Скорость потока воды: Гидравлический расчет трубопроводов. Расход воды. Скорость потока.

Содержание

Гидравлический расчет трубопровода | Онлайн-калькулятор

Наш универсальный онлайн-калькулятор позволяет выполнить полный гидравлический расчет простого трубопровода, то есть определить гидравлическое сопротивление, потери напора по длине по всему участку или на 1 погонный метр, узнать средний расход воды. Расчет выполняется по принципу, описанному в СНиП 2.04.02-84 (СП 31.13330.2012) «Водоснабжение. Наружные сети и сооружения», более подробно с теорией можно ознакомиться ниже. Оптимальная скорость воды в трубе от 0.6 м/с до 1.5 м/с, максимальная – 3 м/с. Обращайте внимание на единицы измерения и материал трубопровода, это важно. Для того чтобы получить результат гидравлического расчета, корректно заполните поля калькулятора и нажмите кнопку «Рассчитать».

 

Смежные нормативные документы:

  • СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения»
  • СП 30.13330.2016 «Внутренний водопровод и канализация зданий»
  • СП 60.13330.2016 «Отопление, вентиляция и кондиционирование воздуха»
  • ГОСТ 10705-80 «Трубы стальные электросварные»
  • ГОСТ 9583-75 «Трубы чугунные, напорные, изготовленные методами центробежного и полунепрерывного литья»
  • ГОСТ 539-80 «Трубы и муфты асбестоцементные напорные»
  • ГОСТ 12586.0-83 «Трубы железобетонные напорные виброгидропрессованные»
  • ГОСТ 16953-78 «Трубы железобетонные напорные центрифугированные»
  • ГОСТ 18599-2001 «Трубы напорные из полиэтилена»
  • ГОСТ 8894-86 «Трубы стеклянные и фасонные части к ним»

 

Теоретическое обоснование гидравлического расчета

Гидропотери в трубопроводах систем водоснабжения вызваны гидравлическим сопротивлениям труб, смежных стыковых соединений, арматуры и прочих соединительных элементов. Калькулятор выполняет расчет только для простого (прямого) трубопровода, поэтому для сложных систем рекомендуется совершать вычисления для каждого отдельного участка.

Согласно методике СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения», гидравлический уклон (потери напора на единицу длины) определяется по формуле:

i = (λ / d) × (v2 / 2g)

  • λ – коэффициент гидравлического сопротивления;
  • d – внутренний диаметр труб, м;
  • V – скорость воды, м/с;
  • g – ускорение свободного падения, 9,81 м/с2.

Таким образом, из неизвестных остается только коэффициент гидравлического сопротивления, который рассчитывается по формуле:

λ = A1 × (A0 + C/V)m / dm

Коэффициенты А0, А1, С и значения показателя степени m соответствуют современным технологиям изготовления трубопроводов и принимаются согласно нижеуказанной таблицы. В случае, если эти параметры отличаются от перечисленных, производитель должен указывать их самостоятельно.

Виды трубmA0A1С
Новые стальные без внутреннего защитного покрытия или с битумным защитным покрытием0,22610.01590.684
Новые чугунные без внутреннего защитного покрытия или с битумным защитным покрытием0,28410.01442.360
Неновые стальные и неновые чугунные без внутреннего защитного покрытия или с битумным защитным покрытиемv < 1,2 м/с0,3010.01790.867
v ⩾ 1,2 м/с0,3010.0210.000
Асбестоцементные0,1910.0113.510
Железобетонные виброгидропрессованные0,1910.015743.510
Железобетонные центрифугированные0,1910.013853.510
Стальные и чугунные с внутренним пластмассовым или полимерцементным покрытием, нанесенным методом центрифугирования0,1910.0113.510
Стальные и чугунные с внутренним цементно-песчаным покрытием, нанесенным методом набрызга с последующим заглаживанием0,1910.015743.510
Стальные и чугунные с внутренним цементно-песчаным покрытием, нанесенным методом центрифугирования0,1910.013853.510
Пластмассовые0,22600.013441.000
Стеклянные0,22600.014611.000

 

Расход воды в трубопроводе рассчитывается на основании известной усредненной скорости движения воды по трубе заданного сечения.

Q = π × (d2 / 4) × V / 1000

  • d – внутренний диаметр трубопровода, мм;
  • V – скорость потока жидкости, м/с.

Согласно СП 30.13330.2012 «Внутренний водопровод и канализация зданий» скорость движения воды в трубопроводах внутренних сетей не должна превышать 1.5 м/с, в трубопроводах хозяйственно-противопожарных и производственно-противопожарных систем – 3 м/с, в спринклерных и дренчерных системах – 10 м/с. Для большинства современных многоквартирных квартир и частных домов оптимальная скорость воды в трубе должна составлять от 0.6 м/с до 1.5 м/с.

Жидкость, давление, скорость – основы закона сантехники

Главная страница » Жидкость, давление, скорость – основы закона сантехники

Сантехника, казалось бы, не даёт особого повода вникать в дебри технологий, механизмов, заниматься скрупулёзными расчётами для выстраивания сложнейших схем. Но такое видение – это поверхностный взгляд на сантехнику. Реальная сантехническая сфера ничуть не уступает по сложности процессов и, также как многие другие отрасли, требует профессионального подхода. В свою очередь профессионализм – это солидный багаж знаний, на которых основывается сантехника. Окунёмся же (пусть не слишком глубоко) в сантехнический учебный поток, дабы приблизиться на шаг к профессиональному статусу сантехника.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.

ИНСТРУМЕНТ

Закон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта

Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины.

В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см

3 жидкости.

Этот объём воды в 10 см3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера.

Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см2 составляет 100 г (0,1 кг). Отсюда давление на 1 см2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое.

Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.

РАЗВОДНОЙ

Давление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости

Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно.

Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.

Статическое давление

Статическое давление существует в дополнение к любым динамическим факторам, которые также могут присутствовать одновременно. Закон Паскаля гласит:

Давление, создаваемое жидкостью, действует равноценно по всем направлениям и под прямым углом к содержащимся поверхностям.

Это определение касается только жидкостей, находящихся в полном покое или практически недвижимых. Определение справедливо также только для факторов, составляющих статический гидравлический напор.

Очевидно: когда скорость движения становится фактором, в расчёт берётся направление. Сила, привязанная к скорости, также должна иметь направление. Поэтому закон Паскаля, как таковой, не применяется к динамическим факторам мощности потока жидкости.

НАСОСЫ

Скорость движения потока зависит от многих факторов, включая послойное разделение жидкостной массы, а также сопротивление, создаваемое разными факторами

Динамические факторы инерции и трения привязаны к статическим факторам. Скоростной напор и потери давления привязаны к гидростатическому напору жидкости. Однако часть скоростного напора всегда может быть преобразована в статический напор.

Сила, которая может быть вызвана давлением или напором при работе с жидкостями, необходима, чтобы начать движение тела, если оно находится в состоянии покоя, и присутствует в той или иной форме, когда движение тела заблокировано.

Поэтому всякий раз, когда задана скорость движения жидкости, часть ее исходного статического напора используется для организации этой скорости, которая в дальнейшем существует уже как напорная скорость.

Объем и скорость потока

Объем жидкости, проходящей через определённую точку в заданное время, рассматривается как объем потока или расход. Объем потока обычно выражается литрами в минуту (л/мин) и связан с относительным давлением жидкости. Например, 10 литров в минуту при 2,7 атм.

Скорость потока (скорость жидкости) определяется как средняя скорость, при которой жидкость движется мимо заданной точки. Как правило, выражается метрами в секунду (м/с) или метрами в минуту (м/мин). Скорость потока является важным фактором при калибровке гидравлических линий.

САНТЕХНИКА

Объём и скорость потока жидкости традиционно считаются «родственными» показателями. При одинаковом объёме передачи скорость может меняться в зависимости от сечения прохода

Объем и скорость потока часто рассматриваются одновременно. При прочих равных условиях (при неизменном объеме ввода), скорость потока возрастает по мере уменьшения сечения или размера трубы, и скорость потока снижается по мере увеличения сечения.

Так, замедление скорости потока отмечается в широких частях трубопроводов, а в узких местах, напротив, скорость увеличивается. При этом объем воды, проходящей через каждую из этих контрольных точек, остаётся неизменным.

Принцип Бернулли

Широко известный принцип Бернулли выстраивается на той логике, когда подъем (падение) давления текучей жидкости всегда сопровождается уменьшением (увеличением) скорости. И наоборот, увеличение (уменьшение) скорости жидкости приводит к уменьшению (увеличению) давления.

Этот принцип заложен в основе целого ряда привычных явлений сантехники. В качестве тривиального примера: принцип Бернулли «виновен» в том, что занавес душа «втягивается внутрь», когда пользователь включает воду.

Разность давлений снаружи и внутри вызывает силовое усилие на занавес душа. Этим силовым усилием занавес и втягивается внутрь.

Другим наглядным примером является флакон духов с распылителем, когда нажимом кнопки создаётся область низкого давления за счёт высокой скорости воздуха. А воздух увлекает за собой жидкость.

ДУШЕВАЯ

Принцип Бернулли для самолётного крыла: 1 — низкое давление; 2 — высокое давление; 3 — быстрое обтекание; 4 — медленное обтекание; 5 — крыло

Принцип Бернулли также показывает, почему окна в доме имеют свойства самопроизвольно разбиваться при ураганах. В таких случаях крайне высокая скорость воздуха за окном приводит к тому, что давление снаружи становится намного меньше давления внутри, где воздух остаётся практически без движения.

Существенная разница в силе попросту выталкивает окна наружу, что приводит к разрушению стекла. Поэтому когда приближается сильный ураган, по сути, следует открыть окна как можно шире, чтобы уравнять давление внутри и снаружи здания.

И ещё парочка примеров, когда действует принцип Бернулли: подъем самолёта с последующим полётом за счёт крыльев и движение «кривых шаров» в бейсболе.

В обоих случаях создаётся разница скорости проходящего воздуха мимо объекта сверху и снизу. Для крыльев самолета разница скорости создаётся движением закрылков, в бейсболе — наличием волнистой кромки.

Практика домашнего сантехника на видеоролике

Полезный для получения практики сантехники видеоролик ниже демонстрирует некоторые приёмы, которые в любой момент могут потребоваться потенциальному хозяину жилища. Рекомендуется просмотр этого видео для получения актуальной информации по сантехническим манипуляциям:


Типичные скорости (практические скорости) потока жидкости (воды) в трубопроводах (трубах) в различных технологичеcких и коммунальных сетях.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Инженерное ремесло / / Падение давления, потери давления на трение.  / / Типичные скорости (практические скорости) потока жидкости (воды) в трубопроводах (трубах) в различных технологичеcких и коммунальных сетях.

Поделиться:   

Типичные скорости (практические скорости) потока жидкости в трубопроводах (трубах) в различных технологических и коммунальных сетях. Водопровод. Канализация. Теплоснабжение (отопление).

Комфортной (не вызывающей излишней коррозии / эрозии или шума в трубопроводах) считается скорость до 1,5 м/с. Приемлемой — до 2,5 м/с. А практически встречающиеся скорости см. в таблице ниже:

Система

Диапазон практических скоростей (м/с)

Самоциркулирующее теплоснабжение — скорость потока 0,2-0,5
Теплоснабжение с принудительной циркуляцией основная «прямая труба» — скорость потока 0,5-3 (выше — не стоит подключать новые нагрузки)
Теплоснабжение с принудительной циркуляцией — отводы на батареи = радиаторы — скорость потока 0,2-0,5
Водоснабжение магистральное — скорость потока 0,5-4 (выше — не стоит подключать новые нагрузки)
Водоснабжение ХВС и ГВС (разбор воды) — скорость потока 0,5-1 (выше — потребители не оценят фонтан…)
Циркуляция в системе ГВС — скорость потока 0,2-0,5 ( выше

Жидкости, газы и пары — типичные скорости потока (течения) в трубопроводах.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Скорость. Ускорение / / Скорость жидкостей и газов в трубопроводах. Типичные величины, практические данные  / / Жидкости, газы и пары — типичные скорости потока (течения) в трубопроводах.

Поделиться:   

Жидкости, газы и пары — типичные скорости потока (течения) в трубопроводах.

Рабочая среда Типичные скорости
(м/с) (футов/мин)
Ацетилен, стальная труба

20

4000

Аммиак, жидкость, стальная труба

1.8

360

Аммиак, газ, стальная труба

30

6000

Бензол, стальная труба

1.8

360

Бром, жидкость, стеклянная труба

1.2

240

Бром, газ, стеклянная труба

10

2000

Бромистый этилен, этиленбромид, этилендибромид,
дибромэтан, стеклянная труба

1.2

240

Бромистый этилен, этиленбромид, этилендибромид,
дибромэтан, стальная труба

1.8

Максимальные скорости воды в трубопроводе (трубе) в зависимости от применения принятые в Европе.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Оборудование — стандарты, размеры / / Элементы трубопроводов. Фланцы, резьбы, трубы, фитинги…. / / Трубы, трубопроводы. Диаметры труб и другие характеристики. / / Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления.  / / Максимальные скорости воды в трубопроводе (трубе) в зависимости от применения принятые в Европе.
Максимальные скорости воды в трубопроводе (трубе) в зависимости от применения принятые в Европе.

Во избежание шума, а также повышенного износа труб и другого оборудования скорость воды в трубопроводе не должна превышать определенных разумных величин, указанных в таблице ниже:

Применение Максимальная скорость
(м/с) (футов/с)
Кран в ванной или на кухне (практически бесшумный) 0.5 — 0.7 1.6 — 2.3
Кран / душ в ванной или на кухне 1.0 — 2.5 3.3 — 8.2
Вода в системах охлаждения 1.5 — 2.5 4.9 — 8.2
Вода на входе в водогрейный котел 0.5 — 1.0 1.6 — 3.3
Вода на выходе их водогрейного котла 1.5 — 2.5 4.9 — 8.2
Конденсат 1.0 — 2.0 3.3 — 6.5
Телоснабжение 1.0 — 3.0 3.3 — 9.8



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

МЕХАНИЗМ ТЕЧЕНИЯ РЕК

МЕХАНИЗМ ТЕЧЕНИЯ РЕК

(по Л. К. Давыдову)


Движение ламинарное и турбулентное

В природе существуют два режима движения жидкости, в том числе и воды: ламинарное и турбулентное. Ламинарное движение — параллельноструйное. При постоянном расходе воды скорости в каждой точке потока не изменяются во времени ни по величине, ни по направлению. В открытых потоках скорость от дна, где она равна нулю, плавно возрастает до наибольшей величины на поверхности. Движение зависит от вязкости жидкости, и сопротивление движению пропорционально скорости в первой степени. Перемешивание в потоке носит характер молекулярной диффузии. Ламинарный режим характерен для подземных потоков, протекающих в мелкозернистых грунтах.

В речных потоках движение турбулентное. Характерной особенностью турбулентного режима является пульсация скорости, т. е. изменение ее во времени в каждой точке по величине и направлению. Эти колебания скорости в каждой точке совершаются около устойчивых средних значений, которыми обычно и оперируют гидрологи. Наибольшие скорости наблюдаются на поверхности потока. В направлении ко дну они уменьшаются относительно медленно и в непосредственной близости от дна имеют еще достаточно большие значения. Таким образом, в речном потоке скорость у дна практически не равна нулю. В теоретических исследованиях турбулентного потока отмечается наличие у дна очень тонкого пограничного слоя, в котором скорость резко уменьшается до нуля.

Турбулентное движение практически не зависит от вязкости жидкости. Сопротивление движению в турбулентных потоках пропорционально квадрату скорости.

Экспериментально установлено, что переход от ламинарного режима к турбулентному и обратно происходит при определенных соотношениях между скоростью vср и глубиной Hср потока. Это соотношение выражается безразмерным числом Рейнольдса

знаменатель (ν) — коэффициент кинематической вязкости.

Для открытых каналов критические числа Рейнольдса, при которых меняется режим движения, изменяются примерно в пределах 300-1200. Если принять Re = 360 и коэффициент кинематической вязкости = 0,011, то при глубине 10 см критическая скорость (скорость, при которой ламинарное движение переходит в турбулентное) равна 0,40 см/с; при глубине 100 см она снижается до 0,04 см/с. Малыми значениями критической скорости объясняется турбулентный характер движения воды в речных потоках.

По современным представлениям (А. В. Караушев и др.), внутри турбулентного потока в различных направлениях и с различными относительными скоростями перемещаются элементарные объемы воды (структурные элементы), обладающие различными размерами. Таким образом, наряду с общим движением потока можно заметить движение отдельных масс воды, в течение короткого времени ведущих как бы самостоятельное существование. Этим, очевидно, объясняется появление на поверхности турбулентного потока маленьких воронок — водоворотов, быстро появляющихся и так же быстро исчезающих, как бы растворяющихся в общей массе воды. Этим же объясняется не только пульсация скоростей в потоке, но и пульсации мутности, температуры, концентрации растворенных солей.

Турбулентный характер движения воды в реках обусловливает перемешивание водной массы. Интенсивность перемешивания усиливается с увеличением скорости течения. Явление перемешивания имеет большое гидрологическое значение. Оно способствует выравниванию по живому сечению потока температуры, концентрации взвешенных и растворенных частиц.


Рис. 65. Примеры кривой водной поверхности потока. а — крикая подпора, б — кривая спада (по А. В. Караушеву).

Движение воды в реках

Вода в реках движется под действием силы тяжести F’. Эту силу можно разложить на две составляющие: параллельную дну Fx и нормальную ко дну F’y (см. рис. 68). Сила F’ уравновешивается силой реакции со стороны дна. Сила F’х, зависящая от уклона, вызывает движение воды в потоке. Эта сила, действуя постоянно, должна бы вызвать ускорение движения. Этого не происходит, так как она уравновешивается силой сопротивления, возникающей в потоке в результате внутреннего трения между частицами воды и трения движущейся массы воды о дно и берега. Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменение соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении.

Выделяются следующие виды движения воды в потоках: 1) равномерное, 2) неравномерное, 3) неустановившееся. При равномерном движении скорости течения, живое сечение, расход воды постоянны по длине потока и не меняются во времени. Такого рода движение можно наблюдать в каналах с призматическим сечением.

При неравномерном движении уклон, скорости, живое сечение не изменяются в данном сечении во времени, но изменяются по длине потока. Этот вид движения наблюдается в реках в период межени при устойчивых расходах воды в них, а также в условиях подпора, образованного плотиной.

Неустановившееся движение — это такое, при котором все гидравлические элементы потока (уклоны, скорости, площадь живого сечения) на рассматриваемом участке изменяются и во времени и по длине. Неустановившееся движение характерно для рек во время прохождения паводков и половодий.

При равномерном движении уклон поверхности потока I равен уклону дна i и водная поверхность параллельна выровненной поверхности дна. Неравномерное движение может быть замедленным и ускоренным. При замедляющемся течении вниз по реке кривая свободной водной поверхности принимает форму кривой подпора. Поверхностный уклон становится меньше уклона дна (I i) (рис. 65).


Рис. 68. Схема к выводу уравнения Шези (по А. В. Караушеву).

Скорости течения воды и распределение их по живому сечению

Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине и по ширине живого сечения. На каждой отдельно взятой вертикали наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности. Кривые изменения скоростей по вертикали называются годографами или эпюрами скоростей (рис. 66). На распределение скоростей по вертикали большое влияние оказывают неровности в рельефе дна, ледяной покров, ветер и водная растительность. При наличии на дне неровностей (возвышения, валуны) скорости в потоке перед препятствием резко уменьшаются ко дну. Уменьшаются скорости в придонном слое при развитии водной растительности, значительно повышающей шероховатость дна русла. Зимой подо льдом, особенно при наличии шуги, под влиянием добавочного трения о шероховатую нижнюю поверхность льда скорости малы. Максимум скорости смещается к середине глубины и иногда расположен ближе ко дну. Ветер, дующий в направлении течения, увеличивает скорость у поверхности. При обратном соотношении направления ветра и течения скорости у поверхности уменьшаются, а положение максимума смещается на большую глубину по сравнению с его положением в безветренную погоду.

По ширине потока скорости как поверхностная, так и средняя на вертикалях меняются довольно плавно, в основном повторяя распределение глубин в живом сечении: у берегов скорость меньше, в центре потока она наибольшая. Линия, соединяющая точки на поверхности реки с наибольшими скоростями, называется стрежнем. Знание положения стрежня имеет большое значение при использовании рек для целей водного транспорта и лесосплава. Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах — линий, соединяющих в живом сечении точки с одинаковыми скоростями (рис. 67). Область максимальных скоростей расположена обычно на некоторой глубине от поверхности. Линия, соединяющая по длине потока точки отдельных живых сечений с наибольшими скоростями, называется динамической осью потока.


Рис. 66. Эпюры скоростей. а — открытое русло, б — перед препятствием, в — ледяной покров, г — скопление шуги.

Средняя скорость на вертикали вычисляется делением площади эпюры скоростей на глубину вертикали или при наличии измеренных скоростей в характерных точках по глубине (VПОВ, V0,2, V0,6, V0,8, VДОН) по одной из эмпирических формул, например

Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Она имеет следующий вид:

где Hср — средняя глубина.

Величина коэффициента С не является величиной постоянной. Она зависит от глубины и шероховатости русла. Для определения С существует несколько эмпирических формул. Приведем две из них:

формула Манинга

формула Н. Н. Павловского
где n — коэффициент шероховатости, находится по специальным таблицам М. Ф. Срибного. Переменный показатель в формуле Павловского определяется зависимостью.

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

Скорость течения горных и равнинных рек

Течение равнинных рек значительно более спокойное, чем горных. Водная поверхность равнинных рек сравнительно ровная. Препятствия обтекаются потоком спокойно, кривая подпора, возникающего перед препятствием, плавно сопрягается с водной поверхностью вышерасположенного участка.

Горные реки отличаются крайней неровностью водной поверхности (пенистые гребни, взбросы, провалы). Взбросы возникают перед препятствием (нагромождением валунов на дне русла) или при резком уменьшении уклона дна. Взброс воды в гидравлике носит название гидравлического (водного) прыжка. Его можно рассматривать как одиночную волну, появившуюся на водной поверхности перед препятствием. Скорость распространения одиночной волны на поверхности, как известно, c = , где g — ускорение силы тяжести, H — глубина.

Если средняя скорость течения vср потока оказывается равной скорости распространения волны или превышает ее, то образующаяся у препятствия волна не может распространиться вверх по течению и останавливается вблизи места ее возбуждения. Формируется остановившаяся волна перемещения.

Пусть vср = c. Подставляя в это равенство значение из предыдущей формулы, получим vср = , или

Левая часть этого равенства известна как число Фруда (Fr). Это число позволяет оценить условия существования бурного или спокойного режима течения: при Fr 1 — бурный режим.

Таким образом, между характером течения, глубиной, скоростью, а следовательно, и уклоном существуют следующие соотношения: с увеличением уклона и скорости и уменьшением глубины при данном расходе течение становится более бурным; с уменьшением уклона и скорости и увеличением глубины при данном расходе течение приобретает более спокойный характер.

Горные реки характеризуются, как правило, бурным течением, равнинные реки имеют спокойный режим течения. Бурный режим течения может быть и на порожистых участках равнинных рек. Переход к бурному течению резко усиливает турбулентность потока.

Поперечные циркуляции

Одной из особенностей движения воды в реках является непараллельноструйность течений. Она отчетливо проявляется на закруглениях и наблюдается на прямолинейных участках рек. Наряду с общим параллельным берегам движением потока в целом имеются внутренние течения в потоке, направленные под различными углами к оси движения потока и производящие перемещения водных масс в поперечном к потоку направлении. На это еще в конце прошлого столетия обратил внимание русский исследователь Н. С. Лелявский. Он следующим образом объяснил структуру внутренних течений. На стрежне вследствие больших скоростей на поверхности воды происходит втягивание струй со стороны, в результате в центре потока создается некоторое повышение уровня. Вследствие этого в плоскости, перпендикулярной направлению течения, образуются два циркуляционых течения по замкнутым контурам, расходящиеся у дна (рис. 69 а). В сочетании с поступательным движением эти поперечные циркуляционные течения приобретают форму винтообразных движений. Поверхностное течение, направленное к стрежню, Лелявский назвал сбойным, а донное расходящееся — веерообразным.

На изогнутых участках русла струи воды, встречаясь с вогнутым берегом, отбрасываются от него. Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек (рис. 69 б).


Рис. 69. Циркуляционные течения на прямолинейном (а) и на изогнутом (б) участке русла (по Н. С. Лелявскому). 1 — план поверхностных и донных струй, 2 — циркуляционные течения в вертикальной плоскости, 3 — винтообразные течения.

Особенности внутренних течений потока были изучены А. И. Лосиевским в лабораторных условиях. Им была установлена зависимость формы циркуляционных течений от соотношения глубины и ширины потока и выделены четыре типа внутренних течений (рис. 70). Типы I и II представлены двумя симметричными циркуляциями. Для типа I характерно схождение струй у поверхности и расхождение у дна. Этот случай свойствен водотокам с широким и неглубоким руслом, когда влияние берегов на поток незначительно. Во втором случае донные струи направлены от берегов к середине. Этот тип циркуляции характерен для глубоких потоков с большими скоростями. Тип III с односторонней циркуляцией наблюдается в руслах треугольной формы. Тип IV — промежуточный — может возникать при переходе типа I в тип II. В этом случае струи в середине потока могут быть сходящимися или расходящимися, соответственно у берегов — расходящимися или сходящимися. Дальнейшее развитие представления о циркуляционных течениях получили в работах М. А. Великанова, В. М. Маккавеева, А. В. Караушева и др. Теоретические исследования возникновения этих течений излагаются в специальных курсах гидравлики и динамики русловых потоков. Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах.


Рис. 70. Схема внутренних течений (по А. И. Лосиевскому). 1 — поверхностная струя, 2 — донная струя.

Рис. 71. Схема сложения сил, вызывающих циркуляцию. а — изменение по вертикали центробежной силы P1, б — избыточное давление, в — результирующая эпюра действующих на вертикали сил центробежной и избыточного давления, г — поперечная циркуляция.
У поверхности она больше, у дна меньше вследствие уменьшения с глубиной продольной скорости (рис. 71 а).

В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках.

При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми. Скорость поперечных течений обычно мала — в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока — верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено.

В современной литературе по динамике русловых потоков (К. В. Гришанин, 1969 г.) приводится, по-видимому, более строгое объяснение возникновения поперечных циркуляции в речном потоке. Происхождение таких циркуляции связывается с механизмом передачи на элементарные объемы воды в потоке действия кориолисова ускорения посредством градиента давления, обусловленного4 поперечным уклоном (и постоянного на вертикали), и разности касательных напряжений, вызванных на гранях элементарных объемов воды различиями в скоростях потока по вертикали. Аналогичную кориолисову ускорению роль выполняет на повороте русла центростремительное ускорение.

Помимо поперечных циркуляции, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 72).


Рис. 72. Схема вихрей с вертикальными осями (по К. В. Гришанину).

Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы. Гришанин высказывает предположение, что образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри — смерчи.

Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.

Каков типичный расход воды в доме?

Момент, когда вы кладете бомбу для ванны в ванну и пытаетесь расслабиться в конце долгого дня, — худшее время для снижения скорости потока. Но если вы живете в доме, где проживает более четырех человек, или ваша посудомоечная машина работает, пока вы собираетесь принять ванну, то падение давления — это не просто гипотеза, это наверняка.

Когда мы говорим о воде, мы часто говорим о ее течении; как течет в реках, ручьях, больших водоемах.Но есть также техническое определение потока воды — скорость потока и то, как она влияет на вашу способность комфортно использовать ее в собственном доме. К сожалению, в отрасли, навязанной сантехническим жаргоном, существует много недоразумений относительно того, какой у вас расход воды, и если установка фильтра для воды приведет к падению вашего давления.

Зависимость расхода воды от давления

Во-первых, давайте поймем разницу между расходом воды и давлением воды.Они могут звучать как похожие термины, и оба они имеют отношение к трению, но они сильно отличаются.

Скорость потока означает количество воды, выходящей из вашего крана за определенный промежуток времени. Ниже мы разберем математику измерения расхода воды.

Напор воды, с другой стороны, определяется силой тяжести, а не скоростью. Давление воды в вашем доме — это сила, с которой вода перемещается из точки А в точку Б.

Расходы в зависимости от размера домохозяйства

Скорость потока воды, также известная как галлонов в минуту или галлонов в минуту, является мерой того, сколько галлонов воды потенциально может вытекать из кухонного крана или ванны в минуту.

Скорость потока зависит от множества факторов, но в первую очередь это размер вашей семьи. Стандартные размеры домохозяйства — 2-4 человека. После четырех человек вас считают «большой семьей». Эта небольшая разница в словоблудии имеет большое значение, когда вы пытаетесь и не можете ополоснуть кружку с кофе по утрам.

Но классификация «большого домохозяйства» не означает автоматически, что ваша скорость потока должна быть ниже, чем у других; то, что снижает скорость потока, — это вероятность того, что многие люди будут использовать воду в одном доме в одно и то же время.

Расход в квадратных метрах

Второй фактор, влияющий на расход воды, — это площадь вашего дома. Фактически, определение расхода на квадратный фут может быть разбито с помощью простого уравнения. С точки зрения непрофессионала, это уравнение определяет, какой будет пропускная способность вашего фильтра для воды, скорость обратной промывки вашего носителя, а также поможет вам понять, когда и когда вы испытаете падение давления.

Типичное давление воды на входе в дом стандартного размера обычно составляет от 40 до 45 давлений на квадратный дюйм (psi).В стандартном доме оно никогда не должно превышать 60 фунтов на квадратный дюйм, поэтому многие сантехники автоматически устанавливают ваш регулятор давления на 50 фунтов на квадратный дюйм. Но важно помнить, что независимо от того, как вы настраиваете свой пси, не все дома являются стандартными. Вот почему регуляторы давления можно менять от 25 до 75 фунтов на квадратный дюйм, даже не беспокоясь.

Итак, если стандартный квадратный метр жилого дома в США составляет 2169 кв. Футов, то разумно предположить, что любой дом, расположенный выше, потенциально может испытывать уменьшение расхода.

Как рассчитать расход воды

К счастью, ваш расход на кран легко рассчитать. Начните с открытия крана на полную мощность и наполните мерную чашку или емкость на 10 секунд. Если вы измеряете в чашках (США), переведите это число из чашек в галлоны. Затем, согласно The Spruce, все, что вам нужно сделать, это «умножить измеренное количество воды на 6, чтобы рассчитать расход в галлонах в минуту». Это так просто.

Сравните это со стандартным расходом через U.S. Для стандартного дома типичный GPM выглядит примерно так:

  • Смеситель для кухни: 2-3 галлона в минуту
  • Душ: 1,5-3 галлона в минуту
  • Посудомоечная машина: 2-4 галлона в минуту
  • Стиральная машина: 3-5 галлонов в минуту

Если эти средние значения расхода верны, запуск всех этих кранов одновременно приведет к падению давления.

Законы, разработанные для защиты вашего расхода

К счастью, существуют законы, которые следят за тем, чтобы ваши приборы не превышали разумный галлон в минуту.

С 1992 г. максимальная скорость потока, предписанная Агентством по охране окружающей среды для новых душевых головок, составляет 2,5 галлона в минуту. Это означает, что в каждую минуту из вашей душевой лейки должно вытекать не более 2,5 галлонов воды.

… не более 2,5 галлона воды должно вытекать из вашей душевой лейки в каждую минуту.

Кроме того, производители со временем снизили расход для душевых лейок. Если ваша текущая лейка для душа была сделана в 1980-х или 1990-х годах, ваш расход может составлять 3.5 галлонов в минуту или больше.

Как скорость потока влияет на фильтрацию воды

Если давление поступающей воды слишком высокое, вам понадобится ограничитель потока, установленный на вашем фильтре для воды, чтобы замедлить воду, прежде чем она пройдет через фильтр для воды.

Когда вы начнете процесс исследования, поищите фильтр для воды, способный выдерживать не менее 5 галлонов в минуту, а затем подумайте о качестве воды, загрязнителях, которые вы хотите удалить, и вашем бюджете. Вы хотите фильтровать только свой кухонный смеситель? Или вы хотите фильтровать по всему дому?

Вы хотите отфильтровать хлор / хлорамины или также хотите избавиться от фторида и ртути? Вы хотите, чтобы в вашей ванне не было загрязнений или только в кухонном смесителе?

Ищите сертификат IAPMO или NSF

В конце концов, лучший способ узнать, что вы испытаете отфильтрованную воду при правильном расходе, — это поискать уплотнение IAPMO или NSF и сравнить результаты производительности системы со средним расходом воды в вашем доме.

… лучший способ узнать, что вода отфильтрована при правильном расходе, — это поискать уплотнение IAPMO или NSF…

IAPMO — это независимая некоммерческая организация, проводящая тестирование, которая выполняет сертификацию по международным стандартам NSF. Если система фильтрации или умягчения сертифицирована IAPMO по стандарту NSF / ANSI 44, например, это означает, что производительность системы подтверждена в соответствии со стандартами тестирования в лаборатории. Сертификаты должны соответствовать уровню эффективности 85 процентов или выше, чтобы пройти и получить статус сертификации, и они являются верным способом убедиться, что продукт, в который вы инвестируете, поможет предоставить вам доступ к чистой, здоровой воде, независимо от факторы окружающей среды или размер домохозяйства.

Многие системы фильтрации для всего дома были протестированы и сертифицированы NSF / ANSI, чтобы гарантировать, что во время пиковой нагрузки ваша семья будет иметь доступ к фильтрованной воде. Например, наш фильтр для всего дома Rhino на 600 000 галлонов протестирован и сертифицирован для снижения уровня загрязнения до 7 галлонов в минуту. То же самое с фильтром для всего дома Rhino на 1 000 000 галлонов, сертифицированным для снижения уровня загрязнения до скорости потока 7 галлонов в минуту. Потому что в конце дня доступ к чистой фильтрованной воде не означает, что вы должны жертвовать теплой ванной.

МАГАЗИН СЕРТИФИЦИРОВАННЫХ IAPMO ФИЛЬТРОВ ДЛЯ ВСЕГО ДОМА

Алисса Скаветта

Калькулятор расхода

— Определение объемного и массового расхода

Как рассчитать расход? Формулы расхода

TL; версия DR

  • Формула объемного расхода : Объемный расход = A * v

    , где A — площадь поперечного сечения, v — скорость потока

  • Формула массового расхода : Массовый расход = ρ * Объемный расход = ρ * A * v

    где ρ — плотность жидкости

Подробное объяснение:

Формулу объемного расхода можно записать в альтернативной (читай: более полезной) форме.Вы можете сначала рассчитать объем порции жидкости в канале как:

Объем = А * л

Где A — это площадь поперечного сечения жидкости, а l — ширина данной части жидкости. Если наша труба круглая, это просто формула для объема цилиндра. Подставляя приведенную выше формулу в уравнение из определения расхода, получаем:

Объемный расход = В / т = А * л / т

Поскольку л / т — это объемная длина, разделенная на время, вы можете видеть, что это просто скорость потока.Таким образом, формула для объемного расхода сводится к:

Объемный расход = A * v

Большинство труб имеют цилиндрическую форму, поэтому формула для объемного расхода будет иметь следующий вид:

Объемный расход для цилиндрической трубы = π * (d / 2) ² * v , где d — диаметр трубы

Уравнение можно изменить, чтобы найти формулу для скорости в трубе.

Чтобы найти формулу для массового расхода , нам нужно сначала вспомнить определение плотности:

ρ = м / В и м = ρ * В

Поскольку массовый расход — это масса вещества, проходящего за единицу времени, мы можем записать формулу как:

Массовый расход = м / т = ρ * V / t = ρ * Объемный расход = ρ * A * v

Массовый расход = ρ * A * v

Самые большие водопады в мире по расходу

Автор: Эмбер Париона, в разделе «Окружающая среда» Всемирно известный водопад Виктория.

Водопады привлекали внимание людей на протяжении поколений. Эти геологические образования являются популярными туристическими достопримечательностями и, в некоторых случаях, имеют дополнительное преимущество в виде производства гидроэлектроэнергии. Водопады можно измерить несколькими способами, включая высоту, ширину и скорость потока. В этой статье рассматриваются самые большие водопады в мире по скорости потока.

7.Виктория

Водопад Виктория, расположенный на границе между Замбией и Зимбабве, занимает 7-е место по величине годового стока в мире. В среднем расход этого водопада составляет 38 430 кубических футов в секунду. Кроме того, водопад Виктория считается самым большим в мире слоем падающей воды (при расчете учитываются как высота, так и ширина). Источником этого водопада является река Замбези, которая течет по плоскому базальтовому плато, а затем падает на 354 фута в Первое ущелье шириной 260 футов ниже.Скорость потока здесь настолько велика, что создает брызги, которые достигают высоты 1300 футов над поверхностью воды. Эти брызги можно увидеть на расстоянии 30 миль. Водопад Виктория — один из немногих водопадов в мире, где в полнолуние можно увидеть лунную дугу (похожую на радугу).

6.Водопад Игуасу

Водопад Игуасу, Бразилия.

Водопад Игуасу занимает 6-е место в мире по величине годового расхода воды, его средняя скорость составляет 62 010 кубических футов в секунду. Он расположен на границе между Аргентиной и Бразилией, хотя большинство водопадов находится на аргентинской стороне. Водопад Игуасу отличается наличием множества капель — всего 275.Самый большой из них известен как Дьявольское горло, его высота составляет 269 футов. Источником этого водопада является река Игуасу, которая в основном протекает через плато Парана в Бразилии и разделена водопадом на верхнюю и нижнюю части. Нижняя часть впадает в реку Парана. Водопады Игуасу ниспадают с такой силой, что край плато отступает на 0,1 дюйма в год.

5.Ниагарский водопад

Ниагарский водопад, расположенный на границе между Канадой и США, имеет скорость потока 85 000 кубических футов в секунду, что делает его 5-м по величине водопадом в мире. Источником этого водопада является река Ниагара, которая соединяет озеро Эри с озером Онтарио. Ниагарский водопад состоит из 3 отдельных водопадов: водопада «Подкова», «Фата невесты» и «Американский водопад». И Американский водопад (созданный островом Козел), и водопад Фата невесты (созданный островом Луна) расположены на американской стороне.Этот водопад также известен своей популярностью среди любителей приключений, которые пытаются преодолеть весь водопад. Энни Эдсон Тейлор была первым человеком, который перелез через водопад в бочке в 1901 году. С тех пор через водопад спустились еще 14 человек.

4.Водопад Селило

Водопад Селило — 4-й по величине водопад в мире, его скорость составляет 191 228 кубических футов в секунду. Эти водопады расположены на реке Колумбия, которая образует границу между штатами США Орегон и Вашингтон. Челило — это название водопада и поселений, окружающих водопад. Эти поселения были самыми старыми постоянно заселенными районами в Северной Америке, пока в 1957 году не была построена плотина Даллес, затопившая территорию и изгнавшая жителей.На протяжении более 15000 лет эти водопады играли важную роль в выживании коренных народов, которые построили над водой деревянные платформы для ловли мигрирующего лосося. Плотина создала озеро Челило, которое покрыло здесь деревянные платформы и деревню. Он производит 6 180 ГВтч электроэнергии ежегодно.

3.Водопад Хоне Пхапхенг

Водопад Хоне Пхапхенг, Лаос.

Третий по величине водопад в мире по скорости потока — Кхоне Пхапхенг, расположенный в провинции Тямпасак в Лаосе. Он падает в среднем со скоростью 390 000 кубических футов в секунду. Источником этих водопадов является река Меконг, которая берет свое начало на Тибетском плато Китая. В 19 веке французские поселенцы пытались пройти по всему течению этой реки только для того, чтобы обнаружить, что водопад Хона Пхапхенг блокирует ее полный переход в Китай.Поскольку водопад перекрывает судоходство, была построена железная дорога Дон Дет — Дон Хона. Местность, где расположены эти водопады, известна как «4000 островов» из-за множества островов и водных путей, которые сходятся здесь, разделяя водопад на несколько частей. Самый высокий из них имеет высоту 69 футов, а пороги занимают 6 миль реки. Этот водный путь также богат дикой природой и является домом для исчезающих видов плабука, самой большой пресноводной рыбы в мире.

2.Водопад Гуаира

Водопад Гуайра считается вторым по величине водопадом в мире, хотя сегодня он полностью затоплен. До строительства в 1982 году плотины Итайпу, крупнейшего гидроэнергетического проекта в мире, этот водопад имел среднегодовой расход 470 000 кубических футов воды в секунду. Плотина вдоль реки Парана, образующей границу, была построена совместными усилиями правительств Бразилии и Парагвая.Изначально эта река впадала в узкое ущелье, обрываясь 18 водопадами, разделенными на 7 групп, в общей сложности 375 футов. Туризм к водопаду увеличился во время строительства дамбы в 1982 году, поскольку люди надеялись увидеть Гуайру до того, как она была разрушена. 17 января того же года десятки этих туристов погибли в результате обрушения моста через водопад.

1.Водопад Бойома

Водопад Бойома, расположенный в Демократической Республике Конго, является крупнейшим водопадом по скорости потока в мире. Он падает со скоростью примерно 600 000 кубических футов воды в секунду через 7 отдельных катаракт. Эти участки водопада простираются более чем на 62 мили и падают примерно на 200 футов над рекой Луалаба между городами Кисангани и Убунду. Вода из этих водопадов впадает в реку Конго.Местные жители этого района, называемого Вагенья, зависят от водопада Бойома для рыбной ловли. Они разработали специальные деревянные штативы, которые крепятся к отверстиям, созданным потоком воды в скалах. Эти штативы тянутся к водопаду с прикрепленными к ним корзинами для ловли крупной рыбы.

Самые большие водопады в мире по скорости потока

0 9024 LaPheng Falls 0 ú ú
Ранг Водопад Средний годовой расход (м³ / с) Река Страны
1 Бойома Фоллс 17000 Демократическая республика Луало
2 Водопад Гуайра (затопленный) 13,300 Парана Парагвай и Бразилия
3 Khone Phapheng Falls 11,610
11610
(под водой) 5415 Колумбия США
5 Ниагарский водопад 2407 Ниагара Канада и Соединенные Штаты
Iguaz 6 Аргентина и Бразилия
7 Vict oria 1088 Zambezi Зимбабве и Замбия
    Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *