Как работает система навигации ГЛОНАС-GPS
Что такое система ГЛОНАСС
Глобальная навигационная спутниковая система (ГЛОНАСС, GLONASS) — советская и российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Разработка ГЛОНАСС началась в СССР в 1976 году. Изначально система создавалась для военных нужд, но затем нашла гражданское применение. Её используют для управления транспортными потоками на всех видах транспорта, для контроля перевозок ценных и опасных грузов, для контроля рыболовства в территориальных водах, во время поисково-спасательных операций, для проведения геодезических съёмок, при прокладке нефте- и газопроводов, линий электропередач, в строительстве и т. д.
Где используют приёмники ГЛОНАСС
ГЛОНАСС оснащают гражданские и военные суда и самолёты, а также баллистические ракеты. Система в обязательном порядке устанавливается на общественном транспорте и в автомобилях экстренных служб, а в скором времени может быть принят закон, обязывающий оснащать ей все автомобили в стране. С 1 января 2013 года коммерческий и грузовой автотранспорт, эксплуатируемый на территории России, должен быть оснащён системами ГЛОНАСС.
Для чего предназначена система ГЛОНАСС
Основная цель ГЛОНАСС — определение местоположения (координат), скорости движения (составляющих вектора скорости), а также определение местоположения воздушных, наземных, морских объектов с точностью до одного метра. То есть любой объект (корабль, самолёт, автомобиль или просто пешеход) в любом месте в любой момент времени способен всего за несколько секунд определить параметры своего движения. Сигналы ГЛОНАСС принимают не только GPS-приёмники, бортовые навигаторы, но и мобильные телефоны. Информация о положении, скорости и направлении движения через сеть GSM-оператора отправляется на сервер сбора данных. Данная система обеспечивает глобальное и непрерывное навигационное обслуживание всех категорий потребителей круглогодично, в любое время суток, вне зависимости от метеорологических условий. В любой точке земного шара потребители имеют доступ к сигналам ГЛОНАСС на безвозмездной основе и без ограничений.
Сколько спутников имеет ГЛОНАСС
Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой 19 100 км. Гражданское применение системы ГЛОНАСС началось в 1993 году, к 1995 году на орбиту было запущено 24 спутника. К 2001 году число спутников из-за недостатка финансирования и выхода части из них из строя сократилось до шести. В 2010 году число спутников ГЛОНАСС увеличили до 26, основными являются 24, остальные резервные. В настоящий момент в системе ГЛОНАСС насчитывается 29 космических аппаратов, из которых 24 используются по целевому назначению, один — на этапе лётных испытаний, один — на этапе ввода в систему, три — в орбитальном резерве.
Какое количество спутниковых навигационных систем существует в мире
На сегодняшний день существует две системы глобальной спутниковой навигации.
Кроме российской, есть ещё американская система навигации NAVSTAR GPS. Отличие двух систем в том, что спутники ГЛОНАСС в своём орбитальном движении не имеют резонанса (синхронности) с вращением Земли. Благодаря этому они более стабильны и им не требуют дополнительных корректировок в течение всего срока активного существования, но при этом срок их службы заметно короче. Спутники ГЛОНАСС вращаются на высоте 19 100 километров над Землёй.
- горизонтальные координаты с точностью 50–70 м (вероятность 99,7 %),
- вертикальные координаты с точностью 70 м (вероятность 99,7 %),
- вектор скорости с точностью 15 см/с (вероятность 99,7 %),
- точное время с точностью 0,7 мкс (вероятность 99,7 %).
Каждый спутник передаёт сигналы двух видов: открытые с обычной точностью и защищённые с повышенной точностью. Первый вид сигнала доступен любому приёмнику ГЛОНАСС, второй — только авторизованной аппаратуре Вооружённых сил РФ.
Что такое GPS
GPS (англ. Global Positioning System — система глобального позиционирования, читается Джи Пи Эс) — спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe во всемирной системе координат WGS 84.
Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов.
Система разработана, реализована и эксплуатируется Министерством обороны США. GPS состоит из трёх основных сегментов: космического, управляющего и пользовательского. Спутники GPS транслируют сигнал из космоса, и все приёмники GPS используют этот сигнал для вычисления своего положения в пространстве по трём координатам в режиме реального времени. Космический сегмент состоит из 32 спутников, вращающихся на средней орбите Земли. Управляющий сегмент представляет собой главную управляющую станцию и несколько дополнительных станций, а также наземные антенны и станции мониторинга, ресурсы некоторых из упомянутых являются общими с другими проектами. Пользовательский сегмент представлен тысячами приемников GPS. «GPS-приёмник» — это радиоприёмное устройство для определения географических координат текущего местоположения антенны приёмника.
GPS-навигатор
GPS-навигатор — устройство, которое получает сигналы глобальной системы позиционирования с целью определения текущего местоположения устройства на Земле. Устройства GPS обеспечивают информацию о широте и долготе, а некоторые могут также вычислить высоту. Аппаратная часть GPS-навигатор:
- GPS-чипсет — набор микросхем, в котором процессор — самая важная часть. Процессор обеспечивает работу всего устройства, а также обрабатывает спутниковый сигнал, поступающий от GPS-модуля, вычисляя координаты.
- GPS-антенна настроена на частоты, на которых передаются данные навигационных спутников.
- Дисплей для отображения информации.
- Оперативная память обеспечивает быстродействие навигатора.
- Память BIOS обеспечивает связь аппаратной и программной части.
- Встроенная Flash-память используется для хранения операционной системы, ПО и пользовательских данных.
Принципы навигации
Космический сегмент
Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника — формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.
Наземный сегмент
В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.
Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.
Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.
Пользовательский сегмент
В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.
Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.
На рисунке приведена схема определений местоположения потребителя с координатами x, y, z на основе измерений дальности до четырех навигационных спутников. Цветными яркими линиями показаны окружности, в центре которых расположены спутники. Радиусы окружностей соответствуют истинным дальностям, т.е. истинным расстояниям между спутниками и потребителем. Цветные неяркие линии – это окружности с радиусами, соответствующими измеренным дальностям, которые отличаются от истинных и поэтому называются псевдодальностями. Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.
В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.
В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один — смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.
Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.
Геоцентрические системы координат — системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.
Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:
- радиоинтерферометрия со сверхдлинной базой (РСДБ),
- лазерная локация космических аппаратов (SLR),
- доплеровские измерительные системы (DORIS),
- навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.
Международная земная система координат ITRF является эталоном земной системы координат.
В современных навигационных спутниковых системах используются различные, как правило национальные, системы координат.
Навигационная система | Система координат |
---|---|
Система координат ГЛОНАСС | ПЗ-90 (Параметры Земли 1990 года) |
Система координат GPS | WGS-84 (World Geodetic System) |
Система координат ГАЛИЛЕО | GTRF (Galileo Terrestrial Referenfce Frame) |
Система координат БЕЙДОУ | CGCS2000 (China Geodetic Coordinate System 2000) |
Система координат QZSS | JGS (Japanese geodetic system) |
Система координат NavIC | WGS-84 (World Geodetic System) |
В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные.
Системы астрономического времени основаны на суточном вращении Земли. Эталоном для построения шкал астрономического времени служат солнечные или звездные сутки, в зависимости от точки небесной сферы, по которой производится измерение времени.
Всемирное время UT (Universal Time) – это среднее солнечное время на гринвическом меридиане.
Всемирное координированное время UTC синхронизировано с атомным временем и является международным стандартом, на котором базируется гражданское время.
Атомное время (TAI) — время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. В 1967 году на Генеральной конференции мер и весов атомная секунда представляет собой переход между сверхтонкими уровнями F=4, M=0 и F=3, M=0 основного состояния 2S1/2 атома цезия-133, не возмущённого внешними полями, и что частоте этого перехода приписывается значение 9 192 631 770 Герц.
Спутниковая радионавигационная система является пространственно-временной системой с зоной действия, охватывающей всё околоземное пространство, и функционирует в собственном системном времени. Важное место в ГНСС отводится проблеме временной синхронизации подсистем. Временная синхронизация важна и для обеспечения заданной последовательности излучения сигналов всех навигационных спутников. Она обусловливает возможность применения пассивных дальномерных (псевдодальномерных) методов измерений. Наземный командно-измерительный комплекс обеспечивает синхронизацию шкал времени всех навигационных КА путем их сверки и коррекции (непосредственной и алгоритмической).
Навигационных радиосигналы
При выборе типов и параметров сигналов, используемых в спутниковых радионавигационных системах, учитывается целый комплекс требований и условий. Сигналы должны обеспечивать высокую точность измерения времени прихода (задержки) сигнала и его доплеровской частоты и высокую вероятность правильного декодирования навигационного сообщения. Также сигналы должны иметь низкий уровень взаимной корреляции для того, чтобы сигналы разных навигационных космических аппаратов надежно различались навигационной аппаратурой потребителей. Кроме того, сигналы ГНСС должны максимально эффективно использовать отведенную полосу частот при малом уровне внеполосного излучения, обладать высокой помехоустойчивостью.
Почти все существующие навигационные спутниковые системы, за исключением индийской системы NAVIC, используют для передачи сигналов диапазон L. Система NAVIC будет излучать сигналы дополнительно и в S диапазоне.
Диапазоны, занимаемые различными навигационными спутниковыми системами
Виды модуляции
По мере развития спутниковых навигационных систем изменялись используемые виды модуляции радиосигналов.
В большинстве навигационных систем изначально использовались исключительно сигналы с бинарной (двухпозиционной)
фазовой модуляцией – ФМ-2 (BPSK). В настоящее время в спутниковой навигации начался переход к новому классу модулирующих функций,
получивших название BOC (Binary Offset Carrier)-сигналов.
Принципиальное отличие BOC-сигналов от сигналов с ФМ-2 состоит в том, что символ модулирующей ПСП BOC-сигнала представляет собой не прямоугольный видеоимпульс, а отрезок меандрового колебания, включающий в себя некоторое постоянное число периодов k. Поэтому сигналы с BOC-модуляцией часто называют меандровыми шумоподобными сигналами.
Использование сигналов с BOC-модуляцией повышает потенциальную точность измерения и разрешающую способность по задержке. Одновременно с этим, уменьшается уровень взаимных помех при совместном функционировании навигационных систем, использующих традиционные и новые сигналы.
Каждый спутник принимает с наземных станций управления навигационную информацию, которая передается обратно пользователям в составе навигационного сообщения. Навигационное сообщение содержит разные типы информации, необходимые для того, чтобы определить местоположение пользователя и синхронизовать его шкалу времени с национальным эталоном.
Типы информации навигационного сообщения
- Эфемеридная информация, необходимая для вычисления координат спутника с достаточной точностью
- Погрешность расхождения бортовой шкалы времени относительно системной шкалы времени для учета смещения времени космического аппарата при навигационных измерениях
- Расхождение между шкалой времени навигационной системы и национальной шкалой времени, для решения задачи синхронизации потребителей
- Признаки пригодности с информацией о состоянии спутника для оперативного исключения спутников с выявленными отказами из навигационного решения
- Альманах с информацией об орбитах и состоянии всех аппаратов в группировке для долгосрочного грубого прогноза движения спутников и планирования измерений
- Параметры модели ионосферы, необходимые одночастотным приемникам для компенсации погрешностей навигационных измерений, связанных с задержкой распространения сигналов в ионосфере
- Параметры вращения Земли для точного пересчета координат потребителя в разных системах координат
Признаки пригодности обновляются в течение нескольких секунд при обнаружении отказа. Параметры эфемерид и времени, как правило, обновляются не чаще, чем раз в полчаса. При этом период обновления для разных систем сильно отличается и может достигать четырех часов, в то время как альманах обновляется не чаще, чем раз в день.
По своему содержанию навигационное сообщение подразделяется на оперативную и неоперативную информацию и передается в виде потока цифровой информации (ЦИ).
Изначально во всех навигационных спутниковых системах использовалась структура вида «суперкадр/кадр/строка/слово». При этой структуре поток ЦИ формируется в виде непрерывно повторяющихся суперкадров,
суперкадр состоит из нескольких кадров, кадр состоит из нескольких строк.
В соответствии со структурой «суперкадр/кадр/строка/слово» формировались сигналы системы БЕЙДОУ, ГАЛИЛЕО (кроме E6), GPS (LNAV данные, L1), сигналы ГЛОНАСС с частотным разделением.
В зависимости от системы, размеры суперкадров, кадров и строк могут отличаться, но принцип формирования остается похожим.
Сейчас в большинстве сигналов используется гибкая строковая структура. В этой структуре навигационное сообщение формируется в виде переменного потока строк различных типов. Каждый тип строки имеет свою уникальную структуру и содержит определённый тип информации (указаны выше). НАП выделяет из потока очередную строку, определяет её тип и в соответствии с типом выделяет информацию, содержащуюся в этой строке.
Гибкая строковая структура навигационного сообщения позволяет значительно более эффективно использовать пропускную способность канала передачи данных.
Но главным достоинством навигационного сообщения с гибкой строковой структурой является возможность её эволюционной
модернизации при соблюдении принципа обратной совместимости. Для этого в ИКД для разработчиков НАП специально указывается,
что если НАП в навигационном сообщении встречает строки неизвестных ей типов, то она должна их игнорировать. Это позволяет добавлять
в процессе модернизации ГНСС к ранее существовавшим типам строк строки с новыми типами. НАП, выпущенная ранее, игнорирует строки с новыми типами и,
следовательно, не использует те новации, которые вводятся в процессе модернизации ГНСС, но при этом её работоспособность не нарушается.
Сообщения сигналов ГЛОНАСС с кодовым разделением имеют строковую структуру.
На точность определения потребителем своих координат, скорости движения и времени влияет множество факторов, которые можно разделить на категории:
- Системные погрешности, вносимые аппаратурой космического комплекса
Погрешности, связанные с функционированием бортовой аппаратуры спутника и наземного комплекса управления ГНСС обусловлены в основном несовершенством частотно-временного и эфемеридного обеспечения.
- Погрешности, возникающие на трассе распространения сигнала от космического аппарата до потребителя
Погрешности обусловлены отличием скорости распространения радиосигналов в атмосфере Земли от скорости их распространения в вакууме, а также зависимостью скорости от физических свойств различных слоёв атмосферы.
- Погрешности, возникающие в аппаратуре потребителя
Аппаратурные погрешности подразделяются на систематическую погрешность аппаратурной задержки радиосигнала в АП и флуктуационные погрешности, обусловленные шумами и динамикой потребителя.
Кроме того, на точность навигационно-временного определения существенно влияет взаимное расположение навигационных спутников и
потребителя.
Количественной характеристикой погрешности определения местоположения и поправки показаний часов, связанной с особенностями пространственного положения спутника и потребителя, служит так
называемый геометрический фактор ΓΣ или коэффициент геометрии. В англоязычной литературе используется обозначение GDOP — Geometrical delusion of precision.
Геометрический фактор ΓΣ показывает, во сколько раз происходит уменьшение точности измерений и зависит от следующих параметров:
- Гп — геометрический фактор точности определения местоположения потребителя ГНСС в пространстве.
Соответствует PDOP — Position delusion of precision. - Гг — геометрический фактор точности определения местоположения потребителя ГНСС по горизонтали.
Соответствует HDOP — Horizontal delusion of precision. - Гв — геометрический фактор точности определения местоположения потребителя ГНСС по вертикали.
Соответствует VDOP — Vertical delusion of precision. - Гт — геометрический фактор точности определения поправки показаний часов потребителя ГНСС.
Соответствует TDOP — Time delusion of precision.
Существующие в настоящее время глобальные навигационные спутниковые системы (ГНСС) GPS и ГЛОНАСС позволяют удовлетворить потребности в навигационном обслуживании обширный круг потребителей. Но существует ряд задач, которые требуют высоких точностей навигации. К этим задачам относятся: взлет, заход на посадку и посадка самолетов, судовождение в прибрежных водах, навигация вертолетов и автомобилей и другие.
Классическим методом повышения точности навигационных определений является использование дифференциального (относительного) режима определений.
Дифференциальный режим предполагает использование одного или более базовых приёмников, размещённых в точках с известными координатами, которые одновременно с приёмником потребителя (подвижным, или мобильным) осуществляют приём сигналов одних и тех же спутников.
Повышение точности навигационных определений достигается за счёт того, что ошибки измерения навигационных параметров потребительского и базовых приёмников являются коррелированными. При формировании разностей измеряемых параметров большая часть таких погрешностей компенсируется.
В основе дифференциального метода лежит знание координат опорной точки – контрольно-корректирующей станции (ККС) или системы опорных станций, относительно которых могут быть вычислены поправки к определению псевдодальностей до навигационных спутников. Если эти поправки учесть в аппаратуре потребителя, то точность расчета, в частности, координат может быть повышена в десятки раз.
Для обеспечения дифференциального режима для большого региона – например, для России, стран Европы, США — передача корректирующих дифференциальных поправок осуществляется при помощи геостационарных спутников. Системы, реализующие такой подход, получили название широкозонные дифференциальные системы.
Подробнее о системах функциональных дополнений ГНСС, которые предоставляют потребителям дополнительную корректирующую информацию, смотрите в разделе «Функциональные дополнения».
У половины спутников ГЛОНАСС закончилась заводская гарантия
https://ria.ru/20190820/1557654999.html
У половины спутников ГЛОНАСС закончилась заводская гарантия
У половины спутников ГЛОНАСС закончилась заводская гарантия — РИА Новости, 03.03.2020
У половины спутников ГЛОНАСС закончилась заводская гарантия
Более половины орбитальной группировки системы ГЛОНАСС работает за пределами гарантийного срока, следует из данных сайта информационно-аналитического центра… РИА Новости, 03.03.2020
2019-08-20T03:08
2019-08-20T03:08
2020-03-03T15:32
наука
роскосмос
глонасс (система навигации)
космос
россия
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21.img.ria.ru/images/151949/19/1519491981_0:150:3110:1899_1920x0_80_0_0_3cfbfba06c462f20cc52324aa6651d6e.jpg
МОСКВА, 20 авг — РИА Новости. Более половины орбитальной группировки системы ГЛОНАСС работает за пределами гарантийного срока, следует из данных сайта информационно-аналитического центра навигационной системы.Всего на орбите находятся 23 спутника. Тринадцать из них вывели на орбиту в 2007-2011 годах. Они относятся к серии «Глонасс-М»; срок службы, установленный предприятием-производителем — компанией «Информационные спутниковые системы» имени Решетнева», — семь лет.Еще десять аппаратов запустили в период с 2012 по 2019 год: девять спутников с семилетним и один с десятилетним («Глонасс-К») ресурсом. В группировке также числятся еще четыре спутника, не используемых по назначению. Они тоже либо находятся за пределами гарантийного срока, либо приближаются к нему. Сейчас обновление орбитальной группировки происходит только по необходимости, когда на замену старому запускают новый аппарат. На хранении у предприятия-изготовителя находится четыре готовых к запуску спутника «Глонасс-М», а в производстве — несколько новых «Глонасс-К».ГЛОНАСС — российская спутниковая система навигации, аналог американской GPS. Основная ее задача — предоставление точного времени и координат потребителям на территории страны и за ее пределами. Система также используется для наведения высокоточного вооружения. Для глобального покрытия навигационным сигналом всего земного шара в орбитальном сегменте должно работать 24 спутника, для работы на территории России — 18.Отложенная проблемаКак рассказал РИА Новости руководитель Института космической политики Иван Моисеев, если космические аппараты системы начнут массово выходить из строя из-за устаревания, в первую очередь могут пострадать основные потребители системы — военные, а гражданские потребители могут даже не заметить произошедшего.По словам Моисеева, как только спутник переходит границу срока службы, его теоретическая надежность резко понижается.При этом потеря нескольких спутников на работоспособности всей системы сильно не скажется, но оператору требуется постоянно следить за орбитальной группировкой, не доводя ее состояние до критического.Разумная политикаВице-президент по технологиям НП «ГЛОНАСС» Евгений Белянко, в свою очередь, заявил, что оператор системы действует разумно, запуская спутники только по необходимости.Кроме того, он отметил, что работа спутников системы ГЛОНАСС за пределами гарантийного срока показывает их высокую надежность.
https://ria.ru/20190819/1557632041.html
https://ria.ru/20190813/1557458658.html
https://ria.ru/20190725/1556863296.html
https://ria.ru/20190716/1556586241.html
космос
россия
РИА Новости
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/151949/19/1519491981_190:0:2921:2048_1920x0_80_0_0_9f8757e5052fe9b12c24ebe31d7df0be.jpgРИА Новости
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
роскосмос, глонасс (система навигации), космос, россия
МОСКВА, 20 авг — РИА Новости. Более половины орбитальной группировки системы ГЛОНАСС работает за пределами гарантийного срока, следует из данных сайта информационно-аналитического центра навигационной системы.
Всего на орбите находятся 23 спутника. Тринадцать из них вывели на орбиту в 2007-2011 годах. Они относятся к серии «Глонасс-М»; срок службы, установленный предприятием-производителем — компанией «Информационные спутниковые системы» имени Решетнева», — семь лет.
Еще десять аппаратов запустили в период с 2012 по 2019 год: девять спутников с семилетним и один с десятилетним («Глонасс-К») ресурсом.
В группировке также числятся еще четыре спутника, не используемых по назначению. Они тоже либо находятся за пределами гарантийного срока, либо приближаются к нему.
19 августа 2019, 12:28НаукаСистема ГЛОНАСС до конца месяца будет работать не в полном составеСейчас обновление орбитальной группировки происходит только по необходимости, когда на замену старому запускают новый аппарат. На хранении у предприятия-изготовителя находится четыре готовых к запуску спутника «Глонасс-М», а в производстве — несколько новых «Глонасс-К».
ГЛОНАСС — российская спутниковая система навигации, аналог американской GPS. Основная ее задача — предоставление точного времени и координат потребителям на территории страны и за ее пределами.
Система также используется для наведения высокоточного вооружения. Для глобального покрытия навигационным сигналом всего земного шара в орбитальном сегменте должно работать 24 спутника, для работы на территории России — 18.
13 августа 2019, 16:45
Наземная станция ГЛОНАСС может появиться на ФиджиОтложенная проблема
Как рассказал РИА Новости руководитель Института космической политики Иван Моисеев, если космические аппараты системы начнут массово выходить из строя из-за устаревания, в первую очередь могут пострадать основные потребители системы — военные, а гражданские потребители могут даже не заметить произошедшего.
«Для рядовых потребителей проблем вообще не будет, потому что все гражданские чипы работают на ГЛОНАСС параллельно с GPS», — заявил он РИА Новости.
По словам Моисеева, как только спутник переходит границу срока службы, его теоретическая надежность резко понижается.
При этом потеря нескольких спутников на работоспособности всей системы сильно не скажется, но оператору требуется постоянно следить за орбитальной группировкой, не доводя ее состояние до критического.
25 июля 2019, 11:49
Путин поручил вести мониторинг нарушений при рубке леса с помощью ГЛОНАССРазумная политика
Вице-президент по технологиям НП «ГЛОНАСС» Евгений Белянко, в свою очередь, заявил, что оператор системы действует разумно, запуская спутники только по необходимости.
«Разница в работе между 23 и 24 аппаратами практически незаметна для потребителя и тем более не несет для него никакой угрозы. За счет того, что готовые аппараты находятся на хранении на Земле, без воздействия радиации, без износа аккумуляторов, они могут достаточно долго ожидать запуска», — поясняет эксперт.
Кроме того, он отметил, что работа спутников системы ГЛОНАСС за пределами гарантийного срока показывает их высокую надежность.
16 июля 2019, 18:03НаукаВ «Роскосмосе» рассказали о защите ГЛОНАСС от сбоевГЛОНАСС лишился трех спутников за месяц. Полное покрытие планеты невозможно
| Поделиться Оператор российской системы ГЛОНАСС вывел на техобслуживание третий за месяц навигационный спутник ГЛОНАСС-М. Он, как и все спутники второго поколения из состава группировки, вышел за пределы своего семилетнего срока эксплуатации. Нехватка спутников привела к неполному покрытию системой поверхности планеты, и сроки возвращения двух из трех аппаратов в строй неизвестны.ГЛОНАСС без спутников
Российская навигационная система ГЛОНАСС лишилась третьего спутника в течение августа 2019 г. Из эксплуатации был выведен космический аппарат (КА) 745 (7-я рабочая точка), запущенный на орбиту восемь лет назад, в 2011 г.
По данным информационно-аналитического центра координатно-временного и навигационного обеспечения ГЛОНАСС, спутник был выведен из системы временно – ему необходимо провести техобслуживание. В итоге по состоянию на 30 августа 2019 г. из находящихся на орбите 27 КА ГЛОНАСС-М лишь 21 используется по прямому назначению.
Три спутника находятся на техобслуживании, один проходит летные испытания, а два оставшихся – резервные. По информации РИА «Новости», такого количества недостаточно для 100-процентного покрытия поверхности планеты – для этого в строю должно быть не меньше 24 космических аппаратов.
Негарантийные спутники
В настоящее время действующая система ГЛОНАСС наполовину состоит из спутников второго поколения ГЛОНАСС-М, которые пришли на смену первому поколению (запуски производись в период с 1982 по 2003 гг. включительно). Сроки техобслуживания спутника за номером 745 на момент публикации материала были неизвестны. Точные даты возвращения спутника 742, выведенного из системы несколькими днями раньше, тоже не называются. Космический аппарат 717 по плану должен вернуться в строй 1 сентября 2019 г., он находится на обслуживании с 1 августа 2019 г. а запуск его на орбиту Земли состоялся в 2006 г.
Спутник ГЛОНАСС-М, основа системы ГЛОНАСС
Второе поколение космических аппаратов ГЛОНАСС имеет определенные гарантийные сроки эксплуатации, установленные дочерним предприятием «Роскосмоса», «Информационными спутниковыми системами» им. М. Ф. Решетнева, и равные семи годам. Иными словами, половина из 27 спутников работают за пределами своего гарантийного срока. К тому же, новые ГЛОНАСС-М не производятся – их выпуск был прекращен в 2015 г.
Неполное покрытие и будущее ГЛОНАСС
Для российского аналога американской GPS неполноценное покрытие Земли в последние несколько лет стало регулярным явлением. Так, в апреле 2018 г. непродолжительное время отсутствовал сигнал от аппарата № 723, немного позже к нему присоединился и спутник 734, который был реанимирован лишь спустя месяц после выхода из строя, в мае 2018 г.
В сентябре 2018 г. в связи с проведением регламентных работ не работали аппараты ГЛОНАСС-М 730, 743 и 745. Однако на тот момент сроки выполнения работ составили ровно два дня – 9 и 10 сентября 2018 г., в отличие от ситуации с № 717, обслуживание которого затянулось на месяц.
Лицевая биометрия: от хайпа к реальности
ВнедренияОбновление находящихся на орбите спутников ГЛОНАСС, по данным РБК, выполняется исключительно по необходимости – в подобных ситуациях старый аппарат просто заменяют на новый. На смену всем спутникам ГЛОНАСС-М постепенно придет третье поколение космических аппаратов, получившее название ГЛОНАСС-К и 10-летний срок эксплуатации. Это на три года больше в сравнении с ГЛОНАСС-М и на семь лет больше, чем у первого поколения спутников. Первый ГЛОНАСС-К был запущен на орбиту 26 февраля 2011 г.
ГЛОНАСС-К могут использоваться 10 лет, вместо 7 у ГЛОНАСС-М
В июне 2019 г. российские власти констатировали факт невозможности серийного выпуска аппаратов ГЛОНАСС-К в рамках бюджета на 2019 г. Причиной стала нехватка импортных комплектующих, связанная введенными Западом санкциями против России в отношении электроники военного и двойного назначений.
История ГЛОНАСС
ГЛОНАСС (Глобальная навигационная спутниковая система) – изначально советская система навигации двойного назначения, гражданского и военного. Старт разработке был дан в 1963 г.
Система разрабатывалась в качестве отечественной альтернативы американской GPS, первый спутник был выведен на орбиту в 1982 г. (запуск первого космического аппарата GPS состоялся в 1978 г.). Изначально она имела исключительно военное назначение. Группировка спутников ГЛОНАСС движется в трех орбитальных плоскостях с высотой орбит 19,1 тыс. км. В отличие от GPS, у спутников ГЛОНАСС нет синхронности с вращением планеты, за счет чего достигается более высокая стабильность работы всей системы в целом. Это также упрощает обслуживание системы ввиду отсутствия необходимости проведения дополнительных корректировок спутников.
Что такое ГЛОНАСС, для чего используется, как работает на автомобиле
Что такое ГЛОНАСС сегодня знают многие. Но как именно работает эта система, для чего она предназначена и что необходимо для ее эффективного использования, часто остается «за скобками».
Расценивать систему ГЛОНАСС просто как систему спутниковой навигации — значит, предельно упрощать ее функционал. Сегодня она может использоваться не только военными (как это было изначально задумано), но и владельцами коммерческих предприятий, а также рядовыми автолюбителями.
Что такое ГЛОНАСС и как работает система?
ГЛОНАСС – это российская разработка, которая обеспечивает точное позиционирование объекта в пространстве с минимальной погрешностью. Для определения координат используется специальное оборудование, которое при поддержке наземной инфраструктуры связывается с сетью спутников, выведенных на околоземную орбиту.
Принцип работы системы:
- На объект, координаты которого необходимо определить, устанавливается приемно-передающее устройство – терминал.
- Для позиционирования терминал подает запрос на спутники. Чем больше спутников ответят на запрос (в идеале – не менее 4), тем точнее будут определены координаты.
- Ответный сигнал поступает в терминал, программный комплекс которого анализирует время задержки для разных спутников. На основе анализа ответной информации определяются координаты объекта, на котором установлено приемное оборудование.
При постоянной работе терминала (т.е. регулярной отправке запросов и анализе ответов) система ГЛОНАСС может определять не только положение, но и скорость движения объекта. При движении точность позиционирования снижается, но все равно остается достаточной для того, чтобы навигационное оборудования могло выполнить привязку координат объекта к электронной карте местности и построить маршрут.
Сравнение с основным аналогом — системой GPS
Дать полный ответ на вопрос «Что такое ГЛОНАСС?» невозможно без сравнения его с «ближайшим конкурентом» — системой глобального позиционирования GPS. Работы над обеими системами начались в СССР и США примерно в одно время – в начале 80х годов прошлого века. После того как спутниковая навигация вышла из-под полного контроля военных и стала применяться в коммерческих целях, ГЛОНАСС и GPS развивались по достаточно схожим сценариям.
Обе системы работают на базе группировок из 24 спутников на геостационарных орбитах. Но есть у них и отличия:
- Российские спутники двигаются в 3 плоскостях (соответственно, 8 аппаратов на одну орбиту).
- У спутников GPS выделено 4 орбиты по 6 аппаратов в каждой.
- Погрешность позиционирования у GPS несколько ниже, но обе системы достаточно точно определяют координаты.
- Основное преимущество GPS — практически 100% покрытие территории земного шара. ГЛОНАСС полностью покрывает территорию РФ, но за пределами Российской Федерации есть участки, в которых сигнал от спутников очень слабый или полностью отсутствует.
- Также есть нюансы технического характера: сервис из США использует кодировку CDMA, российский — более сложную и потому более энергоемкую кодировку FDMA. Из-за этого срок эксплуатации спутников ГЛОНАСС сокращается, так что возникает потребность в более частом выводе техники на орбиту.
Параметры | ГЛОНАСС | GPS |
Количество спутников | 24 | 24 |
Кол-во спутников в плоскости | 8 | 6 |
Кол-во орбит у спутников | 3 | 4 |
Погрешность, м | 2…6 | 2…4 |
Размер покрытия | Вся Россия и 2/3 территории мира | Около к 100% территории мира |
Сложно говорить об однозначном преимуществе одной из двух описанных навигационных систем. Тем более что чаще всего оборудование для удаленного позиционирования делают комбинированным: оно может работать как со спутниками GPS, так и с аппаратурой ГЛОНАСС.
Сфера применения
Аппаратура и программное обеспечение, которое дает возможность определять местонахождение объекта с помощью спутниковой сети, может решать несколько задач.
Основная функция, которую выполняют бытовые терминалы ГЛОНАСС — глобальная навигация для транспорта. Такое оборудование представляет собой усовершенствованную карту: координаты, определённые терминалом, накладываются на план местности и показывают оптимальное направление движения к заданному пункту.
Кроме этого оборудование может использоваться:
- В системах мониторинга транспорта. Предприятия, вынужденные отслеживать движение множества транспортных средств (автобусы для перевозки пассажиров, грузовики) по регулярным или нерегулярным маршрутам, получает возможность в любом момент увидеть, где находится та или иная машина. Для этого автомобили оснащаются ГЛОНАСС-терминалами, которые подключаются к программному обеспечению.
Кроме непосредственного отслеживания перемещения техники диспетчер получает возможность контролировать соблюдение скоростного режима, режима труда/отдыха шофера, сохранности груза в холодильных отсеках рефрижераторов, уровня горючего в баках/цистернах. Для решения этих задач может устанавливаться дополнительное оборудование, которое подключается к разъемам терминала.
- В беспилотных автомобилях. Для беспилотников спутниковая система навигации наряду с сенсорами, которые считывают параметры окружения – основные управляющие элементы. Такое оборудование уже производится и проходит испытания — в том числе на трассах РФ. Эксперты прогнозируют рост доли беспилотной техники на дорогах уже в ближайшем будущем.
- В противоугонных системах. ГЛОНАСС-трекер, скрытно установленный в машине, может подать сигнал тревоги, если координаты автомобиля изменяться без ведома хозяина. Кроме того, оборудование может периодически посылать сообщения с указанием местонахождения авто – это облегчит владельцу или представителям правоохранительных органов поиск украденной машины.
ГЛОНАСС для контроля транспорта
Если в сегменте систем навигации для водителей GPS традиционно остается более популярным, то ГЛОНАСС занимает более выгодную нишу в коммерческом сегменте. Связано это с активным развитием систем удаленного мониторинга транспорта.
Такие системы традиционно включают сеть ГЛОНАСС-терминалов, установленных на технике, и диспетчерское программное обеспечение. Внедрение мониторинга предусматривает его интеграцией с логистической схемой предприятия.
Основная задача – координация работы транспортного департамента и отслеживание движения автомобилей, перевозящих пассажиров или грузы, в режиме реального времени. Координаты каждой машины определяются по спутнику с установленным интервалом и накладываются на карту, потому диспетчер или руководитель департамента получает максимально объективную и оперативную информацию.
Кроме этого, мониторинг транспорта может использоваться для:
- Повышения уровня дисциплины. Навигационный терминал отслеживает движение машины по маршруту, исключая нецелевое использование техники и простои. Любая незапланированная остановка или отклонение от маршрута должны быть мотивированы водителем, причем связаться с ним диспетчер может сразу при обнаружении нарушения.
- Повышения безопасности движения и снижения аварийности. Система ГЛОНАСС дает возможность контролировать скорость движения, сигнализируя диспетчеру о превышении скорости. Кроме того, мониторинг позволяет отслеживать переработку для соблюдения режима труда и отдыха. Это не только снижает риск аварий из-за переутомления, но и гарантирует отсутствие штрафов при проверке показаний тахографа.
- Контроль уровня горючего. Установка датчиков уровня топлива с подключением их к терминалу практически полностью исключает возможность хищения ГСМ.
Что такое ЭРА ГЛОНАСС?
Система определения координат с помощь спутников ГЛОНАСС может решать и еще одну задачу – экстренное оповещение об аварии. Для этого в машину устанавливается терминал ЭРА-ГЛОНАСС (УВЭОС) с SIM-картой для работы в мобильной сети, и «тревожная кнопка» для вызова диспетчера.
Если машина оборудуется ЭРА-ГЛОНАСС при производстве или поставке в РФ, то кроме терминала с кнопкой вызова в нее устанавливаются также датчики, реагирующие на повреждения и автоматически подающие сигнал тревоги при ударе или перевороте.
Основная задача системы — оповестить экстренные службы (ДПС ГИБДД, МЧС, Скорую Помощь) о ДТП, передав им координаты места аварии и базовые сведения о машине и пассажирах. При этом сигнал о произошедшем принимает диспетчер колл-центра, он же передает полученные сведения спасательным службам.
Особенности работы экстренного информирования
Работает ЭРА-ГЛОНАСС по простому принципу:
- Сигнал тревоги может быть активирован автоматически (сработал датчик удара/переворота) или в ручном режиме (водитель либо кто-то из пассажиров нажал кнопку).
- После того как сигнал поступит в колл-центр, диспетчер связывается с машиной в голосовом режиме (конструкция терминала включает динамик и микрофон). Это необходимо для исключения ложных вызовов или случайных срабатываний кнопки «SOS».
- Если ответ не был получен, или водитель подтвердил факт ДТП, информация передается спасательным службам.
Автоматическая работа системы минимизирует время между аварией и прибытием помощи на место происшествия. Это значительно снижает смертность на дорогах, потому что у Скорой Помощи и спасателей появляется больше времени на оказание квалифицированной помощи.
Надежность системы очень высока: терминалы снабжаются автономными источниками питания, и даже при обесточивании бортовой сети во время аварии они сохраняют работоспособность в течение минимум нескольких часов. Этого вполне хватает для определения координат, а также для связи с колл-центром.
SIM-карта, установленная в терминале, обеспечивает устойчивую связь с диспетчером везде, где есть покрытие мобильной сети. Для обеспечения надежной связи приборы комплектуются эффективными антеннами для сотовой связи и спутников ГЛОНАСС. Обычно при хорошем качестве сигнала данные передаются по GPRS (используется 3G модем), при проблемах со связью терминала может отправлять служебные SMS с основной информацией для экстренных служб.
И сам сеанс связи с диспетчером, и вызов помощи путем активации экстренного информирования спасательных служб полностью бесплатны.
Какие данные собирает ?
УВЭОС обязательны к установке для всех автомобилей, которые выпускаются в обращение на территорию РФ. Но если новые машины оснащаются терминалами, тревожными кнопками и датчиками на производстве, то при импорте техники владелец обязан за свой счет установить ЭРА-ГЛОНАСС, иначе эксплуатировать машину в РФ будет невозможно.
Один из аргументов против оборудования автомобиля ЭРА-ГЛОНАСС – возможное отслеживание перемещения техники по спутниковой сети (т.е. незаконная передача личных данных спецслужбам) или прослушка салона. На практике же в терминалах не реализована функция трекинга, потому без ведома владельца отследить движение машины нельзя.
По информации производителей, терминал собирает и передает только такие данные:
- Координаты места аварии.
- Скорость на момент аварии.
- Тип срабатывания сигнала тревоги (датчик удара/переворота, принудительный вызов).
- Данные о машине: номер, марку, тип двигателя (бензин/дизель).
- Количество пристегнутых ремней безопасности.
Также службам спасения передается информация, полученная диспетчером при разговоре с водителем.
Сегодня ГЛОНАСС — это не просто навигатор, который позволит не потеряться на незнакомых дорогах. Возможности спутникового позиционирования куда шире, и воспользоваться ими может как рядовой автовладелец, так и руководитель коммерческого предприятия с обширным парком автомобилей.
Отключить страну по щелчку. Что будет с миром, если GPS и ГЛОНАСС перестанут работать?
- Дэвид Хэмблинг
- BBC Future
Автор фото, Getty Images
Спутниковая навигация отвечает за то, чтобы современный мир работал. Многие из нас даже не догадываются обо всех — многочисленных! — вариантах ее применения. В то же время эта система очень уязвима — и тем уязвимей, чем более она продвинута. Случись что — чем можно ее заменить?
Когда летом прошлого года аэропорт имени Бен-Гуриона в Тель-Авиве внезапно стал испытывать сбои в работе системы GPS, только мастерство авиадиспетчеров помогло предотвратить серьезные происшествия. Помехи, которые создавали трудности для полетов на протяжении трех недель, по мнению специалистов Армии обороны Израиля, возникали из-за работы средств радиоэлектронной борьбы, применявшихся Россией в Сирии.
В отношении международного израильского аэропорта это, конечно, произошло неумышленно, однако показывает, насколько опасными могут быть такие сбои в системе глобального позиционирования, всем известной как GPS.
«Мы все больше осознаем: GPS надо защищать, укреплять и расширять», — говорит Тодд Хамфрис, инженер систем спутниковой связи из Техасского университета в Остине (США).
Сейчас от GPS зависит множество наших повседневных задач.
В самом простом своем виде система сообщает нам, в каком именно месте на планете находится GPS-приемник — в любое время дня и ночи. Такие приемники есть в наших мобильных телефонах и автомобилях. Они позволяют судам прокладывать маршрут среди рифов и сложных каналов, исполняя роль своего рода современного маяка.
Аварийно-спасательные службы полагаются на GPS (и подобные ей национальные системы — как, например, российская ГЛОНАСС, европейская «Галилео» или китайская «Бэйдоу») для того, чтобы найти тех, кто попал в беду.
А вот применение, о котором далеко не все знают: порты не смогли бы работать без спутниковой навигации, потому что их кранам нужна GPS, чтобы находить нужный контейнер.
Системы спутниковой навигации играют важнейшую роль в логистических операциях, помогая доставлять товары и услуги точно и вовремя. Без этих систем полки магазинов быстро пустели бы, а цены были бы выше.
Строительная индустрия использует GPS при обследовании участков для строительства, а рыбаки — для соблюдения строгих правил, регламентирующих процесс ловли рыбы.
Автор фото, Getty Images
Подпись к фото,Без системы глобального позиционирования мы даже не сможем узнать, куда пошел наш кот
Однако GPS, как и любая другая спутниковая навигация, — это определение не только точного места, но и точного времени. На околоземной орбите кружат 30 спутников, использующих сверхточные атомные часы для синхронизации сигналов. Эти спутники помогают пользователям определять время с точностью до 100-миллиардной доли секунды.
Все сети мобильной связи используют время GPS для синхронизации их наземных станций, а финансовые институты и банки полагаются на него в своих операциях.
Как видим, без спутниковой навигации наша жизнь просто остановилась бы. Но есть ли что-то, чем можно заменить ту же GPS? Могли бы мы справиться без нее?
Согласно оценке Лондонской школы экономики, подготовленной по заказу британского правительства, всего пять дней без спутниковой навигации обойдутся стране более чем в 5,1 млрд фунтов стерлингов ($6,5 млрд).
Из-за отказа системы GPS американская экономика будет терять, по оценкам, один миллиард долларов в день, а если это случится в апреле и мае, когда у фермеров посевная, — то до полутора миллиардов в день.
И тем не менее сбои в работе GPS на удивление часты. Виновниками в некоторых районах мира часто бывают военные, когда тестируют новое оборудование или проводят учения. Правительство США тоже регулярно осуществляет испытания и учения, ведущие к обрыву спутникового сигнала. На работу спутниковых систем влияют и некоторые технические проблемы.
Конечно, кроме GPS, есть и другие подобные системы, о которых мы упоминали выше — все они работают на той же основе, что и GPS. В то же время с развитием технологий растет вероятность того, что в работу этих систем кто-то вмешается и умышленно создаст помехи, а то и вовсе отключит.
Автор фото, Getty Images
Подпись к фото,GPS, как и любая другая спутниковая навигация, — это определение не только точного места, но и точного времени
Особенно часто по этому поводу высказывают озабоченность те же военные, подчеркивает профессор Чарли Карри, научный сотрудник Королевского института навигации и учредитель британской компании Chronos Technology, которая, среди прочего, занимается проблемами синхронизации в спутниковых навигационных системах.
Военным есть о чем беспокоиться. Изначально спутниковая навигация была разработана Пентагоном, и сейчас ее применяют везде, от боевых кораблей до разведывательных дронов, от «умных бомб» до пехотинцев. И этой системе угрожает опасность.
Средства радиоэлектронного подавления GPS легко купить в интернете. Преступники могут их использовать для выведения из строя систем отслеживания украденных автомобилей — при этом совершенно не заботясь о том, кто еще может от этого пострадать.
Но есть и более серьезные опасности.
«Существует отдаленная угроза того, что вся сеть спутников GPS может быть выведена из строя — как прелюдия к войне, как нападение на важнейший элемент инфраструктуры, на экономику США», — говорит Хамфрис.
Но и силы природы могут быть столь же опасны. Так называемое «событие Кэррингтона», мощнейшая за историю наблюдений геомагнитная буря 1859 года, могла бы вывести из строя всю нынешнюю спутниковую сеть GPS.
Автор фото, Getty Images
Подпись к фото,Конечно, старая добрая карта поможет нам найти дорогу, но многие аспекты современной жизни уже просто невозможны без систем типа GPS
Итак, если GPS и ее спутниковые сестры вдруг откажут — какие у нас есть альтернативы? Что поможет нашему миру вновь заработать?
Одна из возможных резервных систем — новая версия радионавигационной системы наземного базирования LORAN (от английского Long Range Navigation), которая была разработана во время Второй мировой войны для помощи в навигации кораблям союзников, пересекающим Атлантику. Вместо спутников использовались наземные передатчики с антеннами на мачтах 200-метровой высоты, передающие радионавигационные сигналы.
Поначалу LORAN имела точность в рамках нескольких миль, но к 1970-м годам она могла выдавать местонахождение с точностью до нескольких сотен метров.
В 2000-х, когда GPS сделала LORAN ненужной, в Британии и других странах разобрали ее передатчики, однако современная версия, известная как eLoran, может быть столь же точной, как GPS. Она использует усовершенствованные передатчики и приемники, а также так называемую дифференциальную коррекцию.
Такая версия, как говорят, способна определять местонахождение с точностью до 10 м и даже выше. В отличие от GPS, ее сигналы способны проникать сквозь стены зданий и тоннели — прежде всего потому, что эта система использует более низкую частоту большей мощности, чем спутниковые сигналы.
Сигналам eLoran куда труднее создать помехи — к тому же она не полагается на уязвимые спутники. Проблема только в том, что кто-то должен профинансировать ее развертывание. «eLoran — прекрасная технология, которая заполнит все пробелы в навигации, — говорит Хамфрис. — Если только будут серьезные намерения развернуть ее и поддерживать в рабочем состоянии».
Автор фото, Getty Images
Подпись к фото,Не только GPS: звезды помогут установить ваше место на планете с точностью до ста метров
Есть и другие подходы, которые не требуют дополнительной инфраструктуры. Задолго до изобретения радио мореплаватели находили путь в океане по солнцу и звездам, используя секстант для определения высоты Солнца и других космических объектов над горизонтом, чтобы узнать свои географические координаты.
Навигация по звездам жива и поныне. Вы удивитесь, но баллистические ракеты, подобные американским «Трайдентам», по-прежнему используют такую навигацию в полете.
Звезды помогут установить ваше место на планете с точностью до ста метров. Но американская компания Draper Laboratory разработала систему звездной навигации нового поколения под названием Skymark, использующую маленький автоматический телескоп для отслеживания (в дополнение к звездам) спутников, МКС и других объектов, вращающихся вокруг Земли.
А поскольку таких быстро движущихся объектов сейчас невероятно много, Skymark может достичь куда большей точности, чем это возможно с «медленными» звездами.
Skymark использует базу данных видимых спутников Земли — как рабочих, так и космического мусора. Создатели утверждают, что точность системы — 15 метров, что близко к результатам GPS.
Порой точность может быть даже выше, но она зависит от того, сколько спутников видны одновременно и какого они размера, подчеркивает Бенджамин Лейн из компании Draper.
Один из недостатков Skymark — она работает при ясном небе. Конечно, использование инфракрасных лучей, более легко проходящих через облака и туман, помогает, но не слишком. В некоторых регионах северного и южного полушарий, где довольно обычна густая облачность, система не столь полезна.
Автор фото, Getty Images/NASA
Подпись к фото,Отслеживание быстро движущихся вокруг Земли объектов помогает повысить точность навигации по звездам
Возможно, более близка к началу эффективного использования инерциальная навигация, которая применяет акселерометры и гироскопические устройства для определения точной скорости и направления движения и расчета позиции.
Некоторые базовые версии этой системы уже используются. «Когда ваш автомобиль скрывается в тоннеле и вы теряете сигнал GPS, именно инерциальная навигация продолжает вести вас», — говорит Карри.
Проблема с этой навигацией состоит в том, что у нее есть «занос» — рассчитываемая позиция становится все менее точной по мере того, как накапливаются ошибки, поэтому инерциальный навигатор у вас в машине полезен только на время коротких потерь сигнала GPS.
Проблему заноса помогут победить квантовые датчики, которые в тысячи раз чувствительнее, чем ныне существующие устройства.
Французская компания iXBlue применяет их для создания устройства, которое способно будет соперничать по точности с GPS, а ученые из Имперского колледжа Лондона в сотрудничестве со специалистами по лазерам из M Squared в 2018 году показали прототип переносного квантового акселерометра.
Такие квантовые датчики пока существуют только в лабораториях, и должны пройти годы, прежде чем они превратятся в завершенный продукт.
А вот оптическую систему навигации, которая с помощью видеокамер использует ориентиры на местности (например, здания или транспортные развязки), вполне могут ввести в действие уже скоро. Первая ее версия, Digital Scene Matching (корреляция радиолокационного отображения местности с эталонной картографической программой), была разработана для управляемых (крылатых) ракет.
ImageNav, созданная компанией Scientific Systems для ВВС США, — современная система оптической навигации для самолетов. Для определения позиции она обращается к базе данных местности и сравнивает ее с поступающей с видеокамер информацией. ImageNav с успехом испытали на разных самолетах, но она вполне может быть пригодна, например, для беспилотных автомобилей.
Шведская компания Everdrone недавно осуществила первую доставку дроном без применения GPS. Их система использует комбинацию оптической навигации (измеряя скорость по тому, как быстро меняется пейзаж на земле) и идентификации объектов на местности, пролагая маршрут от точки до точки с точностью GPS.
Конечно, этот метод полагается на полную и точную базу изображений местности, что требует большого объема памяти устройства и частых обновлений.
Автор фото, Getty Images
Подпись к фото,Инерциальная навигация берет на себя заботу о вашем маршруте, когда сигнал GPS теряется в тоннеле
В Великобритании разрабатывается программа Национального центра времени — первая в мире национальная служба, которая предназначена для подстраховки системы GPS в деле синхронизации времени.
Когда в 2025 году ее введут в строй, она будет использовать множество высокоточных атомных часов, расположенных в охраняемых местах по всей Британии, обеспечивая сигналы точного времени по кабельной сети и радио.
Идея состоит в том, что если спутниковый сигнал прервется, то дублирующая система не будет иметь какого-то единого и потому уязвимого центра, который можно вывести из строя либо случайно, либо из-за технической неполадки, либо с помощью кибератаки.
По большому счету, ни одна отдельная система не в состоянии заменить такую мощную навигационную систему, как GPS, и мы, скорее всего, будем использовать разные альтернативные решения для разных случаев — для судов, самолетов, автомобилей…
Министерство транспорта США сейчас объявило конкурс на лучший запасной вариант для GPS. Но весь вопрос в том, сможет ли такая альтернатива начать работать достаточно быстро.
«Мы знаем, что проблема существует, но [к ее решению] продвигаемся черепашьим шагом», — отмечает Карри.
Мы становимся все более зависимы от точной навигации. Беспилотные автомобили, доставка с помощью дронов, летающие такси, как ожидается, станут привычной частью земного и небесного пейзажа уже в ближайшем десятилетии. Все они будут полагаться на GPS.
Как подчеркивает Карри, один человек с мощной глушилкой спутникового сигнала может вывести из строя систему GPS на территории размером с Лондон, если применит ее с правильного места.
Пока не разработаны адекватные резервные системы, остановить жизнь в целом мегаполисе можно будет буквально по щелчку.
Прочитать оригинал этой статьи на английском языке можно на сайте BBC Future.
ГЛОНАСС — Российские космические системы
Глобальное навигационно-временное обеспечение неограниченного количества потребителей на земле, на море, в воздухе и в космосе. Доступ к гражданским сигналам системы предоставляется как российским, так и иностранным потребителям на безвозмездной основе без ограничений. ГЛОНАСС — российская спутниковая система навигации, одна из двух существующих в мире систем, принятых в эксплуатацию. Позволяет в абсолютно любой точке Земного шара, а также в космическом пространстве вблизи планеты определять местоположение и скорость объектов.
Принцип работы системы основан на измерении расстояния от объекта, координаты которого необходимо получить, до спутников, расположение которых известно с большой точностью. Таблица расположений называется альманахом. Полный альманах содержится в радиосигнале каждого спутника. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.
Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления измерения распространяемого радиосигнала, каждый спутник навигационной системы излучает сигналы точного времени, используя синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем, и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащемся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Все остальные параметры движения (скорость, курс, пройденное расстояние) вычисляются на основе измерения времени, которое объект затратил на перемещение между двумя или более точками с определёнными координатами.
Основу орбитальной группировки в трёх орбитальных плоскостях составляют космические аппараты «Глонасс-М» и космические аппараты нового поколения «Глонасс-К».
Развитием проекта управляют Госкорпорация «Роскосмос» и АО «Российские космические системы», головная организация по ГЛОНАСС.
В чем разница между 5 созвездиями GNSS?
Прежде чем мы углубимся в различия между 5 созвездиями GNSS … Важно, что мы все находимся на одной странице с различием между GNSS и GPS.
Многие люди путают технологии GNSS и GPS. Хороший способ думать о глобальных навигационных спутниковых системах (GNSS) — это как основа (или основная технология), лежащая в основе GPS. Глобальная система позиционирования (GPS) GPS — это созвездие GNSS, но GNSS не всегда является GPS.GPS — одна из 5 группировок GNSS, используемых во всем мире.
Пять группировок GNSS включают GPS (США), QZSS (Япония), BEIDOU (Китай), GALILEO (ЕС) и ГЛОНАСС (Россия). В этом посте мы подробно рассмотрим каждое из этих созвездий.
Основная причина появления всех 5 спутниковых группировок — доступность и избыточность. Если одна система выйдет из строя, ее может заменить другая группировка GNSS. Системные сбои случаются не часто, но приятно знать, что есть варианты резервного копирования.
Так в чем разница между этими 5 созвездиями? Рассмотрим каждую подробнее …
1. GPS
GPS — пионер в мире GNSS. Это самая старая система GNSS, которая начала работать в 1978 году и стала доступной для глобального использования в 1994 году.
GPS был изобретен из-за необходимости создания независимой военной навигационной системы. Министерство обороны США первым осознало это. В системе было применено много сложностей, чтобы обеспечить высокую точность, а также защитить ее от попыток подмены и спуфинга.Позже в будущем был обнародован GPS.
GPS работает в диапазоне частот, называемом L-диапазоном, частью радиоспектра от 1 до 2 ГГц. L-Band был выбран по нескольким причинам, в том числе:
- Ионосферная задержка более значительна на более низких частотах
- Упрощение конструкции антенны
- Свести к минимуму влияние погоды на распространение сигнала GPS
Сегодня GPS — самая точная навигационная система в мире.В спутниках GPS последнего поколения используются рубидиевые часы с точностью до ± 5 частей из 10 11 . Эти часы синхронизируются еще более точными наземными цезиевыми часами.
2. QZSS
Квазизенитная спутниковая система (QZSS) — это региональная спутниковая система из Японии, которую иногда называют «японской GPS».
QZSS в настоящее время использует одну геостационарную спутниковую орбиту и три на орбите QZO (наклонная, слегка эллиптическая, геостационарная орбита).
Система хронометража QZSS первого поколения (TKS) будет основана на рубидиевых часах. Однако первые спутники QZSS будут нести базовый прототип экспериментальной системы синхронизации кварцевых часов. Технология TKS — это новая спутниковая система хронометража, которая не требует бортовых атомных часов и используется в существующих навигационных спутниковых системах, таких как системы GPS, ГЛОНАСС и Galileo. Это позволяет системе работать оптимально, когда спутники находятся в прямом контакте с наземной станцией, что делает ее отличным решением для группировки QZSS.
Большим преимуществом QZSS является то, что он совместим с GPS. Это обеспечивает достаточное количество спутников для стабильного и высокоточного позиционирования.
3. BEIDOU
BEIDOU — это китайская спутниковая навигационная система, состоящая из двух отдельных спутниковых группировок, BeiDou-1 и BeiDou-2 (и скоро BeiDou-3) …
Источник: China Daily
BeiDou-1
BeiDou-1 (также известная как экспериментальная система спутниковой навигации BeiDou) состоит из трех спутников, предлагающих ограниченные навигационные услуги и зону покрытия.В основном он использовался пользователями в Китае и соседних регионах. BeiDou-1 выведен из эксплуатации в конце 2012 года.
BeiDou-2
BeiDou-2 (иногда называемый КОМПАС) — второе поколение системы. Он начал работать в декабре 2011 года с частичной группировкой из 10 спутников. Он предоставляет услуги клиентам в Азиатско-Тихоокеанском регионе с конца 2012 года.
BeiDou-3
China приступила к созданию своего третьего поколения системы BeiDou-3 в 2015 году.На этот раз … для глобального освещения.
По состоянию на октябрь 2018 года на орбите находится 15 спутников. Цель состоит в том, чтобы к 2020 году вывести на орбиту 35 спутников, которые по завершении будут предоставлять глобальные услуги.
После полного запуска и эксплуатации BeiDou-3 станет альтернативой американским GPS, ГЛОНАСС или GALILEO. Ожидается, что BeiDou-3 будет еще более точным с точностью до миллиметра (с постобработкой).
Интересный факт: По данным China Daily, в 2015 году (через пятнадцать лет после запуска системы BeiDou-1) оборот компании составил 31 доллар.5 миллиардов в год для крупных компаний, таких как China Aerospace Science and Industry Corp, AutoNavi Holdings Ltd и China North Industries Group Corp.
4. ГАЛИЛЕО
GALILEO — европейская система GNSS, совместимая с GPS и ГЛОНАСС. Он начал предоставлять услуги в декабре 2016 года.
ПриемникиGALILEO отслеживают положение спутниковой группировки в так называемой «опорной системе GALILEO», используя спутниковую технологию и принципы триангуляции.
Система Galileo разделена на три основных сегмента…
- Космос
- Земля
- Пользователь
Функция космического сегмента состоит в том, чтобы генерировать и передавать кодовые и фазовые сигналы с определенной структурой сигнала Galileo. Он также сохраняет и повторно передает навигационные данные, отправленные наземным сегментом.
Наземный сегмент является основным элементом системы, который управляет всей группировкой, включая средства навигационной системы и службы распространения.Наземный сегмент состоит из:
- Два наземных центра управления (GCC)
- Сеть телеметрии
- Станции слежения и контроля (TT&C)
- Сеть вышестоящих станций связи (ULS)
- Сеть сенсорных станций Galileo (GSS)
Пользовательский сегмент состоит из приемников GALILEO. Основная цель здесь — отслеживать координаты спутниковой группировки и обеспечивать очень точное время. Это делается, конечно, путем приема сигналов Galileo, определения псевдодальности (и других наблюдаемых) и решения навигационных уравнений.
Ожидается, чтоGALILEO выйдет на полную работоспособность (FOC) к 2020 году.
5. ГЛОНАСС
Наконец, ГЛОНАСС — это российская версия GPS. Разработка началась в 1976 году Советским Союзом. Всего существует 5 версий ГЛОНАСС, в том числе:
- ГЛОНАСС (1982)
- ГЛОНАСС-М (2003)
- ГЛОНАСС-К (2011)
- ГЛОНАСС-К2 (2015)
- ГЛОНАСС-КМ (2025 г. — в фазе исследований)
Вспомогательный ГЛОНАСС
Ассистированный ГЛОНАСС (A-GLONASS) во многом аналогичен ГЛОНАСС, но имеет больше функций для смартфонов.Эти функции включают в себя пошаговую навигацию, данные о загруженности дорог в реальном времени и многое другое. А-ГЛОНАСС использует близлежащие вышки сотовой связи для быстрой фиксации вашего точного местоположения. Также улучшена производительность чипсетов с поддержкой ГЛОНАСС.
Разница между ГЛОНАСС и GPS GNSS
Во-первых, сеть GPS США включает 31 спутник, а ГЛОНАСС использует 24 спутника. Две системы также несколько различаются по точности. Точность определения местоположения ГЛОНАСС составляет 5-10 м, а GPS — 3,5-7.8м. Следовательно, точность GPS превосходит ГЛОНАСС, поскольку меньшее количество ошибок лучше.
Что касается частот, то ГЛОНАСС работает на частоте 1,602 ГГц, а GPS — на частоте 1,57542 ГГц (сигнал L1).
При использовании отдельно ГЛОНАСС не обеспечивает такое сильное покрытие по сравнению с GPS. На самом деле существенных преимуществ ГЛОНАСС перед GPS нет.
ГЛОНАСС — отличный помощник для GPS. Когда сигналы GPS теряются (например, когда вы находитесь между высокими зданиями), ГЛОНАСС придет вам на помощь.
Что общего у всех созвездий GNSS?
Короткий ответ — потребность в точном времени и точности.Обычно это достигается с помощью высокопроизводительных атомных часов с рубидием или спутниковых GPSDO LEO. Здесь, в Bliley Technologies, мы применили более чем 85-летний опыт управления частотой, чтобы предоставить миру одни из лучших решений для синхронизации для созвездий GNSS и спутников LEO.
Вам обязательно стоит подумать о загрузке полной спецификации Hyas, нашего нового GPS-осциллятора (GPSDO), специально разработанного для спутников LEO и созвездий GNSS. Я думаю, тебе понравится то, что ты увидишь!
Какие бывают системы GNSS? — Геопространственный мир
Проверить новую кофейню в городе или исследовать место путешествия своей мечты, как местный житель, теперь не так уж важно.Где бы вы ни застряли, вы достаете свой телефон, набираете пункт назначения и перемещаетесь к нему. Но вы когда-нибудь задумывались, как это крошечное мобильное устройство в вашей руке направляет вас в каждый уголок? Конечно, вы знаете, что волшебство творит крошечный чип GPS в телефоне. GPS предоставляет информацию о местоположении и времени в любой точке Земли.
App Store и Google Play предлагают своим пользователям широкий спектр приложений для GPS-навигации, качество которых было успешно проверено службами тестирования мобильных приложений.
Но знаете ли вы, что GPS или глобальная система позиционирования является одной из четырех глобальных навигационных спутниковых систем? Четыре глобальные системы GNSS: GPS (США), ГЛОНАСС (Россия), Galileo (ЕС), BeiDou (Китай). Дополнительно есть две региональные системы — QZSS (Япония) и IRNSS или NavIC (Индия).
Ознакомьтесь с нашим специальным рассказом об эволюции глобальной навигационной спутниковой системы
Глобальная система позиционирования (США)GPS — самая старая система GNSS.Он начал свою деятельность в 1978 году и был доступен для глобального использования с 1994 года.
Необходимость иметь независимую военную навигацию послужила толчком для его нововведений. И американские военные первыми это осознали. Таким образом, в 1964 году для этой цели была развернута система Transit. Transit, также известный как NAVSAT, работал над эффектом Доплера и использовался для предоставления информации о местоположении и навигации ракетным подводным лодкам, надводным кораблям, а также для гидрографических и геодезических изысканий армии США.Со временем GPS был открыт для всеобщего использования. В настоящее время GPS насчитывает 33 группировки спутников, из которых 31 находятся на орбите и работают. Он поддерживается ВВС США и стремится поддерживать доступность как минимум 24 действующих спутников GPS. На сегодняшний день GPS запустила 72 спутника.
ТАКЖЕ ЧИТАЙТЕ: Как работает GNSS?
ГЛОНАСС (Россия)GLO bal NA vigation S atellite S ystem или ГЛОНАСС — глобальная навигационная система России.ГЛОНАСС начал работать в 1993 году с 12 спутниками на двух орбитах на высоте 19 130 км. В настоящее время на орбите находится 27 спутников, и все они находятся в рабочем состоянии. ГЛОНАСС эксплуатируется Воздушно-космическими силами России и является второй альтернативной действующей навигационной системой.
WATCH: Что такое GNSS и как оно работает?
Галилео (ЕС)Galileo — это группировка GNSS Европейского Союза, которую собирает Европейское космическое агентство, и Европейское агентство GNSS будет управлять ею.Galileo — это глобальная навигационная система, доступная для гражданского и коммерческого использования. Полностью развернутая система Galileo будет состоять из 30 действующих спутников и 6 запасных частей на орбите. В настоящее время на орбите находятся 22 спутника из 30. Galileo начала предлагать ранние операционные возможности с 2016 года и, как ожидается, выйдет на полную мощность к 2020 году.
ТАКЖЕ ЧИТАЙТЕ: CAG подтягивает ISRO к задержкам NavIC, перерасходу
BeiDou (Китай)BeiDou — спутниковая навигационная система Китая.Всего на орбите находится 22 действующих спутника, и планируется, что вся группировка будет состоять из 35 спутников. BeiDou имеет два отдельных созвездия: BeiDou-1 и BeiDou-2 . BeiDou-1, также известный как первое поколение, представлял собой созвездие из трех спутников. Он начал работать в 2000 году и предлагал ограниченное покрытие и навигационные услуги, в основном для пользователей в Китае и соседних регионах. Beidou-1 был выведен из эксплуатации в конце 2012 года.
BeiDou-2, , также известный как COMPASS, — второе поколение системы.Он начал работать в 2011 году с частичной группировкой из 10 спутников на орбите. Следующее поколение — BeiDou-3. Первый спутник БДС-3 был запущен в марте 2015 года. По состоянию на январь 2018 года запущено девять спутников БДС-3. Ожидается, что BeiDou-3 будет полностью функциональна к концу 2020 года
QZSS (Япония)Q uasi- Z enith S atellite S ystem — это региональная спутниковая навигационная система из Японии, которая все еще строится Центром исследований и приложений спутникового позиционирования, Япония.Согласно планам, группировка QZSS будет иметь 7 спутников, 4 из которых уже находятся на орбите. Ожидается, что QZSS будет запущен к концу 2018 года и будет предоставлять высокоточные и стабильные услуги позиционирования в регионе Азии и Океании. QZSS будет совместим с GPS.
IRNSS — NAVIC (Индия)T Индийская региональная навигационная спутниковая система (IRNSS), которой позже было присвоено рабочее название NavIC или NAV igation со спутником I ndian C , является региональной спутниковой навигационной системой Индии.Запущенная и управляемая Индийской организацией космических исследований (ISRO), IRNSS охватывает Индию и близлежащие регионы на протяженности до 1500 км. Все семь спутников находятся на орбите, но первый спутник — IRNSS A — сейчас не работает, поскольку в прошлом году ISRO сообщило, что все три атомных часа на нем вышли из строя.
ТАКЖЕ ЧИТАЙТЕ: Какие самые важные проекты от ISRO в ближайшее время?
ЗаявкаISRO на запуск нового спутника провалилась в августе 2017 года, когда в редких случаях тепловой экран ракеты-носителя не отделялся, чтобы высвободить спутник.В настоящее время три его спутника IRNSS находятся на геостационарной орбите, а еще 4 — на геостационарных орбитах. Еще есть время, прежде чем Индия начнет пользоваться своими услугами.
Новые преимущества комбинированных наблюдений GPS и ГЛОНАСС для мониторинга высокоширотных ионосферных неоднородностей: на примере июньской геомагнитной бури 2015 г. | Земля, планеты и космос
Сравнение измерений GPS и ГЛОНАСС в полярном регионе
На рисунке 3 представлены два примера измерений GPS и ГЛОНАСС для двух наземных станций PFRR (65.1 ° с. 147,4 ° з.д.) и MAC1 (54,5 ° ю.ш .; 158,9 ° в.д.), расположенных в полярных регионах северного и южного полушарий соответственно. На левых панелях показана геометрия распределения IPP наблюдений GPS (синие точки) и ГЛОНАСС (красные точки) над этими станциями (черная точка) за 24 часа 22 июня 2015 г. Хорошо видно, что наблюдения ГЛОНАСС могут покрывать более широкая область в соответствующем направлении к полюсу, чем зона покрытия GPS. Как мы объясняли выше, это связано с более высоким наклоном орбит спутников ГЛОНАСС (65 ° vs.55 ° GPS). Поэтому спутники ГЛОНАСС могут отслеживаться одним и тем же операционным приемником GNSS на гораздо более высоких широтах, чем спутники GPS. Средняя и правая панели рис. 3 показывают значения ROT и ROTI, рассчитанные отдельно от измерений GPS и ГЛОНАСС. Левая ось этих графиков показывает PRN (псевдослучайный шум) — номер спутника. Отметим усиление активности ионосферных неоднородностей, начавшееся в ~ 07 UT на обеих полярных станциях GNSS. Эти повышения хорошо коррелируют с тремя периодами повышенного индекса АЕ: 06–11, 15–17 и 18–21 UT 22 июня 2015 г. (см. Рис.1г). Следует отметить важную особенность: поведение значений ROT / ROTI и их амплитуды очень похожи между измерениями GPS и ГЛОНАСС. Другими словами, они действуют одинаково. Поэтому вклад данных ГЛОНАСС с разной геометрией и пространственным расположением может существенно дополнить наблюдения GPS. Таким образом, измерения флуктуаций (ROT / ROTI) от GPS и ГЛОНАСС совместимы и согласованы друг с другом и могут быть объединены в составной результат, такой как карта ROTI.
Рис. 3Примеры измерений GPS и ГЛОНАСС для двух наземных станций PFRR (65,1 ° N; 147,4 ° W) и MAC1 (54,5 ° S; 158,9 ° E) в тревожный день 22 июня 2015 г .: распределение проекций IPP по одной станции ( левая панель, ) с черной точкой , указывающей местоположение станции; производная вариация ROT ( средняя панель, ) и вариация ROTI ( правая панель ) вдоль всех видимых спутников. Измерения GPS показаны синим цветом, измерения ГЛОНАСС — красным , а левая ось показывает номер спутника (PRN)
Двухмерные комбинированные карты GPS и ГЛОНАСС ROTI
На рисунках 4 и 5 показаны почасовые карты ROTI, построенные в полярной географической проекции над северным и южным полушариями соответственно для спокойного дня 20 июня 2015 года и двух тревожных дней июня. 22 и 23, 2015.На основе объединенных наблюдений GPS и ГЛОНАСС эти карты ROTI были построены с высоким пространственным разрешением (1 ° × 1 ° по географической широте и долготе) и временным интервалом 1 час. Карта для 00 UT означает, что здесь мы усредняли данные с 00:00 до 00:59 UT. Полный набор почасовых карт ROTI доступен во вспомогательной информации (Дополнительный файл 1: S1, Дополнительный файл 2: S2, Дополнительный файл 3: S3).
Рис. 4Двумерные карты ROTI, полученные из объединенных наблюдений GPS и ГЛОНАСС над северным полушарием для спокойного дня a 20 июня и тревожных дней b 22 июня и c 23 июня , 2015. Каждая вертикальная строка показывает карты ROTI, построенные с разрешением 1 час и показанные здесь с интервалом 4 часа. Черная точка показывает расположение геомагнитного полюса
Рис. 5Двумерные карты ROTI, полученные на основе объединенных наблюдений GPS и ГЛОНАСС над южным полушарием для , спокойного дня 20 июня, и тревожных дней b 22 июня и c 23 июня 2015 г. Каждая вертикальная строка показывает карты ROTI, построенные с разрешением 1 час и показанные здесь с интервалом 4 часа. Черная точка показывает расположение геомагнитного полюса. Полный набор двумерных карт по обоим полушариям с интервалом времени 1 час доступен во вспомогательных материалах как Дополнительный файл 1: S1, Дополнительный файл 2: S2, Дополнительный файл 3: S3 соответственно до 20 июня, 22 июня и июня. 23 года 2015
Следует отметить, что североамериканский и европейский секторы имеют существенно лучший охват данными, чем другие регионы северного и южного полушария (см.рис.2а, д), поэтому почасовые карты ROTI показывают лучший охват данными и более высокое разрешение по этим регионам. В целом, средние и высокие широты северного полушария демонстрируют надлежащее покрытие наблюдениями GPS и ГЛОНАСС в широком диапазоне долгот 140 ° W – 50 ° E. Помимо GNSS, нет другого радиооборудования, способного обеспечить такое покрытие данными с земли.
Эти ежечасные карты ROTI демонстрируют динамику ионосферных неоднородностей в географической системе координат.Значения ROTI, отмеченные темно-синим цветом (ROTI ниже 0,2 TECU / мин), представляют очень слабые ионосферные неоднородности или их отсутствие. Значения ROTI, отмеченные оранжевым и красным цветом (ROTI> 0.8–1.0 TECU / min), соответствуют возникновению интенсивных ионосферных неоднородностей в этом секторе. Анализ карт ROTI для спокойного дня 20 июня 2015 г. (рис. 4а, 5а) выявил очень спокойную ситуацию над полярными областями в обоих полушариях с довольно слабыми неоднородностями, возникающими в окрестности геомагнитных полюсов.
Первые заметные изменения в характере распределения неоднородностей появились после 07–08 UT 22 июня 2015 г., вызванные вторым приходом CME и первым усилением авроральной активности (см. Рис. 1). Наиболее интенсивные неоднородности в обоих полушариях наблюдались после 16 UT 22 июня. Было обнаружено, что очень высокие значения ROTI (> 0,8–1 TECU / мин) образуют овальную структуру вокруг северного геомагнитного полюса. Далее, полученный с помощью GNSS овал неоднородности расширялся к экватору в течение нескольких часов, и его экваториальный край был обнаружен в североамериканском секторе на географической широте ~ 45 ° N – 50 ° N в течение более 2–3 часов.Наибольшие значения интенсивности ROTI в этом овальном элементе наблюдались в основном над Северной Европой. Следует также подчеркнуть, что интенсивные ионосферные неоднородности наблюдались над Южной Европой на географической широте от ~ 25 ° N до 40 ° N во время главной фазы шторма в 20-04 UT (рис. 4; дополнительный файл 2: S2, дополнительный файл 3: S3). Эти неоднородности были связаны с появлением вырывов плазмы и экваториальных плазменных пузырей в постзакатном секторе (20-04 UT) над низкими широтами Западной Африки после быстрого проникновения электрических полей в 18-20 UT 22 июня 2015 г. (для подробнее см. Черняк, Захаренкова, 2016б).
Ионосферные неоднородности, возникшие во время геомагнитной бури в июне 2015 года и обнаруженные в результате комбинированных наблюдений GPS и ГЛОНАСС, влияют на характеристики навигационной системы. Отчет об анализе характеристик системы WAAS показал, что в период с 22 по 23 июня наблюдалось снижение характеристик курсового радиомаяка с вертикальным наведением (LPV) и характеристик курсового радиомаяка с вертикальным наведением до высоты принятия решения 200 футов (LPV200), обеспечиваемой WAAS в континентальной части США. (КОНУС), Аляска и Канада (Ваннер, 2015).В этих регионах наблюдались сильные ионосферные неоднородности, связанные с высыпаниями авроральных частиц, более подробно описанные в следующих подразделах. Более того, очень интенсивные неровности приводят к снижению производительности Европейской геостационарной навигационной службы (EGNOS). Очень интересно отметить, что влияние возникновения ионосферных неоднородностей на характеристики GNSS в европейском секторе наблюдалось не только в высоких широтах (неоднородности, связанные с выпадением частиц и образованием ионосферных пятен), но также и в Южной Европе и в Средиземноморском регионе. (неоднородности, связанные с бурными плазменными истощениями экваториального происхождения, т.д., развитие плазменных пузырей) (Черняк, Захаренкова, 2016б).
На высоких широтах образование и эволюция ионосферных неоднородностей были связаны с высыпанием авроральных частиц после прихода КВМ и дальнейшим развитием главной фазы этой геомагнитной бури.
На рисунке 5 представлена эволюция ионосферных неоднородностей над южным полушарием. Здесь также можно оценить различия в возникновении, интенсивности и местоположении ионосферных неоднородностей.Мы отмечаем появление высоких значений ROTI вблизи геомагнитного полюса, которые могут быть связаны с ионосферными неоднородностями, вызванными высыпанием частиц на дневной куспид (например, Kelley et al. 1982; Weber et al. 1984). Ионосферные неоднородности такого происхождения обычно развиваются даже в спокойных геомагнитных условиях (см. Рис. 5а).
Видно выраженное усиление и расширение зоны неоднородности к экватору. Следует отметить, что из-за существенно худшего покрытия данными GNSS над южным полушарием (из-за преобладания площади океана) такие эффекты наблюдались в ограниченном диапазоне долгот 30 ° E – 170 ° E (в основном над станциями GNSS в Антарктиде). , а также в сетях Новой Зеландии и Австралии и на островах в Тихом океане).Такое ограниченное покрытие в южном полушарии не позволяет отобразить всю картину поведения ионосферных неоднородностей с помощью карт ROTI с разрешением 1 ч с такой детализацией, как в северном полушарии. Несмотря на это ограничение, 1-часовые карты ROTI четко показали эволюцию зоны ионосферных неоднородностей во времени. Рисунок 5b демонстрирует возникновение узкой овальной или кольцевой структуры вокруг геомагнитного полюса в 16 UT, а затем эта зона расширилась и охватила весь континент Антарктида (20 UT).Далее зона неоднородностей расширилась к экватору и достигла Новой Зеландии и Южной Австралии с гораздо меньшими значениями ROTI около южного магнитного полюса (рис. 5c, 04 UT). В целом эволюция овала неровностей довольно похожа на эволюцию, наблюдаемую в северном полушарии. Однако следует учитывать сезонные (от зимы к лету) различия между полушариями. Лаундал и Остгаард (2009) объясняют эту асимметрию в терминах межполушарных течений, связанных с сезонами: ожидается, что разница в проводимости ионосферы приведет к разной интенсивности полярных сияний в двух полушариях, а также в тех случаях, когда ММП имеет значительные Bx и By. составная часть.Все эти условия наблюдались во время геомагнитной бури 22–23 июня.
Меридиональные срезы объединенных карт GPS и ГЛОНАСС ROTI
Для сравнения временной эволюции ионосферных неоднородностей, вызванных бурей во время геомагнитной бури 22–23 июня 2015 г., мы выбрали наиболее репрезентативные и данные охватывали долготные секторы. в обоих полушариях и проанализировали меридиональные срезы карт GPS и ГЛОНАСС ROTI. Для увеличения временного разрешения мы рассчитали карты ROTI с частотой дискретизации 15 минут вместо 1 часа, как представлено в разделе «Двумерные комбинированные карты ROTI GPS и ГЛОНАСС».На рисунке 6 показано сравнение индексов SYM-H (разрешение 1 мин Dst) и аврорального электроджета (AE) с меридиональными срезами возмущений ROTI, оцененными вдоль следующих долгот: 85 ° з.д. в Северной Америке, 20 ° в.д. в Европе. , 70 ° з. Д. В Южной Америке и 150 ° в. ° вокруг выбранной географической долготы и отображается как функция географической широты и времени.Мы рассматриваем диапазон географических широт 30–90 ° в обоих полушариях. Левая вертикальная ось на рис. 6b – e показывает географические широты, а правая ось показывает соответствующие скорректированные геомагнитные широты. Необходимо отметить, что из-за различия геомагнитного и географического полюсов меридиональные срезы на рис. 6б, д пересекали широту геомагнитного полюса.
Рис. 6Сравнение a индексов SYM-H и AE с разрешением 1 мин и возмущений ROTI с разрешением 15 мин в зависимости от географической широты и времени, оцененных вдоль b 85W в Северной Америке, c 20E в Европе, d 70W в Южной Америке и e 150E в австралийском секторе в течение 20 и 22–23 июня 2015 г.Левая вертикальная ось для графиков b — e показывает географические широты, правая ось — соответствующие скорректированные геомагнитные широты
Для спокойного дня 20 июня 2015 г. меридиональные срезы карт ROTI северного полушария, показанные на рис. 6b – e, показали наличие ионосферных неоднородностей на высоких широтах только в пределах 70–80 ° MLAT (близко к области каспа). ) в американском и австралийском секторах, вероятно, вызванных выпадением мягких частиц.Первый заметный пик в распределении неоднородностей, рассчитанных по ROTI, был выявлен после ~ 06 UT 22 июня 2015 г. во всех рассматриваемых широтных секторах. Этот период соответствовал второму приходу CME в 05:45 UT, быстрым изменениям индекса SYM-H и первому усилению авроральной активности, представленному увеличением индекса AE на ~ 1300 нТл (см. Рис. 6а). Следующий пик ионосферных неоднородностей на высоких широтах наблюдался в 15-17 UT. Эти процессы были инициированы поворотом Bz ММП на юг и дальнейшим усилением авроральной активности, когда AE выросла до ~ 1340 нТл, а SYM-H упала до -70 нТл.В этот период ионосферные неоднородности также регистрировались одновременно к экватору, как 70 ° MLAT в Северной Америке и 65 ° MLAT в Европе (рис. 6b, c).
Наиболее интенсивные неоднородности в высоких и средних широтах обнаружены в 18-22 UT 22 июня, что связано с новым периодом повышенной авроральной активности с двумя пиками индекса AE ~ 2180 и ~ 2700 нТл в 18:49 и 20:10 UT соответственно. В течение этого периода SYM-H увеличился до +88 нТл и быстро упал до значения -139 нТл с резкой скоростью изменения около -130 нТл / ч.В результате в этот период были обнаружены высокоширотные неровности в направлении к экватору, например, 54 ° MLAT в Северной Америке и 45 ° MLAT в Европе. В южном полушарии их сигнатуры простирались к экватору до -55 ° MLAT в Южной Америке и -50 ° MLAT в австралийском секторе (рис. 6d, e). Кроме того, мы обнаружили, что изображения с прибора SSUSI на борту четырех спутников DMSP (доступны по адресу http://ssusi.jhuapl.edu/data/edr-aur-anim//years/2015/173/EDR-AUR_LBHS_2015173.gif и помещены как Дополнительный файл 4: S4) выявил усиление авроральной активности 22 июня 2015 г. и расширение зоны полярных сияний к экватору до 50 ° MLAT в 18-22 UT.
Во время развития второй основной фазы (01: 50–05: 40 UT 23 июня) интенсивные ионосферные неоднородности регистрировались непрерывно в течение более длительного периода (4–5 ч) и охватывали широтный диапазон от полярного моря. области до 55 ° MLAT в обоих секторах северного полушария (рис. 6b, c) и до −50 ° MLAT в южном полушарии (рис. 6d, e). Таким образом, сигнатуры ионосферных неоднородностей, которые были зарегистрированы сигналами GPS и ГЛОНАСС и проанализированы с использованием подхода меридионального среза, выявляют сильную связь их интенсивности и экваториального пространственного расширения с усилением авроральной активности, в частности представленной АЭ. и индексы SYM-H.Подобный анализ в широтно-временной области позволяет оценить основные зависимости возникновения ионосферных неоднородностей, их дальнейшего развития и эволюции от движущих сил космической погоды. Будущие исследования, основанные на этих подходах, позволят формализовать эти зависимости в виде эмпирической модели ионосферных неоднородностей.
Можно резюмировать, что, несмотря на беспрецедентно большое количество станций, развернутых по всему миру в течение последних 5–10 лет, высокоширотные регионы (выше 60 ° MLAT) в обоих полушариях демонстрируют довольно редкое покрытие наземными системами GPS и ГЛОНАСС. наблюдения по сравнению со средними широтами.С другой стороны, сегодня наземный сегмент GNSS является единственным источником данных, способным обеспечить наземные наблюдения с нескольких пунктов с наилучшим глобальным охватом.
В этой статье мы расширяем возможности использования карт ROTI для анализа распределения ионосферных неоднородностей. Мы демонстрируем, что меридиональные срезы карт ROTI могут быть эффективно использованы для изучения возникновения и временной эволюции ионосферных неоднородностей над выбранными географическими регионами в спокойные и особенно геомагнитно возмущенные периоды.Меридиональные срезы географических секторов, характеризующиеся высокой плотностью измерений GPS и ГЛОНАСС, могут отображать пространственно-временную динамику интенсивных неоднородностей плотности ионосферной плазмы с высоким разрешением и могут быть использованы для детального изучения факторов космической погоды, влияющих на процессы генерация ионосферных неоднородностей, их эволюция и время жизни.
Подчеркнем, что сочетание сигналов GPS и ГЛОНАСС позволяет значительно увеличить количество каналов трансионосферных измерений в мире.В результате это позволяет улучшить качество мониторинга ионосферных неоднородностей в обоих регионах с разреженным или плотным постоянным покрытием сети GNSS. В случае разреженных сетей (например, Северная Канада и Россия, регион Антарктиды и прибрежная зона в полярных регионах) объединение измерений на основе ГЛОНАСС, из-за другой конфигурации созвездия по сравнению с конфигурацией GPS, позволяет заметно расширить области покрываются измерениями GNSS и существенно увеличивают количество доступных точек проникновения в ионосферу.Особые преимущества данных ГЛОНАСС в высоких широтах могут заключаться в более раннем или лучшем обнаружении ионосферных возмущений, связанных с физическими процессами в авроральной области и полярной шапке, в частности, за счет комбинации с другими приборами, такими как совместные магнитометры, камеры всего неба и когерентные радары. Как видно на рис. 4, области высоких и средних широт в американском и европейском секторах хорошо охвачены комбинированными измерениями GPS и ГЛОНАСС без каких-либо значительных пробелов «нет данных».Для регионов с плотной сетью GNSS дополнительное использование данных ГЛОНАСС увеличило бы количество доступных измерений в 1,5–2 раза по сравнению с только GPS — например, для европейского региона мы можем получить ~ 1,700,000– 1,800,000 IPP за 1 час. Таким образом, мы потенциально можем построить региональные карты ROTI с беспрецедентно высоким разрешением до 0,5 ° × 0,5 ° по географической широте и долготе. Такие подробные карты ROTI уже успешно использовались для обнаружения ионосферных неоднородностей, связанных с индуцированными бурями сигнатурами истощения плазмы в Европе (Черняк, Захаренкова, 2016b).
Что лучше всего подходит для отслеживания приложений?
За последние несколько лет стало доступно множество наборов микросхем, которые могут отслеживать группировки спутников в дополнение к GPS. От клиентов часто задают вопрос: что лучше всего подходит для моего приложения, GPS или ГЛОНАСС? Быстрый ответ: «Используйте их оба». К сожалению, чем больше созвездий вы добавите, тем выше будет цена. В этой короткой статье я рассмотрю некоторые из основных различий между этими технологиями и опишу различные варианты, доступные дизайнеру.Мы надеемся, что это станет хорошей отправной точкой в поисках лучшего решения для отслеживания вашего приложения.
Краткий обзор спутниковых технологийДавайте сделаем шаг назад и посмотрим на технологию в целом. Группа спутников, передающих информацию о местоположении, называется созвездием. Спутники транслируют сигналы на Землю, и, вычисляя разницу во времени приема сигналов от разных спутников, приемник может определить, где он находится.Положение спутников известно и предоставляется в сигналах, которые они транслируют. Глобальная система позиционирования (GPS) — самая старая из таких группировок. Он был разработан военными США и начал действовать в 1995 году. Он называется Global, потому что вы можете принимать сигналы от этого созвездия в любой точке мира. Напротив, QZSS — это японская региональная система, охватывающая только Азию и Океанию. Для приложений слежения важно, чтобы ваш приемник мог «видеть» (или принимать сигналы) по крайней мере 4 спутника, чтобы иметь возможность вычислять широту, долготу и высоту.Если одна из этих переменных известна, требуется меньше спутников. Здесь важно понимать, что чем больше спутников ваш приемник может «видеть», тем меньше вероятность того, что он потеряет отслеживание.
Различия между GPS и ГЛОНАССТеперь, когда у нас есть представление о том, как работает система и что нам нужно для отслеживания, давайте сравним GPS с российской системой ГЛОНАСС. Что касается GPS, США обязались поддерживать как минимум 24 работающих спутника GPS в 95% случаев.За последние несколько лет стабильно работал 31 спутник. Созвездие ГЛОНАСС также было завершено в 1995 году, но в конце 1990-х годов стало неполным из-за потери спутников. При Владимире Путине проект ГЛОНАСС стал приоритетным и получил существенное увеличение финансирования. К октябрю 2011 года была восстановлена полная группировка из 24 спутников, что обеспечило глобальный охват. С точки зрения точности позиционирования GPS в целом немного лучше, чем ГЛОНАСС, но из-за различного позиционирования спутников ГЛОНАСС ГЛОНАСС имеет лучшую точность в высоких широтах (далеко на севере или на юге).
Доступные модули GPSИтак, если у вашего продукта всегда будет беспрепятственный обзор неба или вам нужно самое дешевое решение, я бы порекомендовал GPS. Telit предлагает множество модулей GPS с отличной производительностью. Их самый маленький модуль GPS, SE880, имеет размер всего 4,7 x 4,7 мм без антенны.
Модули Telit не поставляются со встроенной антенной, поэтому для клиентов, которые хотели бы иметь полное решение, мы предлагаем модули Antenova, такие как M10478-A1, который составляет 13.8 x 9,5 мм и включает бортовую антенну.
Доступные модули GPS + ГЛОНАССДля приложений в городских условиях, где высокие здания могут закрывать часть неба, я всегда рекомендую решение, которое использует преимущества спутников GPS и ГЛОНАСС. Проезжая между высокими зданиями, вы понимаете, что это ограничивает количество спутников, которые будут видны приемнику. Если вы полагаетесь только на одно созвездие, то на таком небольшом участке неба может не быть видно 4 спутников, что затрудняет определение местоположения.Когда вы добавляете второе созвездие, вы удваиваете свои шансы получить исправление в этой среде.
Telit предлагает несколько модулей GPS + ГЛОНАСС, которые легко объединяют информацию от обоих созвездий. SE868-V2 — популярный выбор из-за его занимаемой площади 11 x 11 мм. Помимо GPS и ГЛОНАСС, он также готов работать с QZSS, Galileo (Европа) и Compass (ранее BeiDou, Китай), поэтому в вашем дизайне можно будет использовать эти созвездия в будущем.
Antenova также предлагает M10478-A3, который имеет такую же площадь основания 13,8 x 9,5 мм и охватывает как GPS, так и ГЛОНАСС, но включает в себя бортовую антенну.
Symmetry предлагает гораздо больше модулей позиционирования в дополнение к этим продуктам, а также оценочные комплекты, чтобы сократить время разработки. Мы также предлагаем антенны в дополнение к этим модулям и можем помочь выбрать правильный модуль и антенну для вашей конструкции. Чтобы получить помощь в выборе модулей и антенн, позвоните нам по телефону (310) 536-6190 или свяжитесь с нами через Интернет.
Автор: Cobus Heukelman
ГЛОНАСС GPS: разница между обоими
Позвольте нашим опытным сотрудникам помочь вам найти продукты, которые соответствуют вашим уникальным потребностям в GNSS!
ГЛОНАСС GPS: в чем разница между ними?
Глобальная навигационная спутниковая система (GNSS) включает в себя созвездия спутников, вращающихся над земной поверхностью и непрерывно передающих сигналы, которые позволяют пользователям определять свое местоположение. ГЛОНАСС GPS — это примеры созвездий GNSS.
Глобальная система позиционирования (GPS) относится к системе глобального позиционирования NAVSTAR, группе спутников, разработанной Министерством обороны США (DoD). Первоначально система глобального позиционирования была разработана для использования в военных целях, но позже стала доступной и для гражданского населения. В настоящее время GPS является наиболее широко используемой группировкой спутников GNSS в мире, и ее сеть из 30+ спутников и 6 орбитальных плоскостей обеспечивает непрерывную информацию о местоположении и времени во всем мире при любых погодных условиях.
ГЛОНАСС — это аббревиатура от Globalnaya Navigazionnaya Sputnikovaya Sistema; В переводе с русского это означает «Глобальная навигационная спутниковая система». ГЛОНАСС в настоящее время эксплуатируется Воздушно-космическими силами обороны России и обеспечивает определение местоположения и скорости в реальном времени как для военных, так и для гражданских целей. Развитие ГЛОНАСС началось в 1976 году в Советском Союзе и было восстановлено и завершено в начале 2000-х годов, когда это стало главным государственным приоритетом. Сегодня ГЛОНАСС имеет сеть из 24 спутников с 3-мя орбитальными плоскостями, которые покрывают не только 100% территории России, но и Землю в целом.
Сравнение функций GPS и ГЛОНАСС
В настоящее время нет серьезных различий между двумя системами, когда речь идет о функциях, глобальном охвате или точности. Однако орбита ГЛОНАСС делает ее более пригодной для использования в северном полушарии, чем в южном полушарии, из-за большего количества наземных станций в этих местах. Наиболее существенное различие между ГЛОНАСС / GPS — способ связи с приемниками.При использовании GPS спутники используют одни и те же радиочастоты, но имеют разные коды для связи, в то время как спутники ГЛОНАСС имеют одинаковые коды, но используют разные частоты, что позволяет спутникам на одной орбитальной плоскости связываться друг с другом.
Хотя изначально ГЛОНАСС создавался как альтернатива GPS, теперь мы видим основные преимущества одновременной работы двух систем, а не независимо друг от друга, для обеспечения точного определения местоположения в любой точке Земли. Включение всех 55 спутников, доступных по всему миру, в систему ГЛОНАСС GPS обеспечивает гораздо большую точность, особенно в городских каньонах.
Ознакомьтесь с продуктами TransiTiva
Инновации: ГЛОНАСС — прошлое, настоящее и будущее: GPS World
Альтернатива и дополнение к GPS
Обзор истории программы ГЛОНАСС, ее текущего состояния и обзор планов на ближайшее будущее спутниковой группировки, ее навигационных сигналов и наземной сети поддержки.
Доступны английские версии документации по управлению интерфейсом CDMA ГЛОНАСС.См. Дополнительную информацию.
Ричард Лэнгли
12 октября 1982 года Советский Союз запустил первый спутник ГЛОНАСС. В ответ на разработку GPS или просто для того, чтобы удовлетворить потребность в системе с аналогичными возможностями для своих вооруженных сил, Советский Союз начал разработку Глобальной навигационной спутниковой системы или Глобальной навигационной спутниковой системы в 1976 году, всего через три года после этого. запуск программы GPS. Первый испытательный спутник под кодовым названием Космос 1413 сопровождался двумя фиктивными или балластными спутниками с той же приблизительной массой, поскольку Советский Союз уже планировал запускать три спутника ГЛОНАСС одновременно с помощью своих мощных ракет, чтобы сэкономить на затратах на запуск.
Но из-за неудачных запусков и характерно короткого срока службы спутников было запущено еще 70 спутников, прежде чем в начале 1996 года была сформирована полностью заполненная группировка из 24 функционирующих спутников (обеспечивающих полную работоспособность или FOC). К сожалению, полная группировка была сформирована. недолговечный. Экономические трудности России после распада Советского Союза нанесли ущерб ГЛОНАСС. Денег не было, и к 2002 году группировка сократилась до семи спутников, из которых только шесть были доступны во время операций по техническому обслуживанию! Но судьба России изменилась, и при поддержке российской иерархии ГЛОНАСС возродилась.Спутники-долгожители запускались по шесть в год, и медленно, но верно возвращалась целая группировка из 24 спутников. А 8 декабря 2011 года FOC снова был достигнут и впоследствии более или менее поддерживался — система даже иногда работала с запасными частями на орбите.
В то время как двухсистемные приемники GPS / ГЛОНАСС только для ГЛОНАСС и обзорного уровня существуют уже более десяти лет, производители обратили внимание на возрождение ГЛОНАСС и начали производить микросхемы и приемники с возможностью ГЛОНАСС для потребительского рынка.В 2011 году компания Garmin выпустила портативные приемники, поддерживающие как GPS, так и ГЛОНАСС. В том же году различные производители сотовых телефонов начали предлагать возможности ГЛОНАСС со своими встроенными модулями позиционирования. Первые приемники GPS / ГЛОНАСС проложили путь для приемников мульти-ГНСС, которые мы имеем сегодня, с их способностью отслеживать не только спутники GPS и ГЛОНАСС, но и спутники европейских систем Galileo и китайских BeiDou, а также японских Quasi- Zenith Satellite System (не говоря уже о спутниках спутниковых систем функционального дополнения).
Я задокументировал развитие ГЛОНАСС в этой колонке еще в июле 1997 года, а группа авторов из акционерного общества «Российские космические системы» обсуждала планы модернизации ГЛОНАСС в статье, опубликованной в апреле 2011 года. Просрочено обновление. Итак, в этой статье я кратко рассмотрю историю программы ГЛОНАСС, расскажу о ее текущем состоянии и рассмотрю планы на ближайшее будущее спутниковой группировки, ее навигационных сигналов и наземной сети поддержки.
РАННИЙ ГОД, НАСТОЯЩИЙ ДЕНЬ
Во время холодной войны информации о ГЛОНАСС было мало.Помимо общих характеристик орбит спутников и частот, используемых для передачи навигационных сигналов, Министерство обороны Советского Союза мало что раскрыло. Однако расследование, проведенное профессором Питером Дейли и его студентами из Университета Лидса, предоставило некоторые подробности о структуре сигналов. С наступлением гласности и перестройки и, в конечном итоге, распада Советского Союза информация о ГЛОНАСС стала более доступной. В конце концов, русские выпустили Документ о контроле интерфейса (ICD).Этот документ, аналогичный по структуре пользовательским интерфейсам космического сегмента / навигации Navstar ICD-GPS-200, описывает систему, ее компоненты, а также структуру сигнала и навигационного сообщения, предназначенных для гражданского использования. Последняя его версия была опубликована в 2016 году, но пока эта версия общедоступна только на русском языке.
Спутники и сигналы. На данный момент запущено шесть моделей спутников ГЛОНАСС (также известных как «Ураган», русское название «Ураган»). Россия (на самом деле бывший Советский Союз) запустила первые 10 спутников, получивших название Block I, в период с октября 1982 года по май 1985 года.В период с мая 1985 года по сентябрь 1986 года он запустил шесть спутников Block IIa и 12 спутников Block IIb в период с 1 апреля 1987 года по май 1988 года, из которых шесть были потеряны из-за сбоев, связанных с ракетами-носителями. Четвертой моделью был Блок IIv (v — английская транслитерация третьей буквы русского алфавита). К концу 2005 года русские развернули 60 Block IIv. Каждое последующее поколение спутников содержало усовершенствования в оборудовании, а также увеличивало срок службы.
Опытный образец спутника ГЛОНАСС-М (модернизированный) был запущен 30 декабря.1, 2001, вместе с двумя блоками IIv с первыми двумя производственными спутниками ГЛОНАСС-М, включенными в тройной запуск 10 декабря 2003 г. и 26 декабря 2004 г. Два спутника ГЛОНАСС-М были включены в тройной запуск декабря 25, 2005. Новый дизайн предлагал множество улучшений, в том числе лучшую бортовую электронику, более длительный срок службы, гражданский сигнал L2 и улучшенное навигационное сообщение. Как и в предыдущих версиях, на космическом корабле ГЛОНАСС-М по-прежнему использовался герметичный герметичный цилиндр для электроники.
РИСУНОК 1. Изображение от Reshetnev Information Satellite Systems, производителя спутников ГЛОНАСС, на праздновании 35-летия запуска первого спутника ГЛОНАСС в 1982 году («35 лет служения миру»).
Все спутники ГЛОНАСС, запущенные с декабря 2005 г., являются спутниками ГЛОНАСС-М, за исключением двух спутников ГЛОНАСС-К1 (иногда называемых просто ГЛОНАСС-К), запущенных 26 февраля 2011 г. и 30 ноября 2014 г. ГЛОНАСС -Спутники K1 заметно отличаются от своих предшественников.Они легче, имеют негерметичный корпус (аналогичный корпусу спутников GPS), имеют улучшенную стабильность часов и более длительный, 10-летний расчетный срок службы. Они также впервые включают в себя сигналы множественного доступа с кодовым разделением каналов (CDMA) на третьей частоте, сопровождающие унаследованные сигналы множественного доступа с частотным разделением каналов (я их вскоре расскажу). Все спутники ГЛОНАСС были произведены акционерным обществом «Информационные спутниковые системы им. Решетнева», расположенным в Железногорске недалеко от Красноярска в Центральной Сибири и названном в честь основателя, генерального директора и главного конструктора Михаила Федоровича Решетнева.Компания Решетнева ранее называлась Научно-производственным объединением прикладной механики (Научно-производственное объединение прикладной механики или НПО ПМ). Государственная корпорация по космической деятельности Роскосмоса (ранее Федеральное космическое агентство), широко известная как Роскосмос, является государственным органом, ответственным за ГЛОНАСС.
РИСУНОК 1 включает изображения художников исходных спутников ГЛОНАСС, ГЛОНАСС-М и ГЛОНАСС-К1.
Спутниковые орбитыГЛОНАСС расположены в трех плоскостях, отделенных друг от друга прямым восхождением восходящего узла на 120 градусов, по восемь спутников в каждой плоскости.Спутники в плоскости расположены на равном расстоянии друг от друга, разделенные по аргументу широты на 45 градусов. Спутники в прилегающих плоскостях смещены по аргументу широты на 15 градусов. Спутники выводятся на условно круговые орбиты с наклоном цели 64,8 градуса и большой полуосью примерно 25 510 километров, что дает им период обращения по орбите около 675,8 минут. Эти спутники имеют наземные треки, которые повторяются каждые 17 витков или восемь звездных дней. Плоскости орбиты ГЛОНАСС пронумерованы 1–3 и содержат орбитальные щели 1–8, 9–16 и 17–24 соответственно.
РИСУНОК 2 показывает состояние созвездия на 17 октября 2017 г. Номер орбитального слота (также называемый слотом альманаха) и частотный канал (обсуждается ниже) указаны в скобках. Недавно запущенная система ГЛОНАСС 752 была запущена 16 октября 2017 года, в результате чего группировка из 24 спутников была полностью готова к работе. Все спутники являются стандартными спутниками ГЛОНАСС-М, за исключением ГЛОНАСС 755, который включает передатчик для новой третьей частоты, и ГЛОНАСС 701К и 702К. Последние два — спутники ГЛОНАСС-К1, из которых 702К работают, а 701К проходит летные испытания.Буква «K» не является частью официального номера ГЛОНАСС, но была добавлена во избежание двусмысленности. Спутник ГЛОНАСС-М, запущенный 10 декабря 2003 года, также назывался ГЛОНАСС 701. Аналогичным образом Международная служба GNSS (IGS) называет ГЛОНАСС 701К и 702К 801 и 802 соответственно. IGS также обозначает ГЛОНАСС 751 как ГЛОНАСС 851, чтобы избежать путаницы с Космосом 2080, спутником ГЛОНАСС-IIv, запущенным 19 мая 1990 года, и также называемым ГЛОНАСС 751. И он обозначает ГЛОНАСС 753 как ГЛОНАСС 853, чтобы избежать путаницы с Космосом 2140, ГЛОНАСС. Спутник IIv, запущенный 14 апреля 1991 года, также называется ГЛОНАСС 751.
РИСУНОК 2. Состояние группировки ГЛОНАСС на 17 октября 2017 года. Зеленый квадрат указывает местоположение исправного спутника, а оранжевый — тестового спутника. В скобках указаны номера орбитальных слотов и частотные каналы.
Спутники традиционно запускались по три одновременно ракетами-носителями «Протон» с космодрома Байконур недалеко от Ленинска в Казахстане. Однако, начиная с запуска первого спутника ГЛОНАСС-К1, несколько спутников ГЛОНАСС были запущены по отдельности на ракетах «Союз» с космодрома Плесецк к северу от Москвы.
В отличие от GPS и других GNSS, ГЛОНАСС использует FDMA, а не CDMA для своих традиционных сигналов. Первоначально система передавала сигналы в двух диапазонах: L1, 1602,0–1615,5 МГц, и L2, 1246,0–1256,5 МГц, на частотах, разнесенных на 0,5625 МГц на L1 и на 0,4375 МГц на L2:
.L 1 к = 1602. + 0,5625 к (МГц)
L 2 к = 1246. + 0,4375 к (МГц)
Эта компоновка обеспечивала 25 каналов, так что каждому спутнику в полной группировке из 24 спутников могла быть назначена уникальная частота (с оставшимся каналом, зарезервированным для тестирования).Некоторые из передач ГЛОНАСС изначально создавали помехи для радиоастрономов, которые изучают очень слабые естественные радиоизлучения вблизи частот ГЛОНАСС. Радиоастрономы используют полосы частот 1610,6–1613,8 и 1660–1670 МГц для наблюдения за спектральными излучениями облаков гидроксильных радикалов в межзвездном пространстве, и Международный союз электросвязи (МСЭ) предоставил им статус основных пользователей этого пространства спектра. Кроме того, МСЭ выделил полосу частот 1610–1626,5 МГц операторам спутников мобильной связи на низкой околоземной орбите.В результате руководство ГЛОНАСС решило сократить количество частот, используемых спутниками, и сместить диапазоны на несколько более низкие частоты.
В настоящее время система использует только 14 основных частотных каналов со значениями k в диапазоне от –7 до +6, включая два канала для целей тестирования (в настоящее время –5 и –6). (Канал +7 также использовался в прошлом для целей тестирования.) Как 24 спутника могут работать только с 14 каналами? Решение состоит в том, чтобы противоположные спутники — спутники в одной плоскости орбиты, разделенные аргументом широты на 180 градусов, — использовали один и тот же канал.Такой подход вполне осуществим, потому что пользователь в любом месте на Земле никогда не будет одновременно получать сигналы от такой пары спутников. Переход к новым частотным присвоениям начался в сентябре 1993 года.
Подобно устаревшим сигналам GPS, сигналы ГЛОНАСС включают два кода дальности псевдослучайного шума (PRN): ST (для стандартной точности или стандартной точности) и VT (для высокой точности или высокой точности), аналогично GPS C / A- и P- коды, соответственно (но с половинной скоростью кодирования), модулированные на несущие L1 и L2.
Как и GPS, ГЛОНАСС передает код высокой точности как на L1, так и на L2. Но, в отличие от спутников GPS, код ГЛОНАСС стандартной точности также передавался на частотах L2, начиная со спутников ГЛОНАСС-М. (Отдельный гражданский код, L2C, был добавлен к сигналу L2 GPS, передаваемому блоком IIR-M и последующими спутниками.) ST-код ГЛОНАСС имеет длину 511 чипов со скоростью 511 килочипов в секунду, что дает интервал повторения 1 миллисекунда. Длина VT-кода составляет 33 554 432 чипа со скоростью 5.11 мегачипов в секунду. Кодовая последовательность усекается, чтобы обеспечить интервал повторения в 1 секунду. В отличие от спутников GPS, все спутники ГЛОНАСС передают одни и те же коды. Они получают синхронизацию сигналов и частоты из одного из бортовых атомных стандартов частоты (AFS), работающих на частоте 5 МГц. Спутники различных серий ГЛОНАСС, начиная с блока II и заканчивая серией ГЛОНАСС-М, имеют по три цезиевых АСПО на каждом спутнике. Передаваемые сигналы имеют правую круговую поляризацию, как сигналы GPS, и имеют сопоставимые уровни сигнала.
Навигационное сообщение. Подобно GPS и другим GNSS, сигналы ГЛОНАСС также содержат навигационные сообщения, содержащие информацию об орбите спутника, часы и другую информацию. Отдельные навигационные сообщения со скоростью 50 бит в секунду добавляются по модулю 2 к кодам ST и VT. Сообщение с кодом ST включает в себя эпоху спутниковых часов и отклонения скорости от системного времени ГЛОНАСС; эфемериды спутников, заданные в виде векторов положения, скорости и ускорения спутника в опорную эпоху; и дополнительную информацию, такую как биты синхронизации, возраст данных, состояние спутника, смещение системного времени ГЛОНАСС от всемирного координированного времени (UTC), которое поддерживается Национальным метрологическим институтом Российской Федерации UTC (SU) в рамках Государственной службы времени и частоты. , а также альманахи (приблизительные эфемериды) всех остальных спутников ГЛОНАСС.Обратите внимание, что, в отличие от системного времени GPS, например, системное время ГЛОНАСС не имеет целочисленного смещения от всемирного координированного времени, и поэтому скачки секунды координации добавляются к системному времени ГЛОНАСС одновременно с теми, которые добавляются к всемирному координированному времени. Однако обратите внимание, что системное время ГЛОНАСС смещено на постоянные три часа, чтобы соответствовать московскому стандартному времени (MSK, сокращение от Moscow).
Полное сообщение длится 2,5 минуты и непрерывно повторяется между обновлениями эфемерид (номинально каждые 30 минут), но информация об эфемеридах и часах повторяется каждые 30 секунд.
Власти ГЛОНАСС не опубликовали, по крайней мере, публично, детали навигационного сообщения с кодом VT. Однако известно, что полное сообщение занимает 12 минут, а информация об эфемеридах и часах повторяется каждые 10 секунд.
Геодезическая система. Эфемериды ГЛОНАСС привязаны к геодезической системе «Параметры Земли 1990» (ПЗ-90 или, в английском переводе, «Параметры Земли 1990», ПЭ-90). ПЗ-90 заменил советскую геодезическую систему 1985 года, SGS 85, которая использовалась ГЛОНАСС до 1993 года.PZ-90 — это наземная система отсчета, система координат которой определяется так же, как и международная наземная система отсчета (ITRF). Первоначальная реализация ПЗ-90 имела точность один-два метра.
Однако, чтобы приблизить систему к ITRF (и геодезической системе координат GPS WGS 84), были выполнены два обновления PZ-90. Первое обновление, в результате которого появился PZ-90.02 (относится к 2002 г.), было принято для работы ГЛОНАСС 20 сентября 2007 г. и приблизило кадр широковещательных орбит (и, следовательно, полученные координаты приемника) к ITRF и WGS 84.Другая реализация, ПЗ-90.11, принятая на вооружение 31 декабря 2013 г., как сообщается, снизила различия до субсантиметрового уровня.
ТАБЛИЦА 1 перечисляет определяющие константы и параметры PZ-90.
ТАБЛИЦА 1. Основные геодезические постоянные и некоторые параметры геодезической системы ПЗ-90, используемой ГЛОНАСС.
Новые спутники ГЛОНАСС-К передают дополнительные сигналы. ГЛОНАСС-К1 передает сигнал CDMA на новой частоте L3 (1202,025 МГц), а ГЛОНАСС-К2 дополнительно будет передавать сигналы CDMA на частотах L1 и L2.
РИСУНОК 3. Решетка круглых отражателей на спутнике ГЛОНАСС-К1, окружающая внутренние элементы антенны навигационного сигнала. Фото из Информационных спутниковых систем имени Решетнева.
Контрольный сегмент . Подобно GPS и другим GNSS, ГЛОНАСС требует сети наземных станций для мониторинга и обслуживания спутниковой группировки, а также для определения орбит спутников и поведения их действующих AFS. Сеть слежения использует станции только на территории бывшего Советского Союза, дополненные станциями спутниковой лазерной локации для помощи в определении орбиты, поскольку все спутники ГЛОНАСС содержат лазерные отражатели (см. РИСУНОК 3).
Наличие неглобальной сети станций слежения для определения спутниковых орбит и поведения AFS приводит к незначительному ухудшению ошибки дальности сигнала ГЛОНАСС в пространстве (SISRE). Недавно за рубежом был создан ряд станций слежения в связи с разработкой российской спутниковой системы функционального дополнения (SBAS), Системы дифференциальной коррекции и мониторинга (SDCM). SDCM будет работать аналогично Wide Area Augmentation System или WAAS, U.S. SBAS и другие находящиеся в эксплуатации SBAS. Добавление к сети слежения зарубежных станций SDCM, которая уже включает станции в Антарктиде и Южной Америке, и прибывают новые станции, может помочь улучшить SISRE. Роскосмос также использует глобальную сеть IGS и других станций слежения для мониторинга состояния группировки ГЛОНАСС (см. РИСУНОК 4).
РИСУНОК 4. Глобальная спутниковая сеть мониторинга состояния ГЛОНАСС Роскосмоса с 22 станциями передачи сообщений 18 октября 2017 г., с 13:00 до 14:00 по московскому времени.
Производительность. SISRE с годами улучшился и в настоящее время находится на уровне от 1 до 2 метров. Отчасти это связано с лучшими характеристиками бортовых AFS новейших спутников ГЛОНАСС-М по сравнению с первыми спутниками ГЛОНАСС-М. Их относительная однодневная стабильность улучшилась с 10-13 до 2,4 × 10-14. РИСУНОК 5 показывает временной ряд последних значений SISRE, определенных Информационно-аналитическим центром позиционирования, навигации и синхронизации.Эти уровни ошибок могут привести к ошибкам позиционирования на основе псевдодальности с использованием широковещательных орбит и часов ГЛОНАСС примерно в два раза хуже, чем те, которые предоставляет GPS — хотя в любой данный момент на точность позиционирования также влияют атмосферные эффекты и многолучевость, что может преобладают над ошибками сигнала в пространстве.
РИСУНОК 5. Суточная среднеквадратичная ошибка дальности космического сигнала ГЛОНАСС в метрах, определенная Информационно-аналитическим центром позиционирования, навигации и хронометража.
Гораздо более высокая точность позиционирования может быть получена с использованием орбит и часов ГЛОНАСС, предоставляемых IGS и участвующими в ней аналитическими центрами. Это особенно верно, если измерения фазы несущей используются вместо или в качестве дополнения к измерениям псевдодальности. Комбинация правильно взвешенных измерений GPS и ГЛОНАСС оказалась полезной с точки зрения доступности, точности и эффективности, особенно для высокоточного позиционирования, выполняемого с использованием кинематики в реальном времени или подхода RTK.Кроме того, метод точного позиционирования (PPP), основанный на двухчастотных измерениях фазы несущей в реальном времени или на постобработке с точными эфемеридами спутников и данными часов, продемонстрировал, что кинематическая точность на уровне дециметра возможна с использованием данных ГЛОНАСС или Данные ГЛОНАСС в сочетании с данными GPS. Статические решения PPP только для ГЛОНАСС за 24 часа достигли точности на миллиметровом уровне.
Пользователей. Первоначальное внедрение ГЛОНАСС гражданскими и военными пользователями в бывшем Советском Союзе, а затем и в России, не говоря уже о других странах, было минимальным.Опытные образцы приемников только для ГЛОНАСС были разработаны для военных, а зарубежные приемники GPS / ГЛОНАСС были разработаны несколькими производителями для научных и других передовых приложений. IGS добавила в свою сеть набор приемников слежения за ГЛОНАСС в 1998 году и с тех пор постоянно увеличивала количество таких приемников. Однако потребительское использование ГЛОНАСС как в России, так и за ее пределами стало только недавно, когда были разработаны чипсеты только для ГЛОНАСС и комбинированные наборы микросхем GPS / ГЛОНАСС. Такие чипсеты теперь используются во многих мобильных телефонах, а также в портативных приемниках GNSS и автомобильных навигационных устройствах.
НОВЫЕ И УЛУЧШЕННЫЕ
Как упоминалось ранее, спутники ГЛОНАСС-K1 включают сигнал CDMA, сопровождающий унаследованные сигналы FDMA на новой частоте L3 1202,025 МГц. Скорость передачи кода ранжирования для сигнала CDMA составляет 10,23 мегахипа в секунду с периодом 1 миллисекунда. Он модулируется на несущей с использованием квадратурной фазовой манипуляции (QPSK) с синфазным каналом данных и квадратурным пилотным каналом. Набор возможных кодов ранжирования состоит из 31 усеченной последовательности Касами.(Последовательности Касами, представленные Тадао Касами, известным японским теоретиком информации, представляют собой двоичные последовательности длиной 2m — 1, где m — четное целое число. Эти последовательности имеют хорошие значения взаимной корреляции, приближающиеся к теоретической нижней границе. Коды Голда, используемые в GPS являются частным случаем кодов Касами.) Полная длина этих последовательностей составляет 214 — 1 = 16 383 символа, но код ранжирования усечен до длины N = 10230 с периодом 1 миллисекунда.
Соответствующие символы навигационного сообщения передаются со скоростью 100 бит в секунду с половинной скоростью сверточного кодирования.Так называемый суперкадр навигационного сообщения (длительностью 2 минуты) будет состоять из 8 навигационных кадров (NF) для 24 обычных спутников на первом этапе модернизации ГЛОНАСС и 10 NF (продолжительностью 2,5 минуты) для 30 спутников в будущем. Каждая НФ (продолжительностью 15 секунд) включает 5 струн (по 3 секунды каждая). Каждая национальная федерация имеет полный набор эфемерид для текущего спутника и часть системного альманаха для трех спутников. Полный системный альманах транслируется в одном суперкадре.
Более легкие, негерметичные спутники K1 содержат два цезиевых и два рубидиевых АСП.Сообщается, что относительная суточная стабильность одного из рубидиевых AFS на спутнике K1 составляет 4 × 10-14. В результате SISRE для этого спутника составляет около 1 метра. Планируется добавить сигнал CDMA в L2 на будущих версиях спутников K1, получивших название K1 + (см. Ниже).
Спутники ГЛОНАСС-К2. Эти спутники будут тяжелее, чем спутники K1 и K1 +, с большими возможностями, включая сигнал CDMA на частоте GPS / Galileo L1 / E1. Перед запуском в серийное производство ИСС им. Решетнева сначала построит два спутника К2.Планировалось перейти на спутники K2 гораздо раньше, запустив только два спутника K1, которые сейчас находятся на орбите. Но, видимо, планы изменились из-за санкций, ограничивающих поставки радиационно-стойких электронных компонентов с Запада.
Теперь на ИСС им. Решетнева будут построены еще девять спутников ГЛОНАСС-К1. Неясно, сколько из них может относиться к разновидности K1 +. Спутники ГЛОНАСС-К1 теперь будут переходными спутниками между существующими спутниками ГЛОНАСС-М (включая полдюжины или около того, которые были изготовлены и хранятся на земле для будущих запусков по мере необходимости) и будущими спутниками ГЛОНАСС-К2.
На одном из первых спутников K2 будет установлен пассивный водородный мазер (PHM) AFS. PHM разрабатывался около десяти лет, и многолетние наземные испытания показали надежность и однодневную стабильность 5 × 10-15. Ожидается, что он внесет свой вклад в будущую 0,3-метровую SISRE.
Согласно недавнему отчету, спутники ГЛОНАСС-К2 начнут летные испытания в 2018 году, а серийное производство спутников ГЛОНАСС-К2 начнется в период 2019–2020 годов.
Улучшенные сети слежения. О разработке SDCM и связанной с ней сети слежения уже упоминалось. Станции сети СДКМ оснащены комбинированными двухчастотными приемниками GPS / ГЛОНАСС, водородными мазерными атомными часами и прямыми линиями связи для передачи данных в реальном времени. Как упоминалось ранее, власти ГЛОНАСС изучают, может ли дополнительное использование станций SDCM для определения орбиты и часов ГЛОНАСС значительно повысить точность данных широковещательной передачи.
ЗАКЛЮЧЕНИЕ
GPS, самая старая GNSS, продолжает модернизироваться и вскоре запустит первый спутник Block III или GPS III.Спутники GPS Block IIR-M и Block IIF уже передают новые сигналы. Galileo с самого начала запускает современные спутники, а BeiDou собирается начать запуск оперативной версии своих спутников BeiDou-3. ГЛОНАСС нельзя отставать. Она предоставляет полезные услуги позиционирования, навигации и хронометража, по крайней мере, с 1996 года. Хотя временами уровень обслуживания опускался ниже приемлемого уровня, теперь это надежная система, и с объявленными улучшениями она станет соперником в будущем мире многоцелевых систем. GNSS.
ДОПОЛНИТЕЛЬНОЕ ЧТЕНИЕ
«Обновление программы ГЛОНАСС» И. Ревнивых, представленное на 11-м заседании Международного комитета по глобальным навигационным спутниковым системам, Сочи, Россия, 6–11 ноября 2016 г.
- Подробное описание ГЛОНАСС
«ГЛОНАСС» С. Ревнивых, А. Болкунова, А. Сердюкова и О. Монтенбрука, Глава 8 в Справочнике по глобальным навигационным спутниковым системам Springer , под редакцией П.Дж.Г. Тойниссен и О.Montenbruck, опубликовано Springer International Publishing AG, Чам, Швейцария, 2017 г.
- Официальные сайты ГЛОНАСС
Информационно-аналитический центр позиционирования, навигации и синхронизации
Российская система дифференциальной коррекции и мониторинга
- Документы по управлению интерфейсом ГЛОНАСС
Документ по управлению интерфейсом ГЛОНАСС, навигационный радиосигнал в диапазонах L1, L2 , издание 5.1, Российский институт космического приборостроения, Москва, 2008.
Документ по управлению интерфейсом ГЛОНАСС, Общее описание системы сигналов множественного доступа с кодовым разделением каналов , редакция 1.0, ОАО «Российские космические системы», Москва, 2016.
Документ по управлению интерфейсом ГЛОНАСС, открытый сервисный навигационный сигнал множественного доступа с кодовым разделением в полосе частот L1 , редакция 1.0, ОАО «Российские космические системы», Москва, 2016.
Документ по управлению интерфейсом ГЛОНАСС, Навигационный сигнал открытой службы множественного доступа с кодовым разделением каналов в полосе частот L2 , редакция 1.0, ОАО «Российские космические системы», Москва, 2016.
Документ управления интерфейсом ГЛОНАСС, Навигационный сигнал открытой службы множественного доступа с кодовым разделением каналов в полосе частот L3 , редакция 1.0, ОАО «Российские космические системы», Москва, 2016.
Система дифференциальной коррекции и контроля Интерфейс Контрольный документ, радиосигналы и структура цифровых данных глобальной системы дополнения ГЛОНАСС, Система дифференциальной коррекции и мониторинга, Издание 1, ОАО «Российские космические системы», Москва, 2012.
- Ранее GPS World Статьи по ГЛОНАСС
«ГЛОНАСС: разработка стратегий на будущее» Ю. Урличича, В. Субботина, Г. Ступака, В. Дворкина, А. Поваляева и С. Карутина в книге GPS World , Vol. 22, № 4, апрель 2011 г., стр. 42–49.
«GPS, ГЛОНАСС и многое другое: обработка множественных созвездий в международной службе GNSS» Т. Спрингера и Р. Даха в книге GPS World , Vol. 21, № 6, июнь 2010 г., стр. 48–58.
«Будущее уже наступило: GPS + ГЛОНАСС + SBAS = GNSS» Л. Ваннингера в книге « GPS World , Vol. 19, № 7, июль 2008 г., стр. 42–48.
«ГЛОНАСС: обзор и обновление» Р.Б. Лэнгли в книге GPS World , Vol. 8, No. 7, июль 1997 г., стр. 46–50. Поправка: GPS World , Vol. 8, No. 9, сентябрь 1997 г., стр. 71. Доступно на линии:
«Космический корабль ГЛОНАСС» Н.Л. Джонсон в книге GPS World , Vol. 5, № 11, ноябрь 1994 г., стр. 51–58.
GPS + ГЛОНАСС = Совершенство навигации?
Используемый во всем мире общий термин для спутниковых навигационных систем с глобальным охватом — это глобальная навигационная спутниковая система (GNSS), которую водители судов часто называют GPS.В настоящее время действует ряд различных систем GNSS, таких как BeiDou / Compass (Китай), IRNSS (Индия), Galileo (Европа) и QZSS (Япония). Для яхтсменов Тихоокеанского Северо-Запада мы рассмотрим два, в частности, GPS (США) и Glonass (Россия).
Глобальная система позиционирования (GPS) была создана в США с 31 спутником и двумя уровнями безопасности: служба точного позиционирования (PPS) для военных и стандартная служба позиционирования (SPS) для всех остальных. Глобальная навигационная спутниковая система (ГЛОНАСС) — это разработанная в Советском Союзе радионавигационная система с 24 спутниками.Обе эти группировки спутников глобальной навигации используют сигналы, отправляемые на Землю с нескольких спутников, которые анализируют, как далеко от спутника находится приемник, для получения данных о местоположении. 31 спутник GPS обеспечивает постоянную работу 24 спутников GPS. Глонасс имеет 24 спутника, вращающихся вокруг Земли, которые наклонены под большим углом, обеспечивая лучшее покрытие на более высоких широтах, таких как полярные регионы.
Изначально производители морских судов использовали только GPS. Внедрение Glonass для рекреационных пользователей стало огромным шагом в морской навигации. . Производители теперь могут использовать GPS + Glonass, что позволяет навигационным устройствам получать доступ ко всем 55 спутникам. Объединение двух систем обеспечивает более быстрое исправление и лучшую точность. Две системы GNSS также обеспечивают резервирование, если одна выходит из строя, и, если оба определения местоположения одинаковы, есть больше шансов на точность. GPS + Глонасс также используется в автомобилях, смарт-устройствах и спортивных часах.Иногда их называют «вспомогательными» или A-GPS и A-Glonass.
Garmin GLO принимает сигналы как от GPS, так и от Глонасс. Он подключается по беспроводной сети ко многим смарт-устройствам с поддержкой Bluetooth, BlueChart Mobile и Fishing My-Cast. Это позволяет GLO подключаться к спутникам примерно на 20% быстрее и оставаться на связи даже на высокой скорости. Приемник и регистратор данных Bad Elf 2300 Bluetooth GPS + Glonass добавляет барометрические показания для лодочников с помощью встроенного барометрического датчика. Расширенные возможности USB-подключения позволяют передавать данные NMEA прямо на ваше устройство и упрощают доступ к записанным журналам данных, как к флэш-накопителю.
Могу ли я добавить антенну к имеющемуся картплоттеру? Если в настоящее время у вас есть картплоттер только с GPS, большинство производителей теперь предлагают антенны GPS / Glonass, такие как Garmin GA 38, приемник Furuno GNSS или B&G ZG100. DualNav, антенна GPS / Glonass от Digital Yacht, представляет собой датчик позиционирования, который автоматически переключается между двумя системами. DualNav использует стандартный отраслевой формат данных NMEA, что позволяет более старым картплоттерам, а также продуктам текущего поколения использовать преимущества этой новой технологии.Он также позволяет пользователю выбирать различные скорости передачи данных NMEA (4800, 38400 и 115200), чтобы обеспечить взаимодействие с устаревшими и новыми системами. В качестве дополнительной функции для гонщиков он также поддерживает новый режим TurboNav ™, в котором данные GPS / ГЛОНАСС выводятся с частотой 10 Гц и со скоростью интерфейса 115200 бод, что в 24 раза выше скорости обычных данных NMEA 0183. Это улучшает данные навигации на малой скорости, а также обеспечивает наилучшие данные о курсе и скорости в навигационных ситуациях.
В следующий раз, когда вы будете на своем судне, проверьте меню «Настройки» и определите, к какому типу антенны обращается ваше навигационное оборудование.Осведомленность о ситуации на воде спасает жизни. Насчет этого сомнений нет. Возможность доступа к двум сложным спутниковым системам имеет смысл.
Об авторе: Джефф Кот (Jeff Cote) — инженер-системотехник и владелец Pacific Yacht Systems, магазина полного сервиса, поставляющего морские электрические и навигационные решения для прогулочных судов. Посетите их веб-сайт и блог для получения информации и статей о морских электрических системах, проектах и многом другом: www.