газов одна из крыльчаток раскручивается и через общий вал вращение передаётся на вторую крыльчатку, которая создает поток воздуха и нагнетает его во впускной тракт двигателя. Так как во время прохождения горячих выхлопных газов через турбину нагнетаемый воздух может нагреваться, между турбиной и впускным коллектором иногда устанавливают интеркулер. Это теплообменник, который позволяет охладить нагнетаемый в двигатель воздух, что еще больше увеличивает его объем. Перед использованием воздух на любом двигателе очищается системой очистки. Это фильтры разных видов и конструкций.

Турбодизеля обладают большей мощностью в отличие от атмосферных моторов. За счет большего объема воздуха, который нагнетается в цилиндры, происходит более полное и быстрое сгорание топлива. Это способствует снижению расхода топлива и повышению мощности мотора. Так же снижается токсичность выхлопных газов. Так как скорость сгорания топлива в турбированном моторе выше, это позволяет увеличить максимальные обороты вращения двигателя, что положительно сказывается на его характеристиках.

Есть и несколько минусов при использовании турбин на дизелях. Сам турбокомпрессор подвергается воздействию высоких температур от выхлопных газов. Что требует использовать дорогостоящие термостойкие материалы при изготовлении турбины. На некоторых моделях дизелей турбина охлаждается жидкостью из основной системы охлаждения двигателя. Во время работы вал турбины раскручивается до нескольких десятков тысяч оборотов в минуту. Для увеличения срока службы пары трения используют износостойкие материалы, способные выдерживать огромные скорости вращения. Узлы вращения вала турбины обычно смазывают моторным маслом из общей системы смазки двигателя, что предъявляет серьезные требования к качеству моторных масел.

При использовании турбокомпрессора на двигателе его ресурс несколько сокращается по отношению к атмосферному двигателю. Это происходит из-за повышения нагрузок на основные механизмы двигателя. Так же повышается стоимость двигателя в целом. Этому способствует высокая стоимость самого турбокомпрессора, конструктивное усложнение систем охлаждения и смазки двигателя и увеличению воздушных трубопроводов. Несмотря на свои недостатки из-за большей экономичности и мощности турбодизеля все чаще устанавливаются на автомобили.

Камера сгорания

В зависимости от вида камеры сгорания различают камеры раздельного типа и камеры нераздельного типа. Раздельная камера сгорания представляет собой дополнительную камеру небольшого объема, которая соединяется каналом с верхней частью цилиндра. Эта камера обычно находится в полости ГБЦ. Топливо через форсунку впрыскивается именно в эту, так называемую, предкамеру. В момент воспламенения топлива продукты горения распространяются по соединительному каналу в цилиндр и давят на поршень.

Основным плюсом таких моторов является мягкость работы. То есть во время работы такого двигателя почти не слышен характерный «дизельный стук». Это обусловлено тем, что взрывная волна при воспламенении топлива образуется внутри предкамеры и не воздействует непосредственно на поршень. На таких моторах в распылителях форсунок было, как правило, одно отверстие, что упрощало и удешевляло их изготовление. Но были и минусы в такой конструкции. Это сложность изготовления самой предкамеры и её рубашки охлаждения.

Моторы с раздельными камерами сгорания обладали довольно высоким расходом топлива.
Двигатели с нераздельными камерами сгорания получили большее распространение. Такие моторы чаще называют двигатели с непосредственным впрыском. То есть на них топливо впрыскивается непосредственно в цилиндр в надпоршневое пространство. Камера сгорания может быть выполнена в днище поршня, в полости ГБЦ или частично там и там. По геометрической форме камеры сгорания могут быть разные. В некоторой степени это зависит от формы факела распыла топлива форсункой. Некоторые формы камеры сгорания способствуют образованию завихрений внутри цилиндра, что улучшает сгорание топлива.

Двигатели с непосредственным впрыском обладают рядом преимуществ по отношению к моторам с раздельными камерами сгорания. Самый главный показатель – это экономичность. Нераздельная камера сгорания имеет компактную форму, поэтому обладает малыми тепловыми потерями при работе двигателя. Это позволяет мотору быстрее выходить на рабочий тепловой режим и соответственно меньше тратить топлива. При нераздельной камере сгорания уменьшается высота ГБЦ и сложность её изготовления. Одним из минусов таких моторов является высокие ударные нагрузки, которые действуют на КШМ.

При использовании в форсунках распылителей с несколькими отверстиями малого диаметра удалось обеспечить более плавное горение топлива. Что послужило снижению ударных нагрузок, действующих на КШМ. Но производство таких форсунок довольно трудоемко и предъявляет к себе высокую точность изготовления, что сказывается на их стоимости. Тем не менее, именно моторы с непосредственным впрыском получили большое распространение в современном автомобилестроении. Такие моторы постоянно модернизируются и получают новые технологии, в частности по повышению прочности материалов КШМ.

Системы подачи топлива

На дорогах всего мира можно встретить автомобили с различными по конструкции системами подачи топлива. Некоторые из них устарели морально и физически. Эти системы не отвечают экологическим нормам по содержанию вредных выбросов в выхлопных газах. Тем не менее, такие автомобили выполняют свои функции. Существует несколько видов систем подачи топлива в дизельный двигатель.

Топливо из бака подается к ТНВД подкачивающим насосом. В подающем топливопроводе устанавливаются фильтры очистки топлива. Как правило, это двухступенчатая система очистки. На первом этапе топливо очищается от крупных примесей в виде мелких камешков, металлических обломков и так далее. Второй этап – это фильтр тонкой очистки, который улавливает все остальное, в том числе и воду. От ТНВД топливо подается к форсункам через трубки, которые способны выдерживать высокое давление.

ТНВД могут быть рядными и распределительными. Иногда встречаются V- образные, они схожи по конструкции с рядными насосами. Так же существуют так называемые магистральные насосы, о них чуть ниже… Рядные ТНВД могут иметь несколько плунжеров, которые создают давление топлива для индивидуальной форсунки. Насосы работают от вращения, имеют привод от двигателя, и вращение строго синхронизировано с положением поршней в ВМТ. Во время работы каждый плунжер обеспечивает повышение давления в подающей магистрали в нужный момент для каждого цилиндра двигателя. Форсунка имеет запорную иглу в распылителе, которая открывается от возросшего давления топлива. После открытия и впрыска топлива, давление в магистрали падает, и игла запирает отверстия распылителя. Все довольно просто устроено и работает механически.

Для увеличения подачи топлива в плунжере увеличивается давление, что увеличивает время впрыска топлива, а в итоге и его количество. Чтобы увеличить давление в плунжере насоса имеется специальная зубчатая рейка, которая при линейном перемещении поворачивает специальные втулки плунжеров относительно вертикальной оси. Тем самым отсечка происходит позже, в итоге повышается давление в топливной магистрали. Рейка соединяется с педалью газа механически или электроприводом. Такие ТНВД также имеют механический регулятор холостых оборотов и регулятор опережения момента впрыска топлива, который необходим при увеличении оборотов двигателя.

Насосы такого типа смазываются моторным маслом из общей системы смазки двигателя, поэтому могут работать на топливе низкого качества.

Системы питания топливом такого типа очень надежны. Они хорошо зарекомендовали себя за многолетнее применение и до сих пор могут применяться на дизелях. Но такие системы не обладают потенциалом в дальнейшем развитии. Для более мягкой работы дизеля и повышения экономичности следует повысить давление впрыска топлива. На таких системах повышать давление неограниченно нет возможности. Во время работы в определенный момент происходит резонанс в трубопроводах высокого давления. Поэтому увеличение давления может привести к разрушению трубок. Так же есть зависимость производительности насоса от оборотов работы двигателя, что негативно сказывается на тонкости распыления топлива в этом режиме.

Распределительный насос отличается от рядного насоса количеством плунжерных секций. Такие насосы могут иметь одну или несколько плунжеров, но их количество может не соответствовать количеству цилиндров двигателя, на которые они устанавливаются. Подача топлива распределяется специальным механизмом. В нужный момент топливо под высоким давлением подается на нужную форсунку в соответствии с тактом работы двигателя. Форсунки при этом могут использоваться такой же конструкции, которая описана выше. Насосы такого типа компактнее рядных насосов, поэтому чаще применяются на легковых дизелях. Механизм распределения подачи топлива довольно точно работает, что увеличивает мягкость работы двигателя. В отличие от рядных насосов производительность распределительных почти не зависит от оборотов двигателя.

Но есть в таких насосах и недостаток. Все детали внутри насоса смазываются дизтопливом, которое он подает к форсункам. Точность изготовления прецизионных пар довольно высока. Поэтому качество топлива влияет на долговечность работы насосов такого типа. При недостаточной смазке ускоряется износ деталей, а присутствие влаги в топливе достаточно серьезно уменьшает его ресурс.

Существуют системы, в которых насос высокого давления и форсунка объединены в один элемент. Что исключает применение трубопроводов высокого давления. Подкачивающий насос подает топливо сразу на насос-форсунку. На каждый цилиндр устанавливается индивидуальная насос-форсунка. В таких системах давление впрыска топлива может достигать нескольких сотен МПа, что увеличивает экономичность и уменьшает содержание вредных выбросов в выхлопных газах. Насос-форсунка приводится в работу от кулачков распределительного вала, что упрощает конструкцию двигателя в целом. Современные топливные системы такого типа, а существуют они довольно давно, имеют ряд новшеств.

Например, на некоторых двигателях с такой системой впрыск топлива разделен на несколько фаз. То есть топливо впрыскивается не одной порцией, а несколькими. Каждая из порций может отличаться по объему, что позволяет контролировать процесс сгорания топлива. В результате воспламенение происходит более мягко, снижая ударные нагрузки на КШМ, а токсичность выхлопных газов снижается за счет более полного сгорания топлива в цилиндрах. Минусом же являются высокая стоимость насос-форсунки и необходимость использовать топливо высокого качества.

Еще одна система питания топливом на дизельном моторе – это система Common Rail. В переводе с английского означает общая магистраль. На легковых двигателях разные бренды называют эту систему по-своему, но принцип работы у них схож. В роли общей магистрали выступает топливная рампа, в которой накапливается энергия давления. Из топливной рампы топливо подается на форсунки, открывающиеся электрическим импульсом. Чем-то напоминает топливную рампу бензинового мотора, но в дизеле давление в рампе составляет несколько сотен МПа. Такое давление создает магистральный насос высокого давления. Электрический импульс подается в нужный момент из блока управления двигателем.

Во время запуска двигателя магистральный насос начинает качать топливо и создается высокое давление в топливной рампе. На рампе расположен датчик давления, который измеряет давление топлива в ней. Блок управления считывает показания с этого датчика, и только при достижении определенного давления он подает импульс на открытие форсунок. Происходит запуск дизеля и дальнейшая его работа. Во время работы двигателя насос постоянно поддерживает высокое давление в топливной рампе, поэтому обороты двигателя не влияют на давление впрыска топлива, рампа выступает в роли накопителя. Электронный блок управления позволяет контролировать угол опережения впрыска и поддерживает обороты холостого хода мотора, что упрощает конструкцию насоса в отличие от ТНВД рядного типа.

Высокое давление впрыска позволяет добиться наилучшего распыления топлива и уменьшить его расход до феноменально малых показателей, сохраняя при этом высокую мощность двигателя. Легковой дизель объемом в 3 литра может потреблять топлива в городском режиме всего около 8-10 литров на 100 километров пробега. Крутящий момент дизельных двигателей выше, чем на аналогичных бензиновых моторах, он приближается к расчетным максимальным показателям почти с холостых оборотов. Бензиновые же достигают этого момента на максимально допустимых оборотах вращения коленвала.

В настоящее время легковые автомобили с системой впрыска Common Rail способны конкурировать по динамике разгона с бензиновыми моторами. Но потреблять при этом намного меньше топлива. Всю картину портит качество дизтоплива в нашей стране. В итоге выходят из строя насосы высокого давления и форсунки. Стоимость этих деталей довольно высока, поэтому экономия на расходе топлива сходит на нет при наступлении очередного ремонта топливной аппаратуры. Возможно, в скором будущем наши нефтеперерабатывающие заводы повысят качество выпускаемого дизтоплива. И каждый потенциальный клиент сможет выбрать для себя автомобиль именно с экономичным дизельным двигателем…

Автор: Александр Назаров

Система питания дизельного двигателя. Грузовые автомобили. Система питания

Система питания дизельного двигателя

В отличие от карбюраторных двигателей, в цилиндры которых поступает готовая горючая смесь из карбюратора, горючая смесь у дизелей образуется непосредственно в цилиндрах, куда топливо и воздух подаются раздельно. Чистый воздух засасывается в цилиндры и в них подвергается очень высокой степени сжатия. Вследствие в цилиндрах двигателя создается температура превышающая температуру воспламенения дизельного топлива. Это отличие определяет особенности устройства системы питания дизелей. Все отечественные дизели унифицированы, т.е. многие детали кривошипно – шатунного механизма, газораспределительного механизма, а также приборы системы питания у них одинаковые. По сравнению с карбюраторными двигателями они более экономичны, надежны, а также способны работать на более дешевом и тяжелом топливе.

В дизельных двигателях осуществляется внутреннее смесеобразование. В цилиндры двигателя подается дозированная порция топлива под большим давлением. За счет перепада давлений между распыливающими отверстиями форсунки и камерой сгорания и происходит процесс впрыска топлива. Поршень находится почти в верхней мертвой точке, в сильно сжатый, достигающий температуры 600°С воздух, впрыскивается дизельное топливо, которое загорается без наличия свечи зажигания. С помощью топливного насоса высокого давления топливо подается из топливного бака, через топливный фильтр в систему питания двигателя. Топливо испаряется и смешивается с воздухом, что обеспечивает полное и быстрое сгорание топлива.

Процесс начинается с момента впрыскивания топлива из распылителя форсункой и заканчивается полным сгоранием топлива. Топливный фильтр задерживает различные примеси и грязи. Топливо в систему подается только в том случае, если в системе нет воздуха, в насосе создается необходимое для впрыска давление и топливо распределяется по цилиндрам. Так как дизельное топливо не нуждается в зажигании и его цикл не прекращается при отключении напряжения в системе накального зажигания, в конструкции дизельного двигателя предусмотрен магнитный клапан. При выключении зажигания напряжение на нем исчезает, и канал поступления топлива закрывается. Масло для смазывания деталей топливного насоса подается под давлением из общей смазочной системы двигателя.

Процесс смесеобразования в дизельных двигателях включает в себя несколько стадий:

– распыливание топлива;

– развитие топливного факела;

– прогрев;

– испарение;

– перегрев топливных паров;

– смешивание топливных паров с воздухом.

К дизельному топливу предъявляются высокие требования по степени очистки топлива от механических примесей, перед заправкой топливо должно отстояться. Недостатком дизельных двигателей является слишком малое время необходимое на распыливание, смесеобразование и сгорание топлива, оно примерно в десять раз меньше, чем у двигателей с внешним смесеобразованием и равно 0,001 – 0,003 с. Топливо необходимо впрыскивать в строго определенные фазы цикла, что не всегда получается при работе дизеля на всех возможных режимах.

В дизельных двигателях наибольшее распространение получили две схемы подачи топлива: разделенная и неразделенная. В разделенной системе топливо от насоса высокого давления подается по топливопроводам к форсункам. В неразделенной системе топливный насос и форсунка объединены в один узел – насос – форсунку.

Рассмотрим принцип работы разделенной системы питания дизельного двигателя.

Рис. Система питания дизельного двигателя. 1 – топливный бак, 2 – топливоподкачивающий насос, 3 – фильтр тонкой очистки, 4 – топливный насос высокого давления, 5 – форсунки, 6 – фильтр грубой очистки топлива.

Во время работы двигателя топливо из топливного бака 1 засасывается топливоподкачивающим насосом 2 через фильтр грубой очистки топлива 6, где отделяются крупные механические примеси. Далее топливо нагнетается подкачивающим насосом, через фильтр тонкой очистки 3 в топливный насос высокого давления 4. Затем топливо по топливопроводам высокого давления подается к форсункам 5, которые впрыскивают его в распыленном состоянии в камеры сгорания цилиндров двигателя. Несмотря ни на что, впрыскиваемое в камеру сгорания топливо, распределяется неравномерно и процесс сгорания происходит не полностью. Для более полного сгорания топлива, работа дизельных двигателей происходит при высоком коэффициенте избытка воздуха, что приводит к понижению среднего эффективного давления, литровой мощности и к увеличению веса двигателя. В топливный насос избыточное количество топлива подается подкачивающим насосом. Излишки топлива отводятся из топливного насоса по перепускной трубке во впускную часть подкачивающего насоса, через клапан, находящийся в штуцере топливопровода.

Воздух в цилиндры подается через впускной коллектор (трубопровод), предварительно пройдя через воздухоочиститель (воздушный фильтр).

Топливо, впрыскиваемое форсунками, попадает в среду сжатого и нагретого воздуха, воспламеняется и сгорает. Отработавшие газы после сгорания, выходят из цилиндров двигателя через выпускной трубопровод и глушитель в окружающую среду.

Распрыскивание топлива и распределение его в воздушной среде камеры сгорания зависит от :

– конструктивных параметров двигателя;

– давления впрыска;

– особенностей процесса, протекающего в цилиндре двигателя;

– других факторов.

Энергетические и экономические показатели двигателя зависят от качества распыливаемого топлива, от того, как происходит процесс сгорания в двигателе.

К корпусу топливного насоса у дизельных двигателей в задней части установлен регулятор частоты вращения коленчатого вала . В зависимости от нагрузки двигателя он автоматически изменяет количество топлива, подаваемого в цилиндры двигателя и автоматически поддерживает частоту вращения коленчатого вала, заданную водителем.

Форсунки тонко распыливают топливо, подаваемое в камеры сгорания дизельного двигателя насосом высокого давления. Тонкость распыливания топлива характеризуется средним диаметром капель топлива.

Качество распыливания улучшается, если:

– повышается давление впрыска и увеличивается скорость струи;

– увеличивается противодавление воздуха, сжатого в камере сгорания;

– при переходе к меньшим диаметрам распыливающих отверстий форсунки.

Все детали форсунки размещены в стальном корпусе. Основная часть форсунки – корпус и игла.

Рис. Форсунка. А – устройство, б – схема работы, 1 – колпак, 2 – штуцер для топливопровода, 3 – сетчатый фи льтр, 4 – гайка распылителя, 5 – корпус распылителя, 6 – запорная игла распылителя, 7 – штифт, 8 – корпус, 9 – штанга, 10 – пружина, 11 – регулировочный винт, 12 – контргайка, А – канал, Б – камера распылителя.

Силой упругости пружины 10, передаваемой через штангу 6, игла прижата к внутренней конической поверхности распылителя и перекрывает выход топливу из полости к отверстиям распылителя.

Подъем запорной иглы производится автоматически, под давлением топлива, нагнетаемого насосом. Давление топлива действует снизу на иглу, превышает усилие пружины, стремящейся удерживать иглу в опущенном состоянии. Топливо поступает к соплам распыливающих отверстий и через них впрыскивается в камеру сгорания. Такой способ подъема запорной иглы называется гидравлическим.

Диаметр и расположение сопловых отверстий зависят от принятого способа смесеобразования и формы камеры сгорания. Размеры, взаиморасположение и качество изготовления сопловых отверстий в значительной мере предопределяют форму и направление струи, тонкость и однородность распыливания и равномерное распределение частиц распыленного топлива в камере сгорания.

Топливные баки дизельных автомобилей устроены так же, как и баки автомобилей с карбюраторными двигателями.

Топливные фильтры. Топливо, поступающее к насосу высокого давления и форсункам, не должно содержать механических примесей, могущих вызвать повреждение или повышенный износ изготовленных с высокой точностью деталей топливной аппаратуры.

Поэтому в системе питания дизелей топливо многократно фильтруют.

На двигателях обычно устанавливают два последовательно работающих топливных фильтра: грубой и тонкой очистки.

В фильтре грубой очистки установлен сетчатый фильтрующий элемент, состоящий из отражателя и латунной сетки с размерами ячейки 0.09 мм. Поверх сетчатого каркаса навит ворсистый, хлопчатобумажный шнур.

В корпус ввернута резьбовая втулка, на которой смонтирован фильтрующий элемент. Резьбовая втулка прижимает к корпусу распределитель потока топлива. На распределителе потока топлива равномерно расположены восемь отверстий.

Во время работы двигателя топливо подводится в фильтр через трубку и отверстия распределителя. Часть топлива попадает под успокоитель, где остаются крупные механические примеси и вода, находящаяся в топливе. Через отверстие в успокоителе, топливо поднимается вверх к сетчатому фильтрующему элементу, очищается от мелких примесей и поступает к отводящей трубке.

Для периодического слива отстоя предназначена пробка.

В фильтре тонкой очистки установлен фильтрующий элемент с набивкой из минеральной ваты, пропитанной клеящим веществом. В отверстие крышки фильтра ввернут жиклер 9, через который часть топлива из корпуса фильтра по присоединенной к жиклеру трубке все время отводится в топливный бак. За счет этого в фильтре тонкой очистки и, топливопроводе, соединяющем фильтр с насосом высокого давления, поддерживается приблизительно постоянное давление.

В нижней части корпуса предусмотрено отверстие, закрытое пробкой 1, для слива из фильтра загрязненного топлива и попавшей с топливом воды. На крышке корпуса установлен продувочный вентиль, который служит для выпуска воздуха, попавшего в топливную систему двигателя.

Рис. Фильтр тонкой очистки топлива 1 – пробка, 2 – пружина, 3 – стержень, 4 – прокладка, 5 – корпус, 6 – фильтрующий элемент, 7 – крышка, 8 – пробка, 9 – жиклер, 10 – болт.

Воздушный фильтр по устройству и принципу действия аналогичен инерционно – масляным фильтрам карбюраторных двигателей. При использовании воздушных фильтров уменьшается изнашивание деталей цилиндропоршневой группы в несколько раз, поскольку они очищают воздух от пыли, в которой содержатся твердые частицы.

Топливный насос высокого давления служит для подачи в цилиндры дизеля в строго определенные моменты требуемого количества топлива под высоким давлением. Топливные насосы высокого давления классифицируются по трем основным признакам: конструктивному исполнению, методу дозирования количеств подаваемого топлива и числу секций.

Топливные насосы высокого давления должны обеспечивать:

– равномерное распределение топлива в камере сгорания;

– создание высокого давления впрыска, обеспечивающего тонкое распыливание топлива;

– точную дозировку порции впрыскиваемого топлива для подачи его в камеру сгорания двигателя;

– впрыск топлива в камеру сгорания в определенный момент рабочего процесса с требуемой продолжительностью;

– создание равных условий впрыска для всех цилиндров многоцилиндрового двигателя.

Топливные насосы бывают многосекционные и распределительные. Обычно у многосекционных насосов секции располагаются в одном корпусе в один или два ряда. Одна секция топливного насоса подает топливо только в один цилиндр.

Распределительные насосы имеют одну или две секции (кратное числу цилиндров).Каждая секция может подавать топливо сразу в несколько цилиндров.

Топливный насос низкого давления служит для подачи топлива к топливному насосу высокого давления.

Данный текст является ознакомительным фрагментом.

Неисправности двигателя

Неисправности двигателя Якорь стартера не вращается при включении замка зажигания Неисправности системы пуска Проверить работу стартера одним из трех способов:1. Убедиться в надежности кабельных соединений наконечников на клеммах аккумуляторной батареи. Освободить

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

Двоичная система счисления – идеальная система для ЭВМ

Двоичная система счисления – идеальная система для ЭВМ Мы уже говорили о том. что в нервных сетях действуют законы двоичного счисления: О или 1, ДА или НЕТ. Какими особенностями отличается двоичная система? Почему именно её избрали для ЭВМ?Мы принимаем как должное счёт до

Cвойства дизельного топлива

Cвойства дизельного топлива Рассмотрим свойства дизельного топлива, затрудняющие запуск дизельных двигателей при отрицательных температурах. При постепенном охлаждении дизельного топлива оно вначале мутнеет из-за образования в нем отдельных парафиновых кристаллов и

Крепление двигателя

Крепление двигателя Картер – это основание, на котором крепят основные детали двигателя. Картер изготавливают из алюминиевого сплава. Кривошипной камерой называется место картера, в котором вращается шатун и щеки коленчатого вала. Крепление двигателя к раме или

Система питания Смесеобразование (карбюратор) [3]

Система питания Смесеобразование (карбюратор) [3] Рис. 5. Трубка приемная с фильтром. Рис. 6. Замер установки поплавка относительно игольчатого клапана: 1 – поплавок; 2 – серьга для регулировки шага игольчатого клапана; 3 – игольчатый клапан; 4 – язычок для регулировки

Система питания карбюраторного двигателя

Система питания карбюраторного двигателя Смесеобразование в двигателях карбюраторного типа происходит в специальных устройствах, называемых карбюраторами. Карбюратор распределяет в каком количестве подавать топливо непосредственно в цилиндры двигателя. К качестве

Неисправности в системе питания карбюраторного двигателя

Неисправности в системе питания карбюраторного двигателя Около 50% нарушений работы двигателя вызываются сбоями в работе системы питания двигателя. Неисправная топливная система значительно сказывается на мощности и экономичности двигателя. В большинстве случаев

Обслуживание системы питания карбюраторного двигателя

Обслуживание системы питания карбюраторного двигателя Ежедневно проверять систему питания с целью проверки ее герметичности и при необходимости заправить автомобиль топливом.– Первое и второе технические обслуживания (ТО-1, ТО-2).– Проверить крепление приборов,

Система питания газовых двигателей

Система питания газовых двигателей Переведя автомобиль на газовое топливо можно сэкономить более дорогой и дефицитный бензин. Газовое топливо более экологически чистое, от его сгорания выделяется меньше токсических веществ в атмосферу. Существенным недостатком

Промывка двигателя

Промывка двигателя Если масло в вашем двигателе, после пробега автомобилем нескольких тысяч километров, остается чистым и прозрачным, это должно навести вас на мысль, что масло не слишком качественное и не обладает необходимыми «моющими» свойствами и его необходимо

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание:• основ правильного питания;• свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Система питания дизельного двигателя (схема); устройство системы питания

Содержание

  • Каждый второй производимый транспорт в Германии работает на дизеле

  • Характерные черты и особенности дизельного горючего.

  • Из чего состоит и как выглядит система питания?

  • ТНВД что это такое и зачем нужно?

  • Форсунки

  • Фильтры для горючего

  • Система питания воздухом

  • Система питания топливом дизельного двигателя

  • Неисправности системы питания дизельного двигателя

  • Какой движок лучше дизельный или бензиновый?

    • Коэффициент полезного действия и сила

    • Звук

    • Выхлопные газы

    • Безопасность использования

    • Использование

    • Климатические условия

    • Обслуживание

  • Краткий экскурс в историю

    • Двигатели Дизеля выходят на рынок

    • Увеличение производительности и дальнейшее завоевание рынка

Перед покупкой авто, нужно решить один важный вопрос – «Какой двигатель ставить на транспорт — дизельный или бензиновый?». Каждый из них обладает преимуществами и недостатками. В этой статье подробно поговорим о дизельном моторе, о его краткой истории создания,  детально рассмотрим строение и поделимся рекомендациями по обслуживанию.

Каждый второй производимый транспорт в Германии работает на дизеле

Турбокомпрессоры, которые могут изменять форму внутренних турбин, что является стандартом для проектировщиков, и улучшения высокого крутящегося момента, сделали наследие Дизеля нужным и на современном рынке автопрома. Скептики заблуждаются, когда считают, что такие моторы источник грязи, громкого шума, неэкономичности и общего загрязнения окружающей среды это давно в прошлом. Специальные механизмы обрабатывают выхлопные газы на уровне соответствия стандартам Euro-6. И если по состоянию на 1997 год лишь 22% транспорта были на дизеле, то теперь их продано свыше 60%. И на 2020 год есть большие перспективы развития этого моторчика, объединив его с электроникой. Эту инновацию воплотили в жизнь в моделях Peugeot 3008_Hybrid4 и во многих других. Рудольф Дизель не имел представления о том, какое будущие у его выдумки, но запись из личного дневника подтверждает, что он высоко верил в потенциал изобретения. Что же такого в его творении, что ценят водители со всего мира?

 

Характерные черты и особенности дизельного горючего.

«Солярку» получают из нефти, а именно — когда от нее отделяют бензин. Особенность данного вида топлива состоит в том, что у него высокий показатель самовозгорания, измеряется в цетановых числах. На заправочных станциях обычно горючее с числами от 45 до 50. Современные авто, оснащенные инновационными моторами, питаются «соляркой» с большим цетановым значением.

Двигатель внутреннего сгорания подает высококачественное топливо к цилиндрическим бакам, а топливный насос высокого давления сдавливает его до такого уровня, что у форсунки появляется возможность подать его мельчайшие частички в камеру сгорания. После этого начинается смешивание «солярки» с раскаленным воздухом, и начинается самовозгорание.

 Принцип работы системы питания дизельного двигателя заключается именно том, что смесь поджигается не сторонним устройством, а самостоятельно в этом главное отличие от аналоговых изобретений, работающих на бензине.

Еще одно отличие «солярки» от бензина — из-за высокой плотности она лучше смазывает внутренние детали и обладает лучшей вязкостью, дольше застывает, а также она чище других видов. Из-за вариативной температуры застывания специалисты делят топливо на три вида летнее, зимнее и даже морозоустойчивое арктическое топливо.

Из чего состоит и как выглядит система питания?

Система питания дизельного двигателя — это сложный механизм, в который входит множество мелких деталей, формирующих целостное, структурное изобретение. В прибор входят узлы, которые размещаются вне корпуса мотора. Те что расположены на раме выполняют функцию сбора горючего, к ним относятся топливо распределительный кран, топливный насос и другие узлы. К тем что располагаются на корпусе автомобиля относятся форсунки, ТНВД, и проводник горючего высокого давления.

Что происходит, когда работа начинается?

Из бака под высоким давлением «соляра» забирается и транспортируется к топливному насосу высокого давления. Во время движения к ТНВД, горючее ждет приключение, ведь ему еще нужно пройти через топливо распределительный кран и очищающий фильтр.

Перед тем как попасть в ТНВД, смесь очищается от малейших деструктивных примесей, которые могут помешать генерации энергии. Затем форсунки впрыскивают жижу в специальный отсек для сгорания, это происходит в момент, когда в емкости приходит к концу цикл сжатия.

Перед самым запуском сердца машины, его заполнение нефтяным продуктом делается при помощи предпускового насоса. А после зажигания он перестает работать. Если в магистрали подачи высокого давления попадет воздух, то это плохо скажется на подаче смеси в главные цилиндры.

Чтобы это предотвратить устанавливается специальный воздухоотстойник, он располагается в самом верху, рассматриваемой системы. Перед тем как запустить лошадиные силы, воздух, который мог скопиться за время простоя, сгоняется через клапан для отвода кислорода. Чтобы это сделать нужно при выключенном движке открыть кран, а затем предпусковой насос сделает свою работу. А смесь под давлением вытеснит кислород в воздушный отсек топливного бака.

Диагностика системы питания дизельного двигателя необходима, чтобы предотвратить поломку, и ее можно провести собственноручно, если детальнее пройтись и понять что такое схема анатомии внутреннего строения системы.

ТНВД что это такое и зачем нужно?

ТНВД — топливный насос высокого давления

Главная задача насоса, подавать нефтяную автомобильную энергию к форсункам, учитывая особенности мотора, действия владельца транспорта и разнообразных режимов работы авто. Если обобщить функцию современных ТНВД, то это автоматически регулировать сложную работу движка и обрабатывать запросы автовладельца. После нажатия на педаль газа, шофер не увеличивает количество подаваемого горючего, а только меняет режим регулирующих элементов, которые в свою очередь уже сами меняют напор в зависимости от множества разных факторов и математических коррелятов.

Современные машинки оснащены насосы распределительного типажа. Их особенность в том, что они компактные, удобные и с высокой точностью равномерно подают «солярку» по цилиндрам. Их минус в том, что для хорошего исполнения, системе требуется топливо высокого качества и чистоты. 

Форсунки

Система питания дизеля невозможна без хорошего форсунка. Его функция обеспечивать столько горючего в камеру сгорания, сколько предусмотрено дозиметром. Также они регулируют рабочее давление движка, а вид распылителя знает форму факела горючего – это важно, для этапа самовозгорания. Форсунок может быть со шрифтовым или многодырчатым механизмом распределения. Так как работка у рассматриваемой детали нелегкая, ее выполняют из жаропрочных сплавов с точностью форму вплоть миллиметров.

Фильтры для горючего
Хотя их конструкция простая и незатейливая, они выступают как важное устройство системы питания дизельного двигателя. 

Фильтры обладают своими характеристиками, например, тонкость фильтрации или сколько они могут пропускать жидкости эти параметры регулируется в зависимости от типа движка. Одной из задач фильтра является удаление влаги, а насос расположенный на верхней части служит для откачки воздуха. В некоторых случаях монтируется специальный прибор для электрического подогрева фильтра, это делают для облегчения старта работы движка. А еще благодаря ей фильтры не так портятся от забивания деструктивными парафинами зимой.

Система питания воздухом

Задача этой конструкции очищать кислород и подавать его в баки для хранения горючего.

Как выглядит процесс?

Турбокомпрессор всасывает воздух, а затем O2 проходит контроль в системе очистки и фильтрации, дальнейшее путешествие продолжается по трубопроводу в радиатор, где воздух снижает температуру до эксплуатационной при помощи вентилятора. После охлаждающих процедур кислород попадает во впускной коллектор, а уже дальше в дизельные цилиндры. Система питания воздухом снижает температуру и способствует лучшему сгоранию смеси, а это хорошо сказывается на общих рабочих процессах и экономичности топлива.

Система питания топливом дизельного двигателя

Распыленное топливо должно подаваться в цилиндры в количестве, строго определенном системой для выполнения нужной задачи.

Система питания топливом дизельного двигателя выполняет именно эту функцию, впрыскивает нефтепродукты в строго определенный момент и в фиксированном количестве.

Например, в легковых машинах впрыск в цилиндр происходит в одну тысячную долю секунды. В холодное время года или в зонах с арктическим климатом, чтобы облегчить запуск, прибегают к использованию свечей накаливания. Они отличаются от зажигательных свечей, которые используются в бензиновых движках, тем что просто нагревают воздух, как обычные батареи.  

Система питания дизельных двигателей выполняет роль преобразователя энергии топливной смеси в механическую, что и делает возможным ход транспорта.

Неисправности системы питания дизельного двигателя

Транспорт с дизельной системой питания включает в себя много различных элементов сложной иерархической системы. Новичок в мире диагностики или простой автолюбитель столкнется с определенными трудностями, если двигатель вдруг решит не запускаться.

Что же могло выйти из строя? Может топливный бак или фильтры, или какой-то из насосов?

Чтобы все работало корректно нужно вовремя обнаружить проблему и провести профилактику.

Как показывает практика, большой процент поломок происходит именно в деталях топливной системы, ведь она функционирует под высоким давлением, шанс появления дефекта при таких условиях работы – высок.

Чтобы сделать все как профессионалы и в дальнейшем ремонт системы питания дизельного двигателя прошел гладко, обратите внимание на датчики, которые демонстрируют значения, свидетельствующие о чрезмерном расходе «солярки».

Сперва взгляните на фильтры, форсунок и очиститель воздуха. А затем на насос для подкачки и транспортирования горючего. После этих проверок уделите внимание приводу и регулятору частоты оборотов. Ремонт системы питания дизельного двигателя может дорого обойтись, так что отнеситесь к диагностике серьезно.

Основные ошибки при эксплуатации дизельного двигателя видео

https://www.youtube.com/watch?v=B3hbl6KSWJc

Какой движок лучше дизельный или бензиновый?

Теперь, когда полностью разобрались в принципе работе дизельных агрегатов сравним его с бензиновым аналогом.  Разберемся в отличиях, которые присутствуют в этих технологиях и начнем со сравнения работы двух моторов. Оба относятся к двигателям внутреннего сгорания. В бензиновом моторе топливовоздушная смесь образуется за чертой цилиндрического бака. В конце цикла сжатия, пары от бензина и кислорода перемешиваются и равномерно расходятся по периметру бензобака. Результатом сжатия становится высокая температура жижи, но ее все равно мало для возгорания. Поэтому свечи зажигания выполняют роль вспомогательного поджигателя – и воспламенят смесь для образования энергии. У его соперника и главного героя данной статьи воздух сжимается только под давление. После физического воздействия температура цилиндра подскакивает до 900 градусов. Это стимулирует появление гетерогенной смеси, которая самовоспламеняется.

Бензин или дизель? Что лучше?

Коэффициент полезного действия и сила

Хотя у бензинового агрегата выше мощность, но сгорание нефтяного продукта в дизельном моторе происходит гораздо эффективнее. Он выигрывает в показателях КПД и экономичнее расходует топливную смесь.

Звук

Творение Рудольфа Дизеля издает больше шума из-за работы при высоком давлении, но современные автомобильные рынки предлагают качественную шумоизоляцию, что нивелирует этот недостаток.

Выхлопные газы

Безопасное устройство и сажевый фильтр и соответствие экологическим стандартам «Euro-4» делает дизельные агрегаты более современными и менее воздействующими на окружающую среду.

Безопасность использования

Так как «солярка» сгорает гораздо медленнее бензина это снижает риск возгорания и взрыва бака, еще одним преимуществом в безопасности – отсутствие свечи зажигания.

Использование

Если использовать качественное топливо, то представитель дизельного семейства движков победит в этой рубрике за счет прочных блоков цилиндров и других деталей. Бензиновый аналог менее требователен к горючему низкого класса и устойчивее себя ведет, потребляя его. 

Климатические условия

Бензиновые модели лучше себя показывают в холодной климатической зоне в отличие от «солярки». Но это решается покупкой специального зимнего топлива, но все равно даже с покупкой морозоустойчивого горючего движок будет долго прогреваться. Внедорожники работают на дизеле и выполняют свое назначение, так как горючее не портится от влаги.

Обслуживание

Тем, кто ездит на машинах оснащенных дизельным движком придется чаще менять расходные детали. Фильтры, компрессия в цилиндрах. Техническое обслуживание системы питания, то еще приключение, ведь не каждая мастерская справится с поломкой из-за сложной структуры двигателя. Как правило, ремонт обходится дороже, чем бензинового агрегата.

Краткий экскурс в историю

Чтобы совершить великую транспортную революцию, Рудольфу Дизелю пришлось использовать 13 страниц бумаги на которой и был продуман, начерчен и детально изложен принцип работы его детища. Патент был успешно одобрен и выдан имперским ведомством в Германии — это случилось 23 февраля 1893 года. Результатом его интеллектуальной работы и инженерного таланта стало миллиарды различного транспорта от легковых автомобилей до огромных транспортных танкеров, работающих по тому же принципу и сегодня. К несчастью сам Рудольф не дожил до момента всемирного признания и погиб во время морского приключения в 1913 году. 

 В чем же секрет Рудольфа, почему его изобретение стало трендом в моторостроительстве и оказало большое влияние на индустриальный мир?

Секрет скрывается в способе воспламенения топливовоздушной смеси, а именно в ее самовозгорании. В конструкции инженера смесь сжималась в соотношении 20 к 1, что приводило к воспламенению. Результат– его эффективность была значительно выше аналогов того времени. Для сравнения — модели на бензине показывали КПД в 12%, газовые в 17%, а даже первый прототип Рудольфа мог похвастаться 25% коэффициентом полезного действия.

Двигатели Дизеля выходят на рынок

В 1920-ых годах эксперты в области транспорта пророчили изобретению большое будущее. Но до наступления золотого века двигателей на «солярке» пришлось ждать еще не один год. В германии первое авто с данным типом движка выпустили аж в 1924. Американская компания Cummins решила получить технологическое преимущество и вырываться вперед от многочисленных бензиновых конкурентов. Так в 1929 году она использовала движок Дизеля в легковой модели автомобиля. Первое конвейерное производство транспорта с инновационным движком началось в 1936 году, попробовать вкус нефтяного топлива довелось модели Mercedes-Benz 260D. Но это не перевернуло мышление автолюбителей того времени, они все еще воспринимали изобретение Рудольфа, как что-то медленное, небрежное, грязное, неэкономичное и шумное.

Но после Второй мировой коллективное отношение к технологии изменилось. В 1975 модель VW GOLF Diesel завоевала недоверчивые сердца потребителей и принцип работы системы питания дизельного двигателя стал общедоступным и понятным для многих покупателей. А благодаря хитрой разработке топливных насосов нового поколения от компании Bosch движок стал меньше потреблять горючего и изменилось общее устройство движка. Затем эта модель была усовершенствована до спортивного авто, ее оснастили турбонаддувом. После успеха на рынке, зеленый свет, открылся для остальных ведущих производителей, кто боялся рисковать капиталом, теперь могли наладить выпуск моделей с изобретением Рудольфа.

Увеличение производительности и дальнейшее завоевание рынка

После того как рынок компактных авто был покорен, дизельная инновация перешла к завоеванию всего автопрома. Инженерам удалось спроектировать конструкцию, которая повышала давление, а система моментального впрыска избавила от посредничества и освободило место и облегчило вес, избавившись от ненужного отсека камеры сгорания. Новинка компании Bosch сделала реальным подачу топлива под давлением в тысячу бар прямо в цилиндрический бак — это привело к более эффективному сжиганию топлива. С каждым годом, улучшались показатели, рос потребительский спрос, что стимулировало изучение движков, работающих на дизеле. В начале нового тысячелетия моторы могли выдавать показатели в 2000 бар, и эта цифра растет до сих пор.

Система питания дизельного ДВС | АВТОСТУК.РУ

Система питания современного двигателя внутреннего сгорания — это совокупность электронных и механических узлов, функция которых заключается не только в стабильной подаче топлива к форсункам, но и делать это под давлением. Если топливо нагнетается под определенным давлением, то оно распыляется и не капает в одну точку, поэтому называется дозированный многоточечный впрыск в рабочие камеры сгорания цилиндров.

Содержание статьи:

  1. Особенности дизельного ДВС.
  2. Работа системы питания дизельного двигателя.
  3. Устройство системы питания дизеля.
  4. Схема питания турбодизеля.
  5. Видео.

 

Особенности дизельного ДВС

По составу дизельное топливо сильно отличается от всех марок бензина. В диз топливе содержится керосин и газойлевые соляровые фракции. При получении солярки, из нефти сначала отделяют бензин.

Качество бензина зависит от октанового числа, а солярка зависит от значения цетаного числа. На автозаправочных станция сегодня продают дизельное топливо в ценатом от 45 до 50. Для новых дизельных двигателей требуется солярка с высоким цетаном.

Краткий рабочий цикл топливной системы дизельного агрегата:
  1. Топливо очищается от примесей.
  2. Попадает в топливный насос высокого давления.
  3. ТНВД сжимает топливо и оно под давлением проходит через микроотверстие в форсунке и распыляется на мелкие частички.
  4. При движении поршня вниз, открывается всасывающий клапан и воздух поступает в камеру цилиндра и моментально нагревается от сжатия (давление сжатия от 3 до 5 Мпа) при движении поршня вверх.
  5. Распыленное топливо смешивается с горячим воздухом, это от 700 до 900 градусов, и самовозгорается.

Кто не знает, основное отличие дизельного двигателя от бензинового не только в топливе, но в система поджига топлива. Если бензин поджигается за счет образования искры свечи, то солярка поджигается от сильного сжатия и высокой температуры.

Самыми надежными считаются свечи зажигания NGK.

 

 

Классификация дизельного топлива по температуре застывания:
  1. летнее дизельного горючее;
  2. зимнее;
  3. арктическое.

Так же, эти сорта солярки немного отличаются по цвету. Опытные шофера определяют по цвету. Вязкость и плотность дизель топлива намного больше, чем у бензина. Также, солярка обладает смазывающим эффектом, поэтому оно не является обезжиривающей жидкостью, как бензин.

 

Работа системы питания дизельного ДВС

Функции системы питания дизеля следующие:
  • в зависимости от нагрузки на двигатель и режима работы ДВС нагнетать солярку в строго определенном количестве;
  • распылять топливо в заданный промежуток времени с нужным давлением;
  • максимально распылять диз топливо по всей рабочей камере сгорания цилиндра;
  • до того, как топливо поступит в ТНВД и форсунки, топливо проходит фильтрацию.

 

 

Устройство системы питания дизеля

Из чего состоит топливная дизельная система:
  1. Топливный бак.
  2. Фильтр грубой очистки топлива (ГОТ).
  3. Фильтр тонкой очистки топлива (ТОТ).
  4. Насос для подкачивания дизтоплива.
  5. Топливный насос высокого давления (ТНВД).
  6. Инжекторные форсунки.
  7. Магистраль высокого давления.
  8. Трубопровод низкого давления.
  9. Фильтр очистки воздуха.

Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.

 

Система питания дизельного двигателя состоит из двух основных частей:
  • дизельное устройство для подачи топлива;
  • дизельное устройство для подачи воздуха.

 

Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.

 

Система питания дизельного ДВС оснащается двумя насосами:
  • насос высокого давления;
  • насос для подкачки топлива.

Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.

Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.

 

Нераздельная система подачи топлива

Система питания дизельного двигателя нераздельного типа, то есть ТНВД и форсунки расположены в одном корпусе, устанавливается в двухтактные дизельные моторы. Устройство, в котором есть и насос ТНВД и форсунка называется насос-форсункой.

Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.

 

Раздельная система подачи топлива

В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.

Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.

 

 

Классификация дизельных форсунок по конструкции:
  1. закрытая форсунка, то есть сопло у нее закрывается специальное запорной иглой;
  2. открытая форсунка.

В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.

Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.

 

 

Схема питания турбодизеля

Чтобы увеличить мощность дизельного аппарата, устанавливают турбину. Конструкция топливной системы дизельного двигателя не изменяется, если мотор с турбонаддувом. Меняется схема и вариант подачи топлива в мотор от схемы атмосферного двигателя.

Турбированный двигатель получается путем установки турбокомпрессора. В дизельном моторе турбина работает на отработавших газах. Сначала турбокомпрессор сжимает воздух, охлаждает его и подает в рабочую камеру сгорания цилиндров дизельного силового агрегата. Воздух нагнетается под давлением 0,15-0,2 МПа (Мега Паскаль).

 

Классификация турбонаддува по давлению:
  • до  0,15 Мпа;
  • 0,2 МПа — турбокомпрессор средней мощности;
  • > 0,2 МПа.

Как в бензиновых, так и дизельных двигатель турбина служит для дополнительной подачи воздуха в камеры сгорания. Чем больше воздуха, тем больше и качественнее догорает топливо. Мощность двигателя с турбиной увеличивается на 30%.

Минус турбированных моторов в том, что такие агрегаты работают в более трудных условиях: повышается температура; детали, особенно цилиндро-поршневой группы (ЦПГ), кривошипно-шатунного механизма (КШМ), газораспределительного механизма (ГРМ) испытывают больше давления и, саму турбину обычно надо менять через 100 000 км пробега.

 

 

Видео

В этом видео подробно рассказывается о системе подачи топлива в дизель мотор.

Топливная система дизельных двигателей.

Система питания двигателя КАМАЗ.

 

Автор публикации

9.Система питания дизельного двигателя. Назначение, устройство и работа системы питания дизеля. Общее устройство и работа системы питания дизеля.

Система питания дизельного двигателя должна создавать высокое давление впрыска топлива в камеру сгорания цилиндра; дозировать порции топлива в соответствии с нагрузкой двигателя; производить впрыск топлива в строго определенный момент, в течение заданного промежутка времени и с определенной интенсивностью; хорошо распылять и равномерно аспределять топливо по объему камеры сгорания; надежно фильтровать топливо перед его поступлением в насосы и форсунки. 

Дизельное топливо представляет собой смесь керосиновых, газойлевых и соляровых фракций после отгона из нефти бензина. К основным свойствам дизельного топлива относятся: воспламеняемость, оцениваемая октановым числом; вязкость; чистота и температура застывания, по которым различают дизельное топливо по сортам: ДЛ — летнее ДЗ — зимнее, ДА — арктическое.  

Система питания дизельного двигателя состоит из:

  • топливного бака;

  • фильтров грубой и тонкой очистки воздуха;

  • топливоподкачивающего насоса;

  • топливного насоса высокого давления с регулятором частоты вращения и автоматической муфтой опережения впрыска топлива;

  • форсунок;

  • трубопроводов высокого и низкого давления;

  • воздушного фильтра;

  • выпускного газопровода;

  • глушителя шума отработавших газов.

Схема питания дизельного двигателя

10. Смесеобразование в дизелях.

Процесс смесеобразования происходит в течение короткого промежутка времени внутри цилиндра, когда поршень находится вблизи ВМТ. К началу подачи топлива — в конце такта сжатия давление в цилиндре составляет примерно 3,5—4,5 МПа, а температура — 800—900 К.

Смесеобразование представляет собой процесс испарения мелко распыленного топлива и перемешивание его паров с воздухом. Каждая частица топлива должна войти в соприкосновение с воздухом как можно скорее, чтобы выделение теплоты произошло в начале хода расширения. Для улучшения смесеобразования и повышения однородности смеси коэффициент избытка воздуха составляет от 1,4 до 1,7. Равномерное распределение топлива по объему камеры сгорания осуществляется за счет кинематических энергий распыленного топлива и движущегося воздуха, определяемых формой камеры сгорания и скоростью движения поршня.

В современных дизелях находит применение объемное, объемно-пленочное, пленочное, вихрекамерное и предкамерное смесеобразование. Способ смесеобразования обусловлен формой камеры сгорания, которая в сочетании с топливоподающей аппаратурой определяет условия процессов смесеобразования и сгорания. Двигатель с непосредственным впрыском топлива обеспечивает наиболее экономичный рабочий цикл и хорошие пусковые свойства двигателя.

11. Воздухоочистители.

Виды воздушных фильтров для автомобилей

Первый из них – сухой инерционный фильтр. В основе процесса очистки воздуха в нем лежит центробежная сила. В этом фильтре воздух движется по спирали, а частицы пыли по инерции откидываются к стенкам фильтрующего элемента. Затем скопившаяся пыль собирается в специальную емкость или же высасывается с последующим выбросом наружу. Этот тип фильтров обычно используется на транспортных средствах, работающих при большой степени запыленности – грузовых автомобилях и сельскохозяйственной технике. Он позволяет уловить около 70% крупнозернистой пыли.

Следующий вид инерционно-масляный фильтр. Он состоит из большого цилиндрического корпуса с налитым на дне маслом, над которым располагается фильтрующий элемент. Последний изготавливается из металлической либо капроновой сетки. Такой фильтр дважды очищает воздух. Последний поступает через горловину или щели сверху корпуса, затем резко меняет свое направление над маслом. При этом по инерции частицы пыли оседают в масло. Для второй очистки воздух пропускается через сетку, промоченную маслом, чтобы отфильтровать более мелкую пыль. Большим «минусом» этого вида фильтров является пропускание большой части пыли (1-2%), особенно в условиях неполных нагрузок (10%). Кроме того, при работе в загрязненных условиях его необходимо часто промывать. Потому в наше время этот вид фильтров можно найти разве что, на старых «Волгах», «Запорожцах» и грузовых машинах советского производства. В остальных же моделях они уступили место более современным воздушным фильтрам – бумажным.

Применение бумажного фильтра снижает степень износа деталей силового агрегата на 15-20 %. Отметим, что в запыленных условиях эта цифра достигает 200%.

Основой бумажного фильтра является фильтровальная шторка из специальной пористой бумаги. Она может «ловить» частицы пыли не только поверхностью, но и по всему объёму. Кроме того, волокна бумаги, переплетаясь между собой, способны задерживать пыль диаметром до 1 микрона. С целью защиты фильтрующего элемента от размокания при высокой влажности или попадании воды, бумага пропитывается специальной смолой. Бумага в корпусе фильтра сложена «в гармошку». Это дает возможность увеличить площадь фильтрования. Для герметизации места соединения бумаги и корпуса уплотняются пластизолем.

В зависимости от формы, бумажные фильтры бывают цилиндрические, бескаркасные, панельные. В цилиндрических фильтрах иногда установлен предочиститель, изготовленный из специального поролона или синтетического вещества. Он размещается вокруг фильтровальной шторки. Предочиститель продлевает «жизнь» фильтрующего элемента за счет задержки крупнозернистой пыли и масляных испарений.

И последний вид автомобильных фильтров для очистки воздуха – фильтры с пониженным сопротивлением. Эти детали имеют минимальное сопротивление всасываемому воздуху (на 50-60 % меньше, чем у бумажных изделий). Они могут изготавливаться в специальном корпусе или служить сменным элементом для штатного фильтра. Производятся эти фильтры из хлопчатобумажной ткани либо поролона. Перед применением фильтрующий материал подлежит пропитке специальным маслом. В отличие от бумажных, фильтры с пониженным сопротивлением используются многократно. Но это возможно только в случае регулярной промывки специальным шампунем и пропитки специальным маслом.

Преимущества дизельной энергосистемы

При покупке новой энергосистемы для вашего бизнеса вы обнаружите, что сегодня на рынке доступно множество вариантов. Хотя выбрать марку или модель достаточно сложно, самое важное решение, которое вам придется принять, — это источник топлива, используемый для работы генератора. Большинство промышленных предприятий выбирают систему питания на природном газе или дизельном топливе. Хотя природный газ, безусловно, имеет явные преимущества, у дизельной энергетической системы есть и ключевые преимущества.

Fuel Efficient

Поскольку цены на топливо продолжают колебаться, многие владельцы бизнеса обеспокоены своими затратами, особенно если учесть, что вам, возможно, придется поддерживать работу генератора в течение нескольких часов без остановки во время отключения электроэнергии. Имейте в виду, что дизельное топливо имеет гораздо более высокую плотность энергии, чем газ, а это означает, что генератор будет работать дольше с дизельным топливом, чем с тем же объемом газа, и при почти незначительном увеличении цены. Например, дизельный генератор мощностью 120 кВт обеспечивает эффективность использования топлива в пределах 10,9и 32,1 литра в час. Это намного лучше, чем то, что предлагают бензиновые двигатели. Вот почему дизельные двигатели являются очевидным выбором для тяжелонагруженного оборудования, такого как промышленные электрогенераторы.

Простота обслуживания

Дизельные генераторы — отличный вариант для занятых профессионалов, поскольку они требуют минимального обслуживания. Это связано с тем, что для их включения требуется меньше компонентов. В отличие от бензиновых двигателей, в которых используется искровое зажигание, в дизельных двигателях используется компрессия. Воздух обычно всасывается в двигатель и подвергается сильному сжатию, в результате чего топливо нагревается и воспламеняется. С дизельным двигателем вам не нужно менять свечи зажигания или ремонтировать карбюратор. Одним компонентом в машине меньше — на один потенциальный ремонт меньше. В зависимости от модели дизельный агрегат может работать до 30 000 часов, прежде чем потребуется какое-либо серьезное техническое обслуживание.

Еще один важный момент, на который следует обратить внимание, это то, что дизельные двигатели работают с меньшим числом оборотов в минуту, чем бензиновые двигатели. Они делают это без ущерба для выходной мощности. Меньшее количество оборотов в минуту снижает общий износ, связанный с частой и продолжительной работой генератора.

Высокая долговечность

Дизельные двигатели рассчитаны на то, чтобы выдерживать большой износ на промышленных объектах. Дизельное топливо обладает самосмазывающимися свойствами, которые в значительной степени способствуют долговечности генератора. Однако, как и бензиновые двигатели, им требуется дополнительная смазка для поддержания их эффективности с течением времени.

Наличие меньшего количества компонентов, чем у бензинового двигателя, еще больше снижает вероятность поломки. Также полезно отметить, что дизельные двигатели рассчитаны на очень высокие температуры, поэтому риск перегрева невелик, если система правильно обслуживается. Простота двигателя и конструкция делают дизельные генераторы более прочными и надежными в эксплуатации.

Бесперебойное питание

Благодаря своей долговечности дизельные генераторы могут бесперебойно работать в течение длительного периода времени. Это приводит к непрерывному электроснабжению даже после отключения электроэнергии, которое длится несколько часов. Вы сможете поддерживать работоспособность всех важных систем, не беспокоясь о высоких расходах на топливо. Без генератора ваш бизнес может понести значительные финансовые потери из-за спада производства. Отключение может длиться несколько дней, поэтому лучше подготовиться, купив дизельную систему, на которую можно положиться в случае непредвиденных обстоятельств.

Безопасно хранить

Дизельное топливо безопаснее хранить, чем бензин, поскольку оно не так легко воспламеняется. Однако он все еще легко воспламеняется, поэтому с ним следует обращаться осторожно. Топливо следует хранить вдали от любых источников тепла на случай разлива. При правильном хранении вы можете ожидать, что ваше дизельное топливо сохранит свои качества дольше, чем бензин.

Увеличенный срок службы

Известно, что дизельные двигатели обычно служат дольше, чем аналогичные бензиновые двигатели. При надлежащем обслуживании ваш дизельный генератор может прослужить десятилетие, а то и два или три десятилетия! Если вы хорошо о нем заботитесь, вы можете свести к минимуму риск дорогостоящего ремонта или необходимости замены вашей системы намного раньше, чем ожидалось.

Высокая мощность

Дизельные двигатели часто используются в промышленных условиях, поскольку они способны без проблем справляться с огромными силовыми нагрузками. Когда электричество отключится, вам не придется выбирать, что включить. Имея генератор нужного размера, вы можете поддерживать работоспособность всего важного электрического оборудования в случае отключения электроэнергии.

Есть ли недостатки у владения дизельной системой?

Несмотря на то, что преимущества очевидны, у дизельных генераторов есть и недостатки, о которых следует знать перед покупкой. Вот основные недостатки владения дизельной силовой установкой.

Высокие первоначальные затраты

Дизельные генераторы, как правило, стоят дороже, чем их газовые аналоги. Однако эта стоимость часто перевешивается тем фактом, что системы требуют меньшего обслуживания и меньше ремонтируются, если за ними правильно ухаживают.

Чрезмерный шум

Известно, что дизельные агрегаты более шумные, чем другие типы энергосистем. Однако есть способы минимизировать шум на месте, например, установить вокруг системы шумопоглощающий кожух. Это гарантирует, что вы сможете воспользоваться преимуществами дизельного генератора, не беспокоясь о том, что он будет издавать слишком много шума и отвлекать ваших сотрудников.

Увеличение выбросов

Дизельные двигатели выделяют углекислый газ и другие токсичные загрязнители, которые способствуют глобальному потеплению. Если вы покупаете дизельный генератор и чрезмерно беспокоитесь о его воздействии на окружающую среду, вам следует рассмотреть все различные способы снижения углеродного следа, например, сократить потребление энергии.

Ваш энергетический партнер в Калифорнии

Дизельные генераторы различных размеров и спецификаций для коммерческих и промышленных предприятий. Выбор подходящего генератора для вашего объекта будет зависеть главным образом от потребностей вашей компании, бюджета и индивидуальных предпочтений. Если вы ищете дизельный генератор в Калифорнии, компетентные представители Valley Power Systems готовы рассмотреть ваши варианты. Свяжитесь с нами сегодня чтобы начать.

Не забудьте подписаться на нас в Facebook и Linkedin, чтобы получать дополнительные обновления, или свяжитесь с нашим офисом для получения дополнительной информации.

Дизельная электростанция – компоненты, работа и применение

Содержание

Что такое дизельная электростанция?

Дизельный двигатель использует дизельный двигатель для вращения генераторов и производства электроэнергии. Дизельный двигатель используется в качестве основного двигателя, и эта силовая установка известна как дизельная электростанция.

Благодаря сгоранию дизельного топлива вырабатывается энергия вращения. Генератор соединен с тем же валом дизельного двигателя. А генератор переменного тока используется для преобразования энергии вращения дизельного двигателя в электрическую энергию.

В большинстве случаев дизельная электростанция используется для выработки электроэнергии для мелкосерийного производства и на стороне нагрузки. Когда мощность сети недоступна, дизельный двигатель используется для питания нагрузки в аварийных условиях.

Как правило, дизельные электростанции мощностью от 2 до 50 МВт используются на центральных электростанциях для удовлетворения пикового спроса на паровых электростанциях и гидроэлектростанциях. Но в настоящее время из-за высокой стоимости топлива дизельные двигатели не используются для таких целей.

  • Связанный пост: Ветряная электростанция — ветряные турбины, генераторы, выбор площадки и схема генерации

Компоненты, рабочая и принципиальная схема дизельной электростанции

На приведенном ниже рисунке показана принципиальная схема дизельной электростанции.

Щелкните изображение, чтобы увеличить его

Различные компоненты или системы, используемые в дизельной электростанции, перечислены ниже.

  • Дизельный двигатель
  • Система впуска воздуха
  • Выхлопная система
  • Система водяного охлаждения
  • Система подачи топлива
  • Система смазки
  • Система запуска дизельного двигателя

Дизельный двигатель

Дизельный двигатель является основным компонентом дизельной электростанции. Он используется для выработки механической энергии в виде энергии вращения с помощью сгорания дизельного топлива. Генератор подсоединен к тому же валу, что и дизельный двигатель.

Существует два типа дизельных двигателей;

  • Двухтактные двигатели
  • Четырехтактные двигатели

В двухтактных двигателях на каждый оборот коленчатого вала развивают один рабочий такт. А в четырехтактных двигателях через каждые два оборота коленчатого вала развивается один рабочий такт.

По сравнению с четырехтактными двигателями двухтактные двигатели имеют низкое отношение веса к мощности, более компактны, легко запускаются и имеют низкие капитальные затраты. Но термодинамический КПД двухтактного двигателя меньше по сравнению с четырехтактным двигателем. Двухтактные двигатели требуют больше охлаждающей воды и потребляют больше смазочных материалов.

Четырехтактные двигатели более предпочтительны по сравнению с двухтактными для применения в малых генерациях и дизель-генераторных установках. А для крупносерийного производства предпочтение отдается двухтактным двигателям. Требуемую мощность дизельной электростанции можно рассчитать по приведенному ниже уравнению.

Мощность электростанции = (Подключенная нагрузка × Коэффициент спроса) / (Коэффициент разнообразия)

Дизельная электростанция мощностью менее 3 МВт используется в качестве резервных электростанций, а электростанции мощностью от 3 до 25 МВт используются в качестве базовых электростанций. Как правило, в установках такого типа используются четырехтактные двигатели. Установки, используемые для установок с базовой нагрузкой, имеют мощность более 10 МВт, и для этих установок используются двухтактные двигатели.

  • По теме: Почему мощность электростанции указана в МВт, а не в кВА?

Система впуска воздуха

Большой дизельной электростанции требуется воздух в диапазоне 4-8 м 3 /кВтч. В естественном воздухе содержится много частиц пыли, которые могут повредить цилиндры двигателей. Поэтому в системах впуска воздуха используются воздушные фильтры.

Воздушные фильтры изготавливаются из ткани, дерева или войлока. В некоторых случаях используются фильтры с масляной ванной. В фильтрах с масляной ванной частицы пыли покрыты маслом. Конструкция системы впуска воздуха сделана таким образом, чтобы она вызывала минимальные потери давления при движении воздуха.

Высокие потери давления могут привести к увеличению расхода топлива и снижению мощности двигателя. Во избежание засорения воздушные фильтры необходимо периодически очищать. В силовых установках большой мощности между двигателем и системой впуска используется глушитель для снижения шумового загрязнения.

Выхлопная система

При сгорании дизельного топлива образуются газы. Система, которая используется для удаления этих газов, известна как выхлопная система. Выхлопная система предназначена для выброса газов из двигателя в атмосферу.

Выхлопные системы сконструированы таким образом, что удаляют газы без потери давления. Если давление сбрасывается, требуется дополнительная работа для выхлопных газов. А это увеличит расход топлива и снизит мощность дизельных двигателей.

Для снижения уровня шума выхлопная система должна быть снабжена глушителями и глушителями. С помощью гибких выхлопных труб вибрация должна изолироваться от установки.

Выхлопную систему необходимо покрыть асбестом, чтобы избежать теплопередачи, и ее необходимо периодически очищать.

Система водяного охлаждения

Двигатель внутреннего сгорания работает за счет сжигания топлива с воздухом, и процентное использование энергии показано ниже;

  1. 30-37% – полезная работа
  2. 30-35% – переносятся выхлопными газами
  3. 0-12% – потери на излучение, конвекцию и теплопроводность
  4. 22-30% – потоки тепловой энергии от газов к стенкам цилиндра

Следовательно, в двигателе внутреннего сгорания 22-30% энергии теряется в виде тепловой энергии. А чтобы двигатель не перегревался, ему необходима система охлаждения. Существует два типа систем охлаждения;

  • Прямое охлаждение
  • Косвенное охлаждение

Прямое охлаждение также известно как воздушное охлаждение, а непрямое охлаждение также известно как водяное охлаждение. Как правило, воздушное охлаждение используется для двигателей малой мощности. И он использует охлаждающие ребра и перегородки для отвода тепла от двигателя. Для двигателей большой и средней мощности используется система водяного охлаждения. В системе водяного охлаждения используется водяная рубашка, радиатор и патрубки.

  • Связанный пост: Солнечная электростанция — типы, компоненты, схема и работа

Система подачи топлива

В дизельной электростанции, как следует из названия, в качестве топлива используется дизельное топливо. Система подачи топлива должна выполнять следующие функции.

  • В зависимости от мощности двигателя и количества часов подачи требуется резервуар для хранения дизельного топлива.
  • Перед подачей топлива в двигатель топливо должно быть отфильтровано и не должно содержать примесей.
  • Необходим учет топлива.
  • В зависимости от нагрузки в каждом цикле он должен впрыскивать точное количество топлива.
  • Обеспечьте обратный путь к неиспользованному топливу.
  • В многоцилиндровом двигателе требуется распыление топлива и равномерное распределение топлива по каждому цилиндру.

Существует три типа механических систем впрыска топлива;

  • Система Common Rail
  • Индивидуальная насосная система
  • Распределительная система

Система смазки

В двигателе внутреннего сгорания расположение поршень-цилиндр относится к очень большому изменению температуры. Он работает при максимальной температуре около 2000˚ C или выше. При такой высокой температуре смазочный материал может превратиться в липкий материал. А это приводит к заеданию поршневых колец.

Двигатели работают в условиях высоких нагрузок и вызывают потери на трение в случае выхода из строя системы смазки. Следовательно, система смазки необходима для двигателя внутреннего сгорания и требует, чтобы достаточное количество масла достигало всех частей двигателя.

Система смазки предотвращает прямой контакт между двумя металлами и снижает износ движущихся частей. Перечисленные ниже компоненты двигателя внутреннего сгорания должны быть смазаны;

  • Поршень и цилиндр
  • Коренные подшипники коленчатого вала
  • Кулачок, распределительный вал и его подшипники
  • Концы подшипников шатуна

Существует три типа смазочных систем;

  • Система смазки распылением или заправкой
  • Система впрыска с мокрым картером
  • Система впрыска с сухим картером

Связанная статья: Тепловая электростанция – компоненты, работа и выбор места

Система запуска дизельного двигателя

Во время запуска температура и давление в цилиндре недостаточны для инициирования сгорания. Следовательно, запуск двигателя не способствует инициированию сгорания. Существует несколько методов запуска дизельного двигателя. Некоторые из этих методов перечислены ниже.

  • Запуск вручную или пинком
  • Электрический запуск
  • Сжатый воздух
  • Вспомогательный бензиновый двигатель
  • Зажигание с горячей лампой
  • Специальный картридж пусковой

Из этих методов электрический запуск является наиболее популярным методом запуска дизельного двигателя. В этом методе батарея используется с двигателем с последовательным возбуждением (стартер). Эта схема предназначена для работы на большом токе при низком напряжении. Пусковой двигатель соединен с маховиком двигателя через шестерни и обеспечивает крутящий момент до запуска двигателя.

  • По теме: Гидроэлектростанция – типы, компоненты, турбины и работа

Выбор места для дизельной электростанции

Ниже перечислены факторы, влияющие на выбор места для дизельной электростанции.

  1. Несущая способность: Дизель установлен на фундамент. Если несущая способность выбранной земли высока, то она не требует большой глубины для фундамента. И это сэкономит первоначальную стоимость силовой установки.
  2. Транспортное средство: Заводу требуется тяжелая техника. Следовательно, выбранное место должно иметь адекватное транспортное средство.
  3. Труд: Дизельная электростанция большой мощности требует нескольких рабочих.
  4. Наличие воды: Дизельной электростанции требуется вода для охлаждения.
  5. Будущее расширение: Есть дополнительные земли для будущего расширения.
  6. Наличие топлива: Эта установка требует большого объема топлива (дизельного топлива). Таким образом, место должно быть выбрано, где топливо легко доступно.
  7. Удаленность от населенного пункта: Работа дизельного двигателя загрязняет близлежащие территории. Следовательно, завод должен быть расположен на значительном расстоянии от человека.
  8. Расстояние от центра нагрузки: Во избежание потерь при передаче место следует выбирать рядом с центром нагрузки.
  • Сообщение по теме: Что такое атомная энергетика и как работает атомная электростанция?

Преимущества и недостатки дизельных электростанций

Преимущества

Преимущества дизельных электростанций перечислены ниже.

  • При необходимости может быстро запускаться и останавливаться.
  • Эта установка может быть расположена в любом месте, и ее легко установить для электростанции небольшой мощности.
  • Больше места не требуется.
  • Эта установка быстро реагирует на различные нагрузки.
  • Вода нужна только для охлаждения. Таким образом, требуется очень небольшое количество воды.
  • Тепловой КПД этой установки выше, чем у паровой электростанции.
  • Дизельная электростанция может быть эффективно использована до 100 МВт.
  • Требуется меньше рабочей силы.
  • Может сжигать различные виды топлива.
  • Меньше шансов возгорания.

Недостатки

Ниже перечислены недостатки дизельных электростанций.

  • Стоимость генерации за единицу очень высока. Так как работа этого завода зависит от цены дизельного топлива. И цены на дизель высокие.
  • Мощность дизельной электростанции меньше по сравнению с паровой электростанцией и гидроэлектростанцией.
  • Создает шумовое загрязнение и выбросы углекислого газа при сгорании дизельного топлива.
  • Требует больших затрат на обслуживание и смазку.
  • Эта установка не способна обеспечить постоянную перегрузку.
  • Срок службы этой установки меньше по сравнению с другими электростанциями.

Похожие сообщения:

  • Что такое HVDC? Передача электроэнергии постоянного тока высокого напряжения
  • Различия между передачей энергии HVAC и HVDC
  • Преимущества передачи энергии HVDC по сравнению с HVAC

Применение дизельных электростанций

Применение дизельных электростанций:

1) Установка установки

Установка может быть легко установлена ​​в сети энергосистемы. Но если учесть экономические соображения, то мощность панта ограничивается от 5 МВт до 50 МВт. Эти пределы также зависят от грузоподъемности, наличия топлива, воды и места.

2) Пиковая электростанция

Дизельная электростанция используется с теплоэлектростанциями и гидроэлектростанциями для удовлетворения пикового спроса. Это снижает удельные затраты на производство электроэнергии. Он может легко запускаться и останавливаться в зависимости от потребности и изменения нагрузки.

3) Аварийная установка

Дизельный двигатель можно использовать в качестве аварийной установки. Когда мощность сети недоступна, дизельный двигатель используется в качестве резервной установки на случай чрезвычайных ситуаций.

4) Мобильная установка

Дизельная электростанция малой и средней мощности может быть закреплена на грузовике или прицепе. Эта установка может использоваться как мобильная электростанция, и мы можем использовать эту установку для снабжения там, где электроэнергия недоступна. Эта установка также используется в качестве аварийной станции при отключении электроэнергии.

5) Резервный блок

Эта установка может использоваться в качестве резервного блока с гидроэлектростанцией. Когда на гидроэлектростанции недостаточно воды, для удовлетворения потребности в электроэнергии дизельная электростанция работает параллельно с гидроэлектростанцией.

6) Электростанция для малых предприятий

Эта установка может использоваться для краткосрочной работы небольших предприятий, где важна надежность электроснабжения в течение всего дня.

7) Детская станция

В некоторых районах, где сеть отсутствует, или в любом развивающемся районе, где нет достаточной нагрузки для подключения к сети, дизельная электростанция используется в качестве временного решения для подачи электроэнергии . И удалить, когда сетка подключена.

Похожие сообщения:

  • Что такое электричество? Типы, источники и производство электроэнергии
  • Что такое электроэнергия? Виды электроэнергии и их единицы
  • Калькулятор потребления энергии и мощности – Калькулятор кВтч
  • FACTS — Гибкая система передачи переменного тока — Типы контроллеров и устройств FACTS
  • Почему передача электроэнергии кратна 11, т. е. 11 кВ, 22 кВ, 66 кВ и т. д.?
  • Эффект короны и разряд в линиях электропередачи и энергосистеме
  • Почему кабели и линии электропередачи не закреплены на опорах и опорах ЛЭП?
  • Разница между системой передачи переменного и постоянного тока и линиями электропередач
  • Проектирование и монтаж подстанций СВН/СВН и СВН/ВН

Ветро-дизельные системы | AltEnergyMag

Wind

Заставить гибридную энергосистему работать в долгосрочной только о покупке и установке оборудования. Как и в любой другой технической системы, должна быть соответствующая документация по установке. Операторы и обслуживающий персонал должен иметь соответствующую подготовку. Средства должны быть выделены на техническое обслуживание и ремонт, т.е. заменить изношенный блок аккумуляторов или нанять специалист по устранению неполадок.

ВВЕДЕНИЕ В ВЕТРОДИЗЕЛЬНЫЕ СИСТЕМЫ

Сочетание двух или более генерирующих технологий, таких как ветер и дизель создает гибридную систему питания. Для удаленных мест, вдали от публики электросеть, это интересная альтернатива автономному электроснабжению. Если ветровые условия хорошие, ветрогибриды обычно могут обеспечить электричество на самая низкая стоимость для таких мест.

Существует множество различных концепций гибридных систем. Маленький электрические системы мощностью до нескольких кВт обычно используют батареи и часто не имеют генераторы с моторным приводом. Ветровые и солнечные фотоэлектрические элементы часто комбинируют, потому что они дополняют друг друга на ежедневной и сезонной основе. Часто дует ветер когда солнце не светит и наоборот.

При рассмотрении киловатт-часов небольшие генераторные установки более дороже покупать и эксплуатировать, чем более крупные машины. Поэтому аккумуляторы экономичность для небольших систем. Тем не менее, батареи также проблематичны частью гибридных систем из-за их токсичного содержания (при износе аккумуляторов вне, помните, что они должны быть правильно переработаны).

При более высоких требованиях к электропитанию генераторные установки с приводом от двигателя обычно используется из-за высоких затрат на хранение большого количества энергии в батареи. Система, состоящая из ветряной турбины (турбин) и дизель-генератора (генераторов), является называется ветродизельной системой. В этих системах количество энергии ветра («проникновение ветра») является решающим фактором при проектировании системы.

Низкое проникновение ветра не требует сложной технологии. Когда выработка ветровой энергии всегда меньше нагрузки, а другие электростанции постоянно находятся на линии для контроля частоты и напряжения сети, ветровой энергии экономит топливо за счет снижения нагрузки на другие силовые установки. Это похоже на подключение ветряной турбины к крупной национальной сети. Недостаток в том, что это не экономит так много топлива, особенно если используется неподходящий тип дизель-генератора. использовал. Генераторные установки требуют определенной минимальной нагрузки (около 25% номинальной нагрузки). типичны, но есть более подходящие стандартные генераторы, которые могут справиться с длительным время работы при нагрузке до 0%).

Обычно сильное проникновение ветра наиболее экономично в небольших энергосистемы при условии хороших ветровых условий из-за высокой стоимость маломасштабной традиционной генерации. Однако традиционный ветро-гибридный системы для сильного проникновения ветра довольно сложны. Чтобы соответствовать различным выдача ветровой энергии на нужды энергосистемы обычно используется (иногда в сочетании с дизель-генераторами, изготовленными по индивидуальному заказу).

Шведская разработка гибридных систем для сильного ветра проникновение, недавно осуществленное на изолированном эстонском острове, заняло другой подход. Выбрав ветряную турбину с наиболее подходящим характеристики для сильного проникновения ветра общая конструкция системы упрощенный. Таким образом, стоимость системы может быть снижена, хотя количество сила ветра высокая. Эта система более подробно описана далее в статье.

Когда подходит энергия ветра?

Если вам нужен источник питания в удаленном месте, когда вы должны рассматривать ветер как альтернативу? Наиболее важные факторы, которые будут определять экономия энергии ветра в таких местах:

  • Местные ветровые условия — конечно. Если среднее скорость ветра на высоте 10 м над землей менее 4 м/с, производство ветровой турбина будет настолько мала, что обычно не экономична. С другой С другой стороны, для ветреных мест, таких как многие острова, очень подходит энергия ветра.
  • Стоимость других альтернатив генерации . За в удаленных местах стоимость транспортировки топлива часто очень высока, что делает дизельное производство чрезвычайно дорогим.
  • Сезонные колебания ветровой энергии и нагрузки . В Северной Европе, например, производство ветряной турбины обычно самый высокий зимой, что очень выгодно, потому что обычно Потребность в энергии также наиболее высока зимой. (Солнечная энергия, с другой рука, производит очень мало или совсем ничего зимой, если вы находитесь далеко от экватор. А вот для дач крайний север используется в основном в солнечные дни. сезон, солнечная энергия имеет подходящие сезонные колебания.)
  • Размер системы питания . Чрезвычайно малые нагрузки всего несколько ватт часто неэкономичны для снабжения энергией ветра. Но для более крупных потребностей в энергии, таких как отдаленная деревня, энергия ветра является лучшим альтернатива.

Проектирование и внедрение гибридной системы

Проектирование и внедрение гибридной системы является очень квалифицированной задача, и обычно рекомендуется обратиться к опытному специалисту партнер для этого. Первый шаг обычно заключается в том, чтобы сделать обзор сайта на месте обсуждаемый.

Поскольку при проектировании гибридная система питания, профессионалы часто используют компьютеризированные программы расчета для определения конфигурации системы. В этих расчетах используются входные данные, например, из обследование местности и карты ветров. На выходе предварительная конфигурация системы расчет затрат, экономии топлива и т.д.


HOMER (Hybrid Optimization Model for Electric Renewables), программа для моделирование гибридных энергосистем

При покупке гибридной системы лучше искать пакет «под ключ», а не отдельные компоненты, чтобы снизить риск окончания с оборудованием, которое плохо работает вместе.

А что, если вы хотите сделать как можно больше самостоятельно… например, для питания вашего собственного удаленного дома? Хорошей отправной точкой является чтение. Есть хорошие книги о малой ветроэнергетике Пола Гипа и Хью. Piggott, у которых тоже есть интересные сайты: www.chelseagreen.com/Wind/PaulGipe.htm и http://homepages.enterprise.net/hugh0piggott/. Журнал Home Power (www.homepower.com) часто публикует статьи, описывающие, как люди создавали свои собственные гибридные системы. Однако не стоит недооценивать трудности и вопросы личной безопасности. вовлеченный.

Не только технологии

Заставить гибридную энергосистему работать в долгосрочной перспективе — это не просто о покупке и установке оборудования. Как и в любой другой технической системе, должна быть соответствующая документация по установке. Операторы и обслуживающий персонал должен иметь соответствующую подготовку. Средства должны быть выделены на техническое обслуживание и ремонт, т.е. заменить изношенный блок аккумуляторов или нанять специалист по устранению неполадок.

ПРИМЕР КОММЕРЧЕСКОЙ ВЕТРО-ДИЗЕЛЬНОЙ УСТАНОВКИ

Остров Осмуссааре (шведское название Оденсхольм) находится по адресу вход в Финский залив, примерно в 10 км от побережья Эстонии. Сегодня остров представляет собой природный заповедник, постоянно охраняемый только фермером и его женой, и нет подключения к энергосистеме на материке. Информация о интересную историю острова, карты и т.д. можно найти на www.kultgeog.uu.se/vanback/ (на эстонском и шведском языках).


Энергия ветра использовалась и в старые времена на острове

Когда Эстонская пограничная служба приказала построить радиолокационной станции на острове, они попросили установить ветродизельную систему, чтобы уменьшить расход топлива по сравнению с использованием только дизельного топлива.

Транспорт топлива на остров очень дорого. Нет гавани и мелководье пляжи делают невозможным для глубоководных лодок добраться до острова. В течение зимой ледовая обстановка иногда делает остров доступным только для вертолет.

Установка ветро-дизельной системы в конце 2002 года. Ветряк был установлен на более низкой отдельной башне, чтобы не мешать радару (который будет установлен на вершине высокой башни).

Основные компоненты

Энергосистема Осмуссааре рассчитана на максимальную мощность мощностью 30 кВА и состоит из следующих основных компонентов:

  • Один ветродвигатель PitchWind 30/14 (диаметр 14 м), оснащен гибридной системой управления. Для получения дополнительной информации посетите сайт www.pitchwind.se. Электрическая система ветряной турбины включает стандартную частоту преобразователь ABB, с входом также для дизельного топлива и питания от аккумуляторной батареи. А На этом объекте используется решетчатая башня, поставленная Empower EEE (концентратор высота 35 м). На Осмуссааре ветряк установили с помощью двух мобильные краны, но вместо них можно использовать подъемный кран на площадках, где нельзя использовать мобильные краны.
  • Две дизель-генераторные установки SDMO мощностью 32 кВт каждая с вспомогательное оборудование, такое как топливные баки. Причина выбора двух дизель-генераторы являются резервными (при выходе из строя одного дизель-генератора, есть один запасной).
  • Блок аккумуляторов общей емкостью 100 кВтч. аккумуляторная батарея не является обязательной и может быть отключена (например, если батареи будут повреждены). Система будет работать в любом случае, но топливо экономия будет больше при подключении аккумуляторной батареи.
  • Зарядное устройство стандартного промышленного типа.


PitchWind 30/14 на Осмуссааре

Ветер – основной источник энергии

Ветродизельная установка на Осмуссааре рассчитана на сильный ветер проникновения и основан на концепции, первоначально разработанной в Chalmers Технологический университет в Гётеборге, Швеция. С помощью ветряка с регулируемая скорость, управление по тангажу и специальная система управления, более высокий уровень обеспечивается управляемость по сравнению с обычными ветряными турбинами, подключенными к сети. Ветряная турбина PitchWind может регулировать выходную мощность в соответствии с потребностями сетка. Кроме того, энергия вращения ветряной турбины может быть использована в качестве кратковременное накопление энергии, чтобы сгладить быстрые колебания скорости ветра.

На Осмуссааре это на практике означает, что при скорости ветра достаточно высока для того, чтобы ветряная турбина снабжала нагрузку, а дизель генератор(ы) автоматически отключаются. Нет дорогостоящего дампа, ротационного преобразователя или Для этого необходима дизельная генераторная установка, изготовленная по индивидуальному заказу.

При наличии избыточной энергии зарядное устройство отключается. связано. Избыточная энергия также может быть использована для низкоприоритетных нагрузок, таких как водонагреватели, но на Осмуссааре эта опция не используется.

На этом острове две идентичные дизельные электростанции используются для дополнения ветряной турбины

Особенности

Особенности концепции гибридной системы доступны на сайте PitchWind можно обобщить следующим образом:

  • Большая способность захвата ветра
  • Одна или несколько ветряных турбин
  • Одна или несколько дизель-генераторных установок
  • Дизель-генераторы могут быть отключены при достаточном ветре
  • Можно использовать стандартные дизельные генераторы (без сцепления или маховика). нужно)
  • Возможность интеграции солнечной или гидроэнергетики
  • Крупногабаритные батареи, содержащие свинец, кислоту или кадмий, не необходимо
  • Открытая система управления, основанная на технологии LonWorks

Места с ненадежным подключением к сети также могут извлечь выгоду из этой технологии. В этом случае гибридная система питания может функционировать как большой ИБП (источник бесперебойного питания) в сочетании с возобновляемой энергией производство.

В системе PitchWind необязательно использовать банка аккумуляторов. На Осмуссааре было принято решение включить аккумуляторы из-за очень высокая стоимость топлива на острове.

Система управления LonWorks

Гибридная система управления, разработанная F Group, на основе технологии LonWorks. Это распределенное и открытое управление архитектуры, которая используется практически во всем мире. Идеально подходит для приложений, таких как гибридные энергетические системы и распределенная генерация, потому что системы управления могут быть построены с использованием недорогих готовых компонентов, разработан, чтобы быть отказоустойчивым, удобно интегрировать оборудование из разных производителей, а также сочетать производство возобновляемой энергии с эффективным использование энергии.

В данном контексте «распределенный» означает, что LonWorks решения для управления построены как сети, где контроллеры могут общаться с друг друга через различные средства массовой информации. В гибридной системе управления есть несколько контроллеров, которые взаимодействуют друг с другом в одноранговой сети. Нет главного контроллера, от которого зависит вся система.

Используется открытый протокол связи, упрощающий связь между машинами. В этом случае было легко интегрировать преобразователь частоты от ABB, счетчик электроэнергии производства Gossen-Metrawatt, регистратор данных с GSM-модемом от Prolon и несколько других устройств в одном интероперабельная система управления.

Опция гибридной системы управления, которой не было На Osmussaare реализованы функции для эффективного использования энергии. Это может привести к увеличению проникновения ветра и снижению затрат, а также помогает избежать завышение мощности энергосистемы из-за высоких пиковых нагрузок. Один из способов сделать это — управление на стороне спроса, что означает, что определенные нагрузки с низким приоритетом переключаются включается и выключается системой управления. Другой способ – использовать многотарифную систему. что дает потребителям стимул использовать больше электроэнергии, когда обильный ветер доступны и меньше, когда затраты на выработку выше.

Свен Руин [email protected] — консультант работает в основном с ветровой энергией и гибридными энергетическими системами.

 

Очистите воздух от дизельных генераторов, питающих теневую сеть Калифорнии

Опубликовано вКомментарии

по Комментарий гостя

Промышленный резервный дизельный генератор. Фото через iStock

Вкратце

В отсутствие новых направлений политики роль дизельной генерации в энергетическом балансе Калифорнии будет только возрастать.

Синди Чавес

Синди Чавес является председателем округа управления качеством воздуха в районе залива и руководителем округа Санта-Клара.

Стивен Мосс, Special to CalMatters

Стивен Мосс является соучредителем и партнером M.Cubed, консалтинговой фирмы по экономике ресурсов и анализу государственной политики.

У Калифорнии есть маленький грязный секрет.

Подавляющее большинство калифорнийских резервных электрогенераторов — эти тихо жужжащие ящики, расположенные на интернет-серверных фермах, в больницах, полицейских участках и других объектах — работают на дизельном топливе. Штат хочет достичь 100% чистой энергии будущего, инвестируя миллиарды долларов в возобновляемые источники энергии, и в то же время неуклонно строить теневую сеть, работающую на ископаемом топливе.

В дополнение к выбросам диоксида углерода, дизельное топливо выделяет значительное количество твердых частиц, летучих органических соединений, оксидов азота и диоксида серы. Эти загрязнители создают смог и усугубляют респираторные заболевания, такие как астма, хроническая обструктивная болезнь легких и рак легких, особенно у детей и пожилых людей.

Дизельные генераторы часто располагаются вблизи мест проживания, работы и учебы людей. Они часто расположены в малообеспеченных и рабочих районах, которые имеют долгую историю экологического расизма.

Поскольку штат борется с мега-засухой, быстро растущими тарифами на электроэнергию и отключениями электроэнергии из-за лесных пожаров, калифорнийские предприятия и жители все чаще обращаются к резервным генераторам энергии, чтобы поддерживать свет и серверы в рабочем состоянии.

Нажимая «Подписаться», вы соглашаетесь с Условиями.

Успех! Спасибо что подписались.

Пожалуйста, введите действительный адрес электронной почты

Обработка…

Согласно исследованию MCubed, основанному на данных, собранных в Районе управления качеством воздуха в районе залива, количество нежилых резервных генераторов в районе залива увеличилось на 34% всего за три года. Согласно данным округа управления качеством воздуха Южного побережья, в Южной Калифорнии развертывание резервных генераторов выросло на 22% всего за один год. Девяносто процентов генераторов работают на дизельном топливе. Только в этих двух округах резервные генераторы электроэнергии могут производить до 12 гигаватт, что составляет 15% от мощности всей сети Калифорнии.

В отсутствие новых направлений политики роль дизельной генерации в энергетическом балансе Калифорнии будет только возрастать. В поисках недорогих и целесообразных способов обеспечения надежности регулирующие органы одобрили практически неограниченное использование дизельных генераторов в ближайшем будущем.

Как государство, которое гордится тем, что является лидером в области инноваций, экологически чистой энергии и внедрения электромобилей, может игнорировать быстрое распространение старой и грязной технологии, оказывающей несоразмерное негативное воздействие на наших наиболее уязвимых жителей? Мы постоянно хвастаемся, что Калифорния лидирует, но действительно ли мы знаем, в каком направлении мы движемся?

К счастью, есть способы уменьшить нашу зависимость от дизельного топлива. Инвестиции в аккумуляторные батареи уже делаются, что неуклонно снижает их стоимость, так что мы можем полагаться на ветер и солнечную энергию даже ночью.

Доступны новые технологии и программы, помогающие снизить потребление энергии, особенно в пиковые периоды, чтобы энергосистема не перегружалась. Микросети развертываются, чтобы позволить большему количеству сообществ безопасно перемещаться «от сети» в случае опасности лесных пожаров или риска отключения электроэнергии.

Предпринимаются усилия по принятию новой политики, позволяющей рассредоточенной чистой генерации повысить ценность энергосистемы и тем самым сделать ее более рентабельной. И мы можем перевести большую часть нашего производства энергии на технологии без сжигания, такие как топливные элементы, которые могут обеспечить чистую и надежную энергию для сообществ.

То, что происходит в Калифорнии, часто отражается на остальной части страны. Собираемся ли мы экспортировать чистое будущее или будущее с преобладанием дизеля?

Пора очистить воздух от грязного дизеля.

Мы хотим услышать от вас

Хотите оставить комментарий гостя или реакцию на статью, которую мы написали? Вы можете найти наши правила подачи здесь. Пожалуйста, свяжитесь с CalMatters с любыми комментариями: [email protected]

История, которую вы только что прочитали, была профинансирована такими же людьми, как вы.

CalMatters — это некоммерческий отдел новостей, и ваши не облагаемые налогом пожертвования помогают нам продолжать предоставлять вам и каждому жителю Калифорнии важную беспристрастную информацию.

пожертвовать сейчас

Поддержка некоммерческих и беспартийных новостей — один из способов борьбы с поляризацией журналистики .


Джонатан, Лагуна Нигель

Избранный участник программы CalMatters

Tagged: Комментарий

Power Generation — Флорида Детройт Дизель-Эллисон

Мощность, которая вам нужна. В любой момент. В любом месте.

Флорида Детройт Diesel-Allison является ведущим поставщиком решений для производства электроэнергии с помощью дизельных генераторов, газовых генераторов и динамических ИБП. Благодаря надежному решению от FDDA вы можете быть спокойны, зная, что в случае сбоя в сети или в энергосистеме вы сможете обеспечить постоянную подачу надежного питания. Мы считаем, что вы заслуживаете системы бесперебойного питания, чтобы поддерживать производительность и обеспечивать безопасность людей.

Отрасли, которые мы поддерживаем

  • Больницы
  • Аэропорты
  • Центры обработки данных
  • Промышленные объекты
  • Очистные сооружения

Услуги, которые мы предлагаем

  • Продажи
  • Аренда
  • Разработка приложений
  • Сервис

Почему

mtu Производство электроэнергии от FDDA?

Богатый опыт

Более 60 лет опыта работы с генераторными установками и полными энергосистемами

Полная системная экспертиза

Стабильная мощность в различных местах и ​​с разными требованиями

Тысячи глобальных установок

Экспертная установка, интегрированная с местной электросетью и сетью управления

Надежный сервис и поддержка

Места по всей Флориде, готовые служить вам

Резервные генераторные установки

Power Generation, основной бренд компании Rolls-Royce Power Systems AG, использует высокоскоростные дизельные двигатели mtu с системой впрыска топлива Common-Rail для производства генераторных установок, которые обеспечивают промышленность- ведущий независимый источник питания. Почему? Потому что, когда речь идет об аварийном электроснабжении, наземном или пиковом питании, объекты и места установки требуют постоянной надежной работы.

Дизель-генераторные установки

30 — 400 кВт

Силовые узлы мощностью от 30 до 400 кВт, MTU Генераторные установки малой мощности построены с использованием тех же инженерных и системных знаний, что обеспечивает низкий расход топлива, высокую эффективность и выдающаяся надежность. Доступны варианты уровня 4.

  • 30 кВт
  • 40 KWH
  • 50 KW
  • 60 KW
  • 80 KW
  • 100 KW
  • 125 KW
  • 150 KW
17449494
  • 150 KW.0075 180 кВт
  • 200 кВт
  • 230 кВт
  • 250 кВт
  • 275 кВт
  • 300 кВт
  • 350 кВт
  • 80079 04

    450–900 кВт

    Генераторная установка mtu 1600 DS обеспечивает мощность, технологии и надежность mtu в диапазоне мощностей от 400 до 900 кВт.

    MTU  Дизель-генераторы серии 1600 доступны со следующими характеристиками мощности:

    • 450 кВт
    • 500 кВт
    • 550 кВт
    • 600 кВт
    • 750 кВт
    • 800 кВт
    • 900 кВт

    750–1250 кВт

    Серия mtu  2000 зарекомендовала себя на протяжении шести поколений по производительности, топливной экономичности и надежности. Эта серия повышает производительность на рынке, превосходя классы производительности G2 и G3 по ISO 8528-5 и допуская чрезвычайно высокие ступени нагрузки без значительных отклонений частоты или напряжения.

    MTU 2000 серии дизельных генераторов доступны в следующих рейтингах питания:

    • 750 кВт
    • 800 кВт
    • 80

    • 1 000 KWH
    • 100181080
      • 1 000 KW
      • 100181080
        • 1 000 KWH
        • 1.250.250180708080818 1,000 1 000 KWH
        • 1080
        • 1 000 KWH
        • 080
        • 1 000 KWH
        • 80

        .

        1250–3250 кВт

        Генераторные установки серии mtu 4000 работают на самом высоком уровне, отличаются прочной конструкцией и оптимальным расходом топлива. Обеспечивает критически важное питание более 25 лет, поддерживая свое известное имя в долговечности и максимальной отказоустойчивости.

        mtu  4000 Series diesel generators are available in the following power ratings:

        • 1,250 kW
        • 1,500 kW
        • 1,750 kW
        • 2,000 kW
        • 2,250 kW
        • 2,500 kW
        • 2,800 kW
        • 3 000 кВт
        • 3 250 кВт

        MTU Преимущества дизель-генератора

        • Более доступная мощность
          • Лучший в отрасли коэффициент нагрузки 85%
        • Надежный дизайн снижает снижение
          • Даже в условиях грубых окружающих средств
          • Управление условиями двигателя
        • Высокие компоненты
          • Ведущие бренды
        • ASCOLENTIN

      Дизельное производство электроэнергии от FDDA

      Мощный

      Выходная мощность от 27 до 3250 кВт для максимальной производительности

      Проверенный

      Сертифицировано по ISO 8528, NFPA 110 и UL2200

      Доказано

      При поддержке mtu и их двигателей Series 4000 3-го и 4-го поколения

      Надежный

      Межремонтный ресурс до 48 000 часов

      Гибкий

      Предназначен для сложных приложений резервного питания, таких как центры обработки данных

      Одобренный

      Сертификаты ISO 9001:2008 и ISO 14001:2004

      Природный газ

      MTU Газовые генераторные установки обеспечивают непрерывный, экономичный, надежный и устойчивый источник энергии. Мы предлагаем ряд решений для резервного питания на природном газе и/или жидком пропане, предназначенных для использования в качестве резервного в случае возникновения проблем с сетью.

      30 – 650 кВт Резерв

      Наши резервные решения на природном газе имеют широкий спектр вариантов питания. Они начинаются с 2,5-литрового двигателя мощностью 30 кВт и продолжаются до модели двигателя CAC объемом 31,8 л мощностью 650 кВт.

      mtu  natural-gas generators are available in the following power ratings:

      • 30 kW
      • 40 kW
      • 50 kW
      • 60 kW
      • 75 kW
      • 100 kW
      • 125 kW
      • 150 kW
      • 200 кВт
      • 260 кВт
      • 350 кВт
      • 400 кВт
      • 500 кВт
      • 550 кВт
      • 600 кВт
      • 650 кВт
      0 90

      Преимущества природного газа

      Экономичный

      Низкие затраты в течение жизненного цикла благодаря увеличенным интервалам технического обслуживания и уменьшенному расходу масла

      Надежный

      Проверенная технология с тысячами успешных установок по всему миру

      Экологичный

      Низкий уровень выбросов — выброс углекислого газа на 50 % меньше, чем у обычных электростанций

      Независимый

      Гарантия поставок в случае выхода из строя или ненадежности местных сетей

      Динамические решения для ИБП

      mtu Блоки питания Kinetic обеспечивают динамическое бесперебойное электропитание за счет кинетической энергии и спроектированы таким образом, чтобы выдерживать самые жесткие требования к энергоснабжению. Мы поддерживаем критически важные приложения по всему миру в отраслях мощностью от 200 кВт до 2400 кВт.

      Динамические системы ИБП могут мгновенно обеспечивать электроэнергию, используя сохраненную кинетическую энергию для привода своих синхронных машин. Они обеспечивают «бесконечное» резервное электроснабжение с использованием дизельных двигателей. Кроме того, динамический ИБП действует как стабилизатор напряжения. Синхронная машина в сочетании с дроссельной катушкой действует как кондиционер для фильтрации пиков или переходных помех и для регулирования напряжения нагрузки в допустимых пределах.