Сопротивление проводника не зависит от: Закон Ома • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Содержание

Глава 21. Электрический ток. Законы Ома и Джоуля-Ленца

Для решения задач ЕГЭ на постоянный ток надо знать определения тока, напряжения, сопротивления, закон Ома для участка цепи и замкнутой цепи, закон Джоуля-Ленца, а также уметь находить эквивалентные сопротивления простейших электрически цепей. Рассмотрим эти вопросы.

Электрическим током называют упорядоченное движение заряженных частиц. Силой тока в некотором сечении проводника называется отношение заряда , протекшего через это сечение за интервал времени , к этому интервалу времени

(21.1)

Чтобы в проводнике тек электрический ток, в проводнике должно быть электрическое поле, или, другими словами, потенциалы различных точек проводника должны быть разными. Но при движении электрических зарядов по проводнику потенциалы различных точек проводника будут выравниваться (см. гл. 19). Поэтому для протекания тока в течение длительного времени на каких-то участках цепи необходимо обеспечить движение зарядов в направлении противоположном полю.

Такое движение может быть обеспечено только силами неэлектрической природы, которые в этом контексте принято называть сторонними. В гальванических элементах («батарейках») сторонние силы возникают в результате электрохимических превращений на границах электродов и электролита. Эти превращения обеспечивают перемещение заряда противоположно направлению поля, поддерживая движение зарядов по замкнутому пути.

Сила тока в однородном участке проводника пропорциональна напряженности электрического поля внутри проводника. А поскольку напряженность поля внутри проводника связана с разностью потенциалов его концов (или электрическим напряжением на проводнике ), то

(21.2)

Коэффициент пропорциональности , который принято записывать в знаменатель формулы (21.2), является характеристикой проводника и называется его сопротивлением. В результате формула (21.2) принимает вид

(21. 3)

Формула (21.3) называется законом Ома для однородного участка цепи, а сам участок цепи часто называют резистором (от английского слова resistance — сопротивление).

Если проводник является однородным и имеет цилиндрическую форму (провод), то его сопротивление пропорционально длине и обратно пропорционально площади сечения

(21.4)

где коэффициент пропорциональности зависит только от материала проводника и называется его удельным сопротивлением.

Если участок цепи представляет собой несколько последовательно соединенных однородных проводников с сопротивлениями (см. рисунок), то сила тока через каждый проводник будет одинаковой , электрическое напряжение на всем участке цепи равно сумме напряжений на каждом проводнике , а эквивалентное сопротивление всего участка равно сумме сопротивлений отдельных проводников

(21. 4)

Если участок цепи представляет собой несколько однородных проводников с сопротивлениями , соединенных параллельно (см. рисунок), то электрическое напряжение на каждом проводнике будет одинаковым , ток через участок будет равен сумме токов, текущих через каждый проводник , а величина, обратная эквивалентному сопротивлению всего участка, равно сумме обратных сопротивлений отдельных проводников

(21.5)

Рассмотрим теперь закон Ома для замкнутой электрической цепи. Пусть имеется замкнутая электрическая цепь, состоящая из источника сторонних сил с внутренним сопротивлением и внешнего сопротивления . Пусть при прохождении заряда через источник сторонние силы совершают работу . Электродвижущей силой источника (часто используется аббревиатура ЭДС) называется отношение работы сторонних сил к заряду

(21. 6)

В этом случае сила тока в цепи равна

(21.7)

Формула (21.7) называется законом Ома для замкнутой электрической цепи.

При прохождении электрического тока через участок цепи электрическое поле совершает работу (часто эту работу называют работой тока, хотя термин этот не очень точный). Очевидно, вся эта работа превращается в тепло. Поэтому если через участок цепи прошел заряд , где — сила тока в цепи, — время, то количество выделившейся теплоты равно

(21.8)

(для получения последнего и предпоследнего равенств использован закон Ома для участка цепи). Формулы (21.8) называются законом Джоуля-Ленца. Из формулы (21.8) следует, что количество выделившейся при протекании электрического тока теплоты линейно зависит от времени наблюдения. Поэтому отношение

(21. 9)

которое называется мощностью тока, не зависит от времени наблюдения. Формулу (21.9) также называют законом Джоуля-Ленца.

Рассмотрим теперь задачи.

Структура металла кратко обсуждалась в гл. 16: положительно заряженные ионы расположены в узлах кристаллической решетки, образовавшиеся в результате диссоциации валентные электроны могут свободно перемещаться по проводнику (свободные электроны). Они и осуществляют проводимость металла (

задача 21.1.1 — ответ 2).

Согласно определению (21.1) находим среднюю силу тока в канале молнии (задача 21.1.2)

(ответ 2).

Если за 1 мин через сечение проводника протекает заряд 60 Кл (задача 21.1.3), то сила тока в этом проводнике равна А. Применяя далее к этому проводнику закон Ома для участка цепи, получаем В (ответ 2).

По закону Ома для участка цепи имеем для силы тока через участок цепи после изменения его сопротивления и электрического напряжения на нем (задача 21. 1.4

)

Таким образом, сила тока уменьшилась в 4 раза (ответ 3).

Согласно закону Ома для участка цепи сопротивление — это коэффициент пропорциональности между напряжением на этом участке и силой тока в нем. Поэтому в задаче 21.1.5 имеем, например, используя крайнюю точку графика

(ответ 2). Из-за линейной зависимости тока от напряжения вычисления можно было выполнить и по другим точкам графика, ответ был бы таким же.

Согласно формуле (21.4) имеем для первой проволоки в задаче 21.1.6

где — удельное сопротивление меди, — длина проводника, — его радиус. Для медной проволоки с вдвое большей длиной и втрое бóльшим радиусом сечения имеем

(ответ 3).

Как следует из формулы (21.4) при двукратном уменьшении длины проводника вдвое уменьшается его сопротивление. Поэтому из закона Ома для участка цепи (21.3) заключаем, что при двукратном уменьшении напряжения на проводнике и двукратном уменьшении его длины (задача 21.1.7) сила тока в проводнике не изменится (ответ 4).

В задаче 21.1.8 следует использовать закон Ома для замкнутой электрической цепи (21.7). Имеем

где — ЭДС источника, — сопротивлении е внешней цепи, — сопротивление источника (ответ 1).

В задаче 21.1.9 следует применить закон Ома для замкнутой электрической цепи (21.7) к какому-нибудь значению внешнего сопротивления, по графику найти силу тока в цепи, а затем и ЭДС источника. Проще всего применить закон Ома к случаю . Из графика находим силу тока . Поэтому

где — внутреннее сопротивление источника (ответ 3).

Из формулы (21.9) следует, что при фиксированном сопротивлении участка цепи увеличение электрического напряжения в 2 раза (задача 21.1.10) приведет к увеличению мощности тока в 4 раза (ответ 2).

В задаче 21.2.1 удобно использовать вторую из формул (21.9) . Имеем Вт (ответ 3).

Часто школьники не могут ответить на такой вопрос: из формулы для мощности тока следует, что мощность линейно растет с ростом сопротивления, а из формулы — убывает с ростом сопротивления. А как же в действительности мощность зависит от сопротивления? Давайте разберемся в этом вопросе на примере задачи 21.2.2. Конечно, оба предложенных «решения» неправильны: в них молчаливо предполагалось, что сила тока, текущего через это сопротивление, или напряжение на этом сопротивлении не зависят от его величины. А на самом деле эти величины от сопротивления зависят, причем эти зависимости могут быть разными для разных источников тока. Внутреннее сопротивление бытовых электрических сетей очень мало.

В этом случае из законов Ома для замкнутой цепи и участка цепи (21.7), (21.3) следует, что напряжение на любом элементе, включенном в такую сеть, не зависит от сопротивления этого элемента и равно номинальному напряжению сети . Поэтому из формулы заключаем, что мощность, которая выделяется на таком элементе обратно пропорциональна его сопротивлению (ответ 3). Отметим, что из проведенного рассуждения следует, что выделяемая мощность будет очень большой (опасная в быту ситуация!) для малого сопротивления внешнего участка цепи, т.е. в случае короткого замыкания, которого, таким образом, необходимо избегать.

Если бы внутреннее сопротивление источника было бы много больше внешнего сопротивления, ток в цепи определялся бы, главным образом, внутренним сопротивлением источника, а от внешнего сопротивления зависел бы слабо. В этом случае мощность тока была бы прямо пропорциональна сопротивлению участка цепи.

Как обсуждалось в решении предыдущей задачи, сопротивление элемента, работающего в бытовой электросети равно , где — номинальная мощность данного элемента, — напряжение в сети. Поэтому отношение сопротивлений ламп мощностью Вт и Вт, рассчитанных на работу в одной и той же бытовой электрической сети (задача 21.2.3) равно

(ответ 2).

Поскольку резисторы в задаче 21.2.4 соединены последовательно, то сила тока в них одинакова. Поэтому из закона Ома для участка цепи заключаем, что

(ответ 2).

При параллельном соединении ламп (задача 21.2.5) напряжение на них одинаково (см. введение к настоящей главе). Поэтому из закона Ома для участка цепи следует, что

(ответ 1).

Рассматриваемый в задаче 21.2.6 участок представляет собой два последовательных соединенных элемента, один из которых есть резистор 6 Ом, второй — два таких же резистора, соединенных параллельно. По правилам сложения сопротивлений находим эквивалентное сопротивление второго участка

а затем и эквивалентное сопротивление всей цепи

(ответ 3).

При разомкнутом ключе сопротивление участка цепи, данного в задаче 21.2.7, можно найти как в предыдущей задаче , где — сопротивление каждого резистора. Если ключ замкнут, то цепь сводится к одному резистору (т.к. параллельно двум резисторам включается проводник с пренебрежимо малым сопротивлением). Поэтому в этом случае сопротивление цепи равно . Таким образом, сопротивление второй цепи составляет две трети от сопротивления первой (ответ 1).

Как обсуждалось в решении задачи 21.2.2, сопротивление элемента номинальной мощности , работающего в бытовой электросети равна

где В — напряжение сети. Из этой формулы следует, что чем больше номинальная мощность элемента, тем меньше должно быть его сопротивление. Если две лампы накаливания включены последовательно (задача 21.2.8), то сила тока в них одинакова и отношение мощностей тока в этих лампах равно отношению их сопротивлений. Отсюда следует, что отношение реально выделяемых в лампах мощностей и обратно отношению номинальных мощностей этих ламп:

(ответ 2).

Работа, совершаемая электрическим полем в проводнике при протекании по нему электрического тока, превращается в энергию тока, которая затем превращается в тепловую энергию. Поэтому работу поля можно найти из закона Джоуля-Ленца. Для работы поля за время получаем . Из этой формулы находим сопротивление проводника в задаче 21.2.9

(ответ 1).

Поскольку при последовательном соединении резисторов ток через каждый из них одинаков, из закона Джоуля-Ленца (22. 8) заключаем, что из двух сопротивлений и (задача 21.2.10; см. рисунок) наибольшей будет мощность тока на сопротивлении , из двух сопротивлений и — на сопротивлении . Сравним мощности тока на этих сопротивлениях. Учитывая, что при параллельном соединении элементов электрическое напряжение на каждом элементе одинаковое, а при последовательном — складываются значения сопротивлений, получим из законов Ома для верхнего и нижнего участков цепи и закона Джоуля-Ленца

где — электрическое напряжение, приложенное ко всей цепи. Поскольку то в представленной схеме наибольшая мощность будет выделяться на сопротивлении (ответ 2).

От каких параметров зависит сопротивление проводника

Манганин от лат. Реостат от греч. Создание Алессандро Вольтой первого гальванического элемента открыло перед физиками новую область исследований. В течение четверти века интенсивно изучались разнообразные эффекты, связанные с протеканием электрического тока тепловые, химические и др.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • От чего зависит сопротивление проводника
  • Электрическое сопротивление
  • От каких величин зависит сопротивление проводника?
  • Зависимость сопротивления проводника от температуры
  • От каких параметров зависит электрическое сопротивление – lab_phis_3 / 06 / CTRL6
  • От каких величин зависит сопротивление и как их определить?
  • Сопротивление. Закон Ома — Электрические явления
  • Удельное сопротивление

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: От чего зависит сопротивление проводника

От чего зависит сопротивление проводника


Московский энергетический институт ТУ. Кафедра инженерной экологии и охраны труда. Учебно-методический комплекс. Действие электрического тока на человека. Электрическое сопротивление тела человека. Тело человека является проводником электрического тока. Проводимость живой ткани в отличие от обычных проводников обусловлена не только ее физическими свойствами, но и сложнейшими биохимическими и биофизическими процессами, присущими лишь живой материи.

В результате сопротивление тела человека является переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды. Электрическое сопротивление различных тканей тела человека неодинаково: кожа, кости, жировая ткань, сухожилия и хрящи имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа и особенно спинной и головной мозг — малое сопротивление.

Из этих данных следует, что кожа обладает очень большим удельным сопротивлением, которое является главным фактором, определяющим сопротивление тела человека в целом. Строение кожи весьма сложно. Кожа состоит из двух основных слоев: наружного, называемого эпидермисом , и внутреннего, являющегося собственно кожей и носящего название дермы.

Сопротивление тела человека можно условно считать состоящим из трех последовательно включенных сопротивлений: двух одинаковых сопротивлений наружного слоя кожи, т. Сопротивление наружного слоя кожи z н состоит из активного и емкостного сопротивлений, включенных параллельно. Полное сопротивление наружного слоя кожи z н зависит от площади электродов, частоты тока, а также от значения приложенного напряжения и при площади электродов в несколько квадратных сантиметров может достигать весьма больших значений десятков и сотен тысяч Ом.

Внутреннее сопротивление тела считается чисто активным , хотя, строго говоря, оно также обладает емкостной составляющей.

Внутреннее сопротивление R в практически не зависит от площади электродов, частоты тока, а также от значения приложенного напряжения и равно примерно — Ом. Эквивалентная схема сопротивления тела человека для рассмотренных условий показана на рис. Эту схему можно упростить, представив сопротивление тела человека как параллельное соединение сопротивления R h и емкости С h которые назовем соответственно активным сопротивлением и емкостью тела человека рис. При этом. В этом случае выражение полного сопротивления тела человека в действительной форме будет, Ом,.

При малой емкости когда ее можно принять равной нулю полное сопротивление тела человека оказывается равным сумме активных сопротивлений обоих слоев эпидермиса и внутреннего сопротивления тела, Ом, т.

В целом, значение полного сопротивления тела человека зависит от ряда факторов:. Расчетное электрическое сопротивление тела человека переменному току частотой 50 Гц при анализе опасности поражения человека током принимается равным ом. Действие электрического тока на человека С. Электрическое сопротивление тела человека Тело человека является проводником электрического тока. К определению сопротивления тела человека 1 — электроды; 2 — наружный слой кожи — эпидермис роговой и ростковый слои ; 3 — внутренние ткани тела включая внутренний слой кожи — дерму Сопротивление наружного слоя кожи z н состоит из активного и емкостного сопротивлений, включенных параллельно.

В целом, значение полного сопротивления тела человека зависит от ряда факторов: состояния кожи ; от параметров электрической цепи — места приложения электродов к телу человека, значений тока и приложенного напряжения , рода и частоты тока , площади электродов , длительности прохождения тока ; физиологических факторов и окружающей среды.


Электрическое сопротивление

Протекающий в проводящем материале ток пропорционален напряжению на нём. Правда, при применении различных элементов равнозначное напряжение даёт различное значение у тока. Таким образом, получается правило: при увеличении напряжения проходящий через проводник электрический ток тоже будет расти, но неодинаково, а в зависимости от характеристик элемента. Электросопротивление материала — это соотношение величины протекающего тока и приложенного к нему напряжения. Для каждого конкретного элемента это соотношение своё. Для обозначения данной физической величины используют букву R.

Что такое сопротивление проводников и от чего оно зависит: что важнее в промышленных условиях, существует порядка десяти параметров, на которые от каких факторов зависит электрическое сопротивление проводника.

От каких величин зависит сопротивление проводника?

Изучая закон Ома для участка цепи мы с вами ввели понятие электрического сопротивления, как физическую величину, характеризующую свойства проводника препятствовать прохождению электрического тока в нём. При этом мы с вами показали, что сопротивление проводника прямо пропорционально его длине, обратно пропорционально площади поперечного сечения и зависит от вещества, из которого этот проводник изготовлен:. Как вы знаете, в таблицах удельных сопротивлений веществ очень часто указывается температура, при которой удельное сопротивление было измерено. Тогда логично предположить, что сопротивление проводника должно каким-то образом зависеть от температуры. Проверим это предположение на опыте. Для этого соберём электрическую цепь, состоящую из источника тока, проволочной спирали и амперметра. Включим источник тока, и отметим показание амперметра. А теперь давайте нагреем исследуемую спиральку, например, с помощью спиртовки. Не трудно увидеть, что показания амперметра начинают уменьшаться. Вывод очевиден: при увеличении температуры сопротивление металлов увеличивается.

Зависимость сопротивления проводника от температуры

Цель урока: Ввести понятие электрическое сопротивление, удельное сопротивление. Пояснить природу его возникновения. Научить пользоваться таблицами физических величин. Выяснить, от каких параметров зависит сопротивление проводника; вывести формулу для расчёта сопротивления и научиться использовать её при решении задач. Обучающие: формировать умение планировать и проводить физические опыты, объяснять физические явления.

Здесь вы найдете подходящего репетитора быстро, удобно и бесплатно. Мы всегда рады проконсультировать Вас по вопросам образования.

От каких параметров зависит электрическое сопротивление – lab_phis_3 / 06 / CTRL6

Тема урока: Расчет сопротивления проводников. Удельное сопротивление. Решение задач. Воспитательная: Продолжить работу по развитию самостоятельности, аккуратности и внимания учащихся. Развивающая: Продолжить работу по развитию внимания и умения логически и творчески мыслить. Продолжить формировать умение решать задачи.

От каких величин зависит сопротивление и как их определить?

Разделы: Физика. Развивающие — развитие навыка определения причинно-следственных связей в исследуемых процессах, развитие познавательного интереса к предмету. Воспитательные — воспитание самостоятельности, уважительного отношения к мнению товарища при работе в паре. Электричество мы изучаем, Много нового в теме встречаем: Силу тока и напряжение, Электрическое сопротивление, Какими приборами их измеряют, Что эти приборы собой представляют. Пришла, ребята, пора узнать, Как сопротивление можно измерять: Какую для этого схему собрать, И формулу следует применять. И что в проводнике надо изменить, Чтоб другое сопротивление получить.

Тема урока: Расчет сопротивления проводников. величину сопротивление и определим от каких параметров проводника она зависит.

Сопротивление. Закон Ома — Электрические явления

Каждое тело, по которому течёт электрический ток, способно оказывать ему определённое сопротивление. Свойства любого материала проводника блокировать электрический ток, проходящий через него, и называется сопротивлением. Существуют проводники с разным строением, которые оказывают различное сопротивление току. Измеряется данная величина в омах.

Удельное сопротивление

Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением резистором также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления. Сопротивление часто обозначается буквой R или r считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как. В г.

Цели: определить, от каких параметров зависит сопротивление проводника; ознакомить с явлением сверхпроводимости.

У вас уже есть абонемент? На уроке подробно раскрываются анонсированные ранее параметры проводника, от которых зависит его сопротивление. Оказывается, что для расчета сопротивления проводника являются важными его длина, площадь поперечного сечения и материал, из которого он изготовлен. Вводится понятие удельного сопротивления проводника, которое характеризует вещество проводника. Удельное сопротивление. На предыдущих уроках мы уже поднимали вопрос о том, каким образом электрическое сопротивление влияет на силу тока в цепи, но не обсуждали, от каких же конкретно факторов зависит сопротивление проводника.

Протекающий в проводящем материале ток пропорционален напряжению на нём. Правда, при применении различных элементов равнозначное напряжение даёт различное значение у тока. Таким образом, получается правило: при увеличении напряжения проходящий через проводник электрический ток тоже будет расти, но неодинаково, а в зависимости от характеристик элемента. Электросопротивление материала — это соотношение величины протекающего тока и приложенного к нему напряжения.


От каких величин зависит сопротивление проводника?

Заглавная страница
Избранные статьи
Случайная статья
Познавательные статьи
Новые добавления
Обратная связь

КАТЕГОРИИ:

Археология
Биология
Генетика
География
Информатика
История
Логика
Маркетинг
Математика
Менеджмент
Механика
Педагогика
Религия
Социология
Технологии
Физика
Философия
Финансы
Химия
Экология

ТОП 10 на сайте

Приготовление дезинфицирующих растворов различной концентрации

Техника нижней прямой подачи мяча.

Франко-прусская война (причины и последствия)

Организация работы процедурного кабинета

Смысловое и механическое запоминание, их место и роль в усвоении знаний

Коммуникативные барьеры и пути их преодоления

Обработка изделий медицинского назначения многократного применения

Образцы текста публицистического стиля

Четыре типа изменения баланса

Задачи с ответами для Всероссийской олимпиады по праву



Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Влияние общества на человека

Приготовление дезинфицирующих растворов различной концентрации

Практические работы по географии для 6 класса

Организация работы процедурного кабинета

Изменения в неживой природе осенью

Уборка процедурного кабинета

Сольфеджио. Все правила по сольфеджио

Балочные системы. Определение реакций опор и моментов защемления

⇐ ПредыдущаяСтр 5 из 42Следующая ⇒

Сопротивление проводника (R) зависит:

1) от его длины – чем она больше, тем и сопротивление проводника больше;

2) от площади поперечного сечения проводника – чем она меньше, тем сопротивление больше;

3) от температуры проводника – чем она выше, тем сопротивление больше;

4) от материала проводника.

Что определяет закон Ома на участке электрической цепи?          Закон Ома определяет зависимость между тремя электрическими величинами: напряжением ( U ), силой тока ( I ), сопротивлением ( R ) этого участка: I =U / R .

От чего зависит падение напряжения в питающих про­ водах?

Согласно закону Ома напряжение на участке электрической сети U=IR, следовательно, величина напряжения, теряемая в питающих проводах, зависит от силы тока в этих проводах и от их сопротивления.

Как влияет падение напряжения на работу потребите лей электрического тока?

Мощность (Р) потребителя электрического тока зависит от напряжения, поданного к нему, и силы тока в этом потребителе, т. е. Р = UI ; а сила тока, в свою очередь, зависит от напряжения. Следовательно, уменьшение напряжения приводит к уменьшению исилы тока в потребителе, и к резкому уменьшению его мощности.

Как уменьшить падение напряжения в питающих про водах?


Падение напряжения в питающий проводах можно уменьшить, улучшив их проводимость, т. е. уменьшив их сопротивление или силу тока (реактивную состав­ляющую переменного тока) в питающих проводах.

В чем сущность явления короткого замыкания?

Согласно закону Ома, для участка электрической цепи при уменьшении сопротивления этого участка сила тока в нем увеличивается, причем резкое уменьшение сопротивления этого участка вызывает резкое увеличение силы тока, нагрев проводников, их воспламенение. Подобное явление называют «коротким замыканием».

Короткое замыкание возникает при соединении между собой токоведущих жил проводов разноименных фаз из-за порчи их изоляции, при замыкании между витками электрокатушек, при попадании электричества на заземленный корпус.

При коротком замыкании между двумя проводами ток в основном течет полинии наименьшего сопротивления, минуя потребитель. Сила тока в проводах увеличивается во столько раз, во сколько уменьшается сопротивление на его пути.

Какие защитные устройства применяют от токов ко роткого замыкания?

Для защиты проводников от токов короткого замыкания применяют предохранители с плавкими вставками, реле максимального тока, токовые автоматы, срабатывающие устройства которых выбираются с учетом тока нагрузки и тока при пуске.

Наибольшее распространение получили предохранители с плавкими вставками и токовые автоматы.

Что определяет закон Джоуля — Ленца?

Он определяет количество тепла, создаваемое в проводнике электрическим током. Это количество тепла зависит от силы тока, сопротивления проводника и времени протекания по нему электрического тока:

Q = 0,24 * I 2 * R * t,

где Q — количество тепла, измеряемое в калориях.

Как видно из формулы, увеличение силы тока создает больше тепла, чем увеличение сопротивления или времени протекания тока в одинаковое число раз.

Какие последствия вызывает перегрев проводников?

Перегрев проводников приводит к высыханию изоляции, ее воспламенению. Кроме того, перегрев вызывает увеличение сопротивления токоведущих жил проводников.

Какие меры принимают для уменьшения нагрева про водников?

Для того чтобы проводники не перегревались выше установленных температур, необходимо, чтобы сечение токоведущих жил соответствовало определенной величине тока.

Кроме того, проводники охлаждают воздухом, трансформаторным маслом и т. п. Для лучшей теплоотдачи проводники выполняют в виде плоских шин,плетеных медных тросов ит. п.

⇐ Предыдущая12345678910Следующая ⇒



Читайте также:



Психологические особенности спортивного соревнования

Приготовление дезинфицирующих растворов различной концентрации

Занятость населения и рынок труда

Социальный статус семьи и её типология



Последнее изменение этой страницы: 2021-04-20; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь — 161. 97.168.212 (0.005 с.)

сопротивление и удельное сопротивление | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объяснять понятие удельного сопротивления.
  • Используйте удельное сопротивление для расчета сопротивления определенных конфигураций материала.
  • Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.

Зависимость сопротивления от материала и формы

Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор на рисунке 1 легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорциональна его длине L , подобно сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше столкновений зарядов с его атомами произойдет. Чем больше диаметр цилиндра, тем больший ток он может пропускать (опять же аналогично потоку жидкости по трубе). На самом деле R обратно пропорционально площади поперечного сечения цилиндра A .

Рис. 1. Однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения А, тем меньше его сопротивление.

Для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы оказывают различное сопротивление потоку заряда. Определим удельное сопротивление ρ вещества так, что сопротивление R объекта прямо пропорционально ρ . Удельное сопротивление ρ является внутренним свойством материала, не зависящим от его формы или размера. Сопротивление R однородного цилиндра длиной L , площадью поперечного сечения A , изготовленного из материала с удельным сопротивлением ρ , равно

[латекс] R = \ frac{\rho L}{A }\\[/латекс].

В таблице 1 приведены репрезентативные значения ρ . Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что будет рассмотрено в последующих главах.

Таблица 1. Удельные сопротивления ρ различных материалов при 20ºC
Материал Удельное сопротивление ρ ( Ом ⋅ м )
Проводники
Серебро 1. 59 × 10 −8
Медь 1. 72 × 10 −8
Золото 2. 44 × 10 −8
Алюминий 2. 65 × 10 −8
Вольфрам 5. 6 × 10 −8
Железо 9. 71 × 10 −8
Платина 10. 6 × 10 −8
Сталь 20 × 10 −8
Свинец 22 × 10 −8
Манганин (сплав меди, марганца, никеля) 44 × 10 −8
Константан (сплав Cu, Ni) 49 × 10 −8
Меркурий 96 × 10 −8
Нихром (сплав Ni, Fe, Cr) 100 × 10 −8
Полупроводники [1]
Углерод (чистый) 3,5 × 10 5
Углерод (3,5 − 60) × 10 5
Германий (чистый) 600 × 10 −3
Германий (1−600) × 10 −3
Кремний (чистый) 2300
Кремний 0,1–2300
Изоляторы
Янтарный 5 × 10 14
Стекло 10 9 − 10 14
Люцит >10 13
Слюда 10 11 − 10 15
Кварц (плавленый) 75 × 10 16
Резина (твердая) 10 13 − 10 16
Сера 10 15
Тефлон >10 13
Дерево 10 8 − 10 11

Пример 1.

{-9{-5}\text{m}\end{массив}\\[/latex].

Обсуждение

Диаметр чуть меньше десятой доли миллиметра. Оно приводится только с двумя цифрами, потому что ρ известно только с двумя цифрами.

Изменение сопротивления в зависимости от температуры

Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. рис. 2.)

Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры ее сопротивление делает резкий скачок, а затем возрастает почти до линейно с температурой.

И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы вибрируют быстрее и преодолевают большие расстояния при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, что фактически увеличивает удельное сопротивление. При относительно небольших изменениях температуры (около 100ºC или меньше) удельное сопротивление ρ изменяется с изменением температуры Δ T , как выражается в следующем уравнении

ρ = ρ (1 + α Δ T ),

где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент 0. (См. значения α в Таблице 2 ниже.) Для больших изменений температуры α может варьироваться, или может потребоваться нелинейное уравнение для нахождения ρ . Обратите внимание, что α положительно для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Манганин (состоящий из меди, марганца и никеля), например, имеет α близок к нулю (до трех знаков по шкале в табл. 2), поэтому его удельное сопротивление слабо зависит от температуры. Это полезно, например, для создания эталона сопротивления, не зависящего от температуры.

Таблица 2. Температурные коэффициенты сопротивления α
Материал Коэффициент (1/°C) [2]
Проводники
Серебро 3,8 × 10 −3
Медь 3,9 × 10 −3
Золото 3,4 × 10 −3
Алюминий 3,9 × 10 −3
Вольфрам 4,5 × 10 −3
Железо 5,0 × 10 −3
Платина 3,93 × 10 −3
Свинец 3,9 × 10 −3
Манганин (сплав Cu, Mn, Ni) 0,000 × 10 −3
Константан (сплав Cu, Ni) 0,002 × 10 −3
Меркурий 0,89 × 10 −3
Нихром (сплав Ni, Fe, Cr) 0,4 × 10 −3
Полупроводники
Углерод (чистый) −0,5 × 10 −3
Германий (чистый) −50 × 10 −3
Кремний (чистый) −70 × 10 −3

Обратите внимание, что α является отрицательным для полупроводников, перечисленных в таблице 2, а это означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках. Сопротивление объекта также зависит от температуры, так как R 0 прямо пропорционально ρ . Для цилиндра мы знаем, что R = ρL / A , и поэтому, если L и A не сильно меняются с температурой, R будет иметь такую ​​же зависимость от температуры, как ρ . (Изучение коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L and A is about two orders of magnitude less than on ρ .) Thus,

R = R 0 ( 1 + α Δ T )

is the температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, R — сопротивление после изменения температуры Δ T . Многие термометры основаны на влиянии температуры на сопротивление. (См. рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры. Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рисунок 3. Эти известные термометры основаны на автоматизированном измерении сопротивления термистора в зависимости от температуры. (кредит: Biol, Wikimedia Commons)

Пример 2. Расчет сопротивления: сопротивление горячей нити

Хотя следует соблюдать осторожность при применении ρ = ρ 0 (1 + α Δ и R = R 0 (1 + α Δ T ) для изменений температуры более 100ºC, для вольфрама уравнения работают достаточно хорошо для очень больших изменений температуры. Каково же тогда сопротивление вольфрамовой нити в предыдущем примере, если ее температуру повысить с комнатной (20°С) до типичной рабочей температуры 2850°С?

Стратегия

Это прямое применение R = R 0 (1 + α Δ T ), так как первоначальный сопротивление филосования было дано R303030303030303030303030303030303 0 = 0,350 Ом, а изменение температуры Δ T = 2830ºC. {-3}/º\text{C }\right)\left(2830º\text{C}\right)\right]\\ & =& {4.8\Omega}\end{массив}\\[/latex].

Обсуждение

Это значение согласуется с примером сопротивления фары в Законе Ома: сопротивление и простые схемы.

Исследования PhET: сопротивление в проводе

Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.

Нажмите, чтобы запустить симуляцию.

Резюме сечения

  • Сопротивление R цилиндра длиной L и площадью поперечного сечения A равно [латекс]R=\frac{\rho L}{A}\\[/latex], где ρ — удельное сопротивление материала.
  • Значения ρ в таблице 1 показывают, что материалы делятся на три группы: проводники, полупроводники и изоляторы .
  • Температура влияет на удельное сопротивление; для относительно небольших изменений температуры Δ T , удельное сопротивление равно [латекс]\rho ={\rho }_{0}\left(\text{1}+\alpha \Delta T\right)\\[/latex] , где ρ 0  исходное удельное сопротивление, а [латекс]\текст{\альфа}[/латекс] — температурный коэффициент удельного сопротивления.
  • В таблице 2 приведены значения для α , температурного коэффициента удельного сопротивления.
  • Сопротивление R объекта также зависит от температуры: [латекс]R={R}_{0}\left(\text{1}+\alpha \Delta T\right)\\[/latex], где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры.

Концептуальные вопросы

1. В каком из трех полупроводниковых материалов, перечисленных в таблице 1, примеси создают свободные заряды? (Подсказка: изучите диапазон удельного сопротивления для каждого из них и определите, имеет ли чистый полупроводник более высокую или более низкую проводимость. )

2. Зависит ли сопротивление объекта от пути прохождения тока через него? Рассмотрим, например, прямоугольный стержень — одинаково ли его сопротивление по длине и по ширине? (См. рис. 5.)

Рис. 5. Встречает ли ток, проходящий двумя разными путями через один и тот же объект, разное сопротивление?

3. Если алюминиевый и медный провода одинаковой длины имеют одинаковое сопротивление, какой из них имеет больший диаметр? Почему?

4. Объясните, почему [латекс]R={R}_{0}\left(1+\alpha\Delta T\right)\\[/latex] для температурного изменения сопротивления R  объекта не так точен, как [латекс]\rho ={\rho }_{0}\left({1}+\alpha \Delta T\right)\\[/latex], что дает температурное изменение удельного сопротивления р .

Задачи и упражнения

1. Каково сопротивление отрезка медной проволоки 12-го калибра диаметром 2,053 мм длиной 20,0 м?

2. Диаметр медной проволоки нулевого калибра 8,252 мм. Найти сопротивление такого провода длиной 1,00 км, по которому осуществляется передача электроэнергии.

3. Если вольфрамовая нить диаметром 0,100 мм в электрической лампочке должна иметь сопротивление 0,200 Ом при 20ºC, то какой длины она должна быть?

4. Найдите отношение диаметра алюминиевого провода к медному, если они имеют одинаковое сопротивление на единицу длины (как в бытовой электропроводке).

5. Какой ток протекает через стержень из чистого кремния диаметром 2,54 см и длиной 20,0 см, если к нему приложено напряжение 1,00 × 10 3 В? (Такой стержень можно использовать, например, для изготовления детекторов ядерных частиц). ? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?

7. Резистор из нихромовой проволоки используется в приложениях, где его сопротивление не может измениться более чем на 1,00% от его значения при 20,0ºC. В каком диапазоне температур его можно использовать?

8. Из какого материала изготовлен резистор, если его сопротивление при 100°С на 40,0% больше, чем при 20,0°С?

9. Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0ºC до 55,0ºC, содержит резисторы из чистого углерода. Во сколько раз увеличивается их сопротивление в этом диапазоне?

10. (a) Из какого материала сделан провод, если он имеет длину 25,0 м, диаметр 0,100 мм и сопротивление 77,7 Ом при 20,0ºC? б) Каково его сопротивление при 150°С?

11. При постоянном температурном коэффициенте удельного сопротивления, каково максимальное уменьшение сопротивления константановой проволоки в процентах, начиная с 20,0ºC?

12. Проволоку протягивают через матрицу, растягивая ее в четыре раза по сравнению с первоначальной длиной. Во сколько раз увеличивается его сопротивление?

13. Медный провод имеет сопротивление 0,500 Ом при 20,0°С, а железный провод имеет сопротивление 0,525 Ом при той же температуре. При какой температуре их сопротивления равны?

14. (a) Цифровые медицинские термометры определяют температуру путем измерения сопротивления полупроводникового устройства, называемого термистором (которое имеет α  = –0,0600/ºC), когда оно имеет ту же температуру, что и пациент. Какова температура тела пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0°С (нормальная температура тела)? (b) Отрицательное значение для α может не сохраняться при очень низких температурах. Обсудите, почему и так ли это, здесь. (Подсказка: сопротивление не может стать отрицательным.)

15. Комплексные концепции  (a) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения равным 12 × 10 −6 /ºC. б) На сколько процентов ваш ответ отличается от ответа в примере?

16. Необоснованные результаты  (a) До какой температуры вы должны нагреть резистор, сделанный из константана, чтобы удвоить его сопротивление, предполагая постоянный температурный коэффициент удельного сопротивления? б) Разрезать пополам? в) Что неразумного в этих результатах? (d) Какие предположения неразумны, а какие предпосылки противоречивы?

Сноски

  1. 1 Значения сильно зависят от количества и типов примесей
  2. 2 Значения при 20°C.

Глоссарий

Удельное сопротивление:
внутреннее свойство материала, не зависящее от его формы или размера, прямо пропорциональное сопротивлению, обозначаемое ρ
Температурный коэффициент удельного сопротивления:
эмпирическая величина, обозначаемая α , которая описывает изменение сопротивления или удельного сопротивления материала при температуре

Выбранные решения для проблем и упражнений

1. 0,104 ω

3. 2,8 × 10 −2 M

5. 1,10 × 10 -3 A

7. -5ºC до 45ºC

9. 1,03

11. 0,06%

13,-17ºC

15. (а) 4,7 Ом (всего) (б) уменьшение на 3,0%


  1. Значения сильно зависят от количества и типа примесей °С. ↵

9.4: Удельное сопротивление и сопротивление — Physics LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    4402
    • OpenStax
    • OpenStax
    Цели обучения

    К концу этого раздела вы сможете:

    • Различие между сопротивлением и удельным сопротивлением
    • Дайте определение термину проводимость
    • Опишите электрический компонент, известный как резистор
    • Укажите зависимость между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
    • Укажите зависимость между удельным сопротивлением и температурой

    Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, настенные розетки и т. д., которые необходимы для поддержания тока. Все подобные устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов В , создающий электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление . Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

    Удельное сопротивление

    Когда к проводнику прикладывается напряжение, создается электрическое поле \(\vec{E}\), и заряды в проводнике испытывают силу, вызванную электрическим полем. Полученная плотность тока \(\vec{J}\) зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, в том числе и в металлах, при данной температуре плотность тока примерно пропорциональна напряженности электрического поля. В этих случаях плотность тока можно смоделировать как 9{-1}\).

    Проводимость — это неотъемлемое свойство материала. Другим внутренним свойством материала является удельное сопротивление, или электрическое сопротивление . Удельное сопротивление материала является мерой того, насколько сильно материал сопротивляется прохождению электрического тока. Символом удельного сопротивления является строчная греческая буква rho, \(\rho\), а удельное сопротивление является обратной величиной электропроводности:

    \[\rho = \dfrac{1}{\sigma}.\]

    Единица измерения Удельное сопротивление в единицах СИ представляет собой омметр \((\Omega \cdot m\). Мы можем определить удельное сопротивление через электрическое поле и плотность тока.

    \[\rho = \dfrac{E}{J}.\]

    Чем больше удельное сопротивление, тем большее поле необходимо для создания данной плотности тока. {-1}\)ConductorsSemiconductors [1]Insulators»>  

    Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что мы и рассмотрим в последующих главах. 9{-5} \dfrac{V}{m}.\end{align*}\]

    Значение

    Из этих результатов неудивительно, что медь используется для проводов для передачи тока, потому что сопротивление довольно маленький. 2}\). Третьей важной характеристикой является пластичность. Пластичность — это мера способности материала втягиваться в провода и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что для того, чтобы проводник был подходящим кандидатом для изготовления проволоки, необходимо, по крайней мере, три важные характеристики: низкое удельное сопротивление, высокая прочность на растяжение и высокая пластичность. Какие еще материалы используются для электропроводки и в чем их преимущества и недостатки?

    Ответить

    Серебро, золото и алюминий используются для изготовления проводов. Все четыре материала имеют высокую проводимость, серебро имеет самую высокую. Все четыре легко вытягиваются в провода и обладают высокой прочностью на растяжение, хотя и не такой высокой, как у меди. Очевидным недостатком золота и серебра является стоимость, но серебряные и золотые провода используются для специальных применений, таких как провода для громкоговорителей. Золото не окисляется, что обеспечивает лучшее соединение между компонентами. У алюминиевых проводов есть свои недостатки. Алюминий имеет более высокое удельное сопротивление, чем медь, поэтому требуется больший диаметр, чтобы соответствовать сопротивлению на длину медных проводов, но алюминий дешевле меди, так что это не главный недостаток. Алюминиевые проволоки не обладают такой высокой пластичностью и прочностью на растяжение, как медь, но пластичность и прочность на растяжение находятся в пределах допустимых уровней. Есть несколько проблем, которые необходимо решить при использовании алюминия, и необходимо соблюдать осторожность при выполнении соединений. Алюминий имеет более высокую скорость теплового расширения, чем медь, что может привести к ослаблению соединений и возможной опасности возгорания. Окисление алюминия не проходит и может вызвать проблемы. При использовании алюминиевых проводов необходимо использовать специальные методы, а такие компоненты, как электрические розетки, должны быть рассчитаны на прием алюминиевых проводов.

    PhET

    Просмотрите это интерактивное моделирование, чтобы узнать, как площадь поперечного сечения, длина и удельное сопротивление провода влияют на сопротивление проводника. Отрегулируйте переменные с помощью ползунков и посмотрите, станет ли сопротивление меньше или больше.

    Температурная зависимость удельного сопротивления

    Взглянув на таблицу \(\PageIndex{1}\), вы увидите столбец с пометкой «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры. На самом деле у большинства проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает усиление колебаний атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость приблизительно линейна и может быть смоделирована линейным уравнением: 9оС\).

    Также обратите внимание, что температурный коэффициент \(\alpha\) отрицателен для полупроводников, перечисленных в таблице \(\PageIndex{1}\), а это означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшаться \(\rho\) с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

    Сопротивление

    Теперь рассмотрим сопротивление провода или компонента. Сопротивление является мерой того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

    Для расчета сопротивления рассмотрим отрезок токопроводящего провода площадью поперечного сечения A , длина L и удельное сопротивление \(\rho\). Через проводник подключена батарея, создающая на нем разность потенциалов \(\Delta V\) (рис. \(\PageIndex{1}\)). Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно \(\vec{E} = \rho \vec{J}\).

    Рисунок \(\PageIndex{1}\): Потенциал, создаваемый батареей, подается на отрезок проводника с площадью поперечного сечения \(A\) и длиной \(L\).

    Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, \(E = V/L), а величина плотности тока равна силе тока, деленной на сечение. площадь сечения, \(J = I/A\). Используя эту информацию и вспомнив, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем увидеть, что напряжение пропорционально току:

    \[\begin{align*} E &= \rho J \\[4pt] \dfrac{V}{L} &= \rho \dfrac{I}{A} \\[4pt] V &= \ left(\rho \dfrac{L}{A}\right) I. \end{align*}\]

    Определение: Сопротивление

    Отношение напряжения к току определяется как сопротивление \(R \):

    \[R \equiv \dfrac{V}{I}. \]

    Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

    \[R \equiv \dfrac{V}{I} = \rho \dfrac{L}{A}.\]

    Единицей сопротивления является ом, \(\Омега\). Для данного напряжения, чем выше сопротивление, тем меньше ток.

    Резисторы

    Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекающего тока или обеспечения падения напряжения. На рисунке \(\PageIndex{2}\) показаны символы, используемые для обозначения резистора на принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-see») и Международной электротехнической комиссией (IEC). Обе системы широко используются. В этом тексте мы используем стандарт ANSI для его визуального распознавания, но мы отмечаем, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что облегчает его чтение.

    Рисунок \(\PageIndex{2}\): символы резистора, используемые на принципиальных схемах. а) символ ANSI; (b) символ МЭК.

    Зависимость сопротивления от материала и формы

    Резистор можно смоделировать в виде цилиндра с площадью поперечного сечения A и длиной L , изготовленного из материала с удельным сопротивлением \(\rho\) (рисунок \( \PageIndex{3}\)). Сопротивление резистора равно \(R = \rho \dfrac{L}{A}\)

    . Рисунок \(\PageIndex{3}\): Модель резистора в виде однородного цилиндра длиной L и площадь поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения А , тем меньше его сопротивление.

    Наиболее распространенным материалом для изготовления резисторов является углерод. Углеродная дорожка намотана на керамический сердечник, и к нему присоединены два медных вывода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка изготовлена ​​из оксида металла, обладающего полупроводниковыми свойствами, подобными углероду. Снова в концы резистора вставлены медные выводы. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке \(\PageIndex{4}\). 9{-5} \, \Омега\), а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

    Сопротивление объекта также зависит от температуры, так как \(R_0\) прямо пропорционально \(\rho\). Для цилиндра мы знаем \(R = \rho \dfrac{L}{A}\), поэтому, если L и A не сильно меняются с температурой, R имеет ту же температурную зависимость, что и \( \ро\). (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на 9оС\).

    Многие термометры основаны на влиянии температуры на сопротивление (рис. \(\PageIndex{5}\)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры. Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

    Рисунок \(\PageIndex{5}\): Эти известные термометры основаны на автоматизированном измерении сопротивления термистора в зависимости от температуры. 9oC)\right) \\[5pt] &= 4.8 \, \Omega \end{align*} \]

    Значимость

    Обратите внимание, что сопротивление изменяется более чем в 10 раз по мере того, как нить нагревается до высокая температура и ток через нить накала зависит от сопротивления нити и приложенного напряжения. Если нить используется в лампе накаливания, начальный ток через нить при первом включении лампы будет выше, чем ток после того, как нить достигнет рабочей температуры.

    Упражнение \(\PageIndex{2}\)

    Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей подложки, поддерживающей узор из проводящей фольги. Сопротивление фольги изменяется по мере растяжения подложки. Как изменится сопротивление тензорезистора? Влияет ли на тензодатчик изменение температуры?

    Ответить

    Рисунок из фольги растягивается по мере растяжения подложки, а дорожки из фольги становятся длиннее и тоньше. Поскольку сопротивление рассчитывается как \(R = \rho \dfrac{L}{A}\), сопротивление увеличивается по мере растяжения дорожек из фольги. При изменении температуры изменяется и удельное сопротивление дорожек фольги, изменяя сопротивление. Одним из способов борьбы с этим является использование двух тензодатчиков, один из которых используется в качестве эталона, а другой используется для измерения деформации. Два тензодатчика поддерживают постоянную температуру

    Сопротивление коаксиального кабеля

    Длинные кабели иногда могут действовать как антенны, улавливая электронные помехи, то есть сигналы от другого оборудования и приборов. Коаксиальные кабели используются во многих приложениях, требующих устранения этого шума. Например, их можно найти дома в соединениях кабельного телевидения или других аудиовизуальных соединениях. Коаксиальные кабели состоят из внутреннего проводника радиуса \(r_i\), окруженного вторым, внешним концентрическим проводником радиусом \(r_0\) (рисунок \(\PageIndex{6}\)). Пространство между ними обычно заполнено изолятором, например, полиэтиленом. Между двумя проводниками возникает небольшой радиальный ток утечки. Определить сопротивление коаксиального кабеля длиной 9 см.0035 л .

    Рисунок \(\PageIndex{6}\): Коаксиальные кабели состоят из двух концентрических проводников, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных соединениях.

    Стратегия

    Мы не можем использовать уравнение \(R = \rho \dfrac{L}{A}\) напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.

    Решение

    Сначала находим выражение для \(dR\), а затем интегрируем от \(r_i\) до \(r_0\), 9{r_0} \dfrac{1}{r} dr \\[5pt] &= \dfrac{\rho}{2\pi L} \ln \dfrac{r_0}{r_i}.\end{align*}\]

    Значение

    Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов и удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к затуханию (или ослаблению) сигнала, передаваемого по кабелю.

    Упражнение \(\PageIndex{3}\)

    Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиусов двух проводников. проводник. Если вы проектируете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

    Ответить

    Чем больше длина, тем меньше сопротивление. Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше отношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений этих переменных будет зависеть от приложения. Например, если кабель должен быть гибким, выбор материалов может быть ограничен.

    Phet: Цепь батареи и резистора

    Просмотрите эту симуляцию, чтобы увидеть, как приложенное напряжение и сопротивление материала, через который протекает ток, влияют на ток через материал. Вы можете визуализировать столкновения электронов и атомов материала, влияющие на температуру материала.


    Эта страница под названием 9.4: Сопротивление и сопротивление распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с помощью исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или страница
        Автор
        ОпенСтакс
        Лицензия
        СС BY
        Версия лицензии
        4,0
        Программа OER или Publisher
        ОпенСтакс
        Показать оглавление
        нет
      2. Теги
        1. электропроводность
        2. Ом
        3. сопротивление
        4. удельное сопротивление
        5. источник@https://openstax. org/details/books/university-physics-volume-2

      Удельное сопротивление: определение, сопротивление, уравнение и провод

      Когда мы строим электрическую цепь, мы хотим, чтобы она была максимально эффективной. Это означает, что нам нужно низкое сопротивление, поэтому вполне логично использовать в наших схемах такие материалы, как медь, а не дерево или резину. Но почему? Потому что такие материалы, как дерево и резина, имеют более высокое удельное сопротивление по сравнению с медью.

      Неофициальное определение удельного сопротивления — это «характерные материалы, препятствующие прохождению зарядов на единицу длины и поперечного сечения», что связано с концепцией электрического сопротивления.

      Что такое электрическое сопротивление?

      Мы часто исследуем электрические явления в цепях, где мы можем использовать материалы для направления электрических зарядов для различных целей. Мы используем три основные величины для характеристики цепей: сопротивление, напряжение и ток.

      Электрическое сопротивление (или просто сопротивление) — мера сопротивления среды движению зарядов внутри нее. Измеряется в омах (Ом).

      Напряжение или разность потенциалов — это количество энергии на единицу заряда, необходимое для перемещения зарядов между двумя точками цепи. Обычно питается от батареек и измеряется в вольтах (В).

      Электрический ток , или просто ток — это количество зарядов, проходящих через поперечное сечение (поперечный срез) проводника в единицу времени. Измеряется в амперах (А).

      Роль сопротивления легче всего увидеть в законе Ома , который регулирует поведение омических проводников и определенных диапазонов неомических проводников. Его уравнение выглядит следующим образом:

      Здесь R — сопротивление, V — напряжение, I — электрический ток. Если цепь имеет высокое сопротивление, будет производиться меньший ток (и наоборот). Поскольку ток представляет собой поток зарядов, ясно, что чем больше сопротивление, тем сильнее противодействие движению зарядов.

      Чем больше сопротивление, тем меньше ток. Ознакомьтесь с нашим объяснением основ электричества и цепей для получения дополнительной информации.

      См. пояснение к вольтамперным характеристикам. У вас будет больше информации о том, почему закон Ома не является универсальным — только некоторые проводники ведут себя так, как предсказывает этот закон, и они называются омическими проводниками . Отношение между напряжением, током и сопротивлением может быть сколь угодно сложным (неомические проводники), но если мы ограничимся небольшой областью этих величин, мы всегда сможем использовать закон Ома в этом диапазоне.

      Выше мы определили сопротивление, его роль в цепях и движение зарядов. Однако данное нами определение не содержит сведений о его фундаментальной природе, т. е. о том, как возникает сопротивление благодаря микроскопическим явлениям. Чтобы глубже изучить эти вопросы, давайте рассмотрим концепцию удельного сопротивления .

      Определение удельного сопротивления

      Изучение взаимосвязи между удельным сопротивлением и сопротивлением позволяет нам понять, почему удельное сопротивление является характерным свойством материалов, а сопротивление — нет.

      Удельное сопротивление — это величина, которая измеряет сопротивление проводника на единицу длины и поперечного сечения. Для каждого материала она разная и зависит от определенных физических условий, таких как температура. Измеряется в ом-метрах или Ωм и обозначается греческой буквой ρ.

      Факторы, влияющие на удельное сопротивление

      Температура

      Удельное сопротивление растет с температурой , поскольку температура является мерой средней кинетической энергии частиц материала. Если частицы проводника движутся быстрее (в среднем), они с большей вероятностью будут мешать движению зарядов.

      Металлическая природа

      Другим фактором, определяющим удельное сопротивление материала, является его металлическая природа. Известно, что металлы способствуют движению зарядов , что означает, что их характеристическое удельное сопротивление ниже, чем удельное сопротивление других материалов, таких как дерево или резина. Когда мы рассматриваем металлы, их атомная структура и микроскопическое пространственное расположение будут определять, насколько легко зарядам двигаться, что в конечном итоге определит точное значение удельного сопротивления.

      Some examples of the characteristic resistivity values ​​of materials are shown below:

      Material

      Resistivity at 20ºC (Ω·m)

      Silver

      1.59 · 10 -8

      Copper

      1.68 · 10 -8

      Iron

      9.71 · 10 -8

      Carbon

      3 · 10 -5 — 60 · 10 -5

      Mercury

      98 · 10 -8

      Silicones

      1 · 10 -3 — 500 · 10 -3

      Glass

      1 · 10 9 — 1 · 10 13

      Rubber

      1 · 10 13 — 1 · 10 15

      Air

      1. 3 · 10 16 — 3.3 · 10 16

      Удельное сопротивление — характерное свойство материалов, не зависящее от их длины и поперечного сечения.

      Уравнение удельного сопротивления

      Если мы знаем удельное сопротивление материала, мы можем рассчитать сопротивление проводника из этого материала путем умножения на длину и деления на поперечное сечение. Вот уравнение, которое отражает связь между сопротивлением и удельным сопротивлением:

      Здесь R — сопротивление, ρ — удельное сопротивление, L — длина проводника, а A — его поперечное сечение.

      Чтобы интерпретировать это уравнение, мы должны помнить, что ток — это количество зарядов, которые проходят через поперечное сечение проводника в единицу времени.

      Независимо от формы проводника, мы всегда можем найти поперечное сечение как поверхность, перпендикулярную направлению тока в каждой точке.

      Теперь, поскольку мы знаем, что сопротивление измеряет сопротивление материала текущему потоку, почему мы должны учитывать длину материала? Потому что длина также напрямую влияет на сопротивление : чем длиннее среда (или объект), тем больше сопротивление. Это означает, что сопротивление и длина прямо пропорциональны. С другой стороны, сопротивление обратно пропорционально площади поперечного сечения среды.

      Длина

      Вы находитесь на многолюдной улице. Улица — проводник, а вы — обвинение, пытающееся добраться до другого конца улицы, избегая людей, стоящих на улице. Будет менее утомительно пройти всего один квартал вместо трех, потому что вы избежите меньшего количества людей, пройдя всего один квартал (чем короче расстояние, тем меньше людей вы встретите, а это означает, что чем короче длина проводника, тем меньше сопротивление). есть).

      Поперечное сечение

      Роль поперечного сечения объяснить гораздо проще. В конце концов, мы знаем, что сопротивление измеряет сопротивление протеканию тока, но ток зависит от сечения . Если мы удвоим размер поперечного сечения, мы также удвоим ток. Это означает, что сопротивление (сопротивление) все еще действует, но из-за особенностей среды мы получаем больший ток (а значит, меньшее сопротивление).

      Представьте, что вы находитесь в конце людной улицы, и у вас есть несколько друзей, равномерно отстоящих друг от друга на другом конце улицы. Если бы вам нужно было подсчитать, сколько ваших друзей достигает вашего конца улицы в единицу времени, вы бы насчитали вдвое больше, если бы оказались на улице, которая была в два раза шире (и, следовательно, где у вас было вдвое больше друзья).

      У вас пропорциональный прирост друзей за счет расширения улицы, потому что вы учитываете однородную плотность зарядов в материале (следуя аналогии).

      • Сопротивление растет с увеличением длины проводников, так как движущиеся заряды находят больше частиц, которые им мешают.
      • Сопротивление уменьшается с увеличением поперечного сечения, поскольку чем больше поперечное сечение, тем больше количество зарядов, пересекающих его в единицу времени.

      Как рассчитать сопротивление по удельному сопротивлению

      Давайте рассмотрим приведенную выше информацию на примере!

      Рассмотрим два материала: серебро и углерод. Серебро очень дорого и трудно достать, а получить углерод относительно легко. Мы хотим сделать кабель для соединения двух частей цепи, разделенных на 1 метр. Поскольку серебро трудно достать, у нас есть только провод сечением 1см 2 (0,0001м 2 ).

      Какой ширины должна быть углеродная проволока, чтобы передавать ток так же эффективно, как серебро?

      Используя уравнение сопротивления с точки зрения длины, удельного сопротивления (найденного в таблице) и поперечного сечения, мы можем вычислить сопротивление серебряной проволоки:

      Теперь решим то же уравнение для поперечного сечения углерода и того же сопротивления:

      Если бы мы рассматривали примерно цилиндрические провода, это означало бы использование кабеля диаметром примерно 0,5 м, что больше по сравнению с серебряным кабелем.

      Если бы мы рассматривали медный кабель, диаметр должен был бы быть почти таким же, как у серебряного (около 1,1 см), что объясняет, почему мы используем медь вместо углерода для изготовления кабелей, которые мы используем.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *