Типы сцепления автомобиля: Что такое сцепление: типы и основные функции

Содержание

Виды сцепления

Виды сцепления

Особенности работы, классификация и требования к конструкции сцепления

В трансмиссии автомобиля сцепление применяют как самостоятельный механизм и как часть механизма управления коробки передач (обычно планетарной).

В данной главе виды сцепления автомобиля рассмотрены сцепления, которые представляют собой самостоятельный механизм, который работает в основном совместно с коробкой передач, имеющей неподвижные оси валов (ГАЗ-52, Москвич-407). В данном случае сцепление служит для того, чтобы отсоединить двигатель от трансмиссии и снова соединять их, обеспечивая плавное трогание с места, разгон, а также переключение передач во время движения автомобиля с минимальными ударами в зубьях соединяемых шестерен или муфт.

Минимальному устойчивому числу оборотов вала двигателя двигателя nemin соответствует минимальное устойчивое число оборотов ведущих колес.

Расчет сцепления предполагает расчет минимального устойчивого числа оборотов ведущих колес:

Плавный разгон автомобиля от nk=0 доnkmin достигается при помощи сцепления.

Кроме того, сцепление предохраняет трансмиссию автомобиля от перегрузок инерционным моментом Мj.

По способу передачи крутящего момента различают сцепления фрикционные, гидравлические, электропорошковые и комбинированные.

Во фрикционных видах сцеплений для передачи крутящего момента от ведущих элементов к ведомым используется сила трения. По форме трущихся поверхностей сцепления бывают конусные, барабанные (колодочные) и дисковые.

Дисковые сцепления по числу ведомых дисков разделяются на однодисковые, двухдисковые и многодисковые. Фрикционные сцепления, являющиеся самостоятельным механизмом трансмиссии, в подавляющем большинстве случаев делают однодисковыми, так как при этом конструкция получается наиболее простой и дешевой.

В современных автомобилях конусные сцепления перестали применять, барабанные сцепления устанавливают редко, главным образом при автоматизированном управлении, многодисковые сцепления, имеющие относительно небольшой диаметр, используют только в планетарных коробках передач, где они входят в механизм их управления.

Виды сцепления по типу управления различают сцепления с принудительным управлением, приводимым в действие водителем (обычно при помощи педали), и сцепления с автоматизированным управлением.

Виды сцепления по способу создания давления на нажимной диск фрикционные сцепления бывают пружинными, если давление создается пружинами (автомобили ГАЗ-52, ЗИЛ-130, МАЗ-200), электромагнитными, если давление создается электромагнитами, полуцентробежными, если давление создается и пружинами и центробежными силами от грузиков и

центробежными.

Полуцентробежные сцепления получили некоторое распространение на легковых автомобилях, у которых максимальный момент двигателя соответствует относительно высоким числам оборотов. При этом уменьшается усилие на педали, необходимое для выключения сцепления при трогании с места и для удержания сцепления в выключенном положении при переключении передач.

Центробежные сцепления чаще применяются при автоматизации управления. В этих сцеплениях центробежная сила используется для включения и выключения сцепления, а давление на нажимной диск создается пружинами. Реже центробежную силу используют для создания давления на нажимной диск.

Гидравлические сцепления, выполненные по типу гидромуфт обычно применяют совместно с планетарными коробками передач или в комбинации с фрикционным сцеплением при работе с простой коробкой передач, имеющей неподвижные оси валов.

Сцепление, представляющее собой самостоятельный механизм, помимо основных требований (минимальный собственный вес, простота конструкции, достаточный срок службы) должно удовлетворять следующим специфическим требованиям:

1)      Максимально снижать ударную нагрузку в зубьях коробки передач при трогании с места и при переключении ступеней на ходу автомобиля.

2)      Плавно передавать крутящий момент от двигателя к трансмиссии автомобиля в процессе буксования сцепления.

3)      Полностью отключать двигатель от трансмиссии автомобиля

4)      Предохранять трансмиссию автомобиля от инерционных нагрузок

5)      Обеспечивать удобство управления, небольшое усилие на педали и ограниченный ее ход при выключении сцепления или автоматизацию управления сцеплением.

Все эти особенности необходимо учитывать во время расчета сцепления. Где купить сцепление в Харькове.

Комплект сцепления: виды и принцип работы

13 апреля 2016


Сцепление выполняет вспомогательную функцию при переключении передач: плавное соединение двигателя и вала МКПП обеспечивает мягкий старт без рывков и уменьшает нагрузку на узлы мотора и трансмиссии.

 

Местоположение и функции компонентов сцепления

Сцепление – это связь коленвала двигателя с первичным валом механической коробки передач. Прижимная группа обеспечивает передачу момента вращения при соединении, и отсоединяет двигатель от КПП при размыкании.

Схема размещения сцепления

В комплект сцепления входит ведомый диск, прижимной диск (корзина сцепления) с диафрагменной пружиной и выжимной подшипник.

Схема сцепления

 

Корзина сцепления и ведущий диск

Прижимной диск вместе с корпусом обеспечивает надежный контакт между ведомым диском и маховиком двигателя, а при нажатии на педаль сцепления отодвигается назад, размыкая эту связку. Корзина сцепления – это комплект диска, кожуха и диафрагменной пружины, которая отводит ведущий диск от ведомого с помощью выжимного подшипника. Тангенциальные (возвратные) пружины установлены внутри и создают усилие в обратном направлении, благодаря чему при включении сцепления ведущий диск приводится к ведомому.

Корзина сцепления: прижимной (ведущий) диск, кожух, лепестковая пружина

 

В системе сцепления кожух корзины жестко соединен с маховиком двигателя и вращается вместе с ним, при этом соединения корзины с первичным валом коробки передач нет. Вал коробки передач проходит от ведомого диска через отверстие в лепестковой пружине без соприкосновения с деталями корзины.

Как правило, в автомобилях устанавливаются корзины нажимного действия: при нажатии педали сцепления лепестки диафрагменной пружины нажимаются в сторону маховика. В корзине вытяжного действия при нажатии педали диафрагменная пружина вытягивается от маховика.

Схема работы сцепления вытяжного типа: пружина в невыжатом,
полувыжатом и полностью выжатом состоянии
(в третьем случае ведущий диск полностью отсоединен от ведомого)

 

Корзина нажимного действия конструктивно проще, но вытяжного – меньше по размеру, и устанавливается в тех случаях, когда необходим малогабаритный узел.

Материалы изготовления у каждого производителя разные, но в большинстве случаев кожух и пружины делаются из стали разных сортов, а прижимной диск – из чугуна, обладающего высокой износостойкостью.

 

Ведомый диск сцепления

Ведомый диск выполняет связующую функцию: благодаря поверхности с высоким показателем трения он входит в зацепление со стальным маховиком двигателя с одной стороны и стальным прижимным диском – с другой, передавая вращение от маховика.

В нормальном состоянии ведущий и ведомый диски плотно прижаты к маховику, при выжимании сцепления они расходятся.

В этой конструкции наибольшая нагрузка ложится на ведомый диск: со стороны маховика идет усилие, которое через ведомый диск передается на вал. Из-за нагрузок ведомый диск со временем приходит в негодность (изнашивается фрикционное покрытие), после чего требует замены.

Ведомый диск сцепления.
1. Держатель. 2. Ступица. 3, 5. Заклепки. 4. Накладка.
6. Обойма демпфера. 7. Диск демпфера.
8. Фрикционное кольцо демпфера. 9, 10. Пружины демпфера.

 

Диск сцепления решает сразу несколько задач: передача вращения, гашение колебаний, сопротивление износу, стойкость к высоким температурам, прочность, упругость (осевая податливость) и как можно меньший вес. Для решения этих задач применяют различные конструктивные приемы.

Основа диска – стальная пластина, к которой крепятся остальные компоненты. Ее конфигурация зависит от планируемой упругости и веса конструкции: фигурные лепестки (с поочередным расхождением от плоскости около 1 мм) обеспечивают более мягкое сцепление с маховиком, а следовательно, и более комфортные условия для пассажиров. Оптимальной в этом плане является сборная конструкция, в которой лепестки (или, как их еще называют, кнопки) из более тонкой стали крепятся к центральному диску.

Цельная конструкция (слева) и сборная основа (справа)

 

Для облегчения веса применяют различные модификации: лепестковую форму (самый жесткий вариант – трехлепестковый диск), вырезы, комбинированные материалы. Фрикционные накладки, идущие по окружности, позволяют включать сцепление мягко, а разделенные по лепесткам – более жестко, но точно.

Демпфирующая система предназначена для компенсации колебаний при включении сцепления. Комплект пружин, дисков и фрикционных колец принимает на себя рывки маховика, благодаря чему сцепление включается мягче, снижается шум и вибрация. В «жестких» вариантах, где важен не комфорт, а скорость и точность включения, используются диски без демпфера.

Работа демпфера

 

Функция фрикционных накладок с обеих сторон диска – сцепление с поверхностью маховика и ведущего диска, за счет чего и передается момент вращения. Поскольку сам диск работает в сложных условиях, поверхность накладок подвергается огромным нагрузкам, и чем агрессивней стиль вождения, тем быстрей они приходят в негодность.

Требования к накладкам достаточно строгие: устойчивость к высоким температурам (даже при аккуратном вождении диск нагревается до 200-250оС), износостойкость, отсутствие абразивных свойств («бережное» отношение к металлу маховика) и в то же время жесткое сцепление с металлом. До недавних пор в их состав входил асбест, который производители перестали использовать в связи с повышающимися экологическими требованиями. В настоящее время фрикционные накладки изготавливаются чаще всего из органики (95% рынка занимает продажа именно дисков с органическими накладками), а также керамики и металлокерамики, кевлара и карбоно-керамических составов. Для «гражданских» версий сцепления помимо органики подходит кевлар: этот материал сочетает в себе прочность, отличные показатели передачи вращения и бережное отношение к металлу маховика и прижимного диска.

А вот карбон, керамика и особенно металлокерамика – варианты для тех, кто готов платить за точность сцепления ранним износом маховика и собственным комфортом.

 

Выжимной подшипник

Выжимной подшипник связан с педалью сцепления через вилку и систему привода (гидравлического, пневматического или механического) и при нажатии на педаль движется вдоль оси первичного вала трансмиссии к корзине сцепления, нажимает на диафрагменную пружину, а она в свою очередь снимает давление с ведущего и ведомого дисков. Современные выжимные подшипники бывают шариковые (или роликовые) – механические, и гидравлические, которые приводятся в действие давлением в гидравлической системе сцепления. Вторые легче в управлении, но и цена их на порядок больше.

Виды выжимных подшипников: шариковый (слева)
и гидравлический (справа)

 

Как и многие другие современные автозапчасти, выжимной подшипник делается неразборным и необслуживаемым. Смазкой его наполняют при изготовлении, и обновлять или менять ее не нужно.

Поломка выжимного подшипника прежде всего будет слышна: при нажатии сцепления появляется характерный звук, который усиливается по мере выжимания педали. Появление такого шума говорит об износе подшипника и необходимости его замены.

 


Эксплуатация

При спокойном «семейном» стиле езды даже самый простой «бюджетный» комплект сцепления прослужит достаточно долго: от 100 до 200 тыс. км. Но эти цифры верны только при неагрессивном способе вождения: без резких стартов и жесткого включения сцепления, с постепенным набором скорости. Любители рвать с места с пробуксовкой и дымом из-под колес сжигают сцепление буквально за 2-3 таких резких старта. От трения и мгновенного нагрева поверхность ведомого диска меняет свою структуру и свойства: становится гладкой и хрупкой, теряет свою вязкость и не держит усилие.

При самых неблагоприятных обстоятельствах поврежденный ведомый диск выводит из строя маховик и корзину, так что вместо одной расходной детали приходится менять весь узел.

Второй причиной поломки тоже можно назвать человеческий фактор: многие неопытные водители перегружают сцепление, когда слишком долго удерживают педаль. При этом нагрузка на все узлы возрастает в несколько раз, и первым выходит из строя выжимной подшипник.

Помимо внешних условий, детали сцепления стираются и просто от времени, каким бы аккуратным ни был водитель. Износ сцепления проявляется рывками, толчками и ударами на старте, а в крайних случаях педаль может просто провалиться. Для профилактики подобных неприятностей делается проверка сцепления на СТО через 80 тыс. км после замены.

При подозрении на неисправность сцепления можно провести и самостоятельную проверку: со скорости 60 км/ч начать разгон на 4-й передаче. Если обороты двигателя и скорость автомобиля нарастают пропорционально – сцепление в порядке, если же показания спидометра на месте, а тахометра растут – сцепление не выполняет свои задачи в полной мере.

Описанная здесь конструкция сцепления устанавливается на автомобили с механической коробкой переключения передач. С коробкой-автоматом и само сцепление, и принцип вождения будут совершенно другими. Какой тип выбирать – решает каждый для себя, у обоих вариантов есть свои плюсы и минусы. Но в любом случае залогом долгой службы сцепления будет опыт и техническая дисциплина самого водителя.

 

О том, как выбирать комплект сцепления, а также рекомендации брендов производителей – наш «Гид покупателя».

 

Виды сцепления | Тюнинг ателье VC-TUNING

Виды сцепления

       Сцепление представляет собой весьма важный конструктивный элемент любой трансмиссии. Оно предназначено для кратковременного разъединения трансмиссии и двигателя, а также для их плавного соединения в процессе переключение передач. Кроме этого, оно служит для гашения колебаний и предохранения элементов трансмиссии от перегрузок. Расположено сцепление между коробкой передач и двигателем.

       Сцепление по способу передачи крутящего момента разделяется на гидравлическое, электромагнитное и фрикционное. По способу управления оно может быть с принудительным управлением, которое приводит в действие водитель транспортного средства, без усиления и с усилением, а также существует сцепление с автоматическим управлением. В последнем случае список органов управления лишается педали сцепления, а это значительно упрощает процесс вождения транспортного средства.

       По способу оказания давления на нажимной диск фрикционное сцепление разделяется на центробежное, полуцентробежное, а также пружинное. В последнем варианте давление создают пружины, в первом центробежные силы, а второй вариант предполагает комбинацию способов давления.

       Стоит отметить, что в центробежных сцеплениях, для того, чтобы создать давление на нажимной диск, могут использоваться как центробежная сила, так и пружины. В таком случае, когда двигатель работает на холостых оборотах, то сцепление выключено, но при повышении оборотов центробежная сила высвобождает муфты и сцепление включается.

       По форме поверхностей сцепления различают дисковые, барабанные и конусные. Последние два варианта имеют повышенный момент инерции ведомых элементов, а поэтому чаще всего используются в качестве вспомогательных устройств.

       Что касается дискового сцепления, то оно разделяется на однодисковое и многодисковое. В последнем варианте имеется возможность установки дисков меньшего диаметра, ведомые диски в таком случае не упругие, тогда как в выключенном сцеплении между ними весьма небольшие зазоры. В такой системе очень сложной задачей является обеспечение чистоты выключения. Многодисковое сцепление обладает большой длиной, значительным ходом выключения, а также существенными моментами инерции. Именно поэтому зачастую такие системы используются на автомобилях с автоматической трансмиссией.

       Обычно на современные авто устанавливается двух- или однодисковое сцепление. При этом трение происходит без смазочных материалов, цилиндрические пружины расположены периферийно или же вместо них стоит диафрагменная или коническая пружина. Управление производится в принудительном порядке. Подобная конструкция сцепления позволяет добиться от системы выполнения всех поставленных перед ней задач.

       Стоит заметить, что однодисковые сцепления довольно просты в обслуживании и производстве, очень надежны, обеспечивают хороший отвод температуры от трущихся деталей, а также отличаются чистотой выключения. Кроме этого, преимуществами такой системы является ее низкий вес и повышенная износоустойчивость.

       В случае, если передаваемый крутящий момент достаточно высокий, увеличение момента трения можно добиться установкой фрикционных колец большего диаметра или увеличением количества используемых дисков. Стоит заметить, что увеличение диаметра диска может привести к его разрушению в процессе работы, поскольку центробежная сила имеет высокие показатели.

       Принципиальных изменений в схеме сцепления увеличение количества дисков не вызывает, но при этом оно становится более сложным с конструктивной точки зрения. Также увеличивается масса, что не всегда хорошо сказывается на характеристиках транспортного средства.

       В нашем тюнинг ателье, в разделе магазин вы всегда можете подобрать любые комплектующие для тюнинга вашего автомобиля, в том числе и сцепление, повышенной производительности, расчитанное на большую мощность и крутящий момент. Ну и в завершении данного обзора предоставляем вам небольшое видео, на котором показаны основные принципы работы сцепления автомобиля.

Сцепление автомобиля — назначение, типы и классификация. Требования к сцеплениям. Устройство однодискового фрикционного сцепления. Привод

Назначение и типы

Сцеплением называется силовая муфта, в которой передача крутящего момента обеспечивается силами трения, гидродинамическими силами или электромагнитным полем. Такие муфты называются соответственно фрикционными, гидравлическими и электромагнитными.

Сцепление служит для временного разъединения двигателя и трансмиссии и плавного их соединения. Временное разъединение двигателя и трансмиссии необходимо при переключении передач, торможении и остановке автомобиля, а плавное соединение – после переключения передач и при трогании автомобиля с места. При движении автомобиля сцепление во включенном состоянии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Так, нагрузки в трансмиссии возрастают при резком торможении с двигателем, пре резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала, наезде колес на неровности дороги и т.д.

На автомобилях применяют различные типы сцеплений (схема 1).

Схема 1 – Типы сцеплений, классифицированных по различным признакам.

Все указанные сцепления, кроме центробежных, являются постоянно замкнутыми, т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

На автомобилях наибольшее применение получили фрикционные сцепления. Однодисковые сцепления применяются на легковых автомобилях, автобусах и грузовых автомобилях малой и средней грузоподъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко – только на автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве отдельного механизма на современных автомобилях не применяются. Ранее они использовались в трансмиссии автомобилей, но только совместно с последовательно установленным фрикционным сцеплением.

Электромагнитные сцепления имели некоторое применение на автомобилях, но широкого распространения не получили в связи со сложностью их конструкции.

Требования к сцеплениям

Одним из основных показателей сцепления является его способность к передаче крутящего момента. Для ее оценки используется понятие величины коэффициента запаса сцепления ß, определяемой следующим образом:

ß = МСЦ / Мmax

где МСЦ – максимальный крутящий момент, который может передать сцепление,

Мmax – максимальный крутящий момент двигателя.

Помимо общих требований, касающихся каждого узла автомобиля, к сцеплению предъявляется ряд специфических требований, среди которых:

  1. Плавность включения. В эксплуатации она обеспечивается квалифицированным управлением, но некоторые элементы конструкции предназначены для повышения плавности включения сцепления даже при низкой квалификации водителя.
  2. Чистота выключения. Абсолютное выключение, при котором крутящий момент на выходном вале сцепления равен нулю, труднодостижимо, но если момент, передаваемый выключенным сцеплением, достаточно мал и не мешает включать передачи, то можно считать, что такое сцепление выключено практически чисто.
  3. Надежная передача крутящего момента при любых условиях эксплуатации. Слишком низкое значение коэффициента запаса приводит к увеличению времени буксования сцепления при трогании автомобиля (особенно в тяжелых эксплуатационных условиях), повышенному его нагреву и износу. Излишне большая величина коэффициента запаса сопровождается увеличением размеров и массы сцепления, повышением усилия, необходимого для управления им, и ухудшением предохранения трансмиссии и двигателя от перегрузок. Обычно значение коэффициента запаса сцепления составляют 1,4 – 1,7 для легковых и 1,5 – 2,0 для грузовых автомобилей, увеличиваясь до 2,3 на тяжелых тягачах.
  4. Минимальная величина момента инерции ведомых частей. Нарушение этого требования не скажется на выполнении сцеплением своих функций, однако будет приводить к удлинению процесса переключения передач и снижению срока службы синхронизаторов коробки передач.
  5. Удобство управления. Это общее для всех органов управления требование конкретизируется в виде требований к ходу педали и требуемому для ее нажатию усилию. Действующие в России ограничения в настоящее время составляют 150 Н усилия для автомобилей, имеющих усилители привода сцепления, и 250 Н для автомобилей без усилителей. Ход педали обычно не более 160 мм.

Типовое устройство сцепления — однодисковое, фрикционное

Фрикционным сцеплением называется дисковая муфта, в которой крутящий момент передается за счет силы сухого трения.

Широкое распространение на современных автомобилях получили однодисковые сухие сцепления. Однодисковым сцеплением называется фрикционная муфта, в которой для передачи крутящего момента применяется один ведомый диск.

Однодисковое сцепление (схема 2, а) состоит из ведущих и ведомых деталей, а также из деталей включения и выключения сцепления.

Схема 2 – Однодисковое фрикционное сцепление

а – включено; б – выключено; 1 – кожух; 2 – нажимной диск; 3 – маховик; 4 – ведомый диск; 5 – пластина; 6 – пружина; 7 – подшипник; 8 – педаль; 9 – вал; 10 – тяга; 11 – вилка; 12 – рычаг

Ведущими деталями являются маховик 3 двигателя, кожух 1 и нажимной диск 2, ведомыми – ведомый диск 4, деталями включения – пружины 6, деталями выключения – рычаги 12 и муфта с подшипником 7.

Кожух 1 прикреплен болтами к маховику. Нажимной диск 2 соединен с кожухом упругими пластинами 5. Это обеспечивает передачу крутящего момента от кожуха на нажимной диск и перемещение нажимного диска в осевом направлении при включении и выключении сцепления. Ведомый диск 4 установлен на шлицах первичного (ведущего) вала 9 коробки передач.

Сцепление имеет привод, в который входят педаль 8, тяга 10, вилка 11 и муфта с выжимным подшипником 7.

При отпущенной педали 8 сцепление включено, так как ведомый диск 4 прижат к маховику 3 нажимным диском 2 усилием пружин 6. Сцепление передает крутящий момент от ведущих деталей к ведомым через поверхности трения ведомого диска с маховиком и нажимным диском. При нажатии на педаль 8 (схема 2, б) сцепление выключается, так как муфта с выжимным подшипником 7 перемещается к маховику, поворачивает рычаги 12, которые отодвигают нажимной диск 2 от ведомого диска 4. В этом случает ведущие и ведомые детали сцепления разъединены, и сцепление не передает крутящий момент.

Однодисковые сцепления просты по конструкции, дешевы в изготовлении, надежны в работе, обеспечивают хороший отвод теплоты от трущихся поверхностей, чистоту выключения и плавность включения. Они удобны в обслуживании при эксплуатации и ремонте.

В однодисковых сцеплениях сжатие ведущих и ведомых деталей может производиться несколькими цилиндрическими пружинами, равномерно расположенными по периферии нажимного диска. Оно также может осуществляться одной диафрагменной пружиной или конической пружиной, установленной в центре нажимного диска.

Сцепление с периферийными пружинами несколько сложнее по конструкции (большое количество пружин). Кроме того, поломка одной из пружин в эксплуатации может быть не замечена, что приведет к повышенному износу сцепления.

Сцепление с одной центральной пружиной проще по конструкции и надежнее в эксплуатации. При центральной диафрагменной пружине сцепление имеет меньшие массу и габаритные размеры, а также меньшее количество деталей, так как пружина кроме своей функции выполняет еще и функцию рычагов выключения сцепления. Кроме того, она обеспечивает равномерное распределение усилия на нажимной диск. Сцепления с центральной диафрагменной пружиной применяются на легковых автомобилях из-за трудности изготовления пружин с большим нажимным усилием при малых габаритных размерах сцепления.

Сцепление с центральной конической пружиной имеет преимущество в том, что нажимная пружина не соприкасается с нажимным диском и поэтому при работе сцепления меньше нагревается и дольше сохраняет свои упругие свойства. Кроме того, благодаря конструкции нажимного механизма сцепление может передавать большой крутящий момент при сравнительно небольшой силе пружины. Такие сцепления применяются на грузовых автомобилях большой грузоподъемности.

Приводы сцеплений

Приводы фрикционных сцеплений могут быть механическими, гидравлическими и электромагнитными. Наибольшее применение на автомобилях получили механические и гидравлические приводы.

Механические приводы просты по конструкции и надежны в работе. Однако они имеют меньший КПД, чем гидравлические приводы сцеплений.

Гидравлические приводы, имея большие КПД, обеспечивают более плавное включение сцепления и уменьшают усилие, необходимое для выключения сцепления. Но гидравлические приводы сложнее по конструкции и в обслуживании, менее надежны в работе, более дорогостоящи и требуют больших затрат при обслуживании в эксплуатации.

Для облегчения управления сцеплением в приводах часто применяют механические усилители в виде сервопружин, пневматические и вакуумные. Так, сервопружины уменьшают максимальное усилие выключения сцепления на 20…40%.

Другие статьи по сцеплениям

Система сцепления

Сцепление – механизм, который предназначен для передачи крутящего момента, плавного переключения передач, гашения крутильных колебаний, кратковременного отсоединения трансмиссии от маховика двигателя. Сцепление машины нужно для передачи крутящего момента от маховика коленвала двигателя к первичному валу коробки передач. Оно позволяет водителю кратковременно прерывать передачу крутящего момента, отделяя двигатель от трансмиссии, а затем плавно их соединять. Другими словами, сцепление позволяет предохранять двигатель от резкого проявления нагрузки при переключении передач, при торможении. Если бы не возможность отключить работающий двигатель от трансмиссии, при аварийном торможении пришлось бы менять многие детали ходовой.

Система сцепления автомобиля обеспечивает временное отключение мотора от коробки передач и аккуратное совмещение данных устройств при заведенном двигателе. Она также оберегает компоненты трансмиссии от излишних нагрузок, погашает колебания. Состоит данная система из: ведомого диска, корзины сцепления, маховика, выжимного подшипника с вилкой, трубопроводов и педали, отключающей сцепление.

Исходя из числа ведомых дисков, существуют однодисковые и многодисковые типы сцепления. Первые в настоящее время более распространены.

Располагается этот технический узел между двигателем и коробкой передач. Есть три варианта технической реализации функции: гидравлика, электрическое оборудование или фрикционная (механическая) конструкция. Последний вариант, особенно однодисковая конструкция – наиболее распространенный благодаря своей простоте и надежности. В комплект сцепления фрикционного типа может входить оборудование для работы всухую (без смазки) или для так называемого мокрого сцепления. Автомобили с автоматической коробкой передач обычно оснащены «мокрым» сцеплением, хотя встречаются и модели с сухим сцеплением.

Полный выход из строя этого конструкционного элемента приводит к тому, что при идеально работающем двигателе машина останавливается. Признаки скорой тотальной поломки заметны заранее: неполное отключение двигателя от трансмиссии, даже если педаль сцепления выжата до упора; пробуксовка сцепления; проблемы с переключением передач; запах гари; увеличение расхода топлива. Если вы заметили подобные признаки, машина может продолжать движение до места проведения профилактических работ, но очень осторожно, с двойной выжимкой сцепления. Если вышел из строя выжимной подшипник, трогать с места придется на первой передаче или с буксира. В любом случае в ближайшее время необходимо будет провести ремонт сцепления.

В магазине Partsmotors.com.ua вы сможете купить все необходимые вам запчасти системы сцепления: гидравлический фильтр сцепления, диск сцепления, комплект сцепления, корпус сцепления, маховик, нажимной диск сцепления, подшипник выключения сцепления, система управления сцеплением, торсионный демпфер и др. У нас вы всегда сможете приобрести необходимые вам автозапчасти по доступной цене, высокого качества.

 

Как устроено сцепление автомобиля, принцип действия и виды

Автомобиль состоит из множества сложных узлов и механизмов. Каждый элемент играет свою незаменимую роль. Если исключить сцепление из общей цепочки, автомобиль будет трогаться с места рывками, а двигатель подвергаться большим нагрузкам. Коробка передач в таких условиях эксплуатации прослужит не более трех дней.

Сцепление: общие сведения и назначение, функции

Сцепление является неотъемлемой частью трансмиссии, а располагается между двигателем и КПП автомобиля, обеспечивая ступенчатое переключение передач, контроль крутящего момента и временное прерывание связи маховика и трансмиссии.

Принцип работы сцепления основывается на силе трения, а если точнее – скольжения. Состоит система сцепления из привода и непосредственного механизма.

При необходимости резкого торможения именно сцепление может уберечь узел от перегрузки.

Управление в автомобилях с механической коробкой передач происходит за счет педали сцепления. С ее помощью удается соединять и разрывать связь между двигателем и КПП. Если педаль отпустить резко, пружина стремительно вернет ее в исходную позицию.

Езда на транспортном средстве с механической коробкой передач при постоянно выжатом сцеплении спровоцирует перегрев и быстрый износ элементов. Езда с пробуксовкой допустима в экстремальных условиях, для поднятия оборотов.

В стандартном виде сцепление отсутствует в гидромеханических КПП и вариаторах. Хотя, в гидромеханических коробках используются фрикционные муфты для плавного переключения передач. Встретить классическую сборку возможно лишь на РКПП, где процессом переключения управляют сервоприводы (гидравлические или электронные). Очень часто в РКПП используются два сцепления для оптимизации процесса и устранения задержек переключения – когда одно сцепление работает, другое в состоянии ожидания для переключения следующей передачи.

Устройство и составляющие сцепления

Устройство сцепления условно можно разделить на две части: механизм и привод. В целом в конструкцию узла входит:

  1. Нажимной диск или корзина. Является основой для других конструктивных элементов сцепления. Имеет непосредственный контакт с выжимными пружинами, которые направлены к центру. Размер площадки пропорционален двум радиусам маховика ДВС. Прижимной участок отличается наличием шлифовки исключительно с одной стороны. Диск имеет плотное соединение с маховиком двигателя.
  2. Ведомый диск. Располагается в зазоре прижимного участка и маховика. Имеет непосредственный контакт с КПП при помощи шлицевой муфты и фрикционных накладок. Вокруг муфты конструктивно находятся демпферные пружины, которые принимают на себя всю вибрацию.
  3. Фрикционные накладки. Находятся в основании и изготавливаются из различных композитных материалов.
  4. Выжимной подшипник. Визуально делится на две части, одна из которых имеет круглую основу для воздействия на пружины корзины. Подшипник расположен на кожухе вала. Существует два типа подшипников: оттягивающего или нажимного принципа. Первый тип нашел свое применение в Peugeot. Иногда подшипник имеет несколько пружин-фиксаторов.
  5. Привод и педаль сцепления. В автоматических коробках сохранен только механизм.

Принцип работы и механизм

Вся работа сцепления построена на трении между дисками. Ведущий диск является частью ДВС, а ведомый диск – элемент трансмиссии. Когда водитель отпускает педаль, то пружины сжимают диски вместе. В итоге за счет фрикционных поверхностей, диски притираются и продолжают вращение с равной угловой скоростью. От силы лепестков пружин зависит показатель абразива диска.

Когда водитель выжимает сцепление, основа привода перемещают вилку, которая впоследствии оказывает влияние на подшипник. Последний перемещается до упора. Пружины в этот момент уже готовы прижать два диска, что значит, что вилка разорвала связь между трансмиссией и маховиком ДВС. Все трансмиссионные удары, когда водитель резко бросает педаль, когда ТС тронулось с места, поглощают и сглаживает отдельный тип пружин.

Принцип работы приводов

Привод напрямую влияет на исправность всего узла и необходим для дистанционного управления из салона. В общей системе выделяют три основных типа:

  • Механический привод сцепления. Является одним из самых распространенных. Усилие передается при помощи троса к вилке. Конструкция находится под покрытием кожуха, который находится перед педалью и вилкой.
  • Гидравлический. Предполагает наличие основного и рабочего цилиндра, которые связаны под большим давлением трубками. После того как водитель нажимает на педаль, активируется шток. Действующий в итоге поршень имеет стойкую манжету и передает давление жидкости к рабочему цилиндру. Последний имеет отдельный шток, который давит на вилку. Используемая в системе жидкость размещается в отдельном бачке.
  • Электрический привод. По принципу действия схожий с механическим приводом. Единственное отличие заключается в срабатывании мотора при давлении на педаль.

Нажатие на педаль сцепления позволяет напрямую оказывать воздействие на нажимной диск автомобиля.

Виды сцепления и классификация

Сегодня автомобилисты выделяют множество классификаций сцепления. Можно встретить однодисковые или многодисковые механизмы. Кроме того, сцепление бывает сухими и мокрым, на это влияет среда, в которой работает узел. Самое большое распространение имеет сухое однодисковое сцепление. Отдельную классификацию выделяют относительно типа рабочего привода и относительно принципа нажатия на корзину.

По характеру силы трения существует два вида: сухое и мокрое. Сухое – обеспечивается за счет функциональной работы передачи вращения между двумя шкивами. Мокрое сцепление работает за счет передачи энергии при помощи сжатия компонентов, находящихся в автомобильном масле.

Отдельно существует различие по количеству шкивов:

  • Однодисковые. Системы, которые характерны как для легкового транспорта, так и для грузового. Элемент применим для автомобилей, у которых крутящий момент попадает в диапазон 0,7–0,8 кНм.
  • Многодисковая система. Применима для тяжелых транспортных средств с высоким крутящим моментом. В конструкции предусмотрено наличие двух рабочих дисков, корзины и системы контроля синхронного нажатия.

Если рассуждать относительно расположения пружин на дисках, то можно отметить, что встречаются два варианта: демпферные пружины помещены по периферии и наличие централизованной диафрагмы.

Особенности сцепления АКПП

Чаще всего автомобили с автоматической коробкой наделенны влажным многодисковым типом сцепления, хотя можно встретить варианты сухого сцепления. Управление выжимной силой, как и переключение передач, происходит за счет работы сервопривода. Актуаторы бывают гидравлические и электрические. Управление сервоприводами происходит при помощи ЭБУ или гидрораспределителя.

Больше всего негодований вызывает работа электрических сервоприводов во время переключения передач. Прежде чем, запустить в работу механизм сцепления, акутатор проводит анализ оборотов двигателя и только потом разъединяет ДВС от трансмиссии. Гидравлический сервопривод реагирует на давление, созданное распределителем и масляным насосом при достижении определенного показателя оборотов. После чего запускает в ход механизм сцепления.

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного
мнения на этот счет среди автомобилистов пока нет.

Чтобы детально понимать принцип работы сцепления автомобиля теорию необходимо подкреплять практикой. Если такой возможности нет, увидеть наглядный пример можно на роликах в сети:

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Сцепление FAQ — рекомендации, полезные советы, диагностика, техническое обслуживание

Главная \ FAQ \ FAQ Сцепление — рекомендации, полезные советы, диагностика, техническое обслуживание

Диагностика неисправностей

Для диагностики повреждений или отказов сцеплений необходима системная методика.
Только в этом случае можно гарантировать, что будет определена и устранена истинная причина отказа.

  • Важным является точное определение причин рекламации.

  • Сначала необходимо осмотреть узел, выявляя возможные причины возникновения неисправности. Не следует сразу разбирать систему на компоненты.

  • После демонтажа поврежденных деталей анализируют картину повреждений, а также сопрягаемые детали с тем, чтобы исключить все возможные причины возникновения неисправности.

  • При монтаже изделия необходимо осуществлять все типы соответствующего контроля.

 

Сцепления грузовых автомобилей

Типы, конструкция и рабочие функции

Сцепление с диафрагменными (мембранными) пружинами (в настоящее время находят широкое распространение). Состоит из:
Корзина сцепления (Сбалансированная корзина с диафрагменной пружиной).
Диск сцепления (Состоит из торсионных пружин для работы во время езды и демпферы холостого хода для работы без нагрузки. На диске установлены износостойкие фрикционные накладки).
Выжимной подшипник (с защелкой для соединения с мембранной пружиной).

Сцепление с винтовыми пружинами
Усилие сжатия сцепления обеспечивается винтовыми пружинами, которые располагаются между корпусом сцепления и нажимным диском.
Нажимной диск приводится в действие посредством мощных кулачков, расположенных в корпусе сцепления. Включение и выключение сцепления осуществляется с помощью кованых рычагов выжимного подшипника. Регулировка установки в процессе эксплуатации не допускается.

 

Сцепления — рекомендации и полезные советы

Проверка работы

Когда сцепление разъединяется правильно?
Для проверки правильности разъединения сцепления, его необходимо отключить во время работы двигателя на холостом ходу. Приблизительно через три секунды задний ход должен включаться бесшумно.
Если задний ход будет включен сразу, то это неизбежно приведет к образованию шумов.

Когда сцепление пробуксовывает?
Для проверки пробуксовки сцепления температура сцепления должна достичь своей рабочей величины, для этого перед тестированием необходимо проехать небольшое расстояние, используя разные режимы работы сцепления.
Снять с ручника. Установить самую высокую передачу. Из положения с выключенным сцеплением дать газ, пока не будет достигнут крутящий момент двигателя около 2.000 об/ мин. Удерживать это значение. Быстро включить сцепление. Если двигатель заглохнет, то передающий момент сцепления в порядке. С целью избегания перегрузок подобную проверку рекомендуется проводить лишь один раз.

 

Техническое обслуживание

Система выключения сцепления
— В системе выключения сцепления, в которой конструктивно отсутствует зазор между подшипником и рычагами выключения сцепления, нужно учитывать необходимую предварительную нагрузку нажимного подшипника.
Необходимо соблюдать ход выключения сцепления согласно инструкциям по эксплуатации.
— В стандартных системах выключения сцепления необходимо обеспечивать зазор между подшипником и рычагами выключения сцепления от 2 до 3 мм.

Выжимной подшипник
— При подвижных выжимных подшипниках необходимо проверить точки контакта с вилкой привода выжимного подшипника. Выжимные подшипники с центральным приводом должны легко двигаться по оси по направляющей трубе. Направляющая труба должна быть направлена точно к центру маховика. Не смазывать выжимные подшипники со шлицевой пластиковой вставкой.

Диски сцепления
— Перед монтажом дисков сцепления необходимо проверить боковое биение. Отклонение не должно существенно превышать 0,5 мм.
— Шлицы ступицы дисков сцепления необходимо смазать тонким слоем, чтобы обеспечить их свободное передвижение на вале коробки передач.
— После смазки шлицов ступицы следует насадить диск сцепления на вал коробки передач, легко подвигать в оба направления и стереть излишки смазки.
— Перед окончательным крепежом нажимного диска (корзины), диск сцепления необходимо отцентрировать в маховике с помощью центрирующей оправки.
— Для двухдисковых сцеплений центрирование необходимо осуществлять с помощью профильного вала! При установке вала коробки передач в ступицу диска сцепления необходимо действовать осторожно, чтобы избежать повреждений шлицов ступицы и торсионных пружин.

Нажимные диски (корзина сцепления)
— Нажимные диски сцеплений имеют заводскую установку. Изменение установок не допускается! Исключение составляют двухдисковые нажимные диски с винтовыми пружинами.

Маховик
— При образовании в процессе эксплуатации большого количества канавок, поверхность трения обычного маховика может быть доработана. При этом необходимо соблюдать предписания производителя автомобиля. При доработке необходимо сместить поверхность для прикрепления нажимного диска на такую же величину.
— Центрирование нажимного диска сцепления должно быть безупречным. Опорные подшипники коленчатого вала должны двигаться свободно и должны быть смазаны достаточным количеством смазки.
— Для избежания повреждений (перекос или разлом) нажимного диска и, как следствие неисправностей в работе, крепеж к маховику должен осуществляться профессионально.

 

Монтаж

Демонтаж и монтаж сцеплений
Болты, с помощью которых крепится корпус сцепления на маховике, должны откручиваться также попеременно «крест на крест». Монтажный хомут/ упор должен удаляться лишь после окончания монтажа.
Не допускать попадания пыли, грязи или масла на фрикционные накладки сцеплений.
Для избежания несоосности обращать внимание на правильное положение центрирующей оправки между картером коробки передач к корпусом двигателя.

Несоосность
Несоосность — это отклонение общей оси вращения коленчатого вала двигателя и первичного вала коробки передач. Отклонение может быть параллельным и угловым.

Причины недопустимых отклонений:
— Повреждение или сильное загрязнение центрирующего элемента.
— Лишние детали между двигателем и коробкой передач.
— Болты фланца закручены неправильно или не закреплены.
— Установочные втулки/ штифты отсутствуют или повреждены.
— Искривление корпуса сцепления.
— Направляющий подшипник первичного вала коробки передач выработался.
— Отсутствует опорный подшипник коленчатого вала.

  

Ошибки при эксплуатации и возможные риски

Неправильная эксплуатация сцепления приводит к неисправностям и преждевременному износу.

Не осуществлять спуск с горы с выключенным сцеплением или на низкой передаче.
При низком передаточном числе коробки передач и при высокой скорости качения диск сцепления переходит на показатели частоты вращения, которые могут намного превышать максимальную частоту вращения двигателя.
— Фрикционные накладки отрываются и заклиниваются между маховиком и корпусом нажимного диска. Внезапное включение сцепления приводит к возникновению мощной толкающей силы, которая оказывает негативное влияние на корзину сцепления (элементы крепления), а также диск сцепления (торсионные пружины и пружины накладки).
— Влияние подобных нагрузок может быть настолько сильным, что не исключен разлом элементов конструкции. Осколки деталей, в свою очередь, могут привести к массивным повреждениям корзины сцепления, двигателя и коробки передач.

Не оставлять ногу на педали сцепления
Высокое передаточное число в системе выключения сцепления по причине относительно небольшой нагрузки на педаль сцепления оказывает исключительно отрицательное воздействие на усилие сжатия сцепления./
— Это может привести к пробуксовыванию сцепления и, как следствие, к преждевременному износу накладок и к повреждениям из-за перегрева.

Причины сокращения срока службы/ ресурса
— Трогание с места на высокой передаче или с повышенной частотой вращения и приводит к многократному снижению срока службы накладок.
— Остановка автомобиля на подъеме с буксующим сцеплением.
— Регулирование скорости езды посредством пробуксовывания сцепления.
— Торможение с помощью сцепления посредством переключения передачи с высшей на низшую.
— Перегруженность автомобиля или буксирование прицепа с тяжелым грузом.
— Следующие друг за другом с коротким промежутком времени трогания с места на крутых подъемах.
— Частое маневрирование.
 

Сцепление пробуксовывает

Возможные причины и их возникновение

Если сцепление пробукосовывает, то это не всегда означает, что причина связана непосредственно со сцеплением. Часто проблема связана с системой выключения сцепления, с неправильной доработкой маховика или несоответствием сцепления с типом автомобиля.

Рекомендуется:
— Проверить систему выключения сцепления (износ, плавность хода, установка)
— Проверить соответствие деталей с данным типом автомобиля
— Проверить правильность доработки маховика 

Износ фрикционных накладок до головок заклепок
Причина:
— Нормальный износ в соответствии с условиями эксплуатации. Частое трогание с места/ ошибки в управлении автомобилем. Тугой ход системы привода сцепления. Привод сцепления установлен или отрегулирован неправильно.
Следствие:
— Недостаточное усилие сжатия сцепления.

Фрикционные накладки замаслены или засалены
Причина:
— Повреждение уплотнения коробки передач или двигателя. Слишком много смазки на первичном валу коробки передач или на подшипнике коленчатого вала. Негерметичность гидравлического привода.
Следствие:
— Снижение коэффициента трения фрикционных накладок.

Сгоревшая или отслоившаяся фрикционная накладка сцепления
Причина:
— Постоянное пробуксовывание сцепления.
— Трогание с места на слишком высокой передаче.
— Слишком малое усилие сжатия сцепления (слабый прижим).
— Неисправность/ дефект в системе выключения сцепления/ отсутствие зазора между подшипником и рычагами выключения сцепления, тугой ход.
— Замасливание/засаливание.
— Слишком большая глубина маховика — ошибка доработки.
Следствие:
— Перегрев ведет к сильному повреждению материала фрикционных накладок.

Фрикционная накладка воспринимает нагрузку не всей поверхностью
Причина:
— Маховик не был доработан.
— Поверхность трения с многочисленными царапинами.
Следствие:
— Снижение коэффициента трения фрикционных накладок.

Примечание:
При установке нового нажимного диска фрикционная накладка вначале воспринимает нагрузку только снаружи (больший радиус трения), обеспечивая тем самым еще до полной приработки полную нагрузку новых деталей.
Является признаком качества! Не является дефектом!

Перегрев нажимного диска сцепления
Причина:
— Постоянное пробуксовывание сцепления.
— Замасливание/засаливание.
— Неисправность / дефект в системе выключения сцепления / недостаточный зазор между подшипником и рычагами выключения сцепления, тугой ход.
— Слишком большая глубина маховика — ошибка доработки.
Следствие:
— Снижение коэффициента трения фрикционных накладок. Вследствие слишком малого усилия сжатия сцепления постоянная пробуксовка сцепления ведет к превышению значений теплопоглощающей способности. Результатом является перегрев.

Концы мембранной пружины сильно изношены
Причина:
— Износ системы привода.
— Направляющая труба выработалась.
— Слишком высокая предварительная нагрузка на выжимной подшипник.
Следствие:
— Действие усилия сжатия сцепления «блокируется» вследствие «зависания» выжимного подшипника или же частично снижается вследствие высокой предварительной нагрузки.

Разлом мембранной пружины
Причина:
— Превышение усилий сжимания/ сильное превышение допустимого хода выключения сцепления.
Следствие:
— Усилие сжатия мембранной пружины теряет свою расчетную величину.

Примечание:
Малое отжатие нажимного диска приводит к проблемам разъединения сцепления.

Ступенчатая форма направляющих кулачков после приработки
Причина:
— Выжимной подшипник задевает разъединительное кольцо или рычаги выжимного подшипника.
Следствие:
— Усилие сжатия сцепления не действует, так как рычаги выжимного подшипника при включении сцепления застревают на ведущих кулачках.

 

Сцепление не разъединяется (ведет)

Возможные причины и их возникновение

Если сцепление не разъединяется, то это не всегда означает, что причина связана непосредственно со сцеплением. В большинстве случаев причина неисправности связана с системой выключения сцепления или же с отсутствием вращения подшипника коленчатого вала. Также причиной может являться несоблюдение предписаний по монтажу.

Рекомендуется:
— Проверить, были ли соблюдены при монтаже все обязательные инструкции
— Проверить систему выключения сцепления
  — наличие изношенных деталей, трос, гидравлику, места шарнирных соединений
  — проверить правильность установки.

Слишком большое боковое биение диска сцепления
Причина:
— Искривление произошло при транспортировке или во время монтажа. Превышение порога бокового биения ок. 0,5 мм.
Следствие:
— Предписанный уровень отжатия нажимного диска не является достаточным, чтобы обеспечить полное разъединение сцепления.

Примечание:
Диски сцепления необходимо проверять перед монтажом на наличие бокового биения.

Ржавчина шлицах ступицы
Причина:
— При сборке не нанесена смазка в соответствии с инструкциями.
Следствие:
— Диск сцепления «зависает» и не скользит по валу коробки передач: фрикционная накладка еще соприкасается с поверхностью трения маховика. На начальной стадии сцепление начинает дергаться.

Примечание:
Центрирование диска сцепления осуществлять при монтаже с помощью соответствующего инструмента! Осторожно установить вал коробки передач.

Повреждение профиля ступицы
Причина:
— Слишком большое применение силы при соединении вала коробки передач и ступицы сцепления при монтаже.
Следствие:
— Диск сцепления не скользит по валу коробки передач.

Примечание:
Центрирование диска сцепления осуществлять при монтаже с помощью соответствующего инструмента! Осторожно установить вал коробки передач.

Диск сцепления выпуклой формы
Причина:
— Сильный удар при сборке валом коробки передач о ступицу диска сцепления.
— Сильный перегрев (металлические детали имеют следы перегрева синего цвета).
Следствие:
— Предусмотренное отжатие нажимного диска более не является достаточным для безупречного разъединения сцепления.

Примечание:
Также ведет к проблемам разъединения сцепления в связи с недостаточным отжатием нажимного диска.

Разлом пружин фрикционной накладки или ведомого диска
Причина:
— Двигатель или коробка передач отпущены, хотя вал коробки передач был вставлен в ступицу диска сцепления. Разлом вследствие действия рычага выжимного подшипника.
— Параллельное или угловое смещение.
Следствие:
— Диск сцепления имеет слишком большое боковое биение.

Профиль ступицы со следами ударов / образование заусенцев
Причина:
— Корпус сцепления и фланец корпуса коленчатого вала не отцентрированы, раскачивающиеся движения вследствие углового или параллельного смещения.
— Отсутствие опорного подшипника.
— Вторичный вал коробки передач имеет или слишком большой зазор, или не приводится в действие.
Следствие:
— Заклинивание или перекос ступицы на валу коробки передач.

Примечание:
Может привести к появлению шумов.

Разлом торсионных пружин вследствие перегрузки
Причина:
— Управление автомобилем в низком диапазоне частот вращения двигателя. Езда на малой скорости и с полной нагрузкой на высокой передаче.
— Слишком большая неравномерность работы двигателя.
— Выбитые шарниры трансмиссии.
Следствие:
— Обломки выбрасываются наружу и заклиниваются во фрикционных накладках.

Растрескивание фрикционных накладок/ превышение предельной частоты вращения
Причина:
— Езда с нажатой педалью сцепления на высокой скорости и на низкой передаче ведет к превышению предельной частоты вращения диска сцепления.
— Неправильное переключение передач с высокой на низкую.
Следствие:
— Обломки фрикционной накладки заклиниваются в маховике или корпусе нажимного диска.

Примечание:
Причина не в двигателе! Частота вращения фрикционных накладок превышает максимальную частоту вращения двигателя в 1,7 — 2 раза. Перегретые накладки трескаются уже на ранней стадии.

Тангенциальные пластинчатые пружины согнуты или деформированы
Причина:
— Большая нагрузка от толкающего усилия вследствие
  — неправильного переключения
  — неквалифицированной буксировки
  —  неправильного обслуживания на роликовом испытательном стенде. Зазор в трансмиссии.
— Искривление в ходе монтажа.
Следствие:
— Нажимной диск отжимается недостаточно.

При выключении сцепления мембранная пружина задевает торсионные пружины
Причина:
— Превышение допустимого хода выключения сцепления. Монтаж неверно подобранного диска.
Следствие:
— Мембранная пружина захватывает диск сцепления.

Примечание:
Также приводит к появлению шумов.

Сточенные концы мембранной пружины/рычаг выжимного подшипника
Причина:
— Искривление направляющей трубы выжимного подшипника. Неправильное центрирование двигателя и коробки передач.
Следствие:
— Постоянное зацепление выжимного подшипника концов мембранной пружины сверх допуска самоцентрирования ведет к возникновению относительных движений и тем самым к износу.
— Схожая ситуация может наблюдаться и на рычагах выжимного подшипника.

Разлом/ сильным перегрев нажимного диска
Причина:
— Постоянное буксование сцепления.
— Слишком малое усилие сжатия сцепления.
— Дефекты в системы выключения сцепления, например, тугой ход или отсутствие зазора между подшипником и рычагами выключения сцепления.
— Замасливание/засаливание.
— Слишком большое углубление в маховике из-за доработки.
Следствие:
— Недостаточный отжим нажимного диска.

Демпфер холостого хода полностью разрушен
Причина:
— При монтаже был сильный удар вала коробки передач о ступицу диска сцепления.
Следствие:
— Значительные разрушения ведут к выходу из строя сцепления.

Примечание:
Устройство торсионных пружин с многочисленными ступенями имеет сложную, филигранную конструкцию. В этой связи при монтаже необходимо соблюдать особую осторожность.

 

Сцепление работает рывками

Возможные причины и их возникновение

Если сцепление работает рывками, то это не всегда означает, что причина связана непосредственно со сцеплением.
Часто причиной отсутствия плавного включения сцепления являются изношенные подшипники двигателя или неправильный монтаж двигателя.
Также причиной может служить неправильный монтаж диска сцепления.

Рекомендуется:
— Проверить правильность установленных в данном типе автомобиля деталей.
— Проверить на предмет износа все сопрягаемые детали/ все узлы, а также проверить правильность их установки:
  — систему выключения сцепления
  — подвеску двигателя
  — систему управления двигателем
  — неисправности в трансмиссии

Фрикционные накладки замаслены или засалены
Причина:
— Повреждения уплотнения коробки передач или двигателя. Слишком много смазки на первичном валу коробки передач или на подшипнике вала сцепления. Отсутствие герметичности гидравлической системы привода.
Следствие:
— Даже легкие следы смазки оказывают отрицательное воздействие на коэффициент сцепления и тем самым на работу системы при старте при включении сцепления.

Повреждение профиля ступицы
Причина:
— Неосторожный монтаж с применением силы при соединении вала коробки передач и ступицы диска сцепления.

Примечание:
— Может привести также к проблемам разъединения сцепления.

Искривление корпуса
Причина:
— При монтаже не затянуты должным образом крепежные винты (не выполнено правило «крест-накрест»).
— Не соблюдено центрирование нажимного диска в маховике.
Следствие:
— Перекос при отжатии нажимного диска.

Примечание:
При сильном искривлении могут также возникнуть проблемы разъединения сцепления.

Опорный подшипник двигателя/коробки передач, карданные шарниры
Причина:
— Изношенные детали ведут при трогании/ включении сцепления к дерганию трансмиссии.
Следствие:
— Работа рывками/ эффект «стиральной доски».

Примечание:
Необходимо проверить данные детали на предмет износа.

Образование канавок на внутреннем кольце рычага выключения сцепления
Причина:
— Неотцентрированное положение выжимного подшипника вследствие параллельного смещения.
— Направляющая труба выработана.
— Слишком малая предварительная нагрузка на выжимной подшипник.
Следствие:
— Относительные движения ведут к возникновению шумов различного характера

Профиль ступицы отсутствует
Причина:
— Вследствие жесткого хода двигателя профиль «выфрезерован» из ступицы.
— Несоосность, параллельное смещение.
Следствие:
— Отсутствие сцепления между двигателем и коробкой передач.

Примечанение:
На начальной стадии приводит к шумам

Диск сцепления разорван по кругу в местах контакта с пружинами накладки
Причина:
— Корзина сцепления и фланец корпуса коленчатого вала не отцентрированы, раскачивающиеся движения вследствие углового или параллельного смещения.
— Отсутствует опорный подшипник, вторичный вал коробки передач не приводится в действие.
Следствие:
— Отсутствие сцепления между двигателем и коробкой передач.

Примечание:
На начальной стадии приводит к проблемам разъединения сцепления и возникновению шумов.

 

Возможные проблемы, которые могут возникать исключительно в сцеплениях грузового транспорта.

Разлом корпуса
Причина:
— Неравномерное затягивание крепежных винтов.
— Нажимной диск отломан.
— Повреждения при транспортировке.
Следствие:
— Не были выполнены инструкции по эксплуатации и монтажу.

Из заклепочного шва тангенциальной пластинчатой пружины вырвана заклепка
Причина:
— Повреждения при транспортировке. Нажимной диск отломан.
Следствие:
— Не были выполнены инструкции по эксплуатации.

Ступицу в гасителе крутильных колебаний/демпфере холостого хода можно закрутить вручную
Причина:
— Для предотвращения возникновения шумов в коробке передач при холостом ходе двигателя демпферы холостого хода выполнены с малым предварительным напряжением и малым осевым зазором.
Следствие:
— При остановке двигателя, а иногда и при старте, возникает удар переменной нагрузки («постукивание»).
— Шум не оказывает отрицательного влияния на работу и срок службы системы.

Отжимное устройство/регулировочное устройство на двухдисковых сцеплениях с мембранными пружинами
Причина:
— Отжимное устройство имеет заводскую установку. Изменение заводских установок не допускается.
Следствие:
— При изменении заводской установки встроенный диск не высвобождается.

Проблемы с переключением в двухдисковых сцеплениях с винтовыми пружинами
Причина:
— Неправильная установка отжимного устройства после монтажа сцепления.
Следствие:
— Диск со стороны двигателя не высвобождается.
— Необходимо правильно установить все три ползуна отжимного устройства с тем, чтобы обеспечить полное высвобождение обоих дисков.

Примечание:
— Правильность установки отжимного устройства в первую очередь необходимо учитывать в двухдисковых сцеплениях.
— В нажимных дисках с так называемым «Т» — образным ползуном после монтажа сцепления необходимо направить ползун в направлении маховика.

Соединение с защелкой
Причина:
— Это соединение в отличие от неподвижного может разъединяться. Разъединительное кольцо вмонтировано в концы мембранных пружин. При соединении коробки передач и двигателя внутреннее кольцо выжимного подшипника должно войти в разъединительное кольцо строго по центру. При искривленном положении вхождение осуществляется не полностью. Выжимной подшипник отходит при нажатии сцепления.
Следствие:
— Соединение между разъединительным кольцом и внутренним кольцом выжимного подшипника не может быть осуществлено.

Разлом направляющих кулачков нажимного диска
Причина:
— Большая неравномерность работы двигателя:
—  неисправность опоры двигателя
—  неисправность топливного насоса высокого давления
—  большие различия величин давления сжатия в цилиндрах
—  протекание в форсунках
Следствие:
— Нажимной диск недостаточно отжимается. Провисающий рычаг выжимного подшипника задевает диск сцепления, что ведет к возникновению шумов.

Разлом выжимного подшипника
Причина:
— Песок и грязь в выжимном подшипнике.
— Превышение допустимой температуры (перегрев) в корпусе сцепления.
Следствие:
— Шарики, наружная и внутренняя обоймы и сепаратор изношены, так как израсходован запас смазки.
— Часто возникают сопутствующие повреждения на разъединительном кольце или на концах мембранной пружины.

Примечание:
На корпусе сцепления необходимо установить предусмотренные производителем защитные крышки.

Искривленное положение рычага выжимного подшипника в двухдисковых сцеплениях
Причина:
— При снятии нагрузки с нажимного диска рычаги выжимного подшипника прилегают к необработанным поверхностям корпуса. Рычаги стоят с перекосом.
— Перекос исчезает при монтаже сцепления.
— Новый диск сцепления — неравномерная толщина накладок (в диапазоне допусков). Рычаги стоят с небольшим перекосом. Перекос исчезает после приработки накладок.

Примечание:
Не является неисправностью! Не предпринимать каких-либо действий! Установка рычага может быть измерена исключительно с помощью специального оборудования.

Установка рычага изменена
Причина:
— В сервисном центре пытались устранить предполагаемую ошибку.
Следствие:
— В большинстве случаев возникают проблемы с разъединением.

Накладки из неорганического материала / металлокерамические накладки
Причина:
— Данные накладки являются исключительно жаростойкими и износостойкими. Однако при этом, задевая другие поверхности, ведут к более жесткому контакту при трогании.
— Кроме того, определение наличия очень больших тепловых нагрузок при использовании таких накладок по запаху не является возможным по причине отсутствия запаха.
Следствие:
— Перегрузка/ перегрев могут привести к
  — крошению металлокерамического материала,
  — запаздыванию момента схватывания диска сцепления.
— Металлические детали имеют следы перегрева синего цвета.

 

Проблемы с сопрягаемыми деталями сцепления

Причиной проблем с сопрягаемыми деталями, как правило, являются сжатые временные рамки при замене сцепления. При этом могут быть упущены общие важные моменты диагностики. В этой связи необходимо предусмотреть на процесс замены сцепления достаточное количество времени.

Рекомендуется:
— Проверить состояние подшипника коленчатого вала.
— Проверить направляющую трубу выжимного подшипника на наличие износа.
— Проверить систему выключения сцепления на наличие износа.

Опорный подшипник

Возможные повреждения / проблемы и результат:
Опорный подшипник не подвижен
— захватывает первичный вал коробки передач и сцепление не разъединяется.
Опорный подшипник поврежден, тугой ход
— производит шумы, только при разъединенном сцеплении.
Опорный подшипник отсутствует, ошибка монтажа
— первичный вал коробки передач не приводится в действие.

Направляющая труба

Возможные повреждения / проблемы и результат:
Направляющая труба выработана, изношена
— выжимной подшипник двигается рывками, сцепление дергается.
Образование заусенцев, износ в виде ступенек на направляющей трубе
— выжимной подшипник заклинивает
— сцепление или полностью, или временами выключено.

Вилка выжимного подшипника

Возможные повреждения / проблемы и результат:
Опора (болт с шаровой головкой) вилки выжимного подшипника со следами износа ступенчатой формы.
Опора вилки выжимного подшипника в сухом состоянии
— вилка прыгает
— сцепление дергается.
Вилка выжимного подшипника искривлена, разломана, изношена
— не достигается необходимый ход выключения сцепления
— сцепление не разъединяется. 

Вал выжимного подшипника

Возможные повреждения / проблемы и результат:
Опора (болт с шаровой головкой) вала выжимного подшипника выработана, изношена
— вал перекошен
— сцепление дергается, не разъединяется, тугой ход.
Вал выжимного подшипника искривлен, разломан, изношен
— не достигается необходимый ход выключения сцепления
— сцепление не разъединяется.
При разобранной коробке передач невозможно обеспечить надежную проверку хода вала выжимного подшипника, так как отсутствует выжимная нагрузка
— Для обеспечения надежного контроля необходимо разобрать вал выжимного подшипника.

Рычаг выжимного подшипника

Возможные повреждения / проблемы и результат:
Рычаг выжимного подшипника искривлен, разломан
— Не достигается необходимый ход выключения сцепления
— Сцепление не разъединяется.

Привод сцепления, система тяги рычагов

Возможные повреждения / проблемы и результат:

— Выбоины, надломы в системе тяг и рычагов.
— Шарниры в сухом состоянии.
— Неправильная установка.

Следствие:
— Сцепление не разъединяется, дергается или пробуксовывает.

Привод сцепления, тросовый привод

Возможные повреждения/ проблемы и результат:
— Трос в сухом состоянии, расплетен, загрязнен или заржавел.
— Тефлоновая оболочка троса протерта или расплавлена вследствие отсутствия клеммы соединения на корпус между рамой и двигателем.
— Трос удлинен.
— Опора не закреплена или разломана.
— Неправильная установка.
— Регулировочная автоматика неисправна или не приведена в исходное положение.

Следствие:
— Тугой ход привода.
— Сцепление не разъединяется, дергается или пробуксовывает.

Привод сцепления, стандартная гидравлика

Возможные повреждения / проблемы и результат:
— Негерметичность / потеря давления — не достигается предусматриваемый ход выключения сцепления.
— Наличие воздуха в системе — не достигается предусматриваемый ход выключения сцепления, «пружинит» при включении сцепления.
— Мягкий шланг/ растягивается под давлением — потеря хода при выключении сцепления.
— Разбухание шланга/ сужение поперченного сечения.
— Тугой ход/ неподвижность поршня в рабочем цилиндре сцепления — вследствие загрязнения или коррозии в рабочем цилиндре скольжение поршня происходит с помехами или поршень заедает.

Следствие:
— Сцепление не приводится в действие, не разъединяется, дергается или пробуксовывает.

Привод сцепления, гидравлика с концентрическим рабочим цилиндром

Возможные повреждения / проблемы и результат:
— Негерметичность/ потеря давления — не достигается предусматриваемый ход выключения сцепления.
— Наличие воздуха в системе — не достигается предусматриваемый ход выключения сцепления, «пружинит» при включении сцепления.
— Мягкий шланг/ растягивается под давлением — потеря хода при выключении сцепления.
— Разбухание шланга / сужение поперечного сечения.

Следствие:
— Привод «ватный».
— Сцепление не разъединяется, дергается или пробуксовывает.

Сцепление

: 9 различных типов сцепления

Из этой статьи вы узнаете , что такое сцепление? 9 Различные типы сцепления с деталями, принцип работы и как работает каждый тип сцепления? Загрузите PDF-файл этой статьи в конце.

Муфта и типы муфт

В муфте один вал обычно соединен с двигателем или другим силовым агрегатом (ведущим элементом), а другой вал (ведомый элемент) обеспечивает выходную мощность для работы.

Муфты, используемые в автомобилях, почти очень похожи по конструкции и принципу действия.Есть некоторые различия в деталях рычажного механизма, а также в узлах нажимного диска.

Кроме того, некоторые муфты для тяжелых условий эксплуатации имеют два фрикционных диска и промежуточный нажимной диск. Некоторые муфты приводятся в действие гидравлическими средствами. Сухая однодисковая фрикционная муфта практически используется в американских легковых автомобилях.

Различные типы сцеплений, используемых в автомобиле, зависят от типа и использования трения.

В большинстве конструкций муфт используется несколько винтовых пружин, но в некоторых используется диафрагменная или коническая пружина. Тип фрикционных материалов также различается в сцеплениях различных легковых автомобилей.

Типы муфт

Ниже приведены различные типы муфт:

  1. Фрикционная муфта
    1. Однодисковая муфта
    2. Многодисковая муфта
      1. Мокрая
      2. Сухая
    3. Конусная муфта
      1. Внешний
      2. Внутренний
  2. Центробежная муфта
  3. Полуцентробежная муфта
  4. Коническая пружинная муфта или диафрагменная муфта
    1. Конический палец
    2. Тип коронной пружины
  5. Принудительная муфта
    1. Кулачковая муфта
    2. Шлицевое сцепление
  6. Шлицевое сцепление
  • сцепление
  • Электромагнитное сцепление
  • Вакуумное сцепление
  • Обгонная муфта или муфта свободного хода
  • Читайте также: Что такое сцепление и как оно работает?

    Однодисковое сцепление

    Однодисковое сцепление — один из наиболее часто используемых типов сцеплений, используемых в большинстве современных легковых автомобилей.Муфта помогает передавать крутящий момент от двигателя на первичный вал трансмиссии. Как видно из названия, у него только один диск сцепления.

    Состоит из диска сцепления, фрикционного диска, нажимного диска, маховика, подшипников, пружины сцепления и гайки-болта.

    Однодисковое сцепление имеет только один диск, который крепится на шлицах диска сцепления. Однодисковое сцепление — один из основных компонентов сцепления. Диск сцепления — это просто тонкий металлический диск, имеющий обе боковые фрикционные поверхности.

    Маховик прикреплен к коленчатому валу двигателя и вращается вместе с ним. Нажимной диск прикручен к маховику через пружину сцепления, которая обеспечивает осевое усилие, чтобы удерживать сцепление в включенном положении, и может свободно скользить по валу сцепления при нажатии на педаль сцепления.

    Фрикционный диск, который закреплен между маховиком и прижимным диском. На обеих сторонах диска сцепления предусмотрены фрикционные накладки.

    Рабочий :

    В автомобиле мы приводим в действие сцепление, нажимая сцепление на педаль для отключения передач.Затем пружины сжимаются, и прижимная пластина движется назад. Теперь диск сцепления становится свободным между нажимным диском и маховиком. Благодаря этому теперь сцепление отключается и может переключать передачу.

    Это заставляет маховик вращаться, пока двигатель работает, скорость вала сцепления медленно снижается, а затем он перестает вращаться. Пока педаль сцепления нажата, считается, что сцепление выключено, в противном случае оно остается включенным из-за сил пружины. После отпускания педали сцепления нажимной диск возвращается в исходное положение, и сцепление снова включается.

    Многодисковое сцепление

    Многодисковое сцепление показано на рисунке. В этих типах муфт используется несколько муфт, обеспечивающих фрикционный контакт с маховиком двигателя. Это позволяет передавать мощность между валом двигателя и трансмиссионным валом транспортного средства. Количество муфт означает большую поверхность трения.

    Увеличенное количество поверхностей трения также увеличивает способность сцепления передавать крутящий момент. Диски сцепления установлены на валу двигателя и валу коробки передач.

    Нажимаются винтовой пружиной и собираются в барабан. Каждая из альтернативных пластин скользит по канавкам на маховике, а другая — по шлицам на прижимной пластине. Следовательно, каждая отдельная пластина имеет внутренний и внешний шлицы.

    Принцип работы многодисковой муфты такой же, как и у однодисковой муфты. Сцепление приводится в действие нажатием педали сцепления. Множественные сцепления используются в тяжелых коммерческих транспортных средствах, гоночных автомобилях и мотоциклах для передачи высокого крутящего момента.

    Несколько сцеплений имеют два символа сухой и влажный. Если сцепление работает в масляной ванне, оно называется мокрым сцеплением. Если сцепление работает без масла, оно называется сухим сцеплением. Мокрые муфты обычно используются в сочетании с автоматической коробкой передач или как ее часть.

    Конусная муфта

    На рисунке изображена схема конической муфты. Он состоит из поверхностей трения в виде конусов. В этой муфте используются две конические поверхности для передачи крутящего момента за счет трения.Вал двигателя состоит из охватываемого и охватываемого конусов. На шлицевом валу муфты устанавливается конус с наружной резьбой и скользит по нему. Он имеет поверхность трения на конической части.

    Благодаря силе пружины, когда сцепление включено, поверхности трения охватываемого конуса контактируют с охватывающим конусом. Когда педаль сцепления нажата, охватываемый конус скользит в направлении усилия пружины, и сцепление выключается.

    Основным преимуществом использования конусной муфты является то, что нормальная сила, действующая на поверхность трения, больше, чем осевая сила, по сравнению с однодисковой муфтой.Поэтому нормальная сила, действующая на поверхность трения, равна осевой силе.

    Конусные муфты в основном стареют из-за некоторых недостатков.

    1. Давайте предположим, что угол конуса меньше 20 °, охватываемый конус имеет тенденцию заедать в охватывающий конус, и становится трудно выключить сцепление.
    2. Небольшая степень износа поверхностей конусов связана со значительным осевым перемещением охватываемых конусов, которое будет трудно допустить.

    Центробежное сцепление

    На рисунке ниже показано центробежное сцепление. Чтобы удерживать муфты во включенном положении, центробежная муфта использует центробежную силу вместо силы пружины. В сцеплениях этих типов сцепление приводится в действие автоматически в зависимости от частоты вращения двигателя. Вот почему для работы сцепления не требуется педаль сцепления.

    Благодаря этому водитель может легко остановить автомобиль на любой передаче без остановки двигателя. Точно так же вы можете завести автомобиль на любой передаче, нажав на педаль акселератора.

    Работа центробежной муфты
    • Он состоит из грузов A, повернутых к B.
    • При увеличении частоты вращения двигателя массы разлетаются из-за центробежной силы, управляя уровнями коленчатого рычага, которые прижимают диск C.
    • Движение диска C сжимает пружину E, которая в конечном итоге прижимает диск сцепления D на маховике к пружине G.
    • Это приводит к включению сцепления.
    • Пружина G удерживает сцепление в выключенном состоянии на низких скоростях примерно при 500 об / мин.
    • Упор H ограничивает движение грузов за счет центробежной силы.

    Полуцентробежная муфта

    Полуцентробежная муфта использует центробежную силу, а также силу пружины, чтобы удерживать ее во включенном положении. На рисунке изображено полуцентробежное сцепление. Он состоит из рычагов, пружин сцепления, нажимного диска, фрикционной накладки, маховика и диска сцепления.

    Конструкция полуцентробежного сцепления:

    Полуцентробежное сцепление имеет рычаги и пружины сцепления, которые равномерно расположены на нажимном диске.Пружины сцепления предназначены для передачи крутящего момента при нормальной частоте вращения двигателя. В то время как центробежная сила помогает в передаче крутящего момента при более высоких оборотах двигателя.

    При нормальных оборотах двигателя, когда передача мощности низкая, пружины удерживают сцепление включенным, рычаги с утяжелителями не оказывают никакого давления на нажимной диск.

    При высоких оборотах двигателя при высокой передаче мощности грузы отлетают, а рычаги также оказывают давление на диск, удерживая сцепление в надежном включении.

    Муфты этого типа состоят из менее жестких пружин, поэтому водитель не может напрягаться при работе со сцеплением. Когда скорость автомобиля уменьшается, грузы падают, и рычаг не оказывает никакого давления на прижимную пластину.

    На нажимной диск действует только давление пружины, которого достаточно для удержания сцепления в включенном состоянии. На конце рычага установлен регулировочный винт, с помощью которого можно регулировать центробежную силу на прижимной пластине.

    Мембранная муфта

    Мембранная муфта состоит из диафрагмы на конической пружине, которая создает давление на нажимной диск для включения муфты.Пружина может быть пальцевой или коронной, прикрепленной к прижимной пластине.

    Пружина с коническим пальцем показана на рисунке. В муфтах этих типов мощность двигателя передается от коленчатого вала к маховику. Маховик имеет фрикционную накладку и соединен с муфтой, как показано на рисунке. Прижимной диск находится за диском сцепления, потому что прижимной диск оказывает давление на диск сцепления.

    В диафрагменной муфте диафрагма имеет коническую форму пружины.Когда мы нажимаем педаль сцепления, внешний подшипник движется к маховику, нажимая на диафрагменную пружину, которая толкает нажимной диск назад.

    При этом давление на диск снимается, и сцепление выключается. Когда мы отпускаем педаль сцепления, нажимной диск и диафрагменная пружина возвращаются в свое нормальное положение, и сцепление включается.

    Преимущества:

    1. Муфты этого типа не имеют рычагов выключения, поскольку пружина действует как ряд рычагов.
    2. Водителю не нужно прикладывать такое сильное давление на педаль, чтобы удерживать сцепление в выключенном состоянии, как в случае с пружиной типа винтовой, в которой давление пружины увеличивается больше, когда педаль нажимается для выключения сцепления.

    Собачка и шлицевое сцепление

    Собачка — это тип муфты, который используется для блокировки двух валов вместе или для соединения шестерни и вала. Две части муфты: одна представляет собой собачью муфту с внешними зубьями, а другая — скользящую муфту с внутренними зубьями.

    Оба вала сконструированы таким образом, что один будет вращать другой с той же скоростью и никогда не будет проскальзывать. Когда два вала соединены, можно сказать, что сцепление включено. Чтобы выключить сцепление, скользящая муфта перемещается назад по шлицевому валу, чтобы не соприкасаться с ведущим валом.

    Собачка и шлицевое сцепление в основном используются в автомобилях с механической коробкой передач для блокировки различных передач.

    Электромагнитная муфта

    Муфты этого типа приводятся в действие электрически, но крутящий момент передается механически.Вот почему этот тип сцепления известен как электромеханические сцепления. Спустя год теперь это электромагнитная муфта.

    Эти муфты не имеют механической связи для управления их включением, поэтому они обеспечивают быструю и плавную работу. Электромагнитные муфты лучше всего подходят для дистанционного управления, что означает, что вы можете управлять сцеплением на расстоянии.

    Муфта имеет маховик, состоящий из обмотки. Электроэнергия подается от батареи. Когда электричество проходит через обмотку, оно создает электромагнитное поле, которое заставляет его притягивать нажимную пластину, чтобы войти в зацепление.При отключении электричества сцепление выключается.

    В этой системе сцепления рычаг переключения передач имеет выключатель выключения сцепления, что означает, что когда водитель управляет рычагом переключения передач для переключения передач, этот переключатель отключает подачу тока на обмотку, что приводит к отключению сцепления.

    Вакуумная муфта

    На рисунке показан механизм вакуумной муфты. Муфты этого типа используют существующий вакуум в коллекторе двигателя для приведения в действие сцепления.Вакуумная муфта состоит из резервуара, обратного клапана, вакуумного цилиндра с поршнем и электромагнитного клапана.

    Конструкция и работа:

    Как показано на рисунке, резервуар соединен с впускным коллектором через обратный клапан. Вакуумный цилиндр соединен с резервуаром через электромагнитный клапан. Соленоид работает от батареи, а в цепи есть переключатель, прикрепленный к рычагу переключения передач. Переключатель приводится в действие, когда водитель переключает передачу, удерживая рычаг переключения передач.

    Давайте посмотрим, как это работает. При открытии дроссельной заслонки давление во впускном коллекторе увеличивается, за счет чего закрывается клапан обратного клапана. Он разделяет резервуар и коллектор, поэтому в резервуаре постоянно присутствует вакуум.

    При нормальной работе шток электромагнитного клапана находится в нижнем положении клапана, как показано на рисунке, а переключатель на рычаге переключения передач остается открытым. На этом этапе атмосферное давление действует на обе стороны поршня вакуумного цилиндра, поскольку вакуумный цилиндр открыт в атмосферу через вентиляционное отверстие.

    Когда водитель переключает передачу, удерживая рычаг переключения передач, переключатель замыкается. Соленоид активирует и подтягивает клапан вверх, который соединяет одну сторону вакуумного цилиндра с резервуаром. Это действие открывает проход между вакуумным цилиндром и резервуаром. Из-за разницы давлений поршень вакуумного цилиндра перемещается вперед и назад.

    Это движение поршня передается посредством рычажного механизма сцеплению, в результате чего оно расцепляется. Когда водитель не управляет рычагом переключения передач, переключатель разомкнут, сцепление остается включенным из-за силы пружин.

    Гидравлическое сцепление

    Гидравлическое сцепление работает так же, как и вакуумное сцепление. Основное различие между ними заключается в том, что гидравлическая муфта работает от давления масла, а вакуумная муфта работает от вакуума.

    На рисунке показан механизм гидравлической муфты. В нем меньше деталей, чем в других сцеплениях. Он состоит из гидроаккумулятора, регулирующего клапана, цилиндра с поршнем, насоса и резервуара.

    Работа гидравлической муфты:

    Масляный резервуар перекачивает масло в гидроаккумулятор через насос.Насос приводится в действие самим двигателем. Аккумулятор подключен к баллону через регулирующий клапан. Управляемый клапан управляется переключателем, прикрепленным к рычагу переключения передач. Поршень соединен со сцеплением рычажным механизмом.

    Когда водитель держит рычаг переключения передач для переключения передач, переключатель открывает регулирующий клапан, позволяя маслу под давлением поступать в цилиндр. Из-за давления масла поршень движется вперед и назад, что приводит к выключению сцепления.

    Когда водитель покидает рычаг переключения передач, размыкается переключатель, который закрывает регулирующий клапан и включается сцепление.

    Узел обгонной муфты

    Муфты обгонной муфты, также известные как пружинная муфта, обгонная муфта или односторонняя муфта. Это самая важная часть любого овердрайва. Передача мощности происходит в одном направлении, как в велосипедах. Узел обгонной муфты часто устанавливается за коробкой передач.

    Мощность передается от главного вала к выходному валу от привода выходного вала, когда планетарные шестерни находятся в режиме повышающей передачи.Узел маховика имеет ступицу и внешнее кольцо. Ступица имеет внутренние шлицы для соединения с главным валом трансмиссии.

    На внешней поверхности ступицы находится 12 кулачков, рассчитанных на удержание 12 роликов в обойме между ними и внешним кольцом. Наружное кольцо имеет шлицевое соединение с внешним валом повышающей передачи.

    Рабочий:

    Когда ступица приводится в движение по часовой стрелке, как показано на рисунке. Ролик движется вверх по кулачкам и своим заклинивающим действием заставляет внешнее кольцо следовать за ступицей.Таким образом, внешнее кольцо движется в том же направлении и с той же скоростью, что и ступица.

    Когда скорость ступицы снижается, а внешнее кольцо все еще движется быстрее ступицы, ролики перемещаются вниз по кулачкам, освобождая внешнее кольцо от ступицы. Таким образом, внешнее кольцо движется независимо от ступицы, а узел действует как роликовый подшипник.

    Главный вал трансмиссии соединен со ступицей, а выходной вал соединен с наружным кольцом. Таким образом, муфта свободного хода может передавать мощность только от главного вала к выходному валу.


    Подробнее:

    Вот и все. Если вам понравилась статья « типов сцеплений », поделитесь с друзьями. Если у вас есть сомнения или вопросы « типов сцепления », оставьте комментарий.

    Подпишитесь на нашу рассылку, чтобы получать уведомления:

    Загрузите бесплатный PDF-файл этой статьи:

    Скачать PDF

    Типы сцепления, используемые в автомобиле

    Здесь вы можете легко узнать о Типах сцеплений , используемых в автомобильной промышленности.Эти различные типы сцеплений используются во всех автомобилях, таких как велосипеды, автомобили, автобусы и т. Д.

    Сцепление — это механическое устройство, которое включает и отключает мощность от двигателя к коробке передач (коробке передач).

    Однодисковое сцепление

    Однодисковое сцепление — это наиболее распространенный тип диска сцепления, используемый в автомобилях. Он состоит только из одного диска сцепления, который установлен на шлицах диска сцепления.Маховик установлен на коленчатом валу двигателя и вращается вместе с ним.

    Нажимной диск прикреплен к маховику с помощью пружин сцепления и может свободно скользить (двигаться) по валу сцепления при нажатии на педаль сцепления (включение и выключение).

    Когда сцепление включено (означает, что вы не нажали педаль сцепления), диск сцепления зажат между маховиком и нажимным диском.

    Когда сцепление выключено (Означает, когда вы нажимаете педаль сцепления), нажимной диск перемещается назад против силы пружин, и диск сцепления освобождается между маховиком и нажимным диском.

    Линейная диаграмма

    Многодисковое сцепление

    Многодисковое сцепление состоит из нескольких дисков сцепления вместо одного диска сцепления, как в однодисковом сцеплении.

    Поверхность трения также увеличилась из-за количества дисков сцепления. Благодаря большому количеству поверхностей трения способность муфты передавать крутящий момент также увеличивается.

    Линейная диаграмма

    Конус сцепления

    Муфта коническая состоит из поверхностей трения в виде конуса.

    Коленчатый вал двигателя состоит из конуса с внутренней резьбой. На шлицевом валу муфты установлен охватывающий конус. Коническая муфта имеет фрикционные поверхности на конической части.

    Сцепление Dog & Spline

    Муфта этого типа используется для блокировки двух валов вместе или для фиксации шестерни на валу. Его еще называют положительным сцеплением.

    Муфта собачьей и шлицевой состоит из втулки с двумя наборами внутренних шлицев. Он скользит по шлицевому валу с шлицами наименьшего диаметра.Шлицы большего диаметра подходят к внешним зубьям кулачковой муфты на ведущем валу.

    Центробежное сцепление

    Центробежная муфта использует центробежную силу вместо силы пружины. Это сцепление всегда находится в включенном положении.

    И у него нет педали сцепления, чтобы управлять им. Центробежная муфта автоматически приводится в действие с частотой вращения двигателя.

    Полуцентробежное сцепление

    Полуцентробежные муфты, используемые в мощных двигателях и двигателях гоночных автомобилей, где выключение сцепления требует значительных и утомительных усилий водителя.

    Электромагнитная муфта

    Электромагнитная муфта — это муфта (механическое устройство для передачи вращения), которая включается и выключается электромагнитным приводом. В электромагнитной муфте маховик состоит из обмотки. Ток на обмотку подается от аккумулятора или динамо-машины.

    Связанные

    Типы сцепления | Как это работает и это диаграмма

    Что такое сцепление и типы сцеплений?

    В этой статье мы объясним, что такое сцепление, различные типы сцепления и как они работают с диаграммами.

    Во-первых, давайте разберемся, что такое сцепление?

    Муфта — это механическое устройство, которое включает или отключает передачу мощности от ведущего вала к ведущему валу.

    В механизме один вал соединен с двигателем или другим силовым агрегатом (ведущим элементом), а другие валы (ведомый элемент) обеспечивают выходную мощность.

    Сцепления, которые используются в автомобилях, имеют аналогичную конструкцию и принцип действия. Различные типы сцепления имеют различия в узлах рычажного механизма и прижимного диска.

    Некоторые типы муфт используются для тяжелых условий эксплуатации с двумя фрикционными дисками и промежуточным прижимным диском. Есть также несколько типов сцепления с гидравлическим приводом. Сухая однодисковая фрикционная муфта широко используется в легковых автомобилях США.

    В автомобиле используются различные типы сцеплений, в зависимости от типа и использования трения.

    В большинстве конструкций муфт используется несколько винтовых пружин, но в некоторых исключительных случаях используются диафрагменные или конические пружины.Также существует разновидность фрикционного материала в сцеплениях различных легковых автомобилей.

    А теперь посмотрим Другое

    Типы муфт

    Ниже представлены различные типы сцепления, используемые в автомобильной промышленности.

    1. Фрикционная муфта

    • Однодисковое сцепление
    • Многодисковое сцепление
    1. Мокрая
    2. Сухой
    1. Внешний
    2. Внутренний
    1. Центробежная муфта
    2. Сцепление полуцентробежное
    3. Коническая пружинная муфта или мембранная муфта
    4. Тип конического пальца
    5. Корона Пружина Тип
    6. Сцепление принудительного действия
    7. Собачий сцепление
    8. Шлицевое сцепление
    9. Гидравлическое сцепление
    10. Электромагнитная муфта
    11. Вакуумная муфта
    12. Обгонная муфта или муфта свободного хода

    Однодисковое сцепление

    Однодисковые муфты сцепления широко используются в большинстве современных легковых автомобилей.Сцепление передает крутящий момент от двигателя на входной вал трансмиссии. Судя по названию, у него всего один диск сцепления.

    Однодисковое сцепление имеет диск сцепления, фрикционный диск, нажимной диск, маховик, подшипники, пружину сцепления и гайки-болты.

    Однодисковое сцепление имеет только один диск и крепится к шлицам диска сцепления. Однодисковое сцепление является одним из основных компонентов сцепления. Этот диск сцепления представляет собой тонкий металлический диск, имеющий обе боковые поверхности трения.

    ques10

    Маховик соединен с коленчатым валом двигателя и вращается вместе с ним. Нажимной диск прикреплен к маховику с помощью пружины сцепления, и он обеспечивает осевое усилие, чтобы удерживать сцепление в включенном положении, и может свободно скользить по валу сцепления при нажатии педали сцепления.

    Фрикционная пластина размещается между маховиком и прижимной пластиной. Накладки фрикционные находятся по обеим сторонам диска сцепления.

    Рабочий

    В автомобиле, когда сцепление нажимает на сцепление для выключения шестерен, пружины сжимаются, и нажимной диск движется назад.Диск сцепления освободился между нажимным диском и маховиком. В результате сцепление выключается, и вы можете переключать передачу.

    Это заставляет маховик вращаться, и когда двигатель работает, вал сцепления снижает скорость и перестает вращаться. После нажатия педалей сцепления сцепление выключается, и, если нет, остается включаться с усилием пружины. После отпускания педали сцепления нажимной диск возвращается в исходное положение, а затем снова включается сцепление.

    Многодисковое сцепление

    В многодисковой муфте используется несколько муфт для фрикционного контакта с маховиком двигателя. Он передает мощность между валом двигателя и валом трансмиссии автомобиля. Чем больше количество муфт, тем больше поверхность трения.

    Увеличенное количество поверхностей трения увеличивает способность муфты передавать крутящий момент. Эти диски сцепления установлены на валу двигателя и валу коробки передач.

    oyetechy

    Прижимается винтовой пружиной и собран в барабане.Каждая альтернативная пластина скользит по канавкам на маховике, а другие скользят по шлицам на прижимной пластине. Итак, каждая пластина имеет внутренний и внешний шлицы.

    Принцип работы многодисковой муфты такой же, как и у однодисковой муфты. Сцепление работает от нажатия педали сцепления. В тяжелых коммерческих транспортных средствах, гоночных автомобилях и мотоциклах используются несколько сцеплений для передачи высокого крутящего момента.

    Существует два типа многократных сцеплений — сухое и мокрое.Теперь, если сцепление работает в масляной ванне, это называется мокрым сцеплением. Теперь, если сцепление работает без масла, оно известно как сухое сцепление. Мокрое сцепление в основном используется с автоматической коробкой передач.

    Конус сцепления

    Ниже представлена ​​схема конической муфты. Имеет поверхности трения в виде конусов. Есть две конические поверхности для передачи крутящего момента за счет трения. Вал двигателя имеет конус с охватом и конус с охватом. Шлицевой конус установлен на шлицевом валу муфты для скольжения по нему и имеет поверхность трения на конической части.

    Поскольку сила пружины воздействует на фрикционные поверхности охватываемого конуса, они контактируют с охватывающим конусом. Когда педаль сцепления нажата, охватываемый конус скользит навстречу силе пружины, и сцепление выключается.

    Преимущество использования конусной муфты заключается в том, что нормальная сила, действующая на поверхность трения, превышает осевую силу по сравнению с однодисковой муфтой. Вот почему нормальная сила, действующая на поверхность трения, равна осевой силе.

    Конусные муфты не так широко используются из-за перечисленных ниже недостатков.

    • Если угол конуса меньше 20 o , охватываемый конус имеет тенденцию связываться с охватывающим конусом, и становится трудно расцепить сцепление.
    • Небольшой износ поверхностей конусов обусловлен большим осевым перемещением охватываемых конусов, которое трудно допустить.

    Центробежное сцепление

    Для удержания муфт в зацепленном положении центробежная муфта использует центробежную силу, а не силу пружины.Эти типы сцепления работают автоматически в зависимости от оборотов двигателя. Следовательно, для работы сцепления педаль сцепления не требуется.

    oyetechy

    С помощью этого водитель может легко пристегнуть автомобиль, не переключая передачи. Кроме того, вы можете завести автомобиль, нажав педаль акселератора на любой передаче.

    Рабочий
    • Центробежные грузы сцепления A, повернутые к B.
    • Когда скорость двигателя увеличивается, грузы отлетают из-за центробежной силы, срабатывают уровни коленчатого рычага и нажимают на пластину C.
    • Движение диска C прижимает пружину E и прижимает диск сцепления D к маховику, чем пружина G.
    • В этом процессе сцепление включено.
    • Пружина G удерживает выключение сцепления на низкой скорости примерно при 500 об / мин.
    • H ограничивает перемещение грузов за счет центробежной силы.

    Полуцентробежное сцепление

    В полуцентробежной муфте используется центробежная сила и сила пружины, чтобы удерживать ее в положении зацепления. Полуцентробежное сцепление состоит из рычагов, пружин сцепления, нажимного диска, фрикционной накладки, маховика и диска сцепления.

    Конструкция полуцентробежного сцепления

    Полуцентробежное сцепление состоит из рычагов и пружин сцепления и равномерно размещено на нажимном диске. Пружины сцепления предназначены для передачи крутящего момента при нормальной частоте вращения двигателя, а центробежная сила помогает передавать крутящий момент на более высокой скорости.

    При нормальной частоте вращения двигателя передача мощности низкая, пружины входят в зацепление, а рычаги веса не оказывают никакого давления на нажимной диск.

    При высоких оборотах двигателя трансмиссия высока и вес отлетает, а рычаги также оказывают давление на диск и удерживают сцепление в надежном зацеплении.

    Полуцентробежные муфты имеют менее жесткие пружины, поэтому водитель может не напрягаться при нажатии на муфту. С уменьшением скорости вес падает, и рычаг не оказывает никакого давления на прижимную пластину.

    На нажимной диск действует только давление пружины, и этого достаточно для удержания сцепления в зацеплении.Регулировочный винт установлен на конце рычага, и с его помощью можно регулировать центробежную силу на прижимной пластине.

    Мембранная муфта

    Мембранная муфта имеет диафрагму на конической пружине, которая создает давление на нажимной диск для включения муфты. На прижимной пластине крепится пружина в виде пальца или коронки.

    Пружина с коническим пальцем показана на рисунке ниже. В муфтах этого типа мощность двигателя передается от коленчатого вала к маховику.Маховик имеет фрикционную накладку, соединение показано на рисунке ниже. Прижимной диск расположен за диском сцепления, поскольку прижимной диск оказывает давление на диск сцепления.

    oyetechy

    Диафрагменная муфта представляет собой пружину конической формы. После нажатия педали сцепления внешний подшипник движется к маховику, нажимая на диафрагменную пружину, которая толкает нажимной диск назад.

    При этом давление на диск снимает сцепление и отключается.Когда давление на педаль сцепления, нажимной диск и диафрагменная пружина возвращаются в свое нормальное положение, и сцепление включается.

    Преимущества

    Этот тип сцепления не имеет рычагов, поскольку пружина работает как ряд рычагов.

    Кроме того, водителю не нужно прикладывать сильное давление на педаль для удержания сцепления в выключенном состоянии с помощью винтовой пружины, при этом давление пружины увеличивается больше с педалью, когда она нажимается, чтобы выключить сцепление.

    Собачий и шлицевой муфты

    Собачка — это муфта, используемая для блокировки двух валов вместе или соединения шестерни и вала. Две части сцепления: одна — кулачковая муфта с внешними зубьями, а другая — скользящая муфта с внутренними зубьями.

    Оба вала сконструированы таким образом, что один будет вращать другой с одинаковой скоростью, поэтому они никогда не проскальзывают. Когда два вала соединены, сцепление включено. Для выключения сцепления скользящая муфта перемещается назад по шлицевому валу, не контактируя с ведущим валом.

    Собачья и шлицевая муфта широко используются в автомобилях с механической трансмиссией для блокировки различных передач.

    Электромагнитная муфта

    Электромагнитная муфта управляется электрически, но крутящий момент передается механически. Из-за этого муфту также называют электромеханической муфтой. Со временем это становится электромагнитной муфтой.

    Эти электромагнитные муфты не имеют механической связи для управления их включением для быстрой и плавной работы.Эти электромагнитные муфты подходят для дистанционного управления, что означает, что вы можете использовать их на расстоянии.

    В сцеплении есть маховик, который вращается на нем, а электричество подается от аккумулятора. Когда электричество проходит через обмотку, оно создает электромагнитное поле и притягивает нажимную пластину, чтобы войти в зацепление. При отключении электричества выключается сцепление.

    Эта система сцепления имеет рычаг переключения передач, имеющий выключатель выключения сцепления, при этом водитель управляет рычагом переключения передач для переключения передач переключателем, а также отключает подачу тока на обмотку, что отключает сцепление.

    Вакуумная муфта

    Этот тип сцепления использует существующее разрежение в коллекторе двигателя для приведения в действие сцепления. Эта вакуумная муфта имеет резервуар, обратный клапан, вакуумный цилиндр с поршнем и электромагнитный клапан.

    Работа и строительство

    Как показано на рисунке ниже, резервуар соединен с впускным коллектором через обратный клапан. Вакуумный цилиндр соединен с резервуаром через электромагнитный клапан.Соленоид работает от аккумулятора, в аккумуляторе есть переключатель, соединенный с рычагом переключения передач. Переключатель начинает работать, когда водитель переключает передачу.

    А теперь посмотрим, как это работает. После открытия дроссельной заслонки давление во впускном коллекторе увеличивается и из-за этого клапан обратного клапана закрывается. И это разделяет резервуар и коллектор, поэтому вакуум может существовать в резервуаре все время.

    При нормальной работе электромагнитный клапан находится в нижнем положении клапана, как показано на изображении.И рычаг переключения передач остается открытым. Кроме того, на этом этапе атмосферное давление действует на обе стороны поршня вакуумного цилиндра, и благодаря этому вакуумный цилиндр открывается в атмосферу через вентиляционное отверстие.

    При переключении передач переключатель замыкается. Электромагнит находится под напряжением и тянет клапан с соединением на одной стороне вакуумного цилиндра с резервуаром. Благодаря этому открывается проход между вакуумным цилиндром и резервуаром. При такой разнице давлений поршень вакуумного цилиндра перемещается вперед и назад.

    Движение поршня передается сцеплением, вызывая разъединение. Когда в передаче нет движения, переключатель разомкнут, а сцепление остается включенным из-за силы пружин.

    Гидравлическое сцепление

    Гидравлическое сцепление работает так же, как и вакуумное сцепление. Основное отличие заключается в том, что гидравлическая муфта работает от давления масла, а вакуумная муфта работает от вакуума.

    Ниже изображение гидравлической муфты.В нем меньше деталей, чем в других типах сцепления. Эта муфта имеет гидроаккумулятор, регулирующий клапан, цилиндр с поршнем, насос и резервуар.

    oyetechy.com

    Этот масляный резервуар перекачивает масло в аккумулятор через насос. Насос приводится в действие двигателем. Аккумулятор подключен к баллону через регулирующий клапан. Переключатель управляет клапаном и прикреплен к рычагу переключения передач, а поршень соединен с муфтой посредством соединительного механизма.

    Когда водитель переключает передачу, переключатель открывает регулирующий клапан, и это позволяет маслу под давлением поступать в цилиндр.Из-за этого давления масла поршень движется вперед и назад, что приводит к расцеплению сцепления.

    Когда водитель покидает рычаг переключения передач, переключатель размыкается, он замыкается на регулирующий клапан, и сцепление включается.

    Механизм свободного хода

    Эта муфта свободного хода известна как пружинная муфта, обгонная муфта или односторонняя муфта. Это самая важная часть любого овердрайва. Передача мощности осуществляется в одном направлении, как у велосипеда.Узел обгонной муфты установлен за коробкой передач.

    Мощность передается от главного вала к выходному валу через приводной вал, когда планетарные шестерни находятся в режиме повышающей передачи. Узел маховика имеет ступицу и внешнее кольцо. Эта ступица имеет внутренние шлицы, соединенные с трансмиссией главного вала.

    Наружная поверхность ступицы имеет 12 кулачков и предназначена для удержания 12 роликов в обойме между внешним кольцом и ступицей. Это внешнее кольцо является шлицем на повышающей передаче внешнего вала.

    Работа Freewheel

    Когда ступица приводится в движение по часовой стрелке, ролик движется вверх по кулачкам и, заклинивая, заставляет внешнее кольцо следовать за ступицей. Таким образом, внешнее кольцо движется в том же направлении и с той же скоростью, что и ступица.

    При снижении скорости ступицы внешнее кольцо постоянно увеличивается. Ролики опускают кулачки и снимают внешнее кольцо со ступицы. Таким образом, внешнее кольцо движется независимо от ступицы, а ступица работает как роликовый подшипник.

    Главный вал трансмиссии соединен со ступицей, а выходной вал соединен с наружным кольцом. Таким образом, муфта свободного хода может передавать мощность от главного вала к выходному валу.

    Это информация о различных типах сцепления. Мы объяснили это схемой и работой различных типов сцепления.

    🔔 Надеемся, эта информация вам поможет. Для получения дополнительной информации нажмите кнопку уведомления и получайте регулярные обновления от Unbox Factory .

    Теперь, если вы найдете эту информацию полезной, поделитесь ею со своими друзьями, семьей и коллегами.

    Если вам понравился этот пост, дайте нам знать в комментариях ниже, если вы хотите добавить дополнительную информацию по этой теме, прокомментируйте информацию. Рассмотрим информацию, если она актуальна.

    Спасибо за внимание.

    типов сцеплений: 11 различных типов сцеплений

    типов сцеплений: 11 различных типов сцеплений

    сцепления:

    Муфта — это механизм для отключения потока мощности от трансмиссии без выключения двигателя.Это механический компонент, используемый в системе передачи мощности двигателей транспортных средств для включения и выключения двух вращающихся валов.

    Два вала — это приводной и ведомый валы. Мощность передается от ведущего вала к ведомому валу, и эта передача осуществляется с помощью сцепления. Сцепление обычно используется для изменения передаточного числа в системе передачи мощности транспортных средств для увеличения и уменьшения скорости.

    Чтобы переключить передачу в рабочем состоянии, вы должны нажать на лопасть сцепления, потому что сцепление освобождает коробку передач от системы передачи энергии, и, таким образом, вы можете легко переключать передачи без каких-либо помех.Основное назначение сцепления — соединять и отсоединять весь двигатель от задних колес для остановки, запуска и переключения передач.

    Основные функции сцепления:

    • Обеспечивает легкость в плавном изменении передаточного числа для изменения скорости во время поездки
    • Преобразование мощности от двигателя к дифференциалу без рывков
    • Безопасный срок службы шестерен в коробке передач, потому что она освобождает передачи от мощности, когда водитель переключает передачу во время работы двигателя

    Классификация сцепления и ее виды:

    По способу передачи крутящего момента:

    • Плюс сцепления
    • Муфта собачьей и шлицевой
    • Муфты фрикционные:
    • Сцепление однодисковое
    • Муфта многодисковая
    • мокрый
    • Сухой
    • Мембранная муфта
    • Конический пальчиковый
    • Корона пружинного типа
    • Конусная муфта
    • Внешний
    • Внутренний
    • Гидравлическое сцепление
    • Гидравлическая муфта
    • Гидравлический преобразователь крутящего момента

    По способу силового воздействия:

    • Центробежная муфта
    • Муфта полуцентробежная
    • Электромагнитная муфта
    • Вакуумная муфта

    По способу контроля:

    • Ручное сцепление
    • Автоматическое сцепление

    Положительное сцепление:

    Муфта, которая используется для передачи мощности без проскальзывания, известна как муфта принудительного действия.Положительное сцепление в основном состоит из двух элементов машины, один из которых неподвижно соединен с ведущим валом, а второй может скользить по ведомому валу с целью зацепления и расцепления сцепления с маховиком. Эти два элемента могут быть квадратными или треугольными для зацепления вала во время передачи мощности от двигателя к коробке передач. Зубчато-шлицевое сцепление, одно из муфт принудительного действия.

    DOG и шлицевое сцепление:

    Зубчатая и шлицевая муфта соединяют и блокируют два вращающихся вала, в которых один вал называется шлицевым валом, над которым находится скользящая втулка, а второй вал известен как упорный вал, над которым имеются внешние зубья для зацепления со шлицевым валом. .Шлицевой вал не имеет зубьев, но скользящая втулка на шлицевом валу имеет внутренние зубья для зацепления с зубьями упорного вала. Эти валы сконструированы таким образом, что оба вращаются друг с другом без скольжения. Если вы хотите отсоединить, это можно сделать, переместив скользящую муфту обратно на шлицевой вал. В механической трансмиссии автомобиля обычно используется этот тип сцепления.

    Муфты фрикционные:

    Тип сцепления, в котором сила трения является основным источником передачи мощности, известен как фрикционная муфта.В фрикционной муфте фрикционный материал играет роль соединения и разъединения приводного и ведомого валов друг с другом для передачи мощности. В фрикционной муфте есть два диска, в которых один диск закреплен на ведущем валу, а второй диск может свободно скользить по ведомому валу в осевом направлении. Скользящий диск имеет фрикционный материал, который встречается с неподвижным диском при нажатии на лопасть сцепления, и этот контакт фрикционного материала с неподвижным диском создает силу трения, которая в дальнейшем используется для передачи мощности.В зависимости от конструкции существуют различные типы фрикционных муфт.

    Однодисковое сцепление:

    Тип сцепления, который состоит только из одного диска сцепления, известен как однодисковое сцепление. Этот тип сцепления в основном используется в больших транспортных средствах, в которых имеется большее радиальное пространство, доступное для передачи мощности. Это самый простой и наиболее часто используемый диск сцепления, и его сборка состоит из диска сцепления, фрикционного диска, нажимного диска, маховика, подшипников, пружин, болтов и гаек.Маховик прикреплен к валу двигателя, а нажимной диск приклеен к маховику пружинами сцепления, обеспечивая осевое усилие для включения сцепления. Фрикционный диск находится посередине маховика и нажимного диска, создавая силу трения с обеих сторон диска сцепления.

    Многодисковое сцепление:

    Этот тип фрикционной муфты состоит из нескольких дисков сцепления просто для обеспечения большей поверхности трения. В остальном механизм многодисковой муфты такой же, как и у однодисковой муфты.Увеличение количества дисков сцепления означает увеличение силы трения.

    Мокрое и сухое многодисковое сцепление:

    Многодисковая муфта имеет еще два типа: одно мокрое многодисковое сцепление, а второе — сухое многодисковое сцепление. Если сцепление работает в масле, оно называется мокрым, а если сцепление работает без масляной ванны, оно называется сухим многодисковым сцеплением. Мокрое сцепление имеет более длительный срок службы по сравнению с сухим сцеплением, но коэффициент трения у сухого сцепления больше, чем у мокрого сцепления.

    Мембранная муфта:

    Муфта, которая имеет диафрагменную пружину для создания давления на нажимной диск для включения муфты, известна как диафрагменная муфта. Маховик связан с диском сцепления, а нажимной диск — это паста с задней частью диска сцепления. В диафрагменной муфте диафрагма представляет собой коническую пружину, когда водитель нажимает на лопасть сцепления, внешние подшипники движутся к маховикам, которые толкают вперед конические диафрагменные пружины, и эти пружины толкают назад нажимной диск из узла сцепления, и, таким образом, муфта будет выйти из боя.Когда водитель отпускает лопасть, прижимная пластина снова возвращается в свое нормальное положение и входит в зацепление с маховиком для передачи мощности от вала двигателя к шлицевому валу и, наконец, к коробке передач.

    Мембранная муфта конического и корончатого типа:

    Диафрагменная пружина, используемая в диафрагменной муфте, может быть пальцевой или коронной, поэтому на основе этого типа пружины есть еще два типа. Если диафрагменная пружина пальцевого типа, она называется конической, а если пружина корончатого типа, то она называется диафрагменной муфтой коронного типа.

    Муфта коническая

    Конусная муфта состоит из чашки и конуса. Чашка имеет внутреннее полое коническое пространство, а конус имеет внешнюю коническую форму. Конус вставляется в чашку и на внешней поверхности конуса используется фрикционная ткань или фрикционная накладка. пока конус вставлен в чашку, давление трения расширяется, и эта сила трения используется для передачи крутящего момента вала на ведомый вал. Чашка прикреплена к ведущему валу, а конус отстегивается и скользит в осевом направлении по шлицевому ведомому валу.с помощью скользящего конуса взаимодействие и разъединение завершено. Конусный захват не всегда широко используется из-за того, что требуется чрезмерное осевое усилие, чтобы взаимодействовать с толкаемым валом или отключать его от использования вала.

    Гидравлическое сцепление:

    Тип фрикционной муфты, в которой сила трения создается за счет давления жидкости, называемой гидравлической муфтой. Жидкость может быть маслом или другим специальным типом жидкости для создания высокого давления. Это простейший тип фрикционной муфты, состоящей из множества деталей по сравнению с другими фрикционными муфтами.Основными компонентами гидравлической муфты являются аккумулятор, регулирующий клапан, цилиндр, насос, поршень и резервуар. Насос подает масло из резервуара в цилиндр, к которому подключен аккумулятор с помощью регулирующего клапана.

    Клапан является звеном с рычагом переключения передач, а поршень связан с муфтой. Когда водитель нажимает на сцепление для включения лопатки, регулирующий клапан пропускает масло из резервуара в цилиндр, который перемещает поршень вперед и назад, при этом интерн включает и выключает сцепление.

    Гидравлическая муфта и гидротрансформатор:

    Гидравлическая муфта — это гидродинамическое устройство, которое передает вращающуюся механическую энергию от одного вала к другому посредством ускорения и замедления гидравлической жидкости. В основном в автомобиле он используется как альтернатива механическому переключателю. Точно так же преобразователь крутящего момента также является типом гидравлической муфты, передающей крутящую мощность от двигателя внутреннего сгорания на ведомый вал нагрузки. Он работает только для подключения источника питания к точке использования в автомобилях.Гидравлический преобразователь крутящего момента с гидравлической муфтой относится к категории гидравлических муфт.

    Центробежная муфта:

    Тип сцепления, использующий центробежную силу вместо силы пружины для включения и выключения сцепления для передачи мощности от ведущего вала к ведомому валу, называется центробежной муфтой. В современных автоматизированных автомобилях автоматизированная система переключения передач является продуктом центробежного сцепления, поскольку с этой системой водителю не нужно было переключать передачу вручную.Он включает в себя автоматическое переключение передачи в зависимости от скорости двигателя, и водитель может заводить или останавливать автомобиль на любой передаче.

    Муфта полуцентробежная:

    Муфта сцепления имеет как силу пружины, так и центробежную силу, называемую полуцентробежной муфтой. Автомобиль с полуцентробежной системой сцепления может управляться как вручную, так и автоматически.

    Электромагнитная муфта:

    Муфта сцепления, в которой для включения сцепления используется электромагнетизм, известна как электромагнитная муфта.Когда ток проходит через проводник, вокруг проводника возникает электромагнитное поле, соответствующее его роли и роли. Электромагнитная муфта использует этот принцип для включения и выключения сцепления.

    Электромагнитная муфта соединена с маховиком, состоящим из обмотки, и эта обмотка является связью с аккумуляторным источником. Когда ток течет в обмотку, он производит вихревой ток и генерируется электромагнитное поле, которое притягивает нажимную пластину, чтобы войти в зацепление, а когда подача тока от обмотки маховика прерывается, электромагнитное поле исчезает, и, таким образом, нажимная пластина выходит из зацепления.В этой системе автомобильный рычаг переключения передач соединен с выключателем питания аккумуляторной батареи. Когда водитель хочет переключить передачу с помощью рычага переключения передач, он отключает ток от обмотки, которая отключает прижимную пластину, уже описанную в предыдущей строке.

    Вакуумная муфта:

    В муфте используется вакуумное давление для включения сцепления вместо пружины или любая другая сила, известная как вакуумная муфта. Этот механизм состоит из нескольких компонентов, таких как электромагнитный клапан, поршень, вакуумный цилиндр, резервуар и обратный клапан.Соленоид соединен с рычагом переключения передач и работает от батареи, а батарея переключается в положение ВКЛ-ВЫКЛ с помощью рычага переключения передач. Когда водитель хочет переключить передачу, он продырявил рычаг переключения передач, который включает переключатель аккумулятора, и, следовательно, на соленоид поступает ток. Когда соленоид находится под напряжением, он создает вакуум через вакуумный цилиндр, который перемещает поршень вперед и назад, а также включает и выключает муфту для передачи мощности.

    КАК: Выбрать правильное сцепление для вашего стиля вождения

    С объяснением технологии сцепления Modern Driveline покажет вам, как выбрать правильное сцепление для вашего стиля вождения и использования.

    Хотя выбор сцепления и маховика кажется наукой черной магии, это действительно просто. Сделав правильный выбор, вы получите непревзойденное сочетание сцепления и маховика, которое будет служить вам долгие годы. В конечном итоге, приняв правильное решение, вы сэкономите кучу денег. И можете ли вы позволить себе принять плохое решение? Подумай об этом.

    Карл Бенц считается отцом автомобильного сцепления, которое было изобретено почти столетие назад.За прошедшие годы появилось множество вариаций скромного трудолюбивого сцепления. Основная задача сцепления — плавная и надежная передача мощности от коленчатого вала двигателя к трансмиссии без проскальзывания. Некоторое проскальзывание важно для плавного зацепления, но без чрезмерного проскальзывания, которое вызовет ненужный износ и проблемы с нагревом. Вам нужно разумное усилие на педали, но надежное сцепление, которое вы получите от наших сцеплений Superior.

    Выбор сцепления зависит от того, какой вид вождения вы собираетесь делать.Если вы собираетесь в круиз или в рабочие дни, вам понадобится высококачественное однодисковое органическое сцепление с диафрагмой. Органическое трение сцепления обеспечивает плавное включение и долговечность при уличном использовании. Гонки по выходным требуют сочетания кевлара и органических материалов. А если вы действительно серьезно относитесь к динамичному вождению, высокопроизводительное сцепление из кевлара — это то, что вам нужно, чтобы удовлетворить спрос.

    Типы сцепления

    Существует два основных типа муфт — диафрагменные и удлиненные.

    Длинный стиль

    Трехпальцевое сцепление Long Style было оригинальным комплектом для многих старинных вещей. Поскольку трехпальцевое сцепление и нажимной диск оказывают невероятное давление, они также создают огромное усилие на педали сцепления. Раньше жесткая педаль сцепления была нормой, но теперь это не так. С тех пор технология сцепления стала такой, что вам больше не придется мириться с жесткой педалью сцепления (или с последующей операцией по замене коленного сустава). Здесь, в Modern Driveline, мы не можем придумать ни одной причины, по которой вы должны мириться с тяжелой педалью сцепления.

    Сцепление Long Style состоит из:

    • Крышка нажимной пластины
    • Нажимная пластина или головка
    • Пальцы или рычаги
    • Штифты опоры
    • Винтовые пружины
    • Диск сцепления или трение

    А теперь много запчастей!

    Трехпальцевое сцепление удлиненного типа оказывает сильное давление на диск через серию винтовых пружин между крышкой и пластиной. Давление пружины одинаково независимо от оборотов двигателя. Усилие на педали также одинаково независимо от оборотов двигателя.Клатч Long Style — это в лучшем случае архаичный дизайн. Нет смысла использовать его больше.

    Мембранные муфты

    Муфты диафрагменного типа, как следует из названия, состоят из диафрагменной пружины, которая находится между зацеплением и расцеплением «масленкой». Его легко нажимать, но он обеспечивает колоссальную удерживающую способность. Преимущество диафрагменной муфты заключается в большей зажимной способности, чем у обычного трехпальцевого сцепления Long, но без большого усилия на педали. Более того, по мере износа мембранных дисков сцепления усилие зажима увеличивается в течение срока службы сцепления, что улучшает его характеристики.Это одно из главных преимуществ муфты диафрагменного типа. Еще одно преимущество — усилие на педали, которое значительно меньше, чем у сцепления Long Style.

    Хотя на рынке много муфт диафрагменного типа, Modern Driveline предлагает лучшее сцепление, и вот почему. Modern Driveline предлагает вам больший выбор благодаря полной линейке сцеплений и маховиков от самых надежных производителей в отрасли — Superior и McLeod. У нас прекрасные отношения с Superior Clutch, потому что каждое сцепление изготавливается вручную для Modern Driveline.Каждое сцепление Superior проходит тщательные испытания в процессе производства и контроля качества, что обеспечивает высокую надежность и производительность.

    Многие производители говорят о трении сцепления из кевлара, но на самом деле их диски сцепления содержат очень скромное количество кевлара — около 10-20 процентов, что мало что говорит о многом. Диск Superior Clutch почти на 100% состоит из кевлара, который может выдержать экстремальные нагрузки и вернуться к ним после прохождения сложных миль. Если вы цивилизованный водитель, ваше сцепление Superior Kevlar от Modern Driveline вполне может быть последним сцеплением, которое вы когда-либо купите.Они такие хорошие.

    Сцепление необходимо знать

    Мы можем во многом заняться наукой о сцеплении и физикой. Однако вот что вам нужно знать, чтобы совершить грамотную покупку. На ваш выбор четыре диска сцепления Modern Driveline от Superior Clutch — Organic, Kevlar / Organic, Kevlar / Kevlar и Kevlar / Metal.

    Сцепление Superior Organic от Modern Driveline является базовой заменой 10 ″ или 10,5 ″ и либо со стандартным прижимным диском, либо со стандартным прижимным диском King Cobra.Сцепление Superior экономично и хорошо подходит для ежедневных / выходных водителей или шоу-каров. Сцепление Superior Super King Cobra от Modern Driveline отличается облицовкой из стали, предотвращающей расслоение дисков, обычное для оригинальных сцеплений King Cobra и тяжелых условий эксплуатации.

    Превосходное сцепление из кевлара / органических материалов

    Modern Driveline — это муфта мультифрикционного типа с поверхностями из кевлара® и органических материалов, разработанная с учетом дополнительного сцепления и высокой термостойкости в высокопроизводительных приложениях. Эти муфты доступны в размерах 10 или 10 дюймов.5 ″. Сцепление Superior Kevlar / Organic оптимально для уличного и трекового использования.

    Кевларовая / кевларовая муфта

    Superior Clutch от Modern Driveline разработана для длительного срока службы и минимального износа в экстремальных условиях эксплуатации. Эти сверхмощные муфты размером 10,5 дюймов предпочтительны для высокопроизводительных приложений с высоким крутящим моментом. Более того, они предпочтительнее для легких автомобилей, склонных к вибрации сцепления.

    Диски из кевлара / металла предназначены для езды на большой мощности, дрэг-рейсинга или уличных гонок, где «захват» — это название игры.Обычно это муфта включения / выключения. Вы не можете «перетереть» их для плавного движения по улице.

    Рис. 1: Рядом расположены два основных типа муфт — диафрагма (слева) и удлиненная (справа). По конструкции трехпальцевые сцепления типа Long дают очень жесткую педаль сцепления. Муфты диафрагменного типа обеспечивают надежное сцепление без жесткой педали сцепления.

    Рис. 2: Два органических диска сцепления — крупный (слева) и мелкий (справа).Диски сцепления, как правило, предназначены для использования (размер и входной вал трансмиссии), в котором они будут использоваться. Органическое трение сцепления предназначено для использования на умеренных улицах.

    Рис. 3/4 Вот почему трехпалое сцепление типа Long дает нам такую ​​жесткую педаль — мощные пружины, обеспечивающие исключительную удерживающую способность. Однако они также сильно усложняют работу левой ноги и механических частей, поскольку удерживающее давление прижимной пластины передается непосредственно на рычажный механизм педали сцепления.Это действительно устаревшая конструкция сцепления, когда есть лучший выбор.

    Рис. 5 Мембранная муфта просто лучше по конструкции, потому что она дает нам большую удерживающую способность без жесткой педали. Это небольшая облегченная прижимная пластина с диафрагмой.

    Рис. 6/7 Вот еще одна мембранная муфта большего размера и диск для GM с мелкозубчатым диском муфты. .

    Рис. 8 Прелесть диафрагменной муфты в простоте — меньшее количество деталей. Это звено связывает прижимную головку с опорной пластиной.

    Рис. 9 Эти винтовые пружины действуют как амортизаторы в диске сцепления. Это то, что обеспечивает более плавное зацепление, поскольку диск сцепления и нажимной диск сцепляются.

    Рис. 10 Мембранная муфта полностью зацеплена с сжатым диском муфты.

    Рис. 11 Диски сцепления из органического материала и кевлара, расположенные вплотную друг к другу. Слева — органический фрикционный диск, который толще и тяжелее. Справа — более легкий и прочный кевларовый диск. Диски из кевлара улучшенного качества почти на 100% изготовлены из кевлара, чтобы выдерживать экстремальные условия гонок.Органические диски предназначены только для уличного использования.

    Рис. 12 Слева направо металлические, кевларовые и органические диски

    Рис. 13 Вот муфта Superior с диафрагмой с органическим трением для уличного использования. Органический диск не выдержит наказания, связанного с гонками. Это ступица с крупными зубьями для старинных автомобилей Ford.

    Рис. 14 Это фрикционная муфта из кевлара с мелкими зубьями для применения в GM. Ступица с мелкими зубьями обеспечивает большую прочность за счет большей площади поверхности вала и ступицы.Кевлар можно использовать для стрита и стриптиза, однако это прежде всего сцепление для гонок. Это может потребовать огромного наказания и вернуться за новым.

    Рис. 15 Рассмотрим кевларовую поверхность поближе. Все наши муфты из кевлара Superior почти на 100% состоят из кевлара, что обеспечивает исключительную прочность и долговечность. Кевлар не выглядит таким устрашающим, но не позволяйте внешнему виду обмануть вас. Кевлар — самый прочный из доступных материалов сцепления. Если вы купите его для уличного использования, вам никогда не придется покупать другое сцепление.

    Рис. 16/17 Вот металлическое сцепление Superior для гонок. Эта прижимная пластина предназначена для продуктов GM. Как правило, в большинстве случаев применения GM используется входной вал с мелкими зубьями.

    Рис. 18 Мы также предлагаем муфты двойного трения с диафрагмой McLeod для высокопроизводительных применений. Выбор зависит от того, сколько у вас мощности и от того, что вы хотите, чтобы ваш автомобиль делал.

    Рис. 19 Вот типы первичных валов, которые вы можете ожидать от бытовых применений.Это инструменты для выравнивания сцепления. Два от комплектов сцепления и один от трансмиссии Ford. Стальной входной вал хорошо работает как инструмент для центровки сцепления. Наши муфты Superior поставляются с инструментом для выравнивания сцепления для вашего удобства.

    Рис. 20 Направляющие втулки сцепления (справа) типичны для OEM-установок. Дополните установку сцепления Modern Driveline пилотным подшипником (слева) для обеспечения точности и плавности работы сцепления. Разбирая автомобиль, проверьте прокладку масляного поддона двигателя, заднее основное уплотнение и уплотнение первичного вала коробки передач на предмет утечек.Любые проблемы с утечкой должны быть устранены в это время, иначе вы столкнетесь с загрязнением диска сцепления.

    Рис. 21 Выжимной подшипник сцепления для выравнивания диафрагмы должен быть точно установлен для правильной работы и долговечности. Выжимные подшипники муфты мембранного типа являются деталями, работающими в постоянном режиме, что означает, что они постоянно контактируют с мембраной.

    Рис. 22 Дополните вашу новую установку сцепления Superior новым маховиком от Modern Driveline. Эти деньги потрачены не зря, потому что каждое новое сцепление заслуживает новой поверхности маховика.У нас есть стальные, заготовки и алюминиевые маховики практически для всех возможных применений.

    Если вам нужна дополнительная информация или предложение по вашему проекту, пришлите нам свои данные, и мы свяжемся с вами и расскажем. Или позвоните…

    208-453-9800


    типов сцеплений | Анимации и диаграммы — MechStuff

    Сегодня больше никаких скучных представлений; Я просто дам вам представление о сцеплениях, а затем сразу перейду к теме — Типы сцеплений!

    Что такое сцепления?

    Специально для тех, кто не имеет большого представления, Clutch — это механическое устройство включения и выключения, которое помогает передавать крутящий момент / мощность, создаваемую двигателем .
    Они используются во всех чертовых автомобилях, мотоциклах, грузовиках, двигателях локомотивов и во множестве других транспортных средств и машин!

    Каждый тип имеет свои преимущества и область применения, основанную на их способности передавать крутящий момент / мощность, компактности и других конструктивных ограничениях!

    Типы муфт: —

    1. Однодисковое сцепление

    Включение и выключение однодискового сцепления!

    Однодисковые муфты имеют сравнительно меньшее количество деталей и очень просты для понимания.В устройстве всего 2 фрикционных диска.
    Передача крутящего момента происходит, когда они оба входят в контакт друг с другом. Один прикручен к маховику (коробка передач, входной вал), а другой прикручен к прижимной пластине и может скользить по шлицевому валу. Прижимная пластина соединена с предварительно сжатой пружиной (здесь диафрагменная пружина), которая прикладывает осевое усилие к другому диску.
    Чем больше сила, тем больше трение, больше способность муфты передавать крутящий момент.
    У этих муфт было много ограничений, и поэтому маловероятно, что они встретятся в каком-либо из современных приложений.
    Таким образом, возникла немедленная потребность в разработке новых типов сцеплений, поскольку они не могли обеспечить необходимый крутящий момент. Вот полная подробная статья о деталях сцепления, работе и зачем они нам?

    Приложение — Машины и ранние автомобили, требующие умеренного крутящего момента.

    2. Многодисковое сцепление

    Конструкция многодискового сцепления

    Многодисковые муфты, как следует из названия, состоят из нескольких пластин или фрикционных дисков и работают аналогично, как описано выше.Несколько дисков предлагают больше места для контакта друг с другом. Чем больше количество пластин, тем выше передаточная способность. Таким образом, при том же радиусе фрикционного диска, что и в однодисковых, многодисковые муфты передают значительно большую мощность .
    Они быстро нагреваются, и это один из их самых больших недостатков. Следовательно, весь узел сцепления, содержащий диски, заполнен маслом, чтобы быстрее рассеивать тепло.

    Приложения — Они находят широкое применение в легковых и грузовых автомобилях, двигателях и машинах локомотивов.

    3. Муфта коническая

    Детали конической муфты; Sweber.de [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

    Конусная муфта состоит из двух барабанов — мужского и женского. Наружный барабан прикреплен к коленчатому валу двигателя и имеет внутреннюю фрикционную накладку, а охватывающий барабан установлен на шлицевом валу и имеет внешнюю фрикционную накладку.
    Когда сцепление включено, охватывающий конус попадает внутрь охватываемого, и они оба начинают вращаться вместе. Внутренний конус прикреплен к предварительно сжатой пружине и имеет такое же устройство, как и однодисковые муфты.
    Конусная муфта может передавать на больший крутящий момент, чем однодисковые муфты того же размера, из-за относительно большей площади трения и заклинивания .
    Угол конуса / угол полуконуса также играет важную роль в обеспечении осевого усилия. Как правило, угол полуконуса составляет от 12 ° до 15 ° .

    Применения — Конусные муфты используются только в гоночных автомобилях и внедорожниках, но чаще встречаются на моторных лодках. Малые конические муфты используются в качестве синхронизаторов в системе трансмиссии и в дифференциалах повышенного трения (LSD).

    4. Центробежное сцепление

    3D Анимация центробежного сцепления

    Центробежные сцепления также называются автоматическими сцеплениями , поскольку вам не нужна педаль сцепления, и они включаются автоматически.
    Само название говорит о том, что работа этого сцепления основана на центробежной силе. Конструкция и работа просты.
    В центре находится ступица, которая соединяется с коленчатым валом двигателя. Несколько башмаков соединены с этой ступицей через пружины, и каждая колодка имеет внешнюю поверхность, покрытую фрикционным материалом.
    Когда ступица начинает вращаться, башмаки вместе с ней также начинают вращаться. Любое тело, совершающее вращательное движение, создает центробежную силу. Из-за этой силы обувь выбрасывается наружу. Как только башмаки касаются фрикционной накладки барабана, двигатель начинает передавать мощность на барабан, то есть на колеса.
    Зацепление башмаков с барабаном происходит с определенной скоростью, и это зависит от жесткости пружины «k».

    Приложение — Мопеды и скутеры, такие как Honda Activa, Vespa и т. Д.

    5. Гидравлическое сцепление

    Гидравлическое сцепление

    Гидравлические муфты или гидравлические муфты являются частью сложной детали, называемой преобразователями крутящего момента, которые используются в автомобилях с автоматической коробкой передач . Эти муфты состоят из 2-х частей — насоса и турбины , и обе лопатки
    установлены под определенным углом. Насос прикреплен к ведущему валу (маховику), а турбина — к выходному валу. Когда насос начинает вращаться, масло начинает вытекать наружу из центра за счет центробежной силы.
    Изогнутые лопатки поглощают центробежную энергию и направляют ее в сторону лопаток турбины. Конструкция обоих лопастей такова, что поток жидкости приводит в движение обе части.

    Приложение — Автоматические трансмиссии

    6. Электромагнитная муфта

    Детали электромагнитной муфты

    Что происходит, если поднести магнит к ферромагнитному материалу? Я слышу, как ты говоришь: «Джей, они привлекают друг друга, просто!» Точно .. Вот и все!

    На ведомом валу находится якорь, на приводном валу — электромагнит.Ток подается соответственно на электромагнит, когда педаль сцепления нажата или нажата. При подаче тока электромагнит создает магнитное поле, притягивающее якорь . Это создает силу трения между обеими фрикционными пластинами, когда они соединяются. За короткий промежуток времени нагрузка ускоряется, чтобы соответствовать скорости ведущего вала (электромагнита).
    Каждый раз, когда необходимо выключить сцепление, подача электроэнергии прекращается, и пружина отводит назад положение якоря.
    Одним из самых больших недостатков электромагнитных муфт является их первоначальная дороговизна и быстрый нагрев.

    Приложения — Копировальные машины, автоматизация производства, упаковочное оборудование и некоторые роботы.

    Итак, здесь мы рассмотрим все основные типы сцеплений, и я надеюсь, что вам понравилась статья, и я считаю, что она была полезной! Если вам это понравилось, я уверен, вы хотели бы изучить различные типы тормозов в автомобилях (все анимации)! Если у вас есть какие-либо вопросы или что-то еще, я хотел бы вернуться к вам в разделе комментариев ниже! 😀

    Сопутствующие товары

    Как работают сцепления автомобиля?

    Когда я был ребенком, я всегда думал, а нужно ли сцепление? что именно он делает? и в детстве я мог представить себе работу тормозов и увеличение скорости, но я никогда не мог понять сцепления! Для меня это был действительно приятный момент, когда я полностью научился понимать сцепление.Итак, вот оно, сегодня мы увидим все, что вам нужно знать о Clutches!

    Что такое сцепления?

    Муфты — это механические устройства для включения и выключения двигателя и системы трансмиссии транспортного средства по желанию оператора.

    Иллюстрация, дающая общее представление о сцеплении!

    Детали в сцеплении: —

    Узел сцепления состоит из множества мелких деталей, но следующие основные детали:

    1. Маховик — Маховик, установленный на коленчатом валу, продолжает работать, пока двигатель продолжает работать.Маховик снабжен фрикционной поверхностью ИЛИ фрикционный диск прикручен к внешней стороне маховика.
    2. Фрикционные диски — На ведомом валу установлены одинарные или множественные (по требованию) диски, покрытые фрикционным материалом с высоким коэффициентом трения.
    3. Нажимной диск — Другой фрикционный диск прикручен к прижимному диску. Прижимная пластина установлена ​​на шлицевой ступице.
    4. Пружина и рычаги разблокировки — Используемая пружина представляет собой диафрагменную пружину, которая перемещает фрикционный диск вперед и назад.Пружина убирается с помощью рычагов.

    Работа муфт (трение): —

    Принцип работы муфт (трение) заключается в том, что крутящий момент / мощность не передаются до тех пор, пока обе фрикционные пластины не коснутся друг друга.

    О чем следует помнить, прежде чем разбираться в работе —

    • Одна фрикционная пластина прикручена к маховику, а другая может перемещаться по коленчатому валу.
    • Величина передаваемого крутящего момента зависит от того, насколько осевая нагрузка приложена к фрикционному диску.
    • Подвижный диск имеет шлицы на коленчатом валу и может двигаться вперед и назад с помощью педали сцепления.
    • Чем больше осевая нагрузка, тем больше мощность; меньшая осевая нагрузка, меньшая передача мощности. Это также означает
      , если нагрузка = 0, передаваемая мощность = 0 и
      , когда нагрузка = максимальная сила пружины, передаваемая мощность = максимальная!
    • Нагрузка прикладывается прижимной пластиной, так как прижимная пластина соединена с несколькими винтовыми пружинами ИЛИ одинарной диафрагменной пружиной!
    Включение и выключение сцепления!

    Когда мы полностью нажимаем педаль сцепления, подвижный фрикционный диск скользит обратно по валу.Это отключенное состояние, при котором трение не касается маховика.
    Это означает, что осевая нагрузка, прикладываемая прижимной пластиной, равна 0 и, следовательно, передача мощности / крутящего момента равна 0!
    Обратите внимание, что двигатель все еще работает, но автомобиль не движется!

    Когда мы полностью отпускаем педаль сцепления, подвижный фрикционный диск скользит вперед по этому валу. Это состояние зацепления, при котором диск полностью касается маховика.
    Это означает, что осевая нагрузка, прикладываемая прижимной пластиной, равна максимальной силе пружины и, следовательно, передаваемая мощность равна максимальной!

    Когда 0 <Нагрузка <макс. Сила пружины, возникает состояние, называемое условием скольжения .Допустим, существует 50% -ное проскальзывание; это означает, что будет передаваться только 50% мощности!
    Процент пробуксовки зависит от того, насколько сильно вы нажали педаль сцепления!

    Почему изношенные муфты обеспечивают низкую мощность?

    Осевая нагрузка , прикладываемая прижимной пластиной, зависит от прогиба пружины . Чем больше прогиб, тем больше сила. Когда диски изнашиваются, пружина прогибается меньше, чем первоначальный прогиб. Следовательно, из-за этого пружина может прикладывать меньшее осевое усилие, чем раньше, что приводит к плохой передаче мощности! Это напрямую влияет на эффективность автомобиля, поэтому диски сцепления необходимо менять соответственно!

    Типы сцеплений: —

    1. Однодисковое сцепление
    2. Многодисковое сцепление
    3. Конусное сцепление
    4. Центробежное сцепление
    5. Электромагнитное сцепление
    6. Гидравлическое сцепление

    Зачем нам нужно сцепление?

    Давайте разберемся в этом на примере, где мужчине нужно перевезти 100 кг груза из точки А в точку Б.



    Случай A: —
    Предположим, что все 100 кг напрямую переданы человеку в точке A.
    Результат — Человек упадет, потому что он не сможет выдержать такую ​​большую нагрузку в одном экземпляре.

    Случай B: —
    Когда человек находится в начале A, ему дается только 5 кг. Затем он направляется к B, так как он легко может нести 5 кг. В дальнейшем через каждые 1 м дистанции добавляется 5 кг.
    Таким образом, после 1-метровой нагрузки он будет нести 10 кг; через 2 м нагрузка составит 15 кг и т. д.
    Результат — Человек достигнет своей цели; если не пункт B, по крайней мере, он сможет носить его в течение более длительного периода, чем случай A.

    Вывод: —
    Мы пришли к выводу, что человек не может выдержать тяжелый груз, который прикладывается внезапно, тогда как он может нести это для больших расстояний, если нагрузка увеличивается равномерно!
    То же самое и с машинами и транспортными средствами; Мотор / двигатель не может справиться с такой большой нагрузкой в ​​одно мгновение. Следовательно, сцепления используются для равномерного увеличения нагрузки, чтобы двигатель продолжал работать, а ваш автомобиль начал движение .
    ВАРИАНТ A — это иллюстрация, где человек начинает изучать автомобиль и сразу же отпускает сцепление, из-за чего двигатель не может выдержать такую ​​большую нагрузку и перестает работать, давая человеку рывок.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *