Общее устройство системы питания дизельных двигателей
Категория:
Автомобили и трактора
Публикация:
Общее устройство системы питания дизельных двигателей
Читать далее:
Общее устройство системы питания дизельных двигателей
Система питания дизельного двигателя должна обеспечивать точную дозировку и своевременную подачу топлива в’ каждый цилиндр через равные угловые интервалы, очистку воздуха, подаваемого в цилиндры, и удаление отработавших газов.
Наибольшее распространение на автомобилях и тракторах получили четырехтактные дизельные двигатели, системы питания которых мало отличаются друг от друга.
Эти двигатели имеют раздельную топливную аппаратуру, состоящую из систем низкого и высокого давления.
Рекламные предложения на основе ваших интересов:
Система низкого давления включает в себя топливный бак (рис. 70), фильтр предварительной очистки топлива, фильтр тонкой очистки топлива, топ-ливоподкачивающий насос и топливопроводы низкого давления.
Система высокого давления состоит из топливного насоса высокого давления, форсунок и топливопроводов высокого давления.
Топливо из бака по трубопроводам и через фильтр грубой очистки подкачивающим насосом подается по трубке к фильтру тонкой очистки. Из фильтра в питающую полость насоса высокого давления топливо поступает по трубке, а затем по трубопроводу высокого давления в форсунку, а из форсунки впрыскивается в камеру сгорания. Избыток топлива после фильтра тонкой очистки поступает по з трубке на линию всасывания подкачивающего насоса.
Рис. 70. Схема системы питания дизельного двигателя трактора ДТ-75М.
Производительность подкачивающего насоса должна быть в 7—8 раз больше производительности насоса высокого давления, чтобы обеспечить надежную работу последнего. На подкачивающем насосе имеется дополнительный ручной насос, которым заполняют систему топливом и удаляют из нее воздух, а также подают топливо в пусковой подогреватель по трубке. В случае просачивания топлива между иглой и распылителем форсунки оно отводится от форсунки по сливным трубкам и в фильтр тонкой очистки. Воздух, необходимый для сгорания топлива, засасывается через воздухоочиститель.
Кроме указанных приборов в систему питания дизельного двигателя входят также впускной и выпускной трубопроводы, воздушный фильтр, глушитель шума выпуска, регулятор частоты вращения коленчатого вала, указатель количества топлива в баке, манометр и другие приборы.
Рекламные предложения:
Читать далее: Основные элементы системы питания дизельных двигателей
Категория: — Автомобили и трактора
Главная → Справочник → Статьи → Форум
Система питания дизельного двигателя — как она работает
Еще в далеком 1897 г. известный ученный Рудольф Дизель создал первый во всем мире работоспособный двигатель. Возможно, в то время он даже не догадывался, каким изменениям поддастся его творение. Самые существенные изменения в системе питания дизельного двигателя произошли в недавние годы. Именно эти изменения сделали эти двигатели более пригодными для применения не только на грузовых автомобилях, но и на повседневных легковых.
Автомобилистов всегда привлекали дизельные двигатели, так как они имеют более дешевое топливо, высокую экономическую составную, в сравнении с бензином. Тем не менее, широкое применение дизелей сдерживалось некоторыми недостатками, такими как повышенное дымление, большая сложность запуска холодного двигателя, а также высокий уровень шумности при его работе. И все же, революция дизельной системы переборола эти недостатки и данный тип двигателя вышел на новый, более качественный уровень.
Система питания дизельного двигателя обеспечивает непосредственную подачу чистого дизельного топлива к цилиндрам. Также, она сжимает топливо и подает в мелкораспыленном виде к камере сгорания, смешивая с горячим воздухом (от сжатия в цилиндрах) так, чтобы мог возникнуть процесс самовоспламенения. После завершения работы нужно очистить цилиндры от продуктов, возникших в результате сгорания.
Дизельное топливо имеет ряд отличий от бензина: высокая плотность дизеля и его смазывающая способность. Существует такой элемент «дизельной мозаики» как цетановое число, служащее для оценки возможности воспламенения дизельного топлива. Обычно, дизельное топливо имеет цетановое число в 45-50. Для современного дизельного двигателя предпочтительнее будет более высокое число.
У процесса смесеобразования в дизелях существует два варианта, которые обусловлены формой камеры сгорания. Первый вариант: топливо впрыскивается непосредственно в предкамеру (предварительную камеру). Второй вариант: впрыск топлива происходит конкретно в камеру сгорания, которая выполнена в поршне.
Таким образом, двигатели, которые были изготовлены в соответствии с первым вариантом, называются дизелями с разделенной камерой сгорания, а в соответствии со вторым – дизели с непосредственным впрыском. Дизели первого типа значительно мягче работают и, таким образом, снижают уровень шума. И все же, двигатели второго типа больше и чаще используются на автомобилях, так как их топливная экономичность выше примерно на 20%.
1. Система питания дизельного двигателя – основная функция
Основная функциональная задача системы питания двигателей как первого типа, так и второго у двигателей является непосредственная подача определенного количества топлива в определенный цилиндр и в конкретно установленное время. В дизелях с высоким количеством оборотов у легковых автомобилей процесс впрыска топлива в цилиндр занимает одну тысячную долю секунды. При этом, всего небольшая доза топлива впрыскивается туда.
Для того, чтобы облегчить запуск дизеля в холодное время довольно часто используются свечи накаливания. Они отличаются от зажигательных свечей тем, что являются обычными электрическими нагревателями холодного воздуха перед его подачей в цилиндры двигателя в момент его запуска. Необходимо, чтобы топливный бак соответствовал требованиям безопасности. Из топливного бака топливо поступает в нагнетательный трубопровод, откуда идет к топливному фильтру, это обеспечивает подкачивающий насос. Очищением топлива от потенциального загрязнения должен заниматься топливный фильтр, чтобы различные механические прошли дальше по всей дизельной системе. Также к топливному баку присоединяется сливной трубопровод, через который сливаются излишки топлива из форсунок.
Сложнейшим и самым дорогим устройством всей дизельной системы питания является топливный насос высокого давления. Его основная функция заключается в создании давления топлива. Помимо этого, он сам и распределяет его по тем соответствующим цилиндрам форсункам, которые, в свою очередь, соответствуют порядку работы всей двигательной системы. С насосом форсунки соединяются трубопроводами высокого давления и своей нижней частью они выходят в камеры сгорания. Распылитель (нижняя часть) имеет очень маленькое отверстие, которое нужно для того, чтобы поступление топлива в камеру сгорания происходило в распыленном виде, вследствие чего очень просто воспламенялось. На выпускном трубопроводе двигателя устанавливается воздушный фильтр, который очищает воздух, поступающий в цилиндры.
Сам процесс впрыска топлива в цилиндры проходит немного раньше. Вследствие этого процесса происходит воспламенение топлива. Именно поэтому те свечи зажигания, которые присущи бензиновому автомобилю, напрочь отсутствуют в дизельном двигателе. Так само как и в бензиновом двигателе, сама схема дизельной системы питания включает в себя два ключевых момента, в период работы которых топливо подается вместе с воздухом. Для того, чтобы нагнать то нужной количество воздуха, в дизельных автомобилях используется турбокомпрессор. Он начинает свою работу с непосредственной помощью единого потока отработанных газов.
Назначение всей системы питания дизельного двигателя довольно просто. Оно заключается в обычном и своевременном обеспечении двигателя рабочей смесью. Главной задачей в таком случае является превращение в механическую энергию энергии топлива. Начало процесса являет собою засасывание топлива с помощью насоса под высоким давлением и его пропуска в топливном фильтре. Это делается для очистки от грязи и воды. При отсутствии воздуха в системе осуществляется подача топлива. После этого происходит распределение этого же топливо в соответствующие цилиндры. С помощью форсунок производится непосредственная подача топлива в цилиндры. Для тотального отключения системы питания в автомобилях существует магнитный клапан.
2. Диагностирование системы питания дизельного двигателя – что смотреть в первую очередь?
Во всех автомобилях дизельного типа система питания двигателя вмещает в себя огромное количество различных агрегатов и приборов. Первоосновой является топливный бак, вслед за ним расположились фильтры для разно степенной очистки, а также разного рода насосы, высокого и низкого давления трубопроводы и система выброса выхлопных газов. Для нормальной и стабильной работы всех систем необходима своевременная диагностика неисправности системы питания дизеля.
На практике, большинство поломок возникают в системе топливной аппаратуры, которая работает под высоким давлением и с которой нужно начать свою проверку. Чтобы сначала диагностирование, а вскоре, и ремонт системы питания дизеля проходил правильно, нужно обращать внимание на все приборы, которые указывают в наибольшей степени о расходе топлива. Изначально происходит проверка фильтра, форсунок, воздухоочистителя, насоса подкачки и доставки топлива, которое происходит под очень высоким давлением. Также можно для большей уверенности проверить привод и регулятор частоты вращения.
3. Ремонт системы питания дизельного двигателя – как убрать неисправности вовремя?
Когда при диагностике были выявлены все неисправности, нужно запланировать их тотальное исправление. Таким образом, нужно провести разного рода техническое обслуживание. Главнейшим образом нужно проконтролировать работу фильтров. Необходимо очистить их от отстоя, а все фильтрующие элементы промыть. Если же повреждения достаточно серьезны, то нужно произвести капитальный ремонт.
Самое простой действие при ремонте заключается в элементарной проверке, а затем и очистке воздухоочистителя. С помощью манометра, который нужно подключить между фильтром для тонкой очистки и топливным насосом, нужно проверить низкое давление топлива в магистрали. Сама непосредственная работа насоса (подкачка топлива происходит под очень высоким давлением) должна обеспечивать единую и непоколебимую дозированную подачу дизельного топлива во все нужные форсунки по очереди.
При следующем техническом обслуживании данный насос может быть снятым и продиагностироваться на особом специальном стенда. После этого нужно провести все регулировочные работы и необходимые настройки. Во избежание поломок на пути автомобиля и аварий, нужно своевременно выполнять все мероприятия и вышеуказанные рекомендации.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Назначение и приборы системы питания дизельного двигателя
Какое назначение системы питания дизельного двигателя?
Система питания дизельного двигателя служит для подвода воздуха и топлива в цилиндры двигателя в заданной пропорции и под заданным давлением и отвода отработавших газов из них.
Что входит в устройство системы питания дизельного двигателя автомобиля КамАЗ-5320?
Система питания дизельного двигателя автомобиля КамАЗ-5320 (рис.76) состоит из топливного бака 16; топливного фильтра 18 предварительной (грубой) очистки топлива; топливоподкачивающего насоса 2 с устройством 1 для ручной подкачки топлива; топливного насоса 4 высокого давления; форсунок 6; электромагнитного клапана 8; факельной свечи 10; фильтра 12 для окончательной (тонкой) очистки топлива; топливопроводов низкого 3 и высокого 5 давления; топливоотводящих (дренажных) трубопроводов 9, 11, 14 и 15 с тройником 17; топливопроводов 7 и 13 для подвода топлива соответственно к электромагнитному клапану и топливному насосу; воздушных фильтров; трубопровода для подвода воздуха в цилиндры двигателя и отвода отработавших газов из них; глушители шума выпуска отработавших газов; указателя уровня топлива в топливном баке; регулятора частоты вращения коленчатого вала; педали газа с системой тяг для управления рейкой топливного насоса; автоматической муфты опережения впрыска топлива.
Рис.76. Схема системы питания дизельного двигателя автомобиля КамАЗ-5320.
На отдельных двигателях устанавливают турбокомпрессор для подачи воздуха в цилиндры двигателя под давлением с целью повышения мощности двигателя и снижения токсичности отработавших газов.
Как работает система питания двигателя автомобиля КамАЗ-5320?
Во время работы двигателя топливо из топливного бака поступает по топливопроводу в фильтр предварительной очистки 18 (рис.76), очищается от грубых примесей и воды и топливоподкачивающим насосом под давлением 0,15-0,20 МПа по топливопроводу 3 подается в фильтры тонкой очистки 12, где окончательно очищается. Затем по топливопроводу 13 поступает в топливный насос высокого давления 4, который повышает давление топлива, дозирует его количество для каждого цилиндра в соответствии с порядком работы и нагрузкой двигателя и по топливопроводам 5 высокого давления подает в форсунки 6, которые впрыскивают топливо в цилиндры под давлением 18 МПа. Впрыскнутое топливо смешивается в цилиндре с нагретым при такте сжатия воздухом и испаряется. Образовавшаяся горючая смесь самовоспламеняется и сгорает. Совершается такт рабочего хода, во время которого тепловая энергия преобразуется в механическую, и в виде крутящего момента передается на колеса автомобиля.
Избыточное топливо, а вместе с ним и проникший в систему питания воздух отводятся через перепускной клапан топливного насоса высокого давления и клапан-жиклер фильтра тонкой очистки по дренажным топливопроводам 11 и 14 в топливный бак 16. Топливо, просочившееся в полость пружины форсунки через зазор между корпусом распылителя и иглой, сливается в бак по дренажным топливопроводам 9 и 15 с тройником 17.
Электромагнитный клапан 8 топливопроводом 7 соединен с насосом высокого давления и служит для подачи топлива под давлением 0,06-0,08 МПа к факельным свечам 10, установленным во всех впускных трубопроводах для подогрева воздуха при пуске двигателя в холодное время года.
Система питания других дизельных двигателей устроена и работает так же, если она разделенного типа.
В чем особенности системы питания неразделенного типа и где она применяется?
Система питания дизельных двигателей неразделенного типа применяется на дизельных двухтактных двигателях ЯАЗ-204, ЯАЗ-206. В этой системе насос высокого давления и форсунка объединены в одном при боре, называемом насосом-форсункой, что позволило повысить давление впрыскиваемого топлива до 140 МПа при 2000 об/мин коленчатого вала. Однако работа такого двигателя более жесткая, что снижает срок его службы, в нем отсутствуют топливопроводы высокого давления. Регулятор частоты вращения коленчатого вала двухрежимный. Он устойчиво поддерживает минимальную частоту вращения коленчатого вала на холостом ходу и максимальную – на полных нагрузках двигателя.
***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания дизельного двигателя»
давление, двигатель, дизельный, насос, питание, система, топливный, топливо, топливопровод
Смотрите также:
9.Система питания дизельного двигателя. Назначение, устройство и работа системы питания дизеля. Общее устройство и работа системы питания дизеля.
Система питания дизельного двигателя должна создавать высокое давление впрыска топлива в камеру сгорания цилиндра; дозировать порции топлива в соответствии с нагрузкой двигателя; производить впрыск топлива в строго определенный момент, в течение заданного промежутка времени и с определенной интенсивностью; хорошо распылять и равномерно аспределять топливо по объему камеры сгорания; надежно фильтровать топливо перед его поступлением в насосы и форсунки.
Дизельное топливо представляет собой смесь керосиновых, газойлевых и соляровых фракций после отгона из нефти бензина. К основным свойствам дизельного топлива относятся: воспламеняемость, оцениваемая октановым числом; вязкость; чистота и температура застывания, по которым различают дизельное топливо по сортам: ДЛ — летнее ДЗ — зимнее, ДА — арктическое.
Система питания дизельного двигателя состоит из:
топливного бака;
фильтров грубой и тонкой очистки воздуха;
топливоподкачивающего насоса;
топливного насоса высокого давления с регулятором частоты вращения и автоматической муфтой опережения впрыска топлива;
форсунок;
трубопроводов высокого и низкого давления;
воздушного фильтра;
выпускного газопровода;
глушителя шума отработавших газов.
Схема питания дизельного двигателя
10. Смесеобразование в дизелях.
Процесс смесеобразования происходит в течение короткого промежутка времени внутри цилиндра, когда поршень находится вблизи ВМТ. К началу подачи топлива — в конце такта сжатия давление в цилиндре составляет примерно 3,5—4,5 МПа, а температура — 800—900 К.
Смесеобразование представляет собой процесс испарения мелко распыленного топлива и перемешивание его паров с воздухом. Каждая частица топлива должна войти в соприкосновение с воздухом как можно скорее, чтобы выделение теплоты произошло в начале хода расширения. Для улучшения смесеобразования и повышения однородности смеси коэффициент избытка воздуха составляет от 1,4 до 1,7. Равномерное распределение топлива по объему камеры сгорания осуществляется за счет кинематических энергий распыленного топлива и движущегося воздуха, определяемых формой камеры сгорания и скоростью движения поршня.
В современных дизелях находит применение объемное, объемно-пленочное, пленочное, вихрекамерное и предкамерное смесеобразование. Способ смесеобразования обусловлен формой камеры сгорания, которая в сочетании с топливоподающей аппаратурой определяет условия процессов смесеобразования и сгорания. Двигатель с непосредственным впрыском топлива обеспечивает наиболее экономичный рабочий цикл и хорошие пусковые свойства двигателя.
11. Воздухоочистители.
Виды воздушных фильтров для автомобилей
Первый из них – сухой инерционный фильтр. В основе процесса очистки воздуха в нем лежит центробежная сила. В этом фильтре воздух движется по спирали, а частицы пыли по инерции откидываются к стенкам фильтрующего элемента. Затем скопившаяся пыль собирается в специальную емкость или же высасывается с последующим выбросом наружу. Этот тип фильтров обычно используется на транспортных средствах, работающих при большой степени запыленности – грузовых автомобилях и сельскохозяйственной технике. Он позволяет уловить около 70% крупнозернистой пыли.
Следующий вид инерционно-масляный фильтр. Он состоит из большого цилиндрического корпуса с налитым на дне маслом, над которым располагается фильтрующий элемент. Последний изготавливается из металлической либо капроновой сетки. Такой фильтр дважды очищает воздух. Последний поступает через горловину или щели сверху корпуса, затем резко меняет свое направление над маслом. При этом по инерции частицы пыли оседают в масло. Для второй очистки воздух пропускается через сетку, промоченную маслом, чтобы отфильтровать более мелкую пыль. Большим «минусом» этого вида фильтров является пропускание большой части пыли (1-2%), особенно в условиях неполных нагрузок (10%). Кроме того, при работе в загрязненных условиях его необходимо часто промывать. Потому в наше время этот вид фильтров можно найти разве что, на старых «Волгах», «Запорожцах» и грузовых машинах советского производства. В остальных же моделях они уступили место более современным воздушным фильтрам – бумажным.
Применение бумажного фильтра снижает степень износа деталей силового агрегата на 15-20 %. Отметим, что в запыленных условиях эта цифра достигает 200%.
Основой бумажного фильтра является фильтровальная шторка из специальной пористой бумаги. Она может «ловить» частицы пыли не только поверхностью, но и по всему объёму. Кроме того, волокна бумаги, переплетаясь между собой, способны задерживать пыль диаметром до 1 микрона. С целью защиты фильтрующего элемента от размокания при высокой влажности или попадании воды, бумага пропитывается специальной смолой. Бумага в корпусе фильтра сложена «в гармошку». Это дает возможность увеличить площадь фильтрования. Для герметизации места соединения бумаги и корпуса уплотняются пластизолем.
В зависимости от формы, бумажные фильтры бывают цилиндрические, бескаркасные, панельные. В цилиндрических фильтрах иногда установлен предочиститель, изготовленный из специального поролона или синтетического вещества. Он размещается вокруг фильтровальной шторки. Предочиститель продлевает «жизнь» фильтрующего элемента за счет задержки крупнозернистой пыли и масляных испарений.
И последний вид автомобильных фильтров для очистки воздуха – фильтры с пониженным сопротивлением. Эти детали имеют минимальное сопротивление всасываемому воздуху (на 50-60 % меньше, чем у бумажных изделий). Они могут изготавливаться в специальном корпусе или служить сменным элементом для штатного фильтра. Производятся эти фильтры из хлопчатобумажной ткани либо поролона. Перед применением фильтрующий материал подлежит пропитке специальным маслом. В отличие от бумажных, фильтры с пониженным сопротивлением используются многократно. Но это возможно только в случае регулярной промывки специальным шампунем и пропитки специальным маслом.
Диагностика дизельных двигателей. Приборы для диагностики дизеля.
Своевременная диагностика дизельных двигателей позволяет намного упростить и удешевить ремонт агрегатов, а иногда и избежать его, своевременно применяя технологии безразборного ремонта (модификаторы трения), различные очистители узлов двигателя и топливной системы, а также используя качественную смазку и топливо.
Главное при выявлении причины любого отказа дизельного двигателя — выбор точки начала поисков. Часто причина оказывается лежащей на поверхности, однако в некоторых случаях приходится потрудиться, проводя небольшое исследование. Автолюбитель, произведший полдюжины случайных проверок, замен и исправлений вполне имеет шанс обнаружить причину отказа (или его симптом), однако такой подход никак нельзя назвать разумным, ввиду его трудоемкости и бесцельности затрат времени и средств. Гораздо эффективнее оказывается спокойный логический подход к поиску вышедшего из строя узла или компонента.
Определение неисправности дизеля
Чаще всего на СТО обращаются с неисправностью дизельного двигателя, вызванной плохим техническим состоянием (упала компрессия, потеря герметичности цилиндров), неисправности в электрических цепях (датчиках, исполнительных механизмах) или неправильной регулировкой начала впрыска топлива, плохой работой ТНВД и форсунок. Первым действием для оценки работы двигателя необходима косвенная информация об условиях в которых проявляется неисправность:
• Неисправность появляется всегда или периодически.
• В каких условиях эксплуатации проявляется неисправность: при запуске двигателя, при ускорении или торможении двигателем, при движении с постоянной скоростью, при определенных оборотах двигателя, на холостом ходу, на холодном или горячем двигателе.
• Какой расход топлива.
• Выдает ли двигатель требуемую мощность.
• Дымит ли двигатель.
Двигатель не запускается: подкачивающий насос не подает топливо, слишком ранний или поздний впрыск, неисправности форсунки, неисправные свечи накаливания, неисправен ТНВД.
Потеря мощности двигателя: слишком малая доза впрыска, повреждение распылителя форсунки, утечки топлива из трубок высокого давления.
Стуки в двигателе: слишком ранний впрыск, слишком большее давление открытия форсунок, люфт поршневых колец, износ поршневых или шатунных вкладышей, заниженная компрессия.
Черный дым: слишком поздний впрыск топлива, слишком низкое давление открытия форсунок, заклинивание иглы в распылителе, лопнувшая пружина форсунки, нагнетательный клапан ТНВД не закрывается, слишком низкая компрессия.
Неравномерная работа двигателя: завоздушивание топливной системы, «льющий» распылитель, трещина в топливопроводе высокого давления, лопнувшая пружина форсунки, повышенное давление открытия форсунки, износ газораспределительного механизма.
Следующее действие это детальный осмотр и сама диагностика дизельного двигателя, его агрегатов и топливной аппаратуры.
Мы рекомендуем приборы, применение которых позволяет максимально эффективно производить диагностику «железа» двигателя и топливной аппаратуры как импортного так и отечественного производства. Данное оборудование позволяет выявить неисправность и профессионально провести регулировочные и ремонтные работы.
Диагностика электроники дизельных двигателей
В современных дизелях большое значение уделяется диагностике электроники узлов автомобиля. На данный момент на рынке диагностики грузового транспорта, автобусов и спецтехники существуют два основных производителя оборудования: итальянская «TEXA» и испанский «JALTEST».
JalTest — является одним из лучших в мире комплексных решений для диагностики электрических и пневматических систем грузовиков, прицепов, автобусов и легкого коммерческого транспорта. Подключается к персональному компьютеру кабелем через usb-порт или через беспроводное соединение Bluetooth.
Cканер Jaltest Link позволяет работать с абсолютным большинством марок грузового и пассажирского транспорта: MERCEDES-BENZ, IVECO, SCANIA, VOLVO, MAN, RENAULT, DAF, SCHMITS и остальным коммерческим транспортом, на котором используются блоки BOSCH, MENS, WABCO, LUCAS, ZF, VOITH, HALDEX, KNORR и др. Список диагностируемых систем у автосканера очень обширен и ежеквартально пополняется.
Диагностика «железа» дизельных двигателей
Для более достоверной оценки текущего состояния «железа» двигателя и топливной аппаратуры рекомендуем перед проведением диагностики предварительно применить АКТИВНУЮ ПРОМЫВКУ ТОПЛИВНОЙ СИСТЕМЫ ЭДИАЛ для дизелей или РАСКОКСОВКУ ЭДИАЛ. Применение этих препаратов позволяет почистить и промыть ТНВД, форсунки, детали камеры сгорания двигателя, впускные и выпускные клапана от нагара и лаковых отложений, раскоксовать поршневые кольца. Все это поможет провести более достоверную диагностику дизельного двигателя или топливной аппаратуры и оценить текущее состояние диагностируемого узла.
Методы и средства диагностики дизельных двигателей
Большинство отказов дизелей приходится на топливную аппаратуру высокого давления, с нее и начинаем. В систему питания дизельного двигателя входят приборы, оказывающие влияние на расход топлива, такие как воздухоочиститель, фильтры предварительной и тонкой очистки топлива, подкачивающий насос, топливный насос высокого давления и форсунки, регулятор частоты вращения двигателя и привод.
Наиболее интенсивному изнашиванию подвергаются плунжерные пары топливного насоса и форсунок, теряют свою упругость пружины. Нарушение герметичности и засорение элементов топливной системы приводит к перебоям в работе двигателя, а нарушение регулировок начала, величины и равномерности подачи топлива, угла опережения впрыска, давления начала подъема иглы форсунки, а также минимальной частоты вращения коленчатого вала в режиме холостого хода – к повышению расхода топлива и дымному выпуску отработавших газов.
Внешние признаки неисправной работы приборов топливной системы дизельных двигателей приведены в табл. 1.
Таблица 1. Признаки нарушения нормальной работы топливной системы дизеля и необходимые технические воздействия
| Внешние признаки (симптомы) нарушения нормальной работы | Структурные изменения взаимодействующих элементов | Необходимые диагностические, профилактические и ремонтные воздействия |
| Затрудненный пуск двигателя. Неустойчивая работа двигателя | Нарушение герметичности топливной системы | Проверить герметичность, при необходимости закрепить элементы |
| Двигатель глохнет или не развивает достаточной мощности | Засорение фильтрующих элементов топливных фильтров | Промыть или заменить фильтрующие элементы |
| Двигатель глохнет, не развивает достаточной частоты вращения коленчатого вала | Отказ в работе топливного насоса | Снять и разобрать насос, при необходимости заменить детали |
| Двигатель работает неравномерно и не развивает мощности | Засорение фильтров форсунок | Проверить состояние фильтров |
| Двигатель не развивает необходимой мощности, дымный выпуск | Закоксовывание продувочных окон в гильзах цилиндров | Проверить и прочистить окна |
| Затрудненный пуск и неравномерная работа двигателя | Нарушение нормальной работы форсунок | Снять форсунки и проверить на приборе |
| Неравномерная и «жесткая» работа двигателя, выпуск черного цвета | Нарушение угла опережения впрыска топлива | Проверить и отрегулировать установку угла опережения впрыска |
| Неравномерная работа двигателя со стуками и дымным выпуском | Нарушение регулировки реек топливного насоса | Проверить и отрегулировать равномерность подачи топлива в цилиндры |
| Двигатель чрезмерно увеличивает частоту вращения, идет «вразнос» | Нарушение работы регулятора | Проверить и отрегулировать регулятор или отремонтировать |
| Двигатель не развивает мощности, в воздухоочистителе темное масло | Загрязнение воздухоочистителя | Промыть фильтрующий элемент, залить масло |
Контроль работы фильтров предварительной и тонкой очистки топлива и технические воздействия заключаются в ежедневном сливе отстоя, промывке фильтрующих элементов при ТО-1 и замене их при выполнении операций ТО-2.
Засорение воздухоочистителя приводит к понижению мощности двигателя и перерасходу топлива. Воздухоочиститель проверяют при работе на запыленных дорогах при ТО-1, в условиях зимнего периода при ТО-2.
Давление топлива в магистрали низкого давления проверяют подключением контрольного манометра между фильтром тонкой очистки и топливным насосом; при частоте вращения кулачкового вала 1050 об/мин максимальное давление должно быть не менее 4 кгс/см2.
Топливный насос высокого давления (ТНВД) должен обеспечивать равномерную подачу дозированных порций топлива к форсункам под высоким давлением в порядке работы двигателя в момент, соответствующий концу такта сжатия в цилиндрах.
Моментоскоп для дизеля
При выполнении ТО-2 в случае повышенного расхода топлива насос высокого давления рекомендуется снимать с места и диагностировать на стенде. Проверка и регулировка начала подачи топлива производится с помощью моментоскопа (рис. 1) в следующей последовательности:
– отключить автоматическую муфту опережения впрыска;
– повернуть кулачковый вал насоса по часовой стрелке (со стороны привода). Первая секция отрегулированного насоса начинает подавать топливо за 38–39° до оси симметрии профиля кулачка;
– определить профиль симметрии кулачка первой секции, для чего установить моментоскоп на секции и, поворачивая вал насоса по часовой стрелке, следить за уровнем топлива в трубке моментоскопа;
– момент начала движения топлива в моментоскопе зафиксировать на градуированном диске, закрепленном на валу насоса;
– повернуть вал по часовой стрелке на 90°. Затем повернуть вал против часовой стрелки до начала движения топлива в моментоскопе и зафиксировать это положение на диске;
– отметить на градуированном диске середину между зафиксированными точками, которая определяет ось симметрии профиля кулачка первой секции;
– приняв угол, при котором первая секция начинает подачу топлива условно за 0°, определить начало подачи топлива в остальных секциях двигателя ЯМЗ-236 в следующем порядке: для четвертой секции 45°, второй – 120, пятой – 165, третьей – 240 и шестой – 285°.
Рис. 1. Моментоскоп
|
Неточность угла между началом подачи топлива любой секции насоса относительно первой не более 20°. Регулировка начала подачи топлива производится регулировочным болтом толкателя. При вывертывании болта – подача ранняя, при ввертывании – поздняя.
Для двигателя ЯМЗ-238 начало подачи каждой последующей секции в соответствии с порядком работы секции должно происходить через 45° по отношению к предыдущей.
Диагностика форсунок дизеля
Техническое состояние дизельных форсунок определяют при выполнении ТО-2. Неисправную форсунку можно определить путем последовательного отключения цилиндров двигателя из работы. Для этого необходимо ослабить гайку у топливопровода высокого давления проверяемой форсунки так, чтобы топливо выходило наружу, минуя форсунку, что вызовет выключение цилиндра двигателя. Если при выключении цилиндра изменения в работе двигателя не будет – форсунка неисправна, если же увеличатся перебои и неравномерность работы – форсунка исправна.
Для точной проверки технического состояния форсунки с целью определения ее герметичности, давления начала подъема иглы форсунки и качества распыливания топлива используют прибор Механотестер МТА-2 (ДД-2120).
Для диагностики состояния форсунок с электронным управлением впрыска применяется ТЕСТЕР ОБРАТНОЙ ПОДАЧИ ТОПЛИВА Common Rail. При помощи этого прибора можно оценить визуально работоспособность каждой форсунки по наполняемости колб или при помощи трубчатых мензурок. Диагностика производится прямо на двигателе и позволяет выявить неисправную форсунку.
Оборудования для диагностики дизельного двигателя с механическими форсункамиНаименование | Применимость |
Диагностика состояния цилиндропоршневой группы двигателя | |
Компрессометры дизельные (индикаторы пневмоплотности цилиндров). | Компрессометры предназначены для сервисного обслуживания ДВС и поиска неисправностей. Замер компрессии дизеля позволяет оценить работоспособность отдельных цилиндров двигателя путем измерения максимального давления сжатия (компрессии) в режиме стартерного пуска. Модели компрессометров различаются только наличием фальш-форсунок для измерения компрессии в различных типах автомобилей. |
Анализатор герметичности цилиндров | В основе работы АГЦ (АГЦ-2) лежит вакуумный метод оценки пневмоплотности цилиндропоршневой группы. При диагностике двигателя при помощи АГЦ производится замер следующих параметров: |
Диагностика топливной аппаратуры | |
Прибор для проверки дизельных форсунок ДД-2110 | Прибор позволяет провести диагностику практически всех типов дизельных форсунок. Диагностируемые параметры: давление начала впрыска и качество распыления топлива, герметичность запорного конуса (по появлению капли топлива на носике распылителя), гидроплотность по запорному конусу и направляющей цилиндрической части. Аналогичен механотестеру МТА-2, только выполнен в стационарном исполнении. |
| Механотестер (МТА-2) ДД-2120 | Прибор предназначен для экспресс оценки текущего состояния форсунок без снятия их с двигателя и оценки состояния плунжерных пар и нагнетательных клапанов ТНВД. Можно сделать экспресс диагностику всех форсунок на двигателе, а потом снять выявленные проблемные и основательно продиагностировать их, установив МТА-2 на верстак. При установке на верстак превращается в стационарный прибор типа ДД-2110, S-60H. Zeca 470/600B. |
Прибор ДД-2115 | Прибор для оценки технического состояния плунжерных пар снятых с ТНВД или приобретенных для замены. |
Принцип работы: При прокручивании коленвала пусковым устройством клапан индикатора фиксирует максимальное давление сжатия (компрессию) проверяемого цилиндра.
Зафиксированная манометром величина максимального давления свидетельствует о наличии или частичной потере пневмоплотности цилиндра. Последнее является следствием появления неисправностей (отказов) компрессионных колец, поршня, гильзы, клапанного механизма. При этом необходимо учитывать, что индикатор не может различать причины потери пневмоплотности.
Перед проведением замера компрессии следует отключить подачу топлива в дизельных двигателях. Нужно либо отжать вниз рычаг отсечки, расположенный на насосе высокого давления, либо обесточить электромагнитный клапан прекращения подачи топлива, расположенный на топливной магистрали.
Подключение компрессометра к камере сгорания осуществляется через отверстия для вворачивания форсунок или свечей накаливания (в зависимости от удобства доступа или рекомендаций «Руководства по ремонту…»).
Величина компрессии дизеля:37-45 — компрессия отличная;
32-36 — компрессия хорошая;
30-32 — компрессия нормальная;
28-30 — компрессия удовлетворительная;
менее 28 — компрессия слабая, обычно при таких значениях двигатель с трудом запускается.
Зависимость возможности запуска дизельного двигателя при различных температурах, в зависимости от компрессии в цилиндрах (замер компрессии на остывшем двигателе при температуре около 20С):
менее 18 атм — не заводится даже на горячую;
22-23 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится только в теплом боксе;
25 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -10С;
28 атм- горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -15С;
32 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -25С;
36 атм — -горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -30С;
40 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -35С.
При условии, что остальные системы исправны, и двигатель заводится от штатного аккумулятора. Для отдельных видов двигателей возможны отклонения значений + — 5 градусов.
Проверка свечей накала (подогрева) дизеля
Также стоит проверить работоспособность свечей накаливания. Это можно сделать с помощью Тестера свечи накаливания ADD280. Диагностика производится прямо на двигателе, без его запуска и позволяет оценить состояние свеч накаливания (стальных или керамических).
Проверка технического состояния ЦПГ дизеля
Комплект «Стандарт–дизель» артикул СТ-ДР ДД-4100, Комплект «Стандарт–дизель» артикул СТ-ДР, анализатор герметичности цилиндров отечественных автомобилей.
В основе работы АГЦ (АГЦ-2) лежит вакуумный метод оценки пневмоплотности цилиндропоршневой группы. Диагностика двигателя при помощи АГЦ включает в себя замер следующих параметров:
Р1 – значение полного вакуума в цилиндре
Р2 – значение остаточного вакуума в цилиндре
Замеры параметров Р1, Р2 проводятся прибором через форсуночные отверстия в процессе вращения двигателя стартером КВ (3–4 сек.). По величине значения полного вакуума в цилиндре Р1 оценивается степень износа гильзы цилиндра, а та же плотность закрытия клапанов. По величине значения остаточного вакуума Р2 оценивается состояние износа поршневых, выявляется закоксовка поршневых колец, поломка колец или перегородок в кольцевой канавке поршня.
Техническое обслуживание системы питания дизельного двигателя
Проверка и регулировка топливного насоса высокого давления.
Регулировка начала подачи топлива секциями насоса высокого давления выполняется на стенде СДТА-1 при снятой с насоса муфте опережения вспрыска топлива. На корпусе стенда со стороны вала привода насоса укреплен градуированный диск с делениями через 1°. Соединительная муфта вала привода стенда с кулачковым валом насоса имеет вращающуюся стрелку для отсчета угла поворота вала.
На штуцера секций насоса закрепляют моментоскопы (рис. 146). Вращением кулачкового вала насоса заполняют топливом стеклянные трубки моментоскопов до половины объема. Затем медленно вращают вал привода по часовой стрелке и наблюдают за уровнем топлива в трубках. Начало подачи топлива секциями насоса определяют по началу движения топлива в стеклянных трубках моментоскопов. В это время наблюдают угол поворота стрелки на градуированном диске.
Если угол, при котором первая секция начинает подачу топлива, принять за 0°, то остальные секции должны начинать подачу топлива в следующем порядке:
| Секция 1 | 0° |
| Секция 4 | 45° |
| Секция 2 | 120° |
| Секция 5 | 165° |
| Секция 3 | 240° |
| Секция 6 | 285° |
1 — стеклянная трубка; 2 — пластмассовая трубка; 3 — стальная трубка; 4 — уплотнительная шайба; 5 — накидная гайка
В случае несоответствия начала подачи топлива техническим условиям его регулируют болтами толкателей. При вывертывании болта толкателя топливо начинает подаваться раньше, при ввертывании — позже.
Регулировка величины и равномерности подачи топлива секциями насоса на стенде СДТА-1. На стенде установлены электродвигатель для привода испытываемого насоса, механизм изменения скорости вращения приводного вала насоса, два топливных бака 1 и 7 (рис. 147), фильтр 9 грубой и тонкой очистки топлива, топливоподкачивающий насос 8, эталонные форсунки 3, мерные мензурки 4, устройство для отсчета заданного числа оборотов вала привода насоса, позволяющее определять количество впрысков секциями насоса за время его испытания, тахометр, манометр 10, топливные краны 11.
На рис. 147 приведена схема включения испытываемого насоса в топливоподающую систему стенда. В период испытания насоса после пуска стенда включается автоматическое устройство, которое в начале своего действия выводит специальную шторку из-под форсунок, и топливо из них впрыскивается в мерные мензурки 4.
Как только кулачковый вал насоса совершит заданное количество оборотов, шторка быстро вводится между форсунками и мензурками, и топливо из форсунок будет стекать в сборный лоток; а из него в нижний бак.
По количеству топлива в мерных мензурках определяют величину и равномерность подачи топлива каждой секцией насоса. Насос проверяют при полной подаче топлива и 1030 об/мин кулачкового вала.
Насос считается исправным, если в каждой мензурке будет одинаковое количество топлива, а производительность каждой секции будет составлять 105—107 мм3 за каждый ход плунжера (один оборот кулачкового вала насоса).
В случае неравномерной подачи топлива секциями насоса следует ослабить стяжной винт соответствующего зубчатого сектора 35 (см. рис. 33) и повернуть втулку 34 относительно сектора. Для увеличения подачи топлива втулку вращают по часовой стрелке. Затем стягивают стяжной винт зубчатого сектора и снова проверяют подачу топлива.
Рис. 147. Схема топливоподающей системы стенда СДТА-1:1 и 7 — топливные баки; 2 — испытываемый топливный насос высокого давленая; 3 — эталонные форсунки; 4 — мерные мензурки; 5 — указатель уровня топлива; 6 — термометр; 8 — топливоподкачивающий насос стенда; 9 — топливные фильтры; 10 — манометр; 11 — топливные краны стенда
Выключение подачи топлива проверяют при работающем насосе, для чего повертывают скобу 9 кулисы от исходного положения вниз на 45°; подача топлива должна полностью прекратиться во всех секциях насоса. Если подача топлива не прекращается, проверяют легкость хода рейки и устраняют заедание.
Регулировку минимальных оборотов холостого хода коленчатого вала производят при прогретом двигателе, для чего перемещают рычаг 11 управления до упора в болт 13 (см. рис. 33), снимают колпачок 30 корпуса 29 буферной пружины, ослабляют контргайку 28 и вывертывают корпус 29 буферной пружины на 2—3 мм. Потом плавно вывертывают болт 13 до появления улавливаемых на слух перебоев в работе цилиндров двигателя, а затем постепенно ввертывают корпус буферной пружины до тех пор, пока не установится скорость вращения коленчатого вала двигателя, равная 450-550 об/мин.
Регулировку максимальных оборотов вала двигателя в пределах до 2275 об/мин производят болтом 12. Число оборотов контролируют по тахометру. Другие виды регулировок насоса и регулятора оборотов выполняют квалифицированные рабочие.
Проверка топливоподкачивающего насоса.
Проверка топливоподкачивающего насоса производится на стенде СДТА-1. Производительность и максимальное давление, создаваемое насосом, проверяются при 1050 об/мин вала привода стенда.
Для определения производительности краном стенда частично перекрывают выход топлива из насоса в мерный бачок, чтобы повысить давление топлива на выходе до 1,5—1,1 кГ/см2. При этом исправный насос подает топливо в мерный бачок 2,2 л/мин.
При определении максимального давления, создаваемого насосом, при тех же оборотах вала привода стенда плавно перекрывают краном выход топлива из проверяемого насоса и наблюдают за показанием манометра. Исправный насос создает давление не менее 4 кГ/см2.
Проверка и регулировка форсунки.
Рис. 148. Прибор КП-1609А для проверки и регулировки форсунок:1 — сборник топлива; 2 — проверяемая форсунка; 3 — накидная гайка крепления форсунки; 4 — бачок; 5 — манометр; 6 — корпус распределителя; 7 — кран отключения манометра; 8 — гайка корпуса насоса; 9 — корпус насоса; 10 — рычаг
Проверка и регулировка форсунки на давление впрыска и качество распиливания топлива производится на стенде КП-1609А (рис. 148).
Регулировка форсунки на давление впрыска (давление подъема иглы) производится регулировочным винтом 12 (см. рис. 34) при снятом колпачке 14 и отвернутой контргайке 13. При ввертывании винта давление момента открытия иглы повышается, при вывертывании — понижается. Каждая форсунка должна быть отрегулирована на давление впрыска 150 кГ/см2.
При регулировке давления впрыска и проверке форсунки на качество распыливания топлива ее закрепляют на стенде. Краном 7 (см. рис. 148) включают манометр 5, а рычагом 10 плавно повышают давление, наблюдая за показаниями манометра и началом впрыска топлива из распылителя форсунки в сборник 1 топлива.
При исправной и отрегулированной форсунке топливо впрыскивается из всех отверстий распылителя в атмосферу в виде тумана и равномерно распределяется во все стороны. В это время возникает глухой треск. Начало и конец впрыска топлива из каждого отверстия должны быть одновременными, без подтекания. Закоксованные отверстия прочищают стальной мягкой проволокой диаметром 0,3 мм.
В.М. Кленников, Н.М. Ильин
Статья из книги «Устройство грузового автомобиля». Читайте также другие статьи из
Глава «Техническое обслуживание агрегатов и механизмов автомобиля»:
Поделиться в FacebookДобавить в TwitterДобавить в TelegramСистема питания дизельного двигателя или бдительность автовладельца
Система питания дизельного двигателя работает по совершенно другому принципу, чем в карбюраторных автомобилях. Здесь в цилиндры производится всасывание наружного воздуха, который в результате сильного сжатия находится под высоким давлением. Происходит нагрев воздушной массы до температуры от 700 до 900 градусов, которая значительно превышает ту точку, при которой производится воспламенение дизельного топлива.
Система питания дизельного двигателя – основная функция
Впрыск топлива в цилиндры производится несколько раньше, после чего происходит его воспламенение. Поэтому свечи зажигания (которые есть в бензиновом автомобиле) в дизельном двигателе отсутствуют. Так же как и в бензиновом варианте, схема системы питания в дизеле включает в себя два такта, во время которых подается топливо и воздух. Для нагнетания необходимого количества воздуха используется турбокомпрессор, который приводится в движение с помощью потока отработанных газов.
Теперь нам известна схема, назначение же системы питания дизельного двигателя заключается в своевременном обеспечении его рабочей смесью с целью превращения энергии топлива в механическую энергию. Весь процесс начинается с засасывания топлива под высоким давлением с помощью насоса и пропуска его в топливном фильтре для очистки от воды и грязи.
Подача топлива осуществляется при отсутствии воздуха в системе, после чего происходит распределение его по цилиндрам. Для регулировки количества топлива используется педаль газа. Подача топлива непосредственно в цилиндр производится с помощью форсунок. Для полного отключения системы питания предусмотрен магнитный клапан.
Диагностирование системы питания дизельного двигателя – что смотреть в первую очередь?
В любом автомобиле этого типа питание двигателя совмещает в себе множество различных приборов и агрегатов. Началом служит топливный бак, затем фильтры очистки разной степени, различные насосы, трубопроводы высокого и низкого давления, система выброса выхлопных газов. Для того чтобы все системы работали нормально, и не давало сбоев само устройство, диагностика неисправности системы питания дизельного двигателя должна проводится своевременно.
Как показывает практика, большая часть всех поломок приходится на топливную аппаратуру, работающую под высоким давлением, с которой и необходимо начинать проверку.
Чтобы правильно выполнить диагностирование и ремонт системы питания дизельного двигателя, необходимо обратить внимание на те приборы, от которых в наибольшей степени зависит расход топлива. Обычно в первую очередь осуществляется проверка воздухоочистителя, фильтров, форсунок, насоса подкачки и доставки топлива под высоким давлением, а также не поленитесь проверить регулятор частоты вращения и привод.
Ремонт системы питания дизельного двигателя – как убрать неисправности вовремя?
Когда окончательно выявлены неисправности, необходимо планировать их исправление. Для этого проводятся различные виды технического обслуживания, и в первую очередь контролируется работа фильтров, из которых удаляется отстой, и промываются фильтрующие элементы. При более серьезных неисправностях необходимо производить ремонт.
Самые простые действия по ремонту заключаются в проверке и очистке засоренного воздухоочистителя. Низкое давление топлива в магистрали проверяется с помощью контрольного манометра, который подключается между топливным насосом и фильтром для тщательной (тонкой) очистки. Работа насоса для подкачки топлива под высоким давлением должна обеспечить ровную дозированную подачу топлива ко всем форсункам по очереди.
При проведении следующего технического обслуживания этот насос может сниматься и диагностироваться на специальном стенде, после чего проводятся необходимые настройки и регулировочные работы. Своевременное выполнение всех мероприятий и рекомендаций позволит избежать аварий и поломок на пути следования автомобиля.
Оцените статью: Поделитесь с друзьями! Решения для генераторовот EPS — источник энергии для двигателей
Как производитель дизельных генераторов EPS более 20 лет производит надежные, сверхмощные дизельные генераторы. Сегодня мы предлагаем широкий выбор моделей дизельных генераторов различных размеров и мощностей, как для мобильных, так и для резервных приложений:
- Передвижные дизельные электрогенераторы от 9 кВт до 45 кВт.
- Дизель-генераторы по индивидуальному заказу для более требовательных требований, включая резервные дизельные генераторы мощностью до 100 кВт.В некоторых случаях доступна опция 50 Гц.
- Дизель-генераторы Kubota мощностью от 6,5 кВт до 14 кВт в одно- и трехфазной конфигурации.
К настоящему времени вы, возможно, задаетесь вопросом, как правильно выбрать дизельный электрогенератор для ваших нужд. Следующая информация предназначена для того, чтобы помочь вам сузить круг выбора. Или, если хотите, свяжитесь с нами, и мы поможем вам в этом процессе.
Генератор какого размера мне нужен?
Правильный выбор дизельного электрогенератора требует согласования технических характеристик с реальными рабочими ограничениями.Если вы не примете во внимание эксплуатационные ограничения, вы с большей вероятностью столкнетесь с такими проблемами, как ложное отключение и сокращение срока службы генератора, даже если спецификации дизельного генератора могут показаться адекватными (на бумаге) для выдерживания нагрузки. Чтобы избежать проблем, следует учитывать три важных критерия:
- Условия окружающей среды
- Физическая установка
- Подключенное оборудование
Условия окружающей среды
На производительность дизельного электрогенератора может серьезно повлиять среда, в которой он работает.По мере увеличения окружающей температуры, высоты и влажности доступная мощность любого двигателя уменьшается. Это, в свою очередь, снижает мощность генератора. Повышенная температура воздуха выше 104 градусов по Фаренгейту также снизит мощность самого генератора переменного тока. Для большинства применений переход на дизельный генератор следующего большего размера будет гарантировать, что достаточная мощность будет доступна для всех условий, но это не всегда так.
Физическая установка
Надлежащие потоки охлаждающего и вытяжного воздуха являются наиболее важным аспектом при физической установке.Недостаточный воздушный поток является наиболее частой причиной плохой работы дизельного электрогенератора и в некоторых случаях может привести к полному отказу генератора. Неинформированные пользователи часто совершают ошибку, непреднамеренно ограничивая поток воздуха в корпус генератора и из него, чтобы уменьшить шум. В результате они ограничивают производительность и возможности устройства. Очень важно отводить тепло от генератора переменного тока и системы охлаждения двигателя и не допускать его повторной циркуляции обратно в кожух.
Подключенное оборудование (нагрузки)
После рассмотрения условий окружающей среды и расхода воздуха следует проверить нагрузки, подключенные к генератору. Примеры типичных нагрузок включают кондиционеры, холодильники, освещение, зарядные устройства / инверторы аккумуляторов, аудио / видео оборудование и обогреватели. Простого сложения всех номинальных значений тока, указанных на паспортной табличке каждой нагрузки, недостаточно для правильного определения размера генератора. Например, «пусковой» ток двигателя и компрессора кондиционера будет намного выше, чем «рабочий» ток.Если учитывается только «рабочий» ток, выбранный дизельный электрогенератор может быть слишком мал для работы с нагрузкой. Требуются сложные инженерные расчеты, чтобы определить общую электрическую и механическую нагрузку, необходимую для того, чтобы все подключенное оборудование работало должным образом.
Как мне выбрать подходящий генератор?
Выбор подходящего дизельного электрогенератора может быть сложным процессом. В EPS мы хотим, чтобы у вас был лучший генератор для ваших нужд, и мы стремимся облегчить вам задачу.Наши специалисты по генераторам готовы помочь вам выбрать подходящий размер агрегата для вашего применения. Чтобы получить помощь, просто свяжитесь с нами или позвоните по телефону 1-800-374-7522.
Нужна замена более старому устройству? Позвоните нам, и мы объясним ваши варианты замены.
Типы генераторов и двигателей и промышленное использование
Что такое дизельный двигатель?Дизельный двигатель — разновидность двигателя внутреннего сгорания; более конкретно, это двигатель с воспламенением от сжатия.Топливо в дизельном двигателе воспламеняется путем внезапного воздействия на него высокой температуры и давления сжатого газа, содержащего кислород (обычно атмосферного воздуха), а не от отдельного источника энергии зажигания (например, свечи зажигания). Этот процесс известен как дизельный цикл по имени Рудольфа Дизеля, который изобрел его в 1892 году. Хотя традиционные генераторы с дизельными двигателями могут не вписываться в наше определение «альтернативных источников энергии», они по-прежнему являются ценным дополнением к удаленным источникам энергии или сети. вверх по системе.
Типы дизельных двигателей Есть два класса дизельных двигателей: двухтактные и четырехтактные. Большинство дизельных двигателей обычно используют четырехтактный цикл, а некоторые более крупные двигатели работают по двухтактному циклу. Обычно ряды цилиндров используются в количестве, кратном двум, хотя можно использовать любое количество цилиндров, если нагрузка на коленчатый вал уравновешена для предотвращения чрезмерной вибрации.
Генераторные установки вырабатывают одно- или трехфазное питание.Большинству домовладельцев требуется однофазное питание, тогда как для промышленных или коммерческих приложений обычно требуется трехфазное питание. Дизельные двигатели-генераторы рекомендуются из-за их долговечности и более низких эксплуатационных расходов. Современные дизельные двигатели работают бесшумно и, как правило, требуют гораздо меньшего обслуживания, чем газовые агрегаты аналогичного размера (природный газ или пропан).
предназначены для удовлетворения потребностей малого и среднего бизнеса, помимо интенсивного использования в промышленности.Генератор — это революционный продукт, который обеспечивает доступ к чистой и доступной резервной энергии для миллионов предприятий, домов и малых предприятий. В наши дни снижение стоимости резервного питания и упрощение установки генераторов становится нормой.
Предприятия теряют деньги, когда закрываются во время отключения электроэнергии. Принимая во внимание влияние значительной потери доходов, экономия от инвестиций в резервное энергоснабжение является убедительной. Чтобы проиллюстрировать эту мысль: если розничный бизнес в среднем составляет 1000 долларов в час на кассе, потеря дохода во время длительного простоя будет очень высокой, не говоря уже о стоимости простоя сотрудников в течение этого времени.Однако дизельные генераторы исключают риск отключения электроэнергии. Добавьте к этому преимущества открытости, в то время как конкуренты без резервного питания отключены, и анализ затрат и выгод выглядит еще лучше. Инвестиции в генераторы — это простой способ сохранить доходы, обеспечить безопасность, избежать потерь и защитить прибыль.
Большинство современных генераторов спроектированы для удовлетворения потребностей в аварийном электроснабжении. Эти агрегаты непрерывно контролируют электрический ток и автоматически запускаются в случае прерывания подачи электроэнергии и отключаются при возобновлении подачи электроэнергии.В отраслях промышленности во время критических процессов генераторы могут по желанию обеспечивать аварийным питанием все жизненно важные и выбранные нагрузки. Это качество приводит к широкому использованию дизельных генераторов в развлекательных, жилых, коммерческих, коммуникационных и промышленных целях. Сегодня большинству современных больниц, пятизвездочных отелей, центров аутсорсинга бизнес-процессов, производственных предприятий, телекоммуникационных организаций, коммерческих зданий, центров обработки данных, аварийных служб, крупных промышленных предприятий и горнодобывающих компаний требуется бесперебойное электроснабжение и резервное дизельное топливо. двигатели-генераторы.
В дороге:Подавляющее большинство современных тяжелых дорожных транспортных средств, таких как грузовики и автобусы, корабли, поезда дальнего следования, крупномасштабные портативные электрогенераторы, а также большинство сельскохозяйственных и горнодобывающих машин имеют дизельные двигатели. Однако в некоторых странах они не так популярны в легковых автомобилях, поскольку они тяжелее, шумнее, имеют рабочие характеристики, которые замедляют ускорение. В целом они также дороже бензиновых автомобилей.Современные дизельные двигатели прошли долгий путь, и теперь, когда в транспортных средствах используются системы прямого впрыска с турбонаддувом, трудно заметить разницу между дизельными и бензиновыми двигателями.
В некоторых странах, где налоговые ставки делают дизельное топливо намного дешевле бензина, очень популярны дизельные автомобили. Новые разработки значительно сократили различия между бензиновыми и дизельными автомобилями в этих областях. Дизельная лаборатория BMW в Австрии считается мировым лидером в разработке автомобильных дизельных двигателей.После долгого периода, когда в модельном ряду было относительно мало дизельных автомобилей, Mercedes Benz вернулся к дизельным автомобилям в 21 веке с упором на высокую производительность.
В сельском хозяйстве тракторы, оросительные насосы, молотилки и другое оборудование работают преимущественно на дизельном топливе. Строительство — еще один сектор, который сильно зависит от дизельной энергии. Все бетоноукладчики, скреперы, катки, траншеекопатели и экскаваторы работают на дизельном топливе.
В воздухе:
Некоторые самолеты использовали дизельные двигатели с конца 1930-х годов.Новые автомобильные дизельные двигатели имеют соотношение мощности и веса, сравнимое с древними конструкциями с искровым зажиганием, и имеют гораздо более высокую топливную экономичность. Использование в них электронного зажигания, впрыска топлива и сложных систем управления двигателем также делает их намного проще в эксплуатации, чем массовые авиационные двигатели с искровым зажиганием. Стоимость дизельного топлива по сравнению с бензином вызвала значительный интерес к малым дизельным самолетам общего назначения, и несколько производителей недавно начали продавать дизельные двигатели для этой цели.
На воде:Высокоскоростные двигатели используются для тягачей, грузовиков, яхт, автобусов, автомобилей, компрессоров, генераторов и насосов. Самые большие дизельные двигатели используются для питания кораблей и лайнеров в открытом море. Эти огромные двигатели имеют выходную мощность до 90 000 кВт, вращаются со скоростью от 60 до 100 об / мин и имеют высоту 15 метров.
Под землей:Горнодобывающая промышленность и добыча полезных ископаемых во всем мире в значительной степени полагаются на дизельную энергию для использования природных ресурсов, таких как агрегаты, драгоценные металлы, железная руда, нефть, газ и уголь.Экскаваторы и буровые установки с дизельным двигателем выкапывают эти продукты и загружают их в огромные карьерные самосвалы или на конвейерные ленты, которые также работают на том же топливе. В целом на дизельное топливо приходится 72 процента энергии, потребляемой горнодобывающим сектором.
Для добычи материалов и погрузки грузовых автомобилей в открытых и подземных горных работах используется дизельное оборудование. Самым крупным дизельным оборудованием с резиновыми колесами, используемым в горнодобывающей промышленности, являются огромные внедорожники с двигателями мощностью более 2500 лошадиных сил, способными перевозить более 300 тонн груза.Эти гигантские грузовики, катящиеся по земле, просто зрелище.
В больницахАварийные резервные генераторы необходимы в любом крупном медицинском учреждении. Из-за критического характера работы, которую выполняют эти учреждения, и положения, в котором находятся их пациенты, перебои в подаче электроэнергии просто недопустимы. В течение многих лет как военные, так и государственные больницы полагались на промышленные генераторные установки, которые брали на себя работу всякий раз, когда отключалось электричество, будь то локальный сбой или крупное стихийное бедствие, такое как ураган или наводнение.
За центрами обработки данныхКомпьютеры — это сердце современной индустрии. Когда серверы и системы выходят из строя, связь может быть потеряна, бизнес прекращается, данные теряются, рабочие сидят без дела, и практически все останавливается. По этой причине почти все коммуникационные и телекоммуникационные компании любого профиля обращаются к дизельным генераторам в качестве основного варианта резервного питания. Поскольку надежность их услуг затрагивает очень многих людей, у них действительно нет другого выбора, кроме как иметь надежный вариант резервного питания как для своего бизнеса, так и для клиентов, которых они обслуживают.
Сводка Дизельное топливоиспользуется в большинстве промышленных секторов, поскольку оно обеспечивает большую мощность на единицу топлива, а его более низкая летучесть делает его более безопасным в обращении. Одна действительно захватывающая перспектива замены дизельного топлива бензином — это возможность полностью исключить потребление бензина. Большинство дизельных двигателей можно уговорить сжигать растительное масло вместо дизельного, и все они могут сжигать различные обработанные формы растительного масла без потери срока службы или эффективности.
С Generator Source ваш поиск экономичного и эффективного дизельного двигателя или генератора теперь заканчивается. Мы предлагаем один из самых больших в мире ассортиментов промышленных дизельных двигателей и генераторов. Чтобы получить дополнительную информацию, просто свяжитесь с нами сегодня!
Консультации — Специалист по спецификациям | Понимание выбора топлива для системы резервного питания
Автор: Майкл Киршнер, Generac Power Systems, Вокеша, Висконсин. 26 декабря 2012 г.
В первые дни коммерческого и промышленного резервного питания выбор топлива не был проблемой при выборе системы резервного генератора, потому что предпочтительным топливом всегда было дизельное топливо.Сегодня это не так. У инженеров и конечных пользователей есть несколько вариантов топлива на выбор, каждый из которых предлагает уникальные преимущества для различных приложений.
Резервные генераторы энергии приводятся в движение двигателями внутреннего сгорания, которые, в свою очередь, работают на ископаемом топливе. Дизельное топливо используется в системах резервного питания на протяжении десятилетий. Все большее распространение получает газообразное топливо, такое как природный газ или жидкий пропан. Уникальное сочетание этих видов топлива обеспечивает дополнительные варианты топлива. Например, двухтопливные генераторы работают либо на природном газе, либо на парах сжиженного нефтяного газа, в зависимости от того, какое топливо доступно в данный момент.Двухтопливные генераторы работают одновременно на дизельном топливе и природном газе и используют преимущества каждого из них.
Бензин заметно отсутствует в этом списке, потому что, как правило, это плохой выбор топлива для систем резервного питания. Он не только чрезвычайно летуч по сравнению с дизельным или газообразным топливом, что затрудняет хранение в больших количествах, но и по сравнению с дизельным топливом имеет значительно более низкую тепловую плотность. Кроме того, бензин нелегко использовать в сочетании с газообразным топливом.Таким образом, коммерческие и промышленные системы резервного питания редко — если вообще когда-либо — работают на бензине.
Дизельное топливо
Как упоминалось ранее, дизельное топливо было традиционным предпочтительным топливом для коммерческих и промышленных приложений резервного питания (см. Таблицу 1). Среди преимуществ дизельного двигателя — его высокий термический КПД, который может обеспечить низкие капитальные затраты на 1 кВт в приложениях с большой мощностью — обычно 150 кВт или более. Поскольку дизельное топливо необходимо хранить на месте, дизельные генераторы также могут обеспечивать резервное питание в отдаленных районах, которые не имеют инфраструктуры природного газа.По той же причине сегменты рынка с критически важными приложениями, такие как больницы и центры обработки вызовов 911, часто выбирают дизельные генераторы, поскольку топливо на месте помогает обеспечить надежность. Наконец, поскольку дизельное топливо так долго использовалось в системах резервного питания, на рынке бытует мнение, что дизельные двигатели являются наиболее надежными первичными двигателями для систем резервного питания.
Несмотря на широкое распространение, дизельное топливо имеет свои недостатки. Например, U.S. Агентство по охране окружающей среды требует использования дизельного топлива со сверхнизким содержанием серы (ULSD) во всех резервных генераторах. ULSD проходит дополнительные процессы очистки, что делает его менее стабильным, чем традиционное дизельное топливо. Если не проводить техобслуживание, дизельное топливо со временем разлагается. В течение первого года хранения он будет страдать от окисления, которое происходит, когда углеводороды реагируют с кислородом с образованием тонкого осадка и смолы. При попадании в двигатель эти загрязнения могут засорить топливный фильтр и топливные форсунки.Аналогичным образом микроорганизмы могут загрязнять топливо. Вода, которая может попасть в топливную систему в виде конденсата, способствует росту бактерий и грибков. Эти микроорганизмы фактически питаются самим топливом. Если дать им возможность расти, они могут образовывать студенистые колонии, которые также могут засорить топливные системы. Кроме того, их отходы имеют кислую природу, что может привести к коррозии топливного бака.
Это серьезная проблема для приложений резервного питания. Генератору на дизельном топливе с емкостью бака, рассчитанной на 72 часа работы при полной нагрузке, может легко потребоваться около 20 лет, чтобы сжечь один бак топлива, при условии типичного уровня нагрузки 60%, еженедельных тренировок на холостом ходу и средних отключений электроэнергии всего 4 часа в год.Тем не менее, эти проблемы можно смягчить, внедрив план постоянного тестирования и технического обслуживания топлива, который регулярно удаляет воду и осадок из топливного бака. Для аварийных приложений техническое обслуживание топлива требуется в соответствии с кодом в NFPA 110: Стандарт для аварийных и резервных систем питания. Этот тип программы технического обслуживания увеличивает общую стоимость владения генераторной установкой, что также необходимо учитывать. Автоматические устройства для очистки топлива, которые состоят из насоса и системы фильтрации, увеличивают первоначальные затраты на резервную систему питания, но снижают текущие затраты на техническое обслуживание топлива.Планы обслуживания вручную обходятся дороже в долгосрочной перспективе.
Для некоторых применений дизельные генераторы также сталкиваются с более строгими стандартами выбросов Уровня 4 для стационарных дизельных двигателей внедорожной техники, принятыми Агентством по охране окружающей среды, с начальным вводом в эксплуатацию в 2011 году. Однако правило Уровня 4 влияет на «аварийные» и «Неаварийные» генераторы — по-разному, потому что время работы — и, следовательно, выбросы — для каждого, как правило, очень разные. EPA определяет аварийный генератор энергии как «генератор, единственной функцией которого является обеспечение резервного питания при отключении электроэнергии от местной электросети.«Аварийные приложения требуют только соответствия EPA Tier-2 / Tier-3. Для сравнения, неаварийный генератор — это генератор, который не используется исключительно для аварийного питания, например, для управления нагрузкой / снижения пиковых нагрузок. В неаварийных приложениях применяются требования Уровня 4 по выбросам. Таким образом, при рассмотрении дизельного топлива в качестве топлива в резервной энергосистеме необходимо учитывать влияние приложения на требования к выбросам от генератора.
По сравнению с газообразным топливом текущие затраты на дизельное топливо (и бензин) относительно высоки.Высокая стоимость барреля сырой нефти, а также дополнительные правила EPA по выбросам двигателей увеличили общую стоимость как дизельных двигателей, так и топлива. По состоянию на май 2012 г. затраты на дизельное топливо для внедорожников составляли приблизительно 3,46 долл. США за галлон (оценка основана на средней стоимости галлона дизельного топлива для автомобильных дорог по данным Управления энергетической информации США за май 2012 г., за вычетом оценки затрат. государственных и федеральных акцизов, которые применяются только к дорожному дизельному топливу). Для сравнения, коммерческие цены на природный газ в мае 2012 года составляли 8 долларов.09 / тысяча кубических футов (по данным Управления энергетической информации США). Дизель-генератор мощностью 150 кВт, работающий в течение 24 часов на дизельном топливе при полной нагрузке, вероятно, потребляет 260 галлонов или около 900 долларов дизельного топлива. Аналогичный блок, работающий на природном газе, работающий с полной нагрузкой в течение того же времени, вероятно, потребляет около 48 000 кубических футов, или около 388 долларов США. Таким образом, при рассмотрении дизельного топлива для системы аварийного резервного питания, учитывайте среднюю продолжительность отключения электроэнергии, которая повлияет на приложение, чтобы спрогнозировать затраты на топливо и определить, являются ли они приемлемыми.
Природный газ
В прошлом использование газового топлива в промышленных приложениях резервного питания не применялось из-за экономической эффективности, удельной мощности, а также из соображений долговечности и надежности топлива. Однако последние технологические инновации изменили это. Эти инновации включают упрочненные клапаны и седла, а также оптимизированные топливно-воздушные смеси. Оптимизация частоты вращения двигателя стала значительным улучшением. Исторически генераторы были сконфигурированы для прямого подключения к четырехполюсному генератору переменного тока, который ограничивал частоту вращения двигателя до 1800 об / мин.Внедряя трансмиссию с шестеренчатым приводом или двухполюсные генераторы переменного тока, производители генераторов смогли оптимизировать мощность и производительность двигателей с искровым зажиганием. Это улучшило переходные характеристики, снизило нагрузку на подшипники двигателя и увеличило удельную мощность. Короче говоря, это означает более мощные двигатели и снижение капитальных затрат.
В частности, что касается природного газа в качестве топлива для резервных энергосистем, ключевым преимуществом является длительный срок службы (см. Таблицу 2).Поскольку природный газ поставляется коммунальным предприятием, а не хранится в ограниченном количестве на месте, дозаправка не является проблемой, независимо от продолжительности отключения электроэнергии. Именно это преимущество, в частности, является ключевым моментом при продаже решений резервного питания для жилых помещений.
Природный газ более экологичен, чем дизельное топливо. Двигатели, работающие на природном газе, не только выделяют меньше NO X и твердых частиц, чем сопоставимые двигатели на дизельном топливе, они также позволяют избежать проблем с герметизацией топлива и экологических проблем, связанных с хранением больших количеств дизельного топлива.Кроме того, поскольку это газ, его утечка не вызывает беспокойства. По этим причинам местные правила, применимые к сдерживанию топлива, значительно менее строги, чем правила для двигателей, работающих на дизельном топливе, что значительно снижает затраты на соблюдение этих требований.
Автомобильные двигатели с искровым зажиганием также более доступны в больших объемах, что делает их более экономичными компонентами для производителей генераторов. Кроме того, они, как правило, более рентабельны, чем дизельные двигатели аналогичного размера.Это означает, что системы резервного питания на газовом топливе, как правило, имеют меньшую стоимость за кВт в приложениях с резервным питанием с одним двигателем 150 кВт и ниже. Для приложений с более высокой мощностью генераторы, работающие на газовом топливе, могут быть сконфигурированы так, чтобы объединить их выходную мощность в интегрированном подходе к параллельному подключению генераторов (см. Рисунок 1). Их общая экономическая эффективность в сочетании с преимуществами надежности и масштабируемости, обеспечиваемыми интегрированным параллельным подключением (по сравнению с одним очень большим дизельным генератором), может сделать их привлекательными альтернативами даже в крупных приложениях.В приложениях, требующих, чтобы генератор принял на себя аварийную нагрузку в течение 10 секунд, систему можно настроить так, чтобы первый подключенный генератор был достаточно большим для этой нагрузки. Этот первый генератор может удовлетворить требование 10 секунд, в то время как остальные генераторы могут подбирать другие категории нагрузки.
Длительное время работы природного газа, к сожалению, приводит к очевидным недостаткам: он доставляется коммунальным предприятием, и поэтому его доступность находится вне контроля предприятия.Многие компетентные органы предпочитают хранение топлива на месте (AHJ), потому что вопрос о его доступности не возникает. Обычно это требуется NFPA 70: Национальный электротехнический кодекс, статья 700: Аварийные системы для нагрузок аварийных систем во многих муниципалитетах. В то время как природный газ в основном доставляется по подземным трубопроводам, на которые обычно не влияют суровые погодные условия, вырывающие электроэнергию, инфраструктура природного газа не является надежной на 100%. Инженеры должны работать с местной газовой компанией и AHJ, чтобы понять надежность газовой инфраструктуры по сравнению с местным дизельным топливом.Также работайте с владельцем системы, чтобы убедиться, что на объект не распространяется политика ограничения, которая может перекрыть подачу природного газа на усмотрение местного коммунального предприятия. Нередко надежность природного газа бывает благоприятной во многих сферах применения, когда полностью осознаются проблемы заправки и порчи топлива.
НД топливо
Системы резервного питания, работающие на сжиженном нефтяном топливе, могут работать в конфигурациях с жидким или паром сжиженного нефтяного газа. Пары НД, пожалуй, более распространены в системах резервного питания (см. Таблицу 3).Все общие преимущества газового топлива, описанные ранее, применимы и к топливу LP, включая более низкую стоимость киловатта в однодвигательных системах резервного питания 150 кВт и ниже. Как топливо с искровым зажиганием, LP топливо работает в двигателях автомобильного типа, адаптированных для его использования.
Помимо общих преимуществ LP как газообразного топлива, LP должен храниться на месте, как и дизельное топливо. Таким образом, сжиженный нефтяной газ может стать приемлемой альтернативой дизельному топливу в виде газообразного топлива для приложений, требующих местного топлива. Инженеры-консультанты также должны изучить этот вопрос со своими клиентами, прежде чем выбирать дизельное топливо.LP соответствует тем же требованиям, предъявляемым к работе на стройплощадке, но не вызывает опасений по поводу порчи топлива.
Недостатки сжиженного нефтяного газа действительно создают большие проблемы при проектировании системы. Независимо от того, работает ли система в конфигурации жидкого или парообразного НД, топливо НД хранится под давлением в виде жидкости. В конструкциях с паровым топливом НД это жидкое топливо должно вводиться в камеру сгорания двигателя в виде пара. Поскольку он имеет температуру кипения -44 F, испарение происходит естественным образом внутри топливного бака при температуре окружающей среды.Однако управление этой скоростью кипения (скорость, с которой жидкое топливо низкого давления превращается в пар) является конструктивным соображением. При реализации систем резервного питания паров НД необходимо учитывать температуру окружающей среды, размер топливного бака НД и уровень расхода топлива генератором.
Для сравнения, системы резервного питания, работающие на жидком низком давлении, не полагаются на естественное испарение низкого давления внутри топливного бака для подачи необходимого количества топлива в генератор. Вместо этого для этих систем требуется испаритель для преобразования жидкости под давлением в пар в достаточных количествах перед подачей ее в двигатель генератора для сгорания.Испарители позволяют подбирать резервуары по времени работы, а не по скорости кипения. Обычно испаритель встроен в внешний генератор. Однако это не тот случай, когда генератор находится внутри здания. Поскольку большинство строительных норм и правил не допускают использование жидкого сжиженного нефтяного газа внутри здания, будь то хранилище или трубопровод, испаритель должен быть установлен вне помещения. Испаритель требует некоторой формы тепла, генерируемого изнутри или извне.
Двух- и двухтопливные системы
Один из способов решить проблемы с надежностью, которые неизменно возникают при обсуждении на месте или на месте.топливо, поставляемое коммунальными предприятиями, должно указывать на систему, которая использует оба вида топлива — либо по одному, либо одновременно. Этим критериям соответствуют двухтопливные и двухтопливные системы (см. Таблицу 4).
Как упоминалось ранее, двухтопливная система может работать на парах сжиженного нефтяного газа или на природном газе, в зависимости от того, что доступно в данный момент. Система обычно запускается и работает на природном газе, и если подача этого топлива прерывается, она переключается на местный источник топлива LP. Эта конфигурация очень популярна для генераторов мощностью до 150 кВт.
Для более крупных приложений привлекательным вариантом является двухтопливная система, которая одновременно сжигает дизельное топливо и природный газ в одном двигателе (см. Рис. 2). Двухтопливные генераторы запускаются на 100% дизельном топливе, которое воспламеняется при температуре от 500 до 750 F и служит пилотным топливом. После выполнения определенных критериев, таких как принятие электрической нагрузки, контроллер генератора вводит природный газ в топливную смесь. При сгорании дизельного топлива воспламеняется природный газ, температура воспламенения которого намного выше — от 1150 до 1200 F.Когда контроллер генератора добавляет природный газ, функция регулирования нормальной скорости двигателя снижает количество дизельного топлива, поступающего в двигатель. Процесс продолжается до тех пор, пока не будет достигнута оптимальная топливная смесь, обычно 75% природного газа и 25% дизельного топлива. Если нагрузка увеличивается, переходный процесс сначала будет устраняться с помощью дизельного топлива, после чего природный газ будет добавлен обратно в систему, чтобы соответствовать новому более высокому уровню нагрузки.
Двухтопливные генераторы используют преимущества надежности как дизельного, так и природного газа, сводя к минимуму их соответствующие недостатки.Первоначальные затраты на двухтопливные генераторы обычно на 15-30% выше, чем у дизельных генераторов. Однако, поскольку природный газ, а не дизельное топливо, является преобладающим топливом в двухтопливном генераторе, время работы увеличивается, а требования к хранению топлива на месте (и связанные с ними затраты на техническое обслуживание) снижаются. Кроме того, поскольку топливо на месте остается частью системы, повышается надежность. В случае отказа подачи природного газа — из-за того, что он был отключен от электросети или по иным причинам — генератор может работать на 100% дизельном топливе.
Заключение
Прошли те времена, когда все системы резервного питания работали исключительно на дизельном топливе. Хотя дизельное топливо остается популярным источником топлива, инженеры и конечные пользователи могут выбирать из нескольких дополнительных вариантов топлива: природный газ, сжиженное топливо (жидкое и парообразное), двойное топливо (природный газ или пар сжиженного нефтяного газа) и биотопливо (природное топливо). газ и дизель работают одновременно). Каждый из них предлагает уникальные преимущества. Инженеры-консультанты должны найти время, чтобы узнать, как можно применить каждый из этих источников топлива, чтобы они могли дать наилучшие рекомендации своим клиентам.Как всегда, обязательно проконсультируйтесь с местным AHJ, чтобы понять его политику в отношении использования определенного топлива в той или иной области применения. Знание ваших вариантов сделает эти беседы более плодотворными.
Кирхнер — менеджер по технической поддержке компании Generac Power Systems, Вокеша, Висконсин, где он поддерживает и обучает всем промышленным продуктам. Он получил степень бакалавра электротехники и степень магистра делового администрирования в Университете Висконсина. Он работает в компании Generac Power Systems с 1999 года.
Библиография
Зейтц, Джон С., Расчет потенциала выбросов (PTE) для аварийных генераторов. Меморандум, Агентство по охране окружающей среды США, 1995 г.
Области применения и применения промышленных дизельных двигателей-генераторов
С момента своего открытия дизельный двигатель был заново изобретен и значительно усовершенствован, чтобы улучшить его характеристики и эффективность, одновременно расширив диапазон его применения.Одно из наиболее распространенных его применений сегодня — это дизельные генераторы, используемые для обеспечения резервного или резервного питания объектов и систем в случае сбоя в электроснабжении. Современные дизельные генераторы предназначены для непрерывного контроля электрического тока, они автоматически запускаются при перебоях в подаче электроэнергии и выключаются при возобновлении работы коммунальных служб.
Рынок дизельных генераторов растет, и, согласно исследованию консалтинговой фирмы Grand View Research, ожидается, что в ближайшем будущем он продолжит расти.
Следующие отрасли промышленности в значительной степени полагаются на мощность дизельных генераторов и внесли свой вклад в растущий спрос.
Горное дело
Дизель-генераторы широко используются в горнодобывающей промышленности во всем мире. Они обеспечивают более 70% всей мощности, необходимой для горных работ для тяжелого оборудования, такого как землеройные машины, бурильщики, конвейерные ленты и краны. Будь то добыча газа, угля, железа или драгоценных металлов, дизельные генераторы всегда являются выбором номер один, потому что они портативны и могут легко использоваться в надуманных зонах добычи с экстремальными условиями.
Низкая летучестьDiesel также делает его более безопасным, чем бензин, в горнодобывающей промышленности. Известно, что дизельные генераторы обеспечивают максимальную мощность, долговечность и мощность при добыче полезных ископаемых, что делает их идеальным источником энергии и резервным / резервным вариантом для всех тяжелых работ на горнодобывающих полях.
Здравоохранение
Это одна из самых чувствительных отраслей во многих отношениях. Без дизель-генераторов, обеспечивающих резервное питание в случае сбоя или перебоев в подаче электроэнергии, многие пациенты в медицинских учреждениях погибли бы.Серьезно больные и травмированные пациенты, такие как пациенты в отделении интенсивной терапии (ОИТ), будут подвержены риску, потому что устройства жизнеобеспечения, такие как кислородные насосы, не смогут работать при малейшем отключении электроэнергии.
Дизель-генераторы являются наиболее надежным резервным источником энергии для больниц, поскольку их легче обслуживать, чем генераторы природного газа, и они обеспечивают бесперебойное электроснабжение при выходе из строя энергосистемы (до тех пор, пока не закончится запас топлива). Полного бака дизельного топлива на всю больницу может хватить на 8 часов, в зависимости от его размера.При достаточном запасе топлива на месте дизельные генераторы могут обеспечивать резервное питание более 48 часов.
Коммерческий
Никто в коммерческой отрасли не хочет терять деньги, но сбой питания без плана резервного копирования может сделать это занозой в плоть. Отключение электроэнергии в коммерческих помещениях означает огромные потери доходов кассовых аппаратов, проблемы безопасности как для людей, так и для финансов, проблемы для ИТ и любого другого автоматизированного оборудования, а также полное отключение операций.Все эти неудобства и потери нельзя сравнить со стоимостью вложения в резервный дизель-генератор.
Дизель-генератор позволяет защитить ваши бизнес-интересы, доходы, обеспечить бесперебойную работу, избежать потери бизнеса из-за конкурентов, обеспечить безопасность и защитить вашу прибыль.
Нефть и газ
В нефтегазовой отрасли время — деньги. Каждая минута простоя, будь то из-за отказа машины или отключения электроэнергии, стоит денег.Дизельные генераторы являются неотъемлемой частью этой отрасли, поскольку они используются для обеспечения энергией всех видов деятельности на нефтяных и газовых месторождениях, включая бурение, перекачку и погрузку.
В большинстве случаев разведка нефти и газа проводится в удаленных местах с тяжелыми условиями. Без локальных дизель-генераторов работа на этих участках была бы невозможна, потому что они в большинстве своем находятся далеко от электрических сетей. Современным буровым станкам также требуются мощные, эффективные и надежные генераторы на месте, когда они работают; И только дизельные генераторы подходят под это требование.
Строительство
Дизель-генераторы необходимы в строительной отрасли. Строительные проекты часто останавливаются из-за перебоев в электроснабжении или отсутствия электроснабжения на некоторых строительных площадках. Постоянные перебои в подаче электроэнергии могут привести к задержке завершения проекта, а также к дорогостоящим расходам из-за отставания от графика.
Генераторыобеспечивают столь необходимую мощность для освещения строительства, которое ведется круглосуточно, без выходных, приводят в действие машины кондиционирования воздуха, системы электросвязи и запускают строительное оборудование, такое как краны.Они также обеспечивают резервное питание основной сети в случае отключения электроэнергии из-за внешних сил или аварий / помех со стороны строительной площадки. Кроме того, переносные генераторы можно перемещать с одного объекта на другой за считанные минуты или часы.
Производство
Незначительный сбой в обрабатывающей промышленности может означать не только низкие объемы производства, но и производство низкого качества. Для получения оптимальных доходов любая производственная линия в производственной линии должна постоянно работать в соответствии с требованиями.Когда на производственных предприятиях случаются отключения электроэнергии, они влияют на все процессы — от поиска сырья до продажи продукции. Обычные графики прерываются, цели не достигаются, сырье портится, безопасность ставится под угрозу, а в некоторых случаях ухудшается качество продукта, что может привести к потере клиентов.
Резервные дизельные генераторы обеспечивают аварийное электроснабжение в случае таких отключений электроэнергии и, следовательно, защищают обрабатывающую промышленность от огромных потерь продукции, финансовых и репутационных потерь.
Телекоммуникации и центры обработки данных
Компьютеры и центры обработки данных сегодня являются сердцем каждой отрасли. Во многих отраслях сейчас данные хранятся на серверах, как ручных, так и облачных, и им необходим постоянный доступ к этим данным, чтобы их бизнес мог работать без сбоев. Из-за перебоев в подаче электроэнергии эти серверы становятся недоступными, и предприятиям приходится останавливать свою работу; потеря бизнеса и денег в процессе. Перебои в подаче электроэнергии также делают серверы уязвимыми для атак хакеров с целью кражи и манипулирования этими данными в личных целях.
Дизель-генераторызарекомендовали себя в этой отрасли как очень надежные, обеспечивая постоянное и немедленное резервное питание при выходе из строя электросети. Они следят за тем, чтобы центры обработки данных всегда были в сети даже во время стихийных бедствий.
Коммунальные услуги
Коммунальные предприятия могут быть поставщиками энергии, от которых мы все зависим в снабжении наших сетей, но они также сталкиваются с чрезвычайными ситуациями на своих электростанциях и обращаются к дизельным генераторам. У компаний есть огромные дизельные генераторы, готовые на случай, если на их основной линии электроснабжения возникнет авария.Они используют генераторы, чтобы производить электричество, достаточное для снабжения энергией тысячи домов, до тех пор, пока их основное энергоснабжение не будет восстановлено.
Дизель-генераторы в этой отрасли позволяют бригаде электростанции иметь достаточно времени для работы с основным источником питания. Они также помогают предотвратить подачу иска разгневанными покупателями на коммунальную компанию или ее потерю в пользу конкурентов с устойчивым планом резервного копирования.
Образование
Школы, колледжи и другие высшие учебные заведения не будут возглавлять список отраслей, требующих резервного генератора, но на самом деле в образовательных учреждениях есть несколько систем, которые полагаются на электричество.Перебои в подаче электроэнергии означают гораздо больше, чем у студентов, получающих оставшуюся часть выходного дня. Конечно, существуют неурядицы в классе, которые требуют изменения расписания, что может стать серьезной проблемой, особенно в университетах. Отключение питания может поставить под угрозу школьные центры обработки данных, в которых хранятся конфиденциальные данные, и если системы ИТ-безопасности выйдут из строя, они окажутся под угрозой. Детекторы дыма, разбрызгиватели воды, аварийное освещение, сигнализация и звонки, а также электронные дверные системы — все это находится под угрозой при отключении электроэнергии. В целом, потеря мощности оставляет школы, учащихся и сотрудников уязвимыми перед несколькими опасностями.Школа без электричества не может обеспечить необходимую безопасность.
Военный
Это еще одна отрасль, которая сильно зависит от дизель-генераторов. Солдатам в бою нужен хороший и стабильный источник энергии, который можно переносить даже в самые суровые условия и при этом эффективно работать. Они используют дизельные генераторы для широкого спектра применений, включая питание своего оборудования, больниц, освещение своих лагерей и управление своим ИТ-оборудованием и многое другое.
Дизельный генератор— обзор
ПРИМЕР II: РАБОТА ВЕТРА / АККУМУЛЯТОРА / ДИЗЕЛЬНОЙ СИСТЕМЫ
В качестве второго примера работа ветро / аккумуляторной / дизельной системы оптимизирована с учетом стратегии управления дизельным генератором. Спрос на энергию имеет постоянный дневной график со средним значением 8,75 кВт. Потребляемая мощность составляет 7 кВт с 0 до 8 часов, 14 кВт с 8 до 19 часов и 0 кВт с 19 до 24 часов. Система включает ветряную турбину мощностью 75 кВт, аккумуляторную батарею на 150 кВтч для хранения энергии и дизельный генератор мощностью 25 кВт в качестве резервного генератора.Система расположена в Де Кой, прибрежном районе в Нидерландах, где потенциальная годовая выработка энергии ветряной турбиной составляет около 135 МВтч / год (= средняя мощность 15 кВт).
Дизель-генератор может быть включен в систему различными способами:
- (i)
Генератор только напрямую подает энергию на нагрузку. Когда почасовая потребность в нагрузке превышает энергию, вырабатываемую ветряной турбиной, плюс энергию, которую могут обеспечить батареи, дизельный генератор восполняет разницу.Дизель-генератор подключен к шине переменного тока системы (генератор переменного тока). Поскольку максимальная требуемая нагрузка (14 кВт) меньше номинальной мощности дизельного генератора (25 кВт), он всегда работает с частичной нагрузкой. В этой конфигурации дизельный генератор не используется для зарядки аккумуляторов.
- (ii)
Дизель-генератор может подавать энергию непосредственно на нагрузку, а также заряжать батареи. Поскольку ожидается, что большая часть произведенного дизельного генератора будет храниться в батареях, используется дизельный генератор, который соединен с шиной постоянного тока системы (генератор постоянного тока).В этой стратегии дизельный генератор может работать с полной нагрузкой, что дает преимущество более высокой топливной эффективности.
Дизель-генератор будет запущен, когда уровень заряда (SOC) аккумуляторов упадет ниже определенного предварительно заданного значения (переключатель низкого уровня). Если дизельный генератор работает, он будет остановлен, когда батареи будут заряжены до заданного уровня (высокий уровень переключения) или если выработка энергии ветряной турбиной превышает потребность в нагрузке.
Выключатель низкого уровня может быть установлен чуть выше минимального допустимого уровня заряда батареи.Оптимальный выбор переключателя высокого уровня является менее простым и зависит, среди прочего, от схемы нагрузки. Если установлено относительно низкое значение (например, 50% SOC), дизель-генератор может часто работать только в течение короткого времени, что увеличивает расход топлива и может вызвать неудобства. Если переключатель высокого уровня установлен на высокий уровень (например, 90% SOC), батареи не могут хранить много дополнительной энергии в случае, если ветряная турбина должна производить избыточную энергию. Это увеличивает расход топлива и сокращает время работы от аккумулятора.Выбор может быть сделан на основе расчетов моделирования, в которых дизельный генератор был подключен к шине переменного тока, работающей с частичной нагрузкой, и подключен к шине постоянного тока, работающей с полной нагрузкой.
Минимальное и максимальное допустимые значения SOC аккумулятора составляли 30% и 95% от емкости аккумулятора. Уровень переключения низкого уровня, при котором запускается дизель-генератор, был установлен на 35% от емкости батареи, тогда как уровень переключения высокого уровня был впоследствии установлен на 50%, 70% и 90% SOC. Период моделирования составил один год. Был использован тип дизельного генератора по умолчанию SOMES.Экономические допущения можно найти в таблице 1.
В таблице 2 показаны результаты моделирования. Можно заметить, что нехватка энергии и затраты на электроэнергию почти равны для всех прогонов моделирования. Дефицит энергии никогда не становится нулевым, поскольку предполагалось, что дизельный генератор недоступен в течение 5% времени моделирования из-за технического обслуживания и ремонта.
Таблица 2. Различные прогоны моделирования с системой ветер / аккумулятор / дизель-генератор.
| дизель-генератор | высокое переключение (%) | нехватка энергии (%) | покрытие ветром (%) | цикл хранения | расход топлива (л) | наработка дизельное топливо | количество дизельного топлива пусков | электр.затраты (долл. США / кВтч) | |
|---|---|---|---|---|---|---|---|---|---|
| AC | — | 1,4 | 72 | 90 | 13000 | 3626 | 500 | 0,27 | 9038 70 | 167 | 7800 | 967 | 286 | 0,25 |
| постоянного тока | 70 | 1,2 | 69 | 165 | 8100166 | 25 | |||
| DC | 90 | 1,1 | 67 | 156 | 8500 | 1058 | 95 | 0,25 |
Очевидно, что доля возобновляемой энергии покрывается максимальная в случае дизельного генератора переменного тока, поскольку дизельный генератор используется только для восполнения разницы между потреблением энергии и поставкой от ветряной турбины и батарей. Однако количество часов работы генератора переменного тока велико (40% времени моделирования), а работа с частичной нагрузкой приводит к высокому расходу топлива.
Использование дизельного генератора в качестве генератора постоянного тока с полной нагрузкой с переключателем высокого уровня на 50% SOC сокращает количество часов работы на 75%, расход топлива на 35% и увеличивает количество циклов батарей с От 90 до примерно 160 (для сравнения, для предполагаемой батареи экономически оптимальное количество годовых циклов составляет 100). Когда настройка переключателя высокого уровня повышается с 50 до 90%, вклад энергии ветра в покрытие потребности в нагрузке уменьшается лишь незначительно с 70 до 67%, что связано с регулярной суточной нагрузкой.Соответственно увеличивается доля дизель-генератора с 29 до 32%.
Таким образом, с переключателем высокого уровня, установленным на 50% вместо 90%, экономия расхода топлива и общего времени работы дизельного генератора составляет 10%. С другой стороны, количество пусков дизеля увеличивается на 100%.
Руководство по выбору системы выработки электроэнергии
27 августа 2019 г.,Выбор системы производства электроэнергии — важное решение.Независимо от того, являются ли ваши потребности в производстве электроэнергии временными и дополнительными к установленной сети или предназначены для использования в качестве основного источника электроэнергии, вам необходимо тщательно и разумно выбирать генератор. Это происходит из-за оценки ваших вариантов того, что доступно на рынке. Это также то, что лучше всего подходит для вашего конкретного приложения.
Перейти к разделам:
Выбор генератора из огромного множества вариантов не должен быть сложной или утомительной задачей. Доступно огромное количество информации.К сожалению, во многом это корыстно и не дает вам объективного и точного представления. Вот где бесценно беспристрастное руководство по выбору энергосистемы.
Новости отрасли от Уоррена Кэтра Право на ваш почтовый ящик
Факторы при выборе системы производства электроэнергии
Подбор правильного генератора к вашим существующим требованиям имеет решающее значение для успешной работы. Размер выходной мощности жизненно важен. Важны конкретное название бренда и модели. Так же как и место, где вы эксплуатируете генератор, а также климатические факторы и доступность обслуживания.Затем вам нужно рассмотреть такие мелкие детали, как устройства безопасности, дисплеи, простота обслуживания, переключатели интерфейса и, конечно же, цена.
Все эти функции и преимущества составляют часть того, на чем вы основываете свое решение о покупке генератора. Они важны для формирования общей картины. Но почти всегда одним из основных критериев выбора энергоблока является вид топлива, необходимого для питания генераторного двигателя. Это решение достаточно легко не заметить, но его значение весьма значимо.
Выбор генератора на основании предрасположенности или предубеждения только к одному виду топлива может ввести в заблуждение. За последние годы в технологии генераторов произошло очень много достижений. То, что было правдой десять лет назад, сегодня может оказаться ненадежным фактом, особенно в отношении топлива. Представления о том, что природный газ по сравнению с дизельным генератором — это не лучший выбор или что бензин по сравнению с дизельным двигателем более экономичен, могут быть ошибочными.
Обзор энергосистем
Чтобы помочь вам сделать осознанный выбор при выборе генераторной системы, давайте сначала взглянем на самую суть генератора.Это двигатель.
Система выработки электроэнергии состоит из двух основных частей. Есть сам генератор, который производит и проводит электричество. Это делается по принципу электромагнетизма, установленному десятилетиями. Были достигнуты огромные успехи в улучшении якоря и катушек, составляющих электрическое поле.
Второй член группы в генерирующей системе — двигатель, вращающий ротор. За некоторыми исключениями, в генераторных двигателях используется система внутреннего сгорания, в которой ископаемое топливо воспламеняется внутри герметичных цилиндров.
Возобновляемые и невозобновляемые ресурсы и энергетические системы
Ископаемое топливо — невозобновляемые ресурсы. В отличие от возобновляемых ресурсов, таких как энергия ветра, солнца и воды, которые приводят в действие передовые и крупные системы выработки электроэнергии, ископаемое топливо является выбором номер один для небольших жилых, коммерческих и промышленных энергосистем. Сюда входят постоянные, стационарные резервные генераторы, а также переносные генераторные установки.
Все ископаемые виды топлива образовались в результате разложения органических соединений, захороненных под поверхностью земли.Некоторые залежи ископаемого топлива датируются миллионы лет назад, когда динозавры бродили по Земле и на огромных океанских днах, а также в джунглях на поверхности были растения и животные. Когда они умирали и накапливались, тепло и давление естественного действия сжимали эти остатки. Это изменило их углеродную структуру, сделав их идеальными источниками энергии для современных двигателей внутреннего сгорания, включая генераторы.
Три основных источника ископаемого топлива для систем генераторов — это бензин, дизельное топливо и природный газ.У каждого типа топлива есть свои плюсы и минусы, которые мы немного рассмотрим. Во-первых, полезно знать, что представляет собой каждое топливо, чтобы вы могли понять и взвесить преимущества и недостатки.
Бензиновые системы питания
Бензин в некоторых странах также известен как нефтяной дистиллят или «бензин». Газ — наиболее распространенное ископаемое топливо для небольших двигателей, включая легковые автомобили, легкие грузовики и небольшие электрические генераторные установки.
Бензин очищается от сырой нефти и других нефтепродуктов.По данным Агентства энергетической информации (EIA), нефтеперерабатывающие заводы в Соединенных Штатах производят около 19 галлонов бензина из каждых 42 галлонов барреля сырой нефти. Готовый бензин, который вы покупаете на заправочной станции, бывает трех октановых марок или классов качества. Эти сорта делятся на обычные, средние и премиальные. Марки определяют скорость горения и значения защиты от детонации каждого типа.
Бензин раньше содержал свинец для предотвращения преждевременного воспламенения, что и являлось причиной стука газовых двигателей. Свинец в газе был запрещен в 1975 году.Теперь бензину добавлены другие химические свойства, чтобы он работал лучше. Бензин остается легковоспламеняющимся и подверженным возгоранию.
Поскольку бензин нестабилен как жидкость, так и пар, для его безопасности требуются специальные системы хранения и доставки. У него также есть другой метод зажигания, когда требуется искра. В бензиновых двигателях используются свечи зажигания и распределительные системы для воспламенения этого топлива внутри двигателя внутреннего сгорания. Это дает некоторые преимущества газовых двигателей перед дизельными.Бензиновые агрегаты имеют некоторые недостатки и проблемы безопасности.
Энергетические системы на дизельном топливе
Рудольф Дизель был немецким инженером, который понял, что бензин нежелателен из-за его воспламеняемости при температуре окружающей среды или воздуха. Бензин также горел сильнее и создавал большую нагрузку на движущиеся части двигателя. Дизель открыл другой способ производства ископаемого топлива на основе сырой нефти, которое не воспламеняется от искры. Скорее, он будет гореть при более низких температурах при смешивании с воздухом и сильном сжатии внутри специально разработанного двигателя внутреннего сгорания.
Люди использовали дизельное топливо десятилетиями. Для этого требуется другой метод обработки, который, согласно EIA, позволяет производить от 12 до 13 галлонов дизельного топлива на баррель сырой нефти. Дизельное топливо по своей природе стабильно на открытом воздухе и намного безопаснее бензина в большинстве условий. Его нельзя воспламенить от искры, как газовый баллончик. Но его можно медленно сжечь открытым пламенем, поэтому иногда для топки мазута используют дизельное топливо.
Когда дизельное топливо сжимается, у него разные реакции.Внутри цилиндров двигателя дизельное топливо срабатывает при гораздо более низкой температуре и горит с гораздо большей энергоэффективностью, чем бензин. Это называется точкой воспламенения. Для дизельного топлива это 265 градусов по Цельсию, а для бензина внутренняя температура вспышки составляет 280 градусов по Цельсию. Вот почему дизельные двигатели работают холоднее, чем бензиновые. По этой же причине они, как известно, бегают намного дольше.
Более низкая рабочая температура дизельных двигателей имеет явное преимущество (по сравнению с бензиновыми двигателями), помимо того, что движущиеся части подвергаются меньшему нагреву, следовательно, меньшему износу:
- Дизельное топливо сжигает намного больше своего объема, чем бензин.Это повышает эффективность использования топлива или удельную энергию, поэтому дизельные двигатели считаются более экономичными.
- Кроме того, поскольку воспламенение и полное сгорание происходит при более низких температурах и оборотах двигателя, считается, что дизельные двигатели имеют более низкую мощность или крутящий момент.
имеют плохую репутацию шумных и грязных двигателей. Эта плохая репутация несколько незаслуженная перед лицом новой технологии дизельных двигателей. Это одна из причин, почему третий вид ископаемого топлива становится все более популярным.Это природный газ.
Энергетические системы на природном газе
В отличие от бензина и дизельного топлива, которые представляют собой жидкости, очищенные из сырой нефти, природный газ является именно таким. Это газ. Природный газ находится глубоко под землей. Это также ископаемое топливо, которое в своем нынешнем виде появилось в результате разложения органических соединений растений и животных.
Природный газ в основном состоит из метана, который химически образуется в газообразном состоянии, если он не подвергается глубокому сжатию или охлаждению. В своей естественной форме метан смешивается с песком и илом, образуя огромные залежи ископаемого топлива, которые можно искусственно разрушить.При этом выделяется природный газ, который может быть уловлен в скважинах, затем под давлением в трубопроводы или охлажден для отправки в контейнерах.
В сыром виде природный газ не имеет вкуса, цвета и запаха. Он также очень взрывоопасен при контакте с воздухом и может сработать от малейшей искры с подходящей топливно-воздушной смесью. Вот почему добавка под названием меркаптан перерабатывается в природный газ и дает знакомый предупреждающий запах, описываемый как тухлые яйца.
После сжигания природного газа в нем остается мало отходов или побочных продуктов, кроме воды.Это делает природный газ экологически чистым и популярным выбором в городских условиях, где загрязнение воздуха является проблемой. Природный газ также быстро рассеивается после выхода из защитной оболочки. Это уменьшает беспорядок от разливов дизельного топлива и бензина, очистка которых может иметь катастрофические последствия.
По этим причинам природный газ является наиболее экономичным и распространенным видом ископаемого топлива. Его относительно легко собирать и содержать, и он является прекрасным источником энергии. По данным Агентства энергетической информации, американцы использовали 27 штук.5 миллиардов кубических футов природного газа в 2015 году.
Природный газ является основным поставщиком топлива в энергосистему США. Он также широко используется в промышленных, коммерческих, транспортных и жилых помещениях в качестве источника тепла, а также для питания двигателей внутреннего сгорания. Это включает в себя двигатели многих стационарных и переносных систем выработки электроэнергии.
Есть несколько других вариантов топлива для питания электрических генераторов, например, пропан, или источники естественной энергии, такие как ветер и солнце.Но в качестве генератора вы, скорее всего, выберете обычное ископаемое топливо. Речь идет о бензине, дизельном топливе или природном газе.
Преимущества и недостатки различных источников топлива
Давайте теперь взвесим преимущества и недостатки бензиновых, дизельных и газовых двигателей при их использовании в системах выработки электроэнергии. Вы увидите, что некоторые плюсы и минусы пересекаются и перевешивают друг друга, но это должно помочь вам в выборе.
Преимущества газовых генераторов
Бензин был первым топливом, использованным в изобретении и развитии двигателя внутреннего сгорания.Он работает в системе, в которой сырой жидкий бензин испаряется в контролируемую воздушную смесь в результате науглероживания или впрыска топлива. Попав в камеру сгорания, бензин необходимо воспламенить от искры. Для этого требуются свечи зажигания, которые зажигаются через электромеханическую распределительную систему.
Некоторые из преимуществ бензина:
- Проверенная система, широко известная и понятная
- Готовый и широко доступный источник топлива
- Хорошо сочетается с другим оборудованием, работающим на бензине, для контроля топлива
- Сравнительно хорошая экономия топлива
- Хорошо работает в экстремальных климатических условиях, как жарких, так и холодных
- Относительно чистое горение и низкие эксплуатационные расходы из-за загрязнения топлива
- Снижение начальной закупочной цены
- Вдохновляет двигатели более компактной, легкой и универсальной конструкцией
Вот некоторые недостатки бензина:
- Легко воспламеняется при контакте с воздухом и искрами
- Непредсказуемость цен на топливо
- Более горячее горение, вызывающее больший износ движущихся частей
- Более низкая плотность энергии, поэтому меньшая экономия топлива
- Снижение крутящего момента и мощности на низких скоростях
- Меньший срок службы компонентов двигателя
- Более высокая норма амортизации и более низкая стоимость при перепродаже
- Ограничения по габаритам агрегата и выходной мощности
Преимущества дизель-генераторов
Дизельное топливо было разработано как более стабильная и недорогая альтернатива бензину.Дизельные двигатели не имеют свечей зажигания или распределителей для воспламенения топлива, что дает им менее систематизированные детали и меньше того, что может выйти из строя. Жидкое дизельное топливо впрыскивается непосредственно в камеру сгорания, где действие клапанов и поршней смешивает надлежащее соотношение воздух-топливо с горючим объемом. Дизельные двигатели являются наиболее популярными и широко используемыми силовыми установками для силовых установок по ряду веских причин.
Вот некоторые из преимуществ дизеля:
- Очень стабильное топливо с точки зрения безопасности
- Превосходная плотность энергии и отдача для экономии топлива
- Обеспечивает максимальную мощность и крутящий момент на более низких скоростях
- Меньший износ движущихся частей
- Увеличенный срок службы двигателя
- Более надежная работа
- Выходы повышенной мощности
- Более тяжелые и качественные производственные материалы и процессы
- Более низкая амортизация и более высокая стоимость при перепродаже
- Обильный запас топлива
- Надежное и удобное хранение топлива
Некоторые недостатки дизеля:
- Ожоги с заметными побочными продуктами, включая углерод в выхлопных газах
- Коэффициент шума, особенно в двигателях старых моделей
- Более высокая начальная цена покупки
- Менее надежен при экстремальных температурах
- Сложнее запустить на морозе, сложнее отключить в жару
- Топливо легко загрязняется
- Более высокая начальная цена покупки
- Двигатели обычно более громоздкие и требуют больше места для работы и хранения
- Цены на дизельное топливо сильно колеблются, особенно в зависимости от сезона
Преимущества генераторов природного газа
Хотя дизельное топливо и бензиновые двигатели были традиционным выбором для систем выработки электроэнергии, природный газ в качестве альтернативы топливу становится все более популярным.Это связано с технологическим прогрессом и развивающейся сетью поставок природного газа.
Двигатели внутреннего сгорания, работающие на природном газе, работают по тому же принципу зажигания, что и бензиновые модели. Природный газ в виде пара впрыскивается прямо в камеру сгорания и воспламеняется свечой зажигания и системой проводки распределителя. В цилиндре горит природный газ, а выхлопные газы выводятся в атмосферу. Здесь мало вредных выбросов, и это ископаемое топливо считается наиболее экологически чистым из имеющихся.
Распределение и хранение природного газа имеет свои ограничения. Большинство применений для генераторов природного газа находятся в непосредственной близости от городских районов, где проложены газопроводы под давлением. В противном случае природный газ придется ввозить грузовиками в специализированных контейнерах и хранить на месте расположения генератора в высокопрочных контейнерах.
Многие генераторы природного газа используются прямо на объектах по добыче природного газа, где их топливо попадает в мачту. Это экономичный и практичный подход, но он ограничивается применением на газовых месторождениях.В других областях природный газ не так популярен, даже несмотря на то, что его объем закупочной стоимости и отдача от удельной энергии превосходны.
Это просто связано с проблемами распределения и хранения, а не с общими преимуществами и недостатками природного газа по сравнению с дизельным генератором по сравнению с бензиновым генератором.
Некоторые из преимуществ природного газа:
- Исключительно чистое сжигание с ограниченным количеством загрязняющих веществ
- Низкая стоимость объема потребления газа
- Хорошая отдача от удельной энергии и общего потребления
- Хорошо работает с переоборудованием из бензиновых двигателей
- Отсутствие необходимости в расходах на распределение и хранение при подключении к существующей сети
- Низкие эксплуатационные расходы благодаря чистой производственной среде
- Не подвержен разливу очистка
- Стабильные, относительно предсказуемые цены на топливо
К недостаткам природного газа относятся:
- Не так популярен, как дизель и бензин, поэтому доступно меньше моделей
- Новые технологические проблемы с непроверенными методами
- Затраты на хранение и транспортировку без трубопроводов
- Первоначальная закупка генераторов природного газа высока
- Значительный износ и более низкая стоимость при перепродаже, чем дизельное топливо
- Меньше крутящего момента и мощности, чем у дизельного
- Взрывоопасное вещество при выходе из защитной оболочки
Сравнение производительности всех трех типов
Как видите, все три типа двигателей имеют свои достоинства и недостатки.Но как они соотносятся друг с другом в различных категориях производительности? Давайте посмотрим, как бензиновые, дизельные и газовые генераторы складываются в 12 различных областях, используя низкие, средние и высокие показатели производительности.
Бензиновые генераторы
Генераторы, работающие на бензине, лучше всего работают в экстремальных температурных условиях. Их первоначальная стоимость покупки также привлекательна, но бензиновые двигатели в долгосрочной перспективе не выдерживают хороших показателей по сравнению с дизельным и природным газом, а также не так безопасны в эксплуатации из-за горючести топлива.
- Стоимость покупки — низкая
- Амортизация — высокая
- Стоимость топлива — Средняя
- Плотность энергии — низкая
- Прочность — Низкая
- Надежность — Низкая
- Коэффициент шума — средний
- Фактор безопасности — Низкий
- Наличие топлива — Среднее
- Хранилище топлива — Среднее
- Выбросы — Средние
- Эксплуатационные характеристики при экстремальных температурах — Высокая
Дизель-генераторы
Дизельные двигатели-генераторы считаются лучшими в целом, особенно по топливной экономичности и надежности.Дизель — самый безопасный источник топлива, самый доступный и хорошо хранящийся. Однако по факторам шума и выбросов дизельное топливо ставится после бензина и природного газа.
- Стоимость покупки — Средняя
- Амортизация — Низкая
- Стоимость топлива — Высокая
- Плотность энергии — высокая
- Прочность — Высокая
- Надежность — Высокая
- Коэффициент шума — Низкий
- Фактор безопасности — высокий
- Наличие топлива — высокое
- Хранилище топлива — высокое
- Выбросы — Низкие
- Работа при экстремальных температурах — Низкая
Обзор Дизель-генераторы
Генераторы природного газа
Двигатели, работающие на природном газе, являются наиболее экологически чистыми и имеют самые низкие затраты на топливо среди трех типов генераторов.Они находятся на середине пути в удержании ценности, надежности и безопасности. Природного газа в Соединенных Штатах довольно много и относительно рентабельно
- Стоимость покупки — высокая
- Амортизация — Средняя
- Стоимость топлива — Низкая
- Плотность энергии — Средняя
- Прочность — Средняя
- Надежность — Средняя
- Коэффициент шума — Низкий
- Фактор безопасности — средний
- Наличие топлива — Среднее
- Хранилище топлива — Низкий
- Выбросы — Высокие
- Экстремальные температурные характеристики — Средняя
Обзор Генераторы природного газа
Новые технологии генераторов
Технологии постоянно развиваются, и на рынке постоянно появляются новые типы генераторов.Вот пара новых технологий, о которых следует знать и учитывать при выборе генератора.
Бензин приводил в действие первый генератор внутреннего сгорания. Он превратился в дизельную модель, а затем в модель, работающую на природном газе. Как и все изобретения, доказавшие свою ценность, генераторы также продолжают развиваться во многих отношениях.
Генераторы нового поколения используют передовые компьютерные средства управления для их работы и систем мониторинга. Более сложные материалы продлевают срок службы генератора и снижают требования к техническому обслуживанию.Это приводит к сокращению времени простоя и увеличению производительности. Все это хорошо для потребительских инвестиций.
Генераторы гибридные и биотопливные
Одним из наиболее интересных достижений в проектировании и эксплуатации генераторов являются новые виды топлива и гибридное сочетание существующих систем. Гибрид по определению означает объединение двух предметов для достижения общей цели. Генераторы должны включать более эффективные машины, которые вырабатывают электроэнергию с меньшими затратами.
Эксперименты по гибридному смешиванию бензина и природного газа работают по принципу запуска генератора на бензине, который лучше увеличивает энергию.Когда генератор запускается и работает, подача топлива заменяется постоянным потоком природного газа, что более эффективно и менее затратно.
После первоначальной стоимости генератора вашим следующим самым большим счетом будет топливо. Стоимость ископаемого топлива будет продолжать расти, несмотря на выявление новых внутренних источников и улучшенные методы распределения.
Биотопливо — отличный пример использования новой технологии в генераторах. Биодизель представляет собой смесь обычного дизельного топлива и других горючих органических продуктов, таких как растительные вещества.Bi-fuel — еще один гибридный поставщик энергии, работающий на дизельном топливе, в котором природный газ впрыскивается в систему впуска воздуха для дополнительной экономии.
Обзор Системы динамического смешения газов
В будущем энергосистемы ждут многообещающие вещи, и вы можете выбирать из множества вариантов. Знание преимуществ и недостатков трех основных источников топлива должно быть частью ваших соображений при выборе генератора. Следует учитывать и другие факторы.
Другие факторы, которые следует учитывать при выборе системы выработки электроэнергии
Прежде всего, вам необходимо оценить, для какой цели будет служить ваш генератор.Второе соображение — это то, сколько вы готовы за это заплатить. Мы отложим вашу цель и бюджет в сторону, потому что вы, вероятно, уже определили эти две проблемы, прежде чем рассматривать такие более тонкие факторы, как:
- Типоразмер генератора . Это оценивается в киловаттах для большинства и в мегаваттах для огромных приложений. Лучше всего обсудить фактический размер с профессиональным поставщиком генераторов. В большинстве случаев для коммерческого и промышленного применения требуются дизельные или газовые установки для удовлетворения их потребностей в мощности.
- Надежность . Вы должны быть уверены, что ваш генератор поступает от поставщика с хорошей репутацией, который доказал свою эффективность, а также качество обслуживания. Также рассмотрите вариант интегрированной системы аварийного электроснабжения.
- Гарантия . Ваш выбор бренда должен быть сделан после того, как вы посмотрите, насколько всеобъемлющим и надежным является покрытие.
- Техническое обслуживание . Выбор генератора, не требующего особого обслуживания, сэкономит вам много времени. Хорошие производители генераторов, такие как Caterpillar®, имеют отличные пакеты услуг, а также предоставляют надежные машины с отличной гарантией.
- Безопасность . Ваш генератор должен работать безопасно. Это включает в себя низкий уровень шума, низкий риск возгорания и такой дизайн, чтобы работники, находящиеся поблизости, не подвергались воздействию тепла и движущихся частей. Поговорите со своим дилером Cat® о функциях безопасности, встроенных в каждую систему производства электроэнергии Cat.
Считайте Cat своим поставщиком систем выработки электроэнергии
Cat — самый узнаваемый в мире бренд, предлагающий тяжелое оборудование, в том числе лучшие дизельные генераторы и генераторы, работающие на природном газе.Имя Caterpillar является синонимом качественного, надежного и универсального оборудования.
Warren CAT — авторизованный дилер Cat, поставляющий системы выработки электроэнергии на всей территории Западного Техаса и Оклахомы. Мы посвятили свой бизнес предоставлению клиентам комплексных решений для всего тяжелого оборудования, включая генераторы.
Свяжитесь с нами сегодня или позвоните нам по телефону 866-292-7736, чтобы поговорить с нами о решениях по питанию, которые будут вам лучше всего служить. Мы будем рады помочь вам сделать правильный выбор.Доверьтесь Уоррену CAT за чистую и непрерывную подачу электроэнергии.
Свяжитесь с Уорреном CAT
Причины, последствия и решения мокрого штабелирования от CK Power
Большинство резервных генераторных систем мощностью до пяти мегаватт используют поршневой двигатель внутреннего сгорания в качестве источника энергии для привода генератора, вырабатывающего электроэнергию. Выбираются двигатели, работающие на дизельном топливе, природном газе или сжиженном нефтяном газе. Большой процент резервных энергосистем использует дизельные двигатели. Дизель — удобный независимый источник топлива, а системы воспламенения от сжатия дизельных двигателей Tier 4 имеют гораздо более высокий термический КПД, чем система искрового зажигания, используемая в газовых двигателях.Однако один фактор, который следует учитывать при выборе дизельного источника энергии, — это возможность «мокрой штабелирования».
Национальная ассоциация противопожарной защиты (NFPA) в издании своего Кодекса NFPA 110 для аварийных и резервных систем питания от 1996 года называет влажную штабелировку полевым термином, указывающим на присутствие несгоревшего топлива или углерода, или и того, и другого в выхлопной системе. . В более позднем издании 1999 г. предлагается более количественный метод определения наличия мокрой штабелирования путем измерения температуры выхлопных газов (что объясняется далее в этом информационном листе).В этом сообщении обсуждаются причины мокрого штабелирования, его влияние на двигатель, почему его следует избегать, а также методы решения проблемы мокрого штабелирования.
Разработчик системы генератора Уровня 4 должен учитывать возможность мокрой штабелирования при выборе оборудования для системы, расчетах нагрузки и программах технического обслуживания и ремонта.
Изучите ключи к эффективной работе вашего генератора
Что вызывает влажную укладку?
Как и все двигатели внутреннего сгорания, для работы с максимальной эффективностью дизельный двигатель должен иметь точно правильное соотношение воздух-топливо и быть в состоянии поддерживать расчетную рабочую температуру для полного сгорания топлива.Когда дизельный двигатель работает с малой нагрузкой, он не достигает своей правильной рабочей температуры.
Когда дизельный двигатель работает при температуре ниже расчетной в течение продолжительных периодов времени, несгоревшее топливо истощается, и это проявляется в виде сырости в выхлопной системе, отсюда и фраза «мокрый штабелирование».
Эффекты мокрого штабелирования
Когда несгоревшее топливо выходит из камеры сгорания, оно начинает накапливаться в выхлопной части двигателя, что приводит к загрязнению форсунок и накоплению углерода на выпускных клапанах, турбонагнетателе и выхлопе.
Чрезмерные отложения могут привести к снижению производительности двигателя, поскольку газы перепускают седла клапанов, скопление выхлопных газов создает противодавление, а отложения на лопатках турбонагнетателя снижают эффективность турбонаддува.
Необратимые повреждения не будут возникать в течение короткого периода времени, но в течение более длительных периодов отложения будут оставлять царапины и разъедать ключевые поверхности двигателя.
Кроме того, когда двигатели работают ниже расчетной рабочей температуры, поршневые кольца не расширяются в достаточной степени, чтобы должным образом герметизировать пространство между поршнями и стенками цилиндра.Это приводит к утечке несгоревшего топлива и газов в масляный поддон и ухудшению смазывающих свойств масла, что приводит к преждевременному износу двигателя.
Почему важно избегать влажного штабелирования
Помимо неблагоприятного воздействия двигателя, разработчик и пользователь системы должны учитывать:
- Расходы — Чрезмерная влажная укладка сократит срок службы двигателя на много лет до плановой замены.
- Загрязнение — Многие городские районы ограничивают уровень выбросов дыма, производимого мокрыми штабелями.
- Мощность — Даже до того, как двигатель будет поврежден, отложения снизят максимальную мощность. Преждевременно изношенный двигатель будет иметь меньшую максимальную мощность, чем он был разработан.
- Техническое обслуживание — Двигатель, подвергающийся мокрому штабелированию, потребует значительно большего технического обслуживания, чем двигатель с достаточной нагрузкой.
Руководство NFPA
Мокрая укладка — это признанное состояние организациями, которые пишут коды для систем резервных генераторных установок, например, NFPA, которое выпустило несколько руководящих принципов для контроля эффектов.
Руководства NFPA в приложениях Уровня 1 и 2 требуют, чтобы устройство проверялось не реже одного раза в месяц в течение 30 минут одним из двух методов: (NFPA 110 8.4.2)
- Нагрузка, поддерживающая минимальную температуру выхлопных газов, рекомендованную производителем
- При рабочих температурах и не менее 30% номинальной мощности резервной паспортной таблички EPS
Дополнительные условия:
Совместная комиссия по аккредитации медицинских организаций (JCAHO), организация, которая аккредитует медицинские учреждения, подняла этот тест на уровень, превышающий NFPA.Они требуют тестирования 12 раз в год с интервалом тестирования 20-40 дней. Испытание генераторов в течение не менее 30 минут при динамической нагрузке 30 или более процентов от номинальной, указанной на паспортной табличке.
У систем, которые не соответствуют 30-процентной нагрузочной способности, есть три варианта:
- Увеличьте нагрузку, чтобы она соответствовала или превышала 30 процентов номинальной мощности, указанной на паспортной табличке
- Поддерживать минимальную температуру выхлопных газов, рекомендованную производителем двигателя
- Выполните тестирование группы нагрузок в течение 2 часов непрерывной нагрузки следующим образом:
- Нагрузка на 25 процентов от паспортной таблички в течение 30 минут
- 50 процентов за 30 минут
- 75 процентов в течение 60 минут.
JCAHO также рекомендует проверять все автоматические переключатели резерва (АВР) 12 раз в год с 20- и 40-дневными интервалами. Провайдер энергосистемы через программы планового обслуживания может провести нагрузочное тестирование при тестировании АВР.
Решение проблемы мокрого штабелирования
Наиболее простое решение — всегда запускать генераторную установку с электрической нагрузкой, которая достигает расчетной рабочей температуры дизельного топлива, или примерно 75 процентов от полной нагрузки.Накопившиеся топливные отложения и нагар можно удалить, запустив дизельный двигатель при требуемой рабочей температуре в течение нескольких часов, если мокрый штабель еще не достиг уровня, при котором скопление нагара может быть удалено только путем капитального ремонта двигателя.
Следующие решения банка грузов должны предотвратить повторение мокрого штабелирования:
- Автоматическая вспомогательная нагрузка — это решение обычно используется только тогда, когда дизель-генераторная установка является основным источником энергии. «Вспомогательный блок нагрузки» будет включен в систему, когда будут присутствовать только более легкие нагрузки, и отключится при подключении большей нагрузки.
- Блок ручной загрузки объекта — Работает, как описано для автоматического блока нагрузки, но это система с ручным управлением для использования с небольшими нагрузками, а также когда большая нагрузка также запускается вручную. Банк нагрузки также можно использовать для нагрузочного тестирования системы, которая в основном используется для резервного питания.
- Переносной аккумуляторный блок — Распределитель дизель-генераторной установки часто является наиболее квалифицированным специалистом по обслуживанию системы. Сегодня очень распространено, что владелец системы резервного генератора передает на аутсорсинг полное обслуживание системы и имеет контракт на плановое техническое обслуживание (PM) с поставщиком генераторной установки с полным спектром услуг.Во время планового планового технического обслуживания дистрибьютор принесет переносной блок нагрузки, чтобы запустить генератор при нагрузке, которая поддерживает расчетную рабочую температуру.
