Топливные системы дизельных двигателей: Как устроена система подачи топлива дизельного ДВС

Содержание

Как устроена система подачи топлива дизельного ДВС

Категория: Полезная информация.

В дизельном двигателе предусмотрен целый комплекс узлов и деталей, задача которого состоит в подаче топлива на форсунки под высоким давлением.

Система питания дизельного ДВС выполняет следующие функции:

  • фильтрует топливо перед подачей его на форсунки
  • гарантирует точное дозирование и впрыск в нужный момент топлива в камеру сгорания, в зависимости от режима и нагрузки на двигатель
  • обеспечивает распыление и равномерное распределение горючего по стенкам камеры сгорания в цилиндре.

Работу системы питания дизельного двигателя вкратце можно описать так: хорошо очищенное ДТ подается к цилиндрам, топливный насос высокого давления (ТНВД) сжимает горючее и передает его на форсунку под высоким давлением. Форсунка распыляет и впрыскивает топливо в камеру сгорания, где оно смешивается с горячим (нагретым от высокого сжатия внутри цилиндра до 700-900 градусов по Цельсию) воздухом и самовоспламеняется.

Это и есть основное отличие работы дизельного ДВС от бензинового: воспламенение рабочей смеси происходит самостоятельно, не требуя поджигания отдельным устройством.

Общая схема системы питания дизельного ДВС

Базовые элементы системы питания дизельного ДВС:

  • топливный бак
  • фильтры грубой очистки топлива
  • фильтры тонкой очистки топлива
  • топливоподкачивающий насос
  • ТНВД
  • форсунки
  • трубопровод низкого давления
  • магистраль высокого давления

Помимо базовых элементов, в зависимости от специфики двигателя, в система может дополняться электронасосами, механизмом выпуска отработанных газов, сажевыми фильтрами и т. п.

Специалисты выделяют в системе питания дизельную аппаратуру:

  • для подвода топлива (топливоподводящая аппаратура)
  • для подвода воздуха (воздухопроводящая)

Топливоподводящая аппаратура имеет разные варианты устройства. Самый распространенный вариант -  ТНВД и форсунки разделены как самостоятельные устройства, топливо подводится к двигателю по магистралям высокого и низкого давления.

Магистраль низкого давления хранит, фильтрует и подает горючее к ТНВД. Задача же магистрали высокого давления - поднять давление, необходимое для точной подачи и дозированного впрыска горючего в цилиндр.

Что касается насосов в системе питания, их два.

Топливоподкачивающий подает топливо из бака, очищает его с помощью фильтров грубой и тонкой очистки (прогоняя через них), а затем под давлением подает горючее к ТНВД.

Задача ТНВД - распределить топливо по секциям (каждая соответствует конкретному цилиндру) и подать его на форсунки под высоким давлением соответственно циклу работы двигателя (очередности работы цилиндров).

Расположенные в головке блока цилиндров форсунки отвечают за точный дозированный впрыск и распыление горючего по стенкам камеры сгорания. Лишнее горючее вместе с воздухом отводится обратно в бак по дренажным трубопроводам.

Дизельные форсунки бывают закрытого и открытого типа. Рядовые четырехтактные дизельные ДВС оснащены форсунками закрытого типа, то есть их сопла (отверстие) закрываются запорной иглой, обеспечивая герметичность. То есть сообщение внутренней полости форсунок и камеры сгорания происходит только в момент открытия форсунки (впрыска топлива в камеру).

Важно: встречается нераздельная система питания дизеля, где ТНВД и форсунка объединены в единый узел - насос-форсунку. Но из-за специфики работы таких устройств (жесткая шумная работа двигателя), это решение не получило широкого распространения.

Чем отличается система питания турбированного дизельного мотора

Предназначение турбонаддува - повысить мощность двигателя без его конструктивных изменений вроде увеличения объема камеры сгорания и пр. Топливопроводящая система в дизельном двигателе с турбиной почти не отличается от атмосферного дизеля. А вот алгоритм и принцип подачи воздуха в цилиндр другой.  

Турбокомпрессор задействует энергию отработавших газов. Воздух поступает в турбину, сжимается там, охлаждается и нагнетается под высоким давлением в камеру сгорания. Турбины делятся на категории в зависимости от величины давления, которое они создают:

  • турбокомпрессоры с низким наддувом - давление не выше 0,15 МПа
  • среднего наддува - давление 0,2 МПа
  • высокого наддува - давление свыше 0,2 МПа

Система турбонаддува улучшает наполнение цилиндров воздухом и тем самым повышает эффективность сгорания топлива.  Так удается увеличить мощность турбированного дизельного ДВС на 30% и более, по сравнению с атмосферным.

К негативным последствиям наличия турбокомпрессора на дизельном ДВС относят увеличение температуры в камере сгорания. Это происходит из-за более интенсивного сгорания топливной смеси. Как следствие, возрастает механическая нагрузка на детали кривошипно-шатунного механизма и механизма газораспределения, что снижает ресурс турбированного двигателя в целом, по сравнению с атмосферным.

О том, какие существуют системы подачи топлива в дизельных двигателях, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

Дизельный двигатель – принцип работы, плюсы и минусы

Давно уже прошли времена, когда в индустрии гражданских автомобилей дизельный двигатель считался во многом компромиссным «меньшим братом» бензиновых моторов.

Благодаря особенностям дизельного топлива, такой тип ДВС имеет ряд очевидных преимуществ.

Сильные стороны настолько явны, что даже отечественные конструкторы ломали голову по внедрению этой технологии.

Сейчас такие моторы имеют Газель Next, УАЗ Патриот. Более того, были попытки установки дизельного двигателя на Ниву. К сожалению, выпуск ограничился небольшими экспортными партиями.

Позитивные факторы позволили дизельному двигателю завоевать популярность в каждом из автомобильных сегментов. Речь идёт о четырехтактной конфигурации, поскольку двухтактный дизельный двигатель не получил широкого применения.

Конструкция

Принцип работы дизельного двигателя заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма в механическую работу.

Способ приготовления и воспламенения топливной смеси – это то, чем отличается дизельный двигатель от бензинового. В камерах сгорания бензиновых моторов, приготовленная заранее топливно-воздушная смесь воспламеняется с помощью подаваемой свечой зажигания искры.

Особенность дизельного двигателя заключается в том, что смесеобразование происходит непосредственно в камере сгорания. Рабочий такт осуществляется путем впрыскивания под огромным давлением дозированной порции топлива. В конце такта сжатия реакция нагретого воздуха с дизтопливом приводит к воспламенению рабочей смеси.

Двухтактный дизельный двигатель имеет более узкую сферу применения.
Использование одноцилиндрового и многоцилиндрового дизелей такого типа имеет ряд конструктивных недостатков:

  • неэффективную продувку цилиндров;
  • повышенный расход масла при активном использовании;
  • залегание поршневых колец в условиях высокотемпературной эксплуатации и прочие.

Двухтактный дизельный двигатель с противоположным размещением поршневой группы имеет высокую первоначальную стоимость и очень сложен в обслуживании. Установка такого агрегата целесообразна лишь на морских судах. В таких условиях, благодаря небольшим габаритам, малой массе и большей мощности при идентичных оборотах и рабочем объеме, двухтактный дизельный двигатель более предпочтителен.

Одноцилиндровый агрегат внутреннего сгорания широко применяется в домашнем хозяйстве в качестве электрогенератора, двигателя для мотоблоков и самоходных шасси.

Такой тип получения энергии налагает определённые условия на устройство дизельного двигателя. Он не нуждается в бензонасосе, свечах, катушке зажигания, высоковольтных проводах и прочих узлах, жизненно необходимых для нормальной работы бензинового ДВС.

В нагнетании и подачи дизтоплива участвуют: топливный насос высокого давления и форсунки. Для облегчения холодного пуска современные моторы используют свечи накала, которые предварительно подогревают воздух в камере сгорания. Во многих автомобилях в баке устанавливается вспомогательный насос. Задача топливного насоса низкого давления в том, чтобы прокачать топливо от бака к топливной аппаратуре.

Пути развития

Инновации дизельного двигателя заключаются в эволюции топливной аппаратуры. Усилия конструкторов направлены на то, чтобы добиться точного момента впрыска и максимального распыления топлива.

Создание топливного «тумана» и деление процесса впрыска на фазы позволило достигнуть большей экономичности и повышения мощности.

Наиболее архаичные экземпляры имели механический ТНВД и отдельную топливную магистраль к каждой форсунке. Устройство двигателя и ТА такого типа обладали большой надежностью и ремонтопригодностью.

Дальнейший путь развития заключался в усложнении ТНВД дизельного двигателя. В нем появились изменяемые моменты впрыска, множество датчиков и электронное управление процессами. При этом использовались все те же механические форсунки. В таком типе конструкции давление впрыскиваемого топлива было от 100 до 200 кг/см².

Следующим шагом было внедрение системы Common raіl. В дизельном двигателе появилась топливная рампа, где может поддерживаться давление до 2 тыс. кг/см². ТНВД таких моторов стали значительно проще.

Основная конструктивная сложность заключается в форсунках. Именно с их помощью регулируется момент, давление и количество ступеней впрыска. Форсунки системы аккумуляторного типа очень требовательны к качеству топлива. Завоздушивание такой системы приводит к быстрому выходу из строя ее основных элементов. Дизельный двигатель с Common rail работает тихо, потребляет меньше топлива и имеет большую мощность. За все это приходится платить меньшим ресурсом и более высокой стоимостью ремонта.

Еще более высокотехнологичной является система с применением насос-форсунок. В ТА такого типа форсунка соединяет в себе функции нагнетания давления и распыления топлива. Параметры дизельного двигателя с насос-форсунками на порядок выше аналоговых систем. Впрочем, как и стоимость обслуживания и требования к качеству топлива.

Важность комплектации турбинами

Большинство современных дизелей комплектуются турбинами.

Турбонаддув – это эффективный способ повысить мощностные характеристики автомобиля.

Благодаря повышенному давлению выхлопных газов, использование турбин в паре с дизельным ДВС заметно повышает приёмистость и уменьшает расход топлива.

Турбина – далеко не самый надёжный агрегат автомобиля. Больше 150 тыс. км они зачастую не ходят. Это, пожалуй, её единственный минус.

Благодаря электронному блоку управления двигателем (ЭБУ), дизельному двигателю доступен чип тюнинг.

Преимущества и недостатки

Существует ряд факторов, которые выгодно отличают дизельные двигатели:

  • экономичность. КПД в 40% (до 50% с применением турбонаддува) просто недосягаемый показатель для бензинового собрата;
  • мощность. Практически весь крутящий момент доступен на самых низких оборотах. Турбированный дизельный двигатель не имеет ярко выраженной турбоямы. Такая приёмистость позволяет получить настоящее удовольствие от вождения;
  • надежность. Пробег самых надежных дизельных двигателей доходит до 700 тыс. км. И все это без ощутимых негативных последствий. Благодаря своей безотказности, дизельные ДВС ставят на спецтехнику и грузовики;
  • экологичность. В борьбе за сохранность окружающей среды дизельный двигатель превосходит бензиновые моторы. Меньшее количество выбрасываемого СО и использование технологии рециркуляции выхлопных газов (EGR) приносят минимум вреда.

Недостатки:

  • стоимость. Комплектация, оснащённая дизельным двигателем, будет стоить на 10% больше, чем такая же модель с бензиновым агрегатом;
  • сложность и дороговизна обслуживания. Узлы ДВС выполнены из более прочных материалов. Сложность устройства двигателя и топливной аппаратуры требует качественных материалов, новейших технологий и большого профессионализма в их изготовлении;
  • плохая теплоотдача. Большой процент КПД значит то, что при сгорании топлива происходят меньшие потери энергии. Другими словами, выделяется меньше тепла. В зимнее время года эксплуатация дизельного двигателя на короткие расстояния будет негативно сказываться на его ресурсности.

Рассмотренные минусы и плюсы не всегда уравновешивают друг друга. Поэтому вопрос о том, какой из двигателей лучше, будет стоять всегда. Если вы собираетесь стать владельцем такого автомобиля, учтите все особенности его выбора. Именно ваши требования к силовой установке будут тем фактором, который решит что лучше: бензиновый или дизельный двигатель.

Стоит ли покупать

Новые дизельные автомобили – это тот вид приобретения, который будет приносить только радость. Заправляя автомобиль качественным топливом и делая ТО согласно нормативным предписаниям, вы 100% не пожалеете о покупке.

Но стоит учитывать тот факт, что дизельные авто на порядок дороже своих бензиновых аналогов. Вы сможете компенсировать эту разницу и в последующем экономить только тогда, когда будете преодолевать большой километраж. Переплачивать с целью проезжать в год до 10 тыс. км. попросту не целесообразно.

Ситуация с б/у автомобилями немного иная. Несмотря на то, что дизельные двигатели отличаются большим запасом прочности, со временем сложная топливная аппаратура требует к себе повышенного внимания. Цены на запчасти к дизельному двигателю возрастом свыше 10 лет действительно удручающие.

Стоимость ТНВД на бюджетный автомобиль Б класса возрастом 15 лет может повергнуть в шок некоторых автолюбителей. К выбору авто с пробегом свыше 150 тыс. нужно относиться очень серьезно. Перед покупкой лучше сделать комплексную диагностику в специализированном сервисе. Так как низкое качество отечественного дизтоплива очень пагубно сказывается на ресурсе дизельного двигателя.

В этом случаи решить, какому двигателю лучше отдать предпочтение, поможет репутация производителя. К примеру, модель Mercedes-Benz OM602 по праву считается одним из самых надёжных дизельных двигателей в мире. Покупка автомобиля с подобным силовым агрегатом станет выгодным вложением на долгие годы. Многие производители имеют подобные «удачные» модели силовых установок.

Мифы и заблуждения

Несмотря на распространенность автомобилей с дизельным двигателем, в народе до сих пор существуют предрассудки и непонимание. «Тарахтит, зимой не греет, а в большой мороз не заведёшь, летом не едет, а если что-то поломается, так ещё поискать нужно мастера, который за космические деньги отремонтирует всё», – примерно такие слова можно услышать иногда от «опытных» автолюбителей.  Всё это отголоски прошлого!

  1. Благодаря современным технологиям, только рокот холостого хода позволяет отличить дизельные двигатели от бензиновых. В движении, когда шум дороги нарастает, разница не ощутима.
  2. Для улучшения запуска и прогрева в холодное время года в современных автомобилях используются различные вспомогательные системы. Ввиду нарастающей популярности, количество сервисов, специализированных на обслуживании дизельного двигателя, постоянно увеличивается.
  3. Бытует мнение, что ДВС работающий на дизеле сложно форсировать. Это верно, если мы говорим о модификациях цилиндропоршневой группы. В то же время чип тюнинг дизельного двигателя – это хороший способ повысить его мощностные характеристики без ухудшения ресурсности.

Стоит помнить о том, что принцип работы дизельного двигателя всецело направлен на достижения экономичности и надёжности. Не стоит требовать от таких ДВС заоблачных динамических показателей.

Симптомы и причины неисправностей

  • Плохой запуск дизельного двигателя на холодную, и после длительного простоя – означает плохо работающие свечи накала, воздух в системе, обратный клапан стравливает давление топлива, плохая компрессия, разряженный аккумулятор;
  • повышенная шумность, увеличенный расход и чёрный дым из выхлопной трубы – означает засорение или износ распылителей и форсунок, неправильные углы опережения впрыска, грязный фильтр очистки воздуха;
  • пропала мощность дизельного двигателя – означает отсутствие компрессии, выход из строя турбины, засорение топливного и воздушного фильтров, некорректные углы опережения впрыска, загрязненный клапан ЕГР;
  • серый или белый дым из выхлопной, повышенный расход масла – означает трещину ГБЦ или пробитую прокладку ГБЦ (уходит охлаждающая жидкость, а в масле появляется эмульсия), неисправность турбонагнетателя.

Правильная эксплуатация

Неправильная эксплуатация может погубить даже самый надежный мотор.

Продлить ресурс дизельного двигателя, и получать удовольствие от владения автомобилем вам поможет выполнение несложных правил:

  • дизельные двигатели с турбонаддувом очень требовательны к качеству масла и топлива. Заливайте только то масло, которое соответствует требованиям, установленным для вашего ДВС. Заправляйтесь только на проверенных АЗС;
  • проводите ТО топливной аппаратуры и системы предпускового подогрева в соответствии с заявленными производителем нормами. В этом случае у вас не возникнет проблем с запуском дизельного двигателя в холодное время года. Эксплуатация агрегата с неправильно работающей форсункой впоследствии может привести к дорогостоящему ремонту ДВС;
  • после активных поездок турбина нуждается в охлаждении. Не глушите мотор сразу же. Дайте ему поработать некоторое время на холостых оборотах;
  • избегайте запуска «с толкача». Такой способ оживления мотора может причинить большой вред кривошипно-шатунному механизму вашего ДВС.

Оба типа двигателей имеют не только плюсы, но и минусы. Главная цель автомобиля – соответствовать вашим требованиям, неважно, установлен в нем бензиновый или дизельный двигатель. Что лучше подойдёт вам, зависит только от индивидуальных предпочтений.

Современные инновационные технологии и прогрессивный маркетинг позволяют людям выбирать из автомобилей, которые они могут себе позволить. Нам всё меньше приходится идти на компромисс и жертвовать отдельными параметрами. Особенно эта тенденция заметна в процессе эволюции дизельных автомобилей.

Диагностика и ремонт топливной аппаратуры дизельных двигателей

Своевременная диагностика и ремонт топливной системы автомобиля позволяют быть уверенным в надежности железного коня, максимально увеличивают ресурс силового агрегата и сопутствующих узлов и улучшают эксплуатационные характеристики машины. Связанно это с невозможностью обеспечить оптимальное сгорание топлива при неисправности любой из деталей питания дизеля, поэтому при возникновении любых симптомов поломок или снижении динамических показателей автовладельцу рекомендуется посетить станцию технического обслуживания или провести проверку состояния топливной системы самостоятельно.

Структурный вид топливной системы

Важность проведения своевременного технического обслуживания

Схема топливной системы двигателя состоит из нескольких самостоятельных узлов, объединенных топливопроводами. Выход любого элемента из строя ведет к повышенному износу всех остальных частей топливоподачи, поэтому затягивание с определением виновника неправильной подачи горючего вызывает дополнительные повреждения, что ведет к увеличению стоимости ремонта и необходимости заменять большее количество деталей.

Топливоподкачивающий насос

Так, например, вышедший из строя топливоподкачивающий насос не сможет поддерживать подачу достаточного количества горючего тнвд. Это в свою очередь приведет к ускоренному его износу. Помимо этого не будет обеспечиваться достаточное давление топлива, подаваемого в форсунки.

Топливный насос высокого давления

В результате низкого давления горючего в топливной рампе форсунки не будут нормально дозировать и распылять дизтопливо. Двигатель отклонится от оптимального режима работы. Электронный блок управления будет пытаться скорректировать ситуацию и выдаст сигнал об ошибке.

Форсунка

Если автовладелец не будет обращать внимание на поломку, то из-за неправильной подачи топлива силовой агрегат будет изнашиваться в ускоренном темпе. Так, вместо замены недорого топливоподкачивающего насоса, возникнет необходимость капитального ремонта двигателя и его системы питания. Это и есть основная причина, почему важно вовремя проводить диагностику топливоподачи.

Причины, вызывающие неисправности

Основными причинами, способными вызвать неисправности топливной системы дизельного двигателя, являются:

  • низкое качество заправляемого дизтоплива;
  • случайное попадание бензина в топливный бак;
  • отсутствие качественного технического обслуживания;
  • стиль езды, вызывающий механические повреждения и подсос воздуха в топливную магистраль.

Разнообразие топливных систем

Состояние фильтра также играет немаловажную роль. При его ненадлежащем состоянии происходит забивание магистралей. Топливная аппаратура для своей нормальной работы требует своевременной чистки и слива конденсата из фильтрующего элемента. При этом необходимо визуально осматривать его состояние и при необходимости производить замену.

Признаки необходимости проведения диагностики

О том, что в ближайшее время потребуется ремонт топливной аппаратуры дизельных двигателей может сигнализировать затруднительный запуск мотора. Причинами, вызывающими нестабильное включение движков являются:

  • системы впрыска топлива не обеспечивает достаточное распыление горючего;
  • чрезмерный износ нагнетательных элементов не способных обеспечить требуемое давление;
  • момент впрыска имеет неправильный угол опережения, требуется его настройка;
  • воздух в топливной системе создает нехватку дизеля перед ТНВД;
  • впрыскивание горючего слишком малой дозой, то есть необходима регулировка;
  • Несезонность топлива, залитого в бак.

Ухудшение динамических характеристик свидетельствует о том, что  топливная система дизельного двигателя требует внимания автовладельца. Причинами, почему дизельный двигатель, потерял мощность могут быть:

  • неправильная регулировка насоса;
  • износ распылителей;
  • завоздушена топливная система;
  • снижение производительности подкачивающего насоса.

Также симптомами того, что необходима диагностика топливной системы дизельного двигателя, являются:

  • черный выхлоп, возникающий, когда подача топлива происходит с опозданием, либо свидетельствующий о неоптимальном смесеобразовании;
  • жесткая работа мотора, возникающая при разном дозировании топлива в цилиндры;
  • серый дым из выхлопной трубы, говорящий, что в дизельном двигателе неверное время опережения впрыска;
  • высокая температура двигателя, возникающая из-за плохого распыления горючего форсунками;
  • посторонний шум при работе, возникающий из-за попадания воздуха в топливную систему;
  • нестабильные обороты холостого хода;
  • внезапная остановка мотора как под нагрузкой, так и в холостую;
  • при отключении двигателя он продолжает работать, так как топливо просачивается через электромагнитный клапан;
  • визуальное обнаружении течи солярки.

Возрастание расхода топлива без смены стиля вождения также должно насторожить автовладельца. Причиной этого не обязательно может быть система питания, но диагностика топливной аппаратуры дизельных двигателей не будет лишней в такой ситуации. Лишь убедившись в полной исправности топливоподачи можно переходить к поиску других возможных причин увеличения потребления горючего.

Основные методы диагностики

Диагностика топливной системы легковых и грузовых автомобилей, оборудованных дизельными двигателями проводится тремя основными способами:

  • все оборудование подлежит визуально-акустическому осмотру;
  • измерение параметров при помощи проборов и стендов;
  • электронная диагностика с применением считывающего сканера и персонального компьютера.

Стенд для проведения диагностики

Каждый из методов дополняет друг друга, помогая выявить поломки различного типа. Так, при визуальном осмотре обнаруживаются наиболее грубые неисправности, например, механические повреждения. Акустической диагностикой можно обнаружить посторонние звуки, возникающие в дизельных моторах. Компьютерная и стендовая проверки позволяют обнаружить поломки в электронике. Некоторые производители, например, кубота и делфи имеют собственные считывающие сканеры и программное обеспечение для поиска неисправностей.

Применение компьютера для выявления проблем

Одним из главных преимуществ компьютерной диагностики является возможность определить поломку без демонтажа и разборки узлов. Вся информация, поступающая с датчиков, подлежит обработке. После этого круг виновников неисправности сужается.

Для проведения такого вида операций персонал должен пройти специальное обучение по ремонту топливной аппаратуры современными методами. При отсутствии высококлассифицированных специалистов наличие сканера и персонального компьютера не помогут в поиске неисправности. Это является причиной невозможности повсеместного распространения электронной диагностики.

Причины наличия подсоса воздуха

Устройство топливной системы дизельного двигателя не способно работать нормально при наличии даже небольшого количества воздуха в топливной магистрали. Причинами, почему топливопровод завоздушивается, могут быть:

  • изношенность уплотнителей;
  • механические повреждения топливных шлангов, что является частой поломкой на топливных магистралях техники кубота;
  • низкий уровень топлива в баке.

Фильтр является расходником, подлежащим периодической замене. Неправильная установка или низкое качество могут привести к попаданию воздуха, поэтому если проблемы начались после техобслуживания, отремонтировать машину можно проверкой состояния фильтрующего элемента.

Развоздушивание топливной системы

Перед тем как прокачивать топливную систему необходимо определить место подсоса воздуха. Для этого необходимо придерживаться следующего плана действий:

  1. Обследовать топливную магистраль на наличие следов вытекания солярки;
  2. Отсоединить топливоподачу и обратку от ТНВД;
  3. Подсоединить топливный насос повышения давления к емкости с горючим;
  4. Расположить тару выше ТНВД;
  5. Подождать несколько часов;
  6. Запустить двигатель. Если симптомы наличия воздуха в системе пропали, значит следует менять топливные шланги;
  7. Опустить емкость ниже уровня ТНВД и подождать несколько часов;
  8. Завести мотор. При подсосе воздуха через насос, появятся симптомы завоздушивания системы.

Инструкция о том, как прокачать топливную систему дизельного двигателя:

  1. Ослабить болт обратки;
  2. Снять трубки идущие к форсункам;
  3. Прокрутить коленвал;
  4. Дождаться появления топлива и вернуть шланги на место.

Прокачка может быть проведена и без снятия трубок с форсунок. В таком случае потребуется больше времени. Обнаружить момент развоздушивания системы будет сложнее.

Своевременное проведение диагностики убережет автомобиль от неприятностей. При обнаружении любого из симптомов необходимости ремонта топливной системы дизельного двигателей не рекомендуется затягивать с поездкой на станцию технического обслуживания. Тем более современные методы проверки позволяют производить все действия непосредственно на машине без демонтажа деталей и узлов.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Топливная система современного автомобиля — 5 важных конструктивных элементов

Топливная система авто – это одна из ключевых систем в автомобиле. Её неисправность или неправильная работа могут привести к дорогостоящим ремонтам или перерасходу топлива. Схема топливной системы современных авто состоит из пяти ключевых элементов. Системы дизельного и бензинового двигателя отличаются. Про особенности их конструкций читайте ниже.

Содержание статьи

Назначение топливной системы

Топливная система нужна для доставки бензина, дизеля из топливного бака непосредственно в цилиндры двигателя. По пути оно смешивается с воздухом и уже в поршневую систему доходит смесь, состоящая из топлива и воздуха. В цилиндрах происходит детонация, иными словами микровзрыв топливной смеси. Энергия, полученная от детонации, передаётся на коленвал, там преобразуется в крутящий момент и потом переходит на колёса автомобиля.

Устройство и основные конструктивные элементы

По конструкции всю топливную систему можно разделить на такие элементы:

  1. Бак для топлива. Баки бывают разные по конфигурации и объёму. Оснащены датчиком уровня топлива, который даёт понимание водителю об уровне наполненности бака. Для заливки топлива в баке есть горловина, закрывающаяся крышкой.
  2. Топливные магистрали. Представляют собой набор трубчатых магистралей, по которым топливо доходит из бака до распределяющего устройства.
  3. Фильтры. Применяются фильтры грубой и тонкой очистки. Фильтр грубой очистки монтируется непосредственно на бак с топливом и представляет собой металлическую решётку. Этот фильтр не даёт проникнуть большим частичкам загрязнений в магистрали топливной системы. Фильтр тонкой очистки устанавливается непосредственно в моторном отсеке перед топливным насосом. Он уже отлавливает более маленькие частички грязи.
  4. Топливные насосы. По конструкции устанавливают два или один топливный насос. Их количество зависит от конструкции смеси образователя. В карбюраторных типах насос стоит один. В дизельных двигателях устанавливают насосы низкого и высокого давления.
  5. Смесеобразователь. Этот элемент отвечает за смешивание топлива с воздухом и впрыск смеси в двигатель. В бензиновых двигателях это карбюратор или же инжектор.

Типы систем подачи топлива в двигатель

В зависимости от конструкции автомобиля, его года выпуска и типа горючего материала, на котором он работает, топливные системы имеют свои отличия.

По типу топлива:

  • бензиновые;
  • дизельные.

Конструкция этих топливных систем кардинально различается и об их особенностях читайте ниже.

Бензиновые в свою очередь разделяются на:

  • карбюраторные;
  •  инжекторы.

В современных автомобилях карбюраторные подачи топлива почти не встречаются. В большинстве стоят именно инжекторы. Но авто, выпущенные 10 — 15 лет назад оснащались карбюраторами, поэтому принцип работы таких систем мы тоже разберём.

Топливная система карбюраторных двигателей

По конструкции карбюратор состоит из корпуса, поплавковой камеры, клапанов, жиклеров, смеси образующей камеры. В карбюраторной системе топливный насос устанавливается один —  малого давления. Устанавливается он в моторном отделении, недалеко от карбюратора. Насос накачивает топливо в поплавковую камеру. Своё название эта камера получила за счёт поплавка, который регулирует её наполнение. Если в камере больше топлива, чем нужно, поплавок подымает игольчатый клапан. Игольчатый клапан закрывает подачу топлива в камеру. При недостатке топлива в камере весь процесс происходит наоборот.

Из поплавковой камеры топливо через жиклер, который представляет собой трубочку с малым отверстием, подаётся в камеру смешивания. В этой камере бензин смешивается с воздухом, который в свою очередь поступает из воздухозаборника.

Регулируется подача топлива дроссельной заслонкой, а она тросиком связана с педалью газа в авто. Из карбюратора смесь подаётся в двигатель с помощью обратной тяги от цилиндропоршневой группы. Иными словами, поршень всасывает топливную смесь.

Бывают три вида топливной смеси:

  1. Обогащённая. В составе этой смеси увеличенное количество топлива и уменьшенный объём воздуха. Это приводит в свою очередь к перерасходу топлива. Такую смесь применяют при запуске двигателя автомобиля. Регулируется это с помощью так называемого «подсоса». После прогрева двигателя смесь необходимо сделать нормальной и убрать «подсос».
  2. Нормальная. В составе смеси нужное количество топлива и воздуха. Это иными словами золотая середина.
  3. Обеднённая. В этой смеси количество воздуха больше нужного, а топлива меньше. Это влечёт за собой уменьшение расхода и мощности. Машина будет с трудом подниматься на горки, особенно гружёная. Скорость станет значительно меньше.

Регулируется качество смеси на карбюраторе болтом. Вообще стоит сказать, что на карбюраторе есть винт холостого хода и качества смеси. Именно винтом качества смеси и регулируется её состав.

Если нет понимания, как регулировать, то лучше доверить это дело профессионалу. Эта работа очень точная и здесь нужны навыки.

Одна из самых частых проблем карбюраторных типов систем — это как раз самостоятельная регулировка. Бывают ситуации, что дело вовсе не в настройках, а, например, в поломанном игловом клапане. Из-за переполнения поплавковой камеры расход увеличивается, а автолюбители начинают крутить винты смеси образователя. Это не приводит ни к чему.

Особенности топливной системы инжекторного двигателя

Несхожесть инжекторного типа двигателя и карбюраторного в следующем. Топливный насос создает высокое давление и подаёт горючее на топливную рампу, а с неё через форсунки в двигатель. Регулирует подачу топлива, его количество и качество блок управления.

Делать какие-то регулировки возможно только через специальный компьютер. Кроме того, блок управления не даст сигнала на подачу топлива, если хотя бы один датчик в автомобиле вышел из строя. На панели будет выдаваться ошибка с названием. По названию ошибки можно расшифровать, какой именно датчик вышел из строя.

Схема топливной системы дизельного двигателя

В дизельном двигателе топливная система отличается от бензиновой. Воспламенение топливной смеси происходит вследствие сжатия воздуха и его нагрева. В таких системах не применяются свечи для детонации смеси. В дизельных двигателях применяются свечи, но накаливания. Они служат для подогрева топливной системы при пуске. При работе они не нужны.

В дизельной системе есть два топливных насоса. Один из них высокого давления, а другой низкого. Насос низкого давления качает топливо из бака. Насос высокого давления создаёт нужное давление в системе при впрыскивании. Роль распределителя выполняют форсунки, они дозируют количество смеси и определяют её качество. Для проверки износа форсунок есть специальный стенд.

Особенностью дизельного двигателя является отсутствие регулирования качества смеси. Особенно это сказывается зимой при низких температурах. Так же в зимнее время дизель начинает подмерзать. Для того, чтобы этого не случалось, применяют присадки.

Заключение

Топливная система напрямую влияет на расход бензина или дизеля автомобиля. Если за системой нет должного контроля и она попросту не обслуживается, то это увеличивает расход топлива автомобиля. Как показывает практика, легче поддерживать в надлежащем состоянии то, что есть, нежели ремонтировать запущенное.

Нужно регулярно менять расходные материалы, а именно — топливные фильтры и проходить диагностику систем подачи топлива (карбюратора, инжектора, форсунок). Это поможет сэкономить и деньги, и время.

6.2. Система впрыска топлива дизельного двигателя

Общая информация

В состав топливной системы входят: установленный в задней части автомобиля (под подушкой заднего сиденья) топливный бак, топливный фильтр, форсунки, топливные трубки и шланги, датчик запаса топлива, расположенный внутри бака и блок электронного управления двигателем.

Топливо подается специальным насосом через фильтр. В фильтре оседает грязь и вода, содержащаяся в топливе.
При работе дизельного двигателя в его цилиндры всасывается чистый воздух, который сжимается до высокого давления.

При этом температура воздуха поднимается до 700 - 900°С, превышающую температуру воспламенения дизельного топлива. Топливо впрыскивается в цилиндр с некоторым опережением и воспламеняется. Таким образом, свечи зажигания для воспламенения топлива не используются.

Для уменьшения доли вредных веществ в отработавших газах дизельные двигатели имеют дизельный окислительный каталитический преобразователь. Одновременно система рециркуляции обеспечивает существенное снижение в отработавших газах содержание окислов азота. Это достигается благодаря подаче отработавших газов к всасываемому двигателем воздуху, что обеспечивает снижение концентрации кислорода в воздухе, поступающем в цилиндры двигателя. Это приводит к снижению задержки воспламенения и к более низкой температуре сгорания, что в итоге уменьшает образование NOx. Процесс рециркуляции отработавших газов должен однако точно дозироваться, так как в противном случае возрастает содержание копоти в отработавших газах. Для этого количество засасываемого воздуха определяется измерителем, что позволяет электронному прибору управлять процессом рециркуляции.

Впрыск топлива осуществляется непосредственно в камеру сгорания.

Функциональная схема системы впрыска дизельного двигателя

1 — ТНВД
2 — Центробежный регулятор
60 — Клапан EGR
61а — Жиклер
61b — Жиклер 0.5
61с — Жиклер 0.7
62 — Фильтр
62а — Фильтр
65 — Вакуумный распределитель
67 — Вакуумный насос
72 — Вакуумный клапан
103 — Анероидный компенсатор (ALDA)
110 — Выпускной коллектор
137 — Турбокомпрессор
137а — Вакуумный привод управления давлением наддува
138 — Впускной трубопровод
224 — Педаль акселератор
В2/1 — Датчик расхода воздуха

В2/1а — Датчик температуры воздуха во впускном трубопроводе
В5/1 — Датчик давления
В11/4 — Датчик температуры охлаждающей жидкости
L3 — Датчик скорости вращения зубчатого венца маховика
L7 — Топливная магистраль
N39 — Процессорный блок EDS
Y22 — Электромагнитный привод электронной системы управления оборотами холостого хода (ELR)
Y27 — Переключающий клапан EGR
Y31/1 — Датчик разрежения EGR
Y31/4 — Датчик разрежения системы управления давлением наддува
Y31/6 — Отсечной клапан системы управления давлением наддува
Обозначения:
А — Всасываемый воздух
В — Отработавшие газы
а — Вентиляционный канал, ведущий к салону
с — Прочие потребители разрежения


Пневмосоединения на датчиках

VAC

Разрежение от вакуумного насоса

ATM

Вентиляционный канал, ведущий к салону

OUT

От датчика Y31/1 к переключающему клапану системы рециркуляции Y27

OUT

От датчика Y31/4 к вакуумному приводу клапана распределителя, управляющего давлением воздуха

Двигатель управляется электронной системой, похожей на систему управления бензиновыми двигателями. Система управляет работой двигателя, анализируя информацию, поступающую от большого числа датчиков.

Схема прокладки вакуумных соединений

Схема прокладки вакуумных линий (турбодизельный двигатель 3.0 л)

1 — К прочим потребителям разрежения
2 — Вентиляционный фильтр вакуумного трансдюсера управления наддувом/функционированием заслонки управления давлением
3 — Турбокомпрессор
4 — Датчик давления
5 — Контрольный клапан с диаметром проходного сечения 8 мм
6 — Соединительный разъем

7 — Вакуумный трансдюсер управления наддувом/функционированием заслонки управления давлением
8 — Вакуумный насос
9 — Клапан системы рециркуляции отработавших газов (EGR)
10 — Вакуумный трансдюсер клапана EGR
11 — Интеркулер
12 — Вентиляционный фильтр вакуумного трансдюсера клапана EGR


На дизельных моделях нет троса акселератора. Вместо него на педаль установлен датчик ее положения.

Клапан отсечки топлива при выключении зажигания отсутствует. Для того, чтобы заглушить двигатель при выключении зажигания, блок управления двигателем посылает в блок управления ТНВД сигнал, который, в свою очередь, прекращает подачу топлива к форсункам.

Топливная система спроектирована таким образом, чтобы не допустить «подсоса» воздуха при отсутствии топлива в баке. Блок управления постоянно проверяет уровень топлива в баке, обрабатывая информацию, поступающую от датчика запаса топлива, расположенного в баке. При падении запаса топлива до определенного уровня блок управления зажигает предупреждающую лампу на приборной доске, после чего принудительно вызывает пропуски подачи топлива, ограничивая тем самым максимальную скорость. Это продолжается до тех пор, пока уровень топлива в баке не превысит допустимую отметку.

Информация о положении коленвала и скорости вращения двигателя поступает в блок управления от датчика положения коленвала (CKP). Индуктивная головка датчика расположена напротив маховика и постоянно сканирует специальные метки (36 штук), нанесенные на его поверхность. При прохождении метки мимо головки датчика он посылает импульс в блок управления. Метки равномерно нанесены на поверхность маховика, но одна метка пропущена. Она должна располагаться в 90° до ВМТ первого цилиндра. В момент прохождения маховиком этой точки датчик не посылает импульс в блок управления. Блок распознает эту паузу и точно определяет момент ВМТ. Длительность этой паузы используется для определения скорости вращения двигателя.

Информация о количестве и температуре поступающего в двигатель воздуха поступает от датчика абсолютного давления впускном трубопроводе (MAP) и датчиков температуры воздуха. Датчик абсолютного давления соединен с трубопроводом вакуумным шлангом и измеряет давление в нем. Установлено два датчика температуры воздуха. Один установлен перед турбокомпрессором, а другой - после интеркулера. Температура и давление воздуха используются для расчета точного количества топлива, которое необходимо падать к форсункам.

Традиционный датчик температуры охлаждающей жидкости заменен на датчик температуры головки блока. Он измеряет температуру головки и посылает полученную информацию в блок управления. Анализируя эту информацию, блок управления корректирует состав и момент впрыска топливной смеси, а также управляет системой прогрева холодного двигателя.

Выключатель стоп-сигналов и датчик педали тормоза информирует блок управления о текущем положении педали тормоза. При получении сигналов с этих датчиков система управления мгновенно переводит двигатель на холостой ход до тех пор, пока не получит сигнал с датчика положения педали акселератора.

Трос акселератора отсутствует. Вместо него на установлен датчик положения педали акселератора. Датчик постоянно информирует блок управления о положении педали, который, в свою очередь, точно рассчитывает параметры впрыска. Холостые обороты также регулируются блоком управления и не могут быть отрегулированы вручную. Анализируя информацию, поступающую с различных датчиков, блок управления рассчитывает величину оборотов холостого хода, корректируя их в зависимости от нагрузки на двигатель и его температуры.

Система впрыска топлива является системой прямого впрыска. В днищах поршней находятся вихревые камеры, обеспечивающие завихрение поступающего в камеры сгорания топлива. Для оптимизации сгорания топлива форсунки открываются в два этапа (для этого внутри каждой форсунки находятся две пружины). При открытии форсунки небольшая часть топлива попадает на внутренние компоненты форсунки, смазывая их, и возвращается в топливный бак.

Управление прогревом холодного двигателя осуществляется блоком управления двигателем. При холодном двигателе момент впрыска смещается блоком управления. Блок управления двигателем, в свою очередь, управляет работой свечей накаливания. Свечи накаливания установлены в каждый цилиндр и включаются перед запуском двигателя, работаю во время проворачивания двигателя стартером и некоторое время после запуска двигателя. Свечи значительно облегчают запуск холодного двигателя. После включения зажигания на приборной доске загорается соответствующая контрольная лампа (обратитесь к Оборудование автомобиля, расположение приборов и органов управления Главы Руководство по эксплуатации), сигнализирующее о включении свечей накаливания. Как только лампа погаснет, Вы можете запускать двигатель. Если температура окружающего воздуха очень низкая, свечи продолжают работать еще некоторое время после запуска двигателя. Этим достигается стабильная работа двигателя и снижение вредных примесей в отработавших газах.

Вследствие высоких пусковых качеств двигателя с непосредственным впрыском в холодном состоянии предварительный накал требуется только при температуре ниже -10°С.

Топливо проходит через топливный фильтр. В фильтре топливо отделяется от воды и загрязнений. Поэтому важно удалять из топлива воду и производить своевременную замену фильтрующего элемента.

Топливная система дизельных двигателей очень надежна. При использовании чистого топлива и выполнении регулярного обслуживания она должна исправно функционировать до окончания срока службы автомобиля. После очень большого пробега внутренние компоненты форсунок могут износиться, и их будет необходимо отремонтировать. Поскольку насос - форсунки имеют сложную конструкцию, ремонт рекомендуется выполнять в специализированной мастерской.

Дизельные топливные системы Common Rail

Common Rail - аккумуляторная топливная система

Для инженеров-проектировщиков двигателей «рельс» в системе Common Rail представляет собой трубчатый аккумулятор высокого давления, который поддерживает подачу топлива при постоянном высоком давлении. Рельс питается от насоса, приводимого в движение зубчатым колесом. Инжекторы соединены с общей направляющей короткими стальными трубами и открыты и закрыты электрическими импульсами.

Впрыск топлива Common Rail является единственной технологией, которая разделяет процессы повышения давления и впрыска. В то время как все другие системы создают давление последовательно для каждого такта впрыска, в системе Common Rail используется насос высокого давления, который, по существу, хранит резервуар топлива под высоким давлением. Таким образом, параметры впрыска можно свободно контролировать, предоставляя разработчикам двигателей свободу делить событие впрыска на несколько отдельных впрыскиваний, происходящих во время каждого оборота двигателя. Пилотные впрыскивания до того, как поршень достигнет верхней мертвой точки в цилиндре, позволяют постепенно нарастить давление топлива, чтобы сгорание было тише. Последующие инъекции уменьшают выбросы и также используются для регенерации сажевого фильтра.

Системы Common Rail в настоящее время достигают системного давления до 2000 бар. Обычно они работают вместе с блоком предварительной подачи топлива.

Рекомплекты насос-форсунок BOSCH для двигателей 1.4, 1.9, 2.0 (rus.) Фотоотчет

Сбой в работе топливной системы на двигателях TDI Common Rail (rus.)
Сводка TPI 2024480. Описание неисправности: Контрольная лампа свечей накаливания горит во время движения. Двигатель не развивает мощность. Двигатель не запускается.

Основы двигателей TDI (rus.) Техническое обучение VW.
Содержание: Развитие блоков управления дизельных двигателей, TDI-двигатель, Процесс смесеобразования в двигателе 2.5 V6 TDI, Форсунки с 5 отверстиями, Основной впрыск, Принцип работы насос-форсунки.

Датчики дизельных двигателей (rus.) Техническое обучение VW.
Содержание: Датчик числа оборотов G28, Расходомер воздуха G70, G42 / G70, Расходомер воздуха, Датчик положения педали G79, Выключатель педали тормоза и стоп-сигнала F / F47, Датчик положения педали G79 с F8 и F60, Выключатель педали сцепления F36, Датчик температуры охл. жидкости G62, Датчик температуры засасываемого воздуха G72, Датчик температуры/ давления засасываемого воздуха G71/72, Датчик высоты F96, Температурный датчик охл.жидкости топлива G81/62, Датчик хода регулятора G149, Датчик хода иглы G80, Контроль уровня воды, AGR-клапан.

Системы управления дизельными двигателями (Bosch) (rus.) В книге представлены: системы наполнения цилиндров воздухом; рядные ТНВД; распределительные ТНВД; индивидуальные механические ТНВД; насос-форсунки; индивидуальные ТНВД с электромагнитным клапаном; система Common Rail; электронное управление работой дизельного двигателя - датчики и исполнительные механизмы, блок управления, электронное регулирование; электронная диагностика и оснащение станций технического обслуживания; методы снижения токсичности отработавших газов; стандарты, регламентирующие уровень вредных выбросов и др. 78 Мб.

Топливная система дизельных двигателей (rus.) Техническое обучение VW.
Содержание: Бак для биодизельного топлива, 3 цилиндровый двигатель TDI, Электрический топливный насос, Датчик температуры топлива G81, Топливный насос роторно-пластинчатого типа, Топливный насос двигателя 2,0l TDI, Функционирование топливного насоса, Тандемный тасос, Топливная система с насос-форсунками, Топливная магистраль, Охлаждение топлива, наполнение, предварительный впрыск, Насос-форсунка TDI, 2,0l TDI двигатель, предварительный впрыск, Демпфирование движения иглы, Насос-форсунка TDI, Конец предварительного впрыска, Главный впрыск, продление интервалов сервисного обслуживания (WIV), Управление насос-форсункой, Датчик Холла G40, Насос-форсунка TDI, Сопоставление сигналов (4 цилиндровый двигатель), Сопоставление сигналов (3 цилиндровый двигатель)

Топливная система дизельных двигателей (rus.) Техническое обучение VW.
Содержание: ТНВД, Блок управления двигателем 2.5l TDI, Системный обзор, Регулирование массы топлива, Датчик хода регулятора G149, Регулирование начала впрыска, Внутренние функции, самодиагностика, Дополнительные сигналы

Топливная система дизельных двигателей (rus.) Техническое обучение VW.
Содержание: Датчик отсутствия топлива (Reed-контакт), Топливная система, Центробежный насос, Нагнетающий насос, Возможность проверки, VP 44, VP 44 S3, VP 44 S3.5, магнитный клапан с увеличивающейся динамикой, Подача топлива под высоким давлением, Форсунка высокого давления, Обзор системы предстартового подогрева, Обзор системы, Блок управления насосом, Специфические датчики, Датчик температуры масла G8, Регулирование количества топлива, Регулирование начала впрыска, Дополнительные сигналы

Насос-форсунка с пьезоэлектрическим клапаном (rus.) Конструкция и принцип действия. Пособие по программе самообразования 352 VW/Audi.
Применение насос-форсунок и постоянное улучшение их конструкции позволили повысить давления впрыска, точность дозирования топлива и улучшить КПД топливной аппаратуры дизелей и тем самым обеспечить их высокую конкурентоспособность. Разработанная совместно с фирмой Siemens VDO Automotive AG насос-форсунка не только сохраняет известные преимущества предыдущей конструкции, но и обладает рядом улучшенных характеристик в отношении формирования запальной, основной и дополнительных доз топлива. В результате применения в ее конструкции ряда перспективных технических решений удалось улучшить смесеобразование и повысить КПД ее привода, а также снизить шум, производимый при работе топливной аппаратуры.
Содержание: Введение, Общие сведения, Улучшенные характеристики новой насос-форсунки, Устройство насос-форсунки, Общая конструкция, Пьезоэлектрический клапан, Полость пружины форсунки, Процесс впрыска топлива, Впрыск запальной дозы, Впрыск основной дозы, Впрыск дополнительной дозы, Техническое обслуживание.

Диагностика дизельных двигателей. Системы с насос-форсунками Bosch (rus.) Контур низкого давления, Контур высокого давления, Проверка насос-форсунок, Демонтаж и монтаж насос-форсунок, Управление цикловой подачей топлива, Рециркуляция ОГ, Регулирование давления наддува. Руководство по диагностике и ремонту.

Дизельные аккумуляторные топливные системы Common Rail (rus.) В руководстве по самообразованию Bosch описаны дизельные аккумуляторные топливные системы Common Rail, область применения топливных систем дизелей, технические требования, конструкции ТНВД, обзор топливных систем, характеристики впрыска топлива, снижение токсичности ОГ, устройство и работа компонентов топливной системы, система электронного управления (EDC), обзор систем электронного управления, обработка данных в электронном блоке управления дизелей, передача данных другим системам, системы облегчения пуска двигателя. 38 Мб.
Дизельные аккумуляторные топливные системы Common Rail (CR) (rus.) Учебное пособие Bosch. Данное пособие содержит всю необходимую информацию, касающуюся топливной системы Common Rail, ее компонентов, устройства и функционирования.
Содержание: Применение топливных систем дизелей, Область применения, Технические требования, Конструкции ТНВД, Аккумуляторная топливная система Common Rail, Обзор топливных систем, Характеристики впрыска топлива, Снижение токсичности ОГ, Топливная система, Устройство и работа компонентов топливной системы, Система электронного управления дизелей (EDC), Электронное управление дизелей (EDC), Технические требования, Обзор систем электронного управления, Обработка данных в электронном блоке управления дизелей, Передача данных другим системам, Системы облегчения пуска двигателя. 1,5 Мб.

Аккумуляторная топливная система Common Rail (rus.) Техническое руководство компании Bosch.
Настоящая Техническая инструкция содержит всю необходимую информацию, касающуюся топливной системы "Common Rail", ее компонентов, устройства и функционирования вместе с детальным описанием того, насколько эта система эффективна в выполнении указанных выше требований. Новым подходом в этой системе является наличие аккумулятора топлива, находящегося под постоянным давлением, специальная система подачи топлива под высоким давлением, форсунки и система электронного управления, которая способна решать сложные задачи управления двигателем. Эта система не будет иметь проблем с все более ужесточающимся законодательством по эмиссии вредных веществ с ОГ и различными условиями в будущем.

Каталог повреждений инжектора системы Common Rail (rus.) Руководство Bosch GmbH.
В фирменном материале приведены практически все возможные неисправности и повреждения форсунок системы Common Rail (двигатели легковых и грузовых автомобилей). Информация дана в следующей последовательности: рекламация - картина неисправности - возможные причины - решение по гарантии. Пособие содержит прекрасные наглядные иллюстрации всех видов повреждений форсунок, а также краткое описание картины и причин неисправности. 8 Mb. 48 стр.

Системы впрыскивания дизельного топлива и управления двигателем. Базовая информация (rus.) Учебное руководство Ford.
Хорошее руководство для желающих понимать принципы работы современных дизельных двигателей и основы их диагностики. Руководство применимо к дизельным двигателям разных производителей.
Для удовлетворения требований по токсичности отработавших газов система впрыска должна впрыскивать топливо под высоким давлением в камеру сгорания для приготовления оптимальной рабочей смеси и при этом максимально точно дозировать количество впрыскиваемого топлива. Система Common-Rail фирмы Bosch обладает высоким потенциалом для дальнейшего развития, которому придается сегодня и на будущее большое значение. Благодаря разделению процесса нагнетания давления и процесса впрыска всегда создается оптимальное давление впрыска, вне зависимости от частоты вращения вала двигателя. Постоянно совершенствуемая система управления двигателем обеспечивает точный расчет момента впрыска и количества впрыскиваемого топлива, а также его подачу через топливные форсунки в цилиндры двигателя.
Данная информация для техников образует базу для изучения топливных систем высокого давления фирм: Bosch, Continental, Delphi, Denso.
90 страниц.

Системы впрыскивания дизельного топлива и управления двигателем. Системы впрыска Common-Rail (rus.) Учебное руководство Ford.
Хорошее руководство для желающих понимать принципы работы современных дизельных двигателей и основы их диагностики. Руководство применимо к дизельным двигателям разных производителей.
В настоящей технической информации описываются варианты системы Common-Rail
Содержание: Обзор систем, Процесс впрыска, Крутящий момент, Норма токсичности ОГ Евро IV с DPF и без него, Обеспечение чистоты при проведении работ на системе Common-Rail
Топливная система, Система низкого давления, Система Common-Rail фирмы Bosch, Система впрыска Common-Rail фирмы Siemens, Система Common-Rail фирмы Denso
Модуль (Блок) управления силовым агрегатом (РСМ), Входные сигналы, Выходные сигналы, Диагностика, PCM и периферия, Система управления холостым ходом, Расчет дозирования топлива, Система регулирования равномерности вращения (баланс мощности цилиндров), Внешнее воздействие на подачу топлива, Регулирование впрыска топлива, Регулирование давления топлива, Система EGR, Регулирование давления наддува, EOBD, Регистрация и хранение неисправностей. Датчики: Датчик CKP, Датчик CMP, Датчик MAP, Датчик IAT, Датчик MAPT, Датчик BARO, Датчик ECT, Датчик CHT, Комбинированный датчик IAT и датчик MAF, HO2S, Датчик положения турбокомпрессора, Сигнал скорости автомобиля, Датчик APP, Датчик температуры топлива, Датчик давления топлива, Датчик уровня моторного масла, Датчик давления масла, Выключатель стоп-сигналов/датчик BPP, Датчик CPP
Исполнительные устройства, Клапан дозирования топлива, Регулятор давления топлива, Топливные форсунки (электромагнитные), Топливные форсунки (пьезоэлектрические), Клапан EGR, Клапан регулирования давления наддува, Заслонка впускного коллектора и электромагнитный клапан заслонки впускного коллектора, Серводвигатель заслонки впускного коллектора, Электрическое исполнительное устройство регулировки направляющих лопаток турбокомпрессора, Электрический топливный насос
Уменьшение токсичности выхлопа двигателя, DPF (общие сведения), Регенерация DPF (общие сведения), DPF с системой подачи топливной присадки, Байпас охладителя наддувочного воздуха, Система подачи топливной присадки, Компоненты системы топливной присадки, Обзор компонентов системы управления, PCM, Блок управления топливной присадкой, Насосный блок подачи топливной присадки, Датчик крышки топливного бака, Датчик(и) температуры отработавших газов, Датчик дифференциального давления для DPF, Серводвигатели заслонки впускного коллектора (только система Bosch), Сажевый фильтр с покрытием (DPF), Пассивная регенерация, Активная регенерация, Указание по интервалу замены масла, Контрольная лампа регенерации DPF, Заслонка выпускного коллектора, Компоненты управления токсичностью отработавших газов, Датчик(и) температуры отработавших газов, Датчик дифференциального давления для DPF, Датчик положения заслонки впускного коллектора, Блок управления заслонкой впускного коллектора, Система с топливным испарителем.
186 страниц.

Системы впрыскивания дизельного топлива и управления двигателем. Система Common-Rail фирмы Bosch (rus.) Учебное руководство Ford.
В настоящей технической информации описываются варианты системы Common-Rail фирмы Bosch
Содержание: Введение, Краткий обзор систем,
Урок 1 - Топливная система, Система низкого давления, Топливный фильтр, Блок топливного насоса и указателя уровня топлива, Система высокого давления, Топливный насос, Форсунки с электромагнитными клапанами, Пьезоэлектрическая топливная форсунка,
Урок 2 - Система управления двигателем, PCM и периферия, Сервисные функции через IDS (Интегрированная диагностическая система), PCM, Чувствительные элементы: CKP-датчик, CMP-датчик, Датчик IAT, MAP-датчик, MAPT-датчик, ECT-датчик, Комбинированный датчик MAFT (массовый расход и температура воздуха), HO2S, Датчик положения турбокомпрессора, Датчик APP, Датчик температуры топлива, Датчик давления топлива, Датчик уровня моторного масла, Исполнительные механизмы, Клапан дозирования топлива, Регулятор давления топлива, Топливные форсунки (электромагнитные), Топливные форсунки (пьезоэлектрические), Электромагнитный клапан регулирования давления наддува, Электрическое исполнительное устройство привода направляющих лопаток турбокомпрессора, Клапан EGR, Байпасный клапан охладителя системы рециркуляции отработавших газов, Электрический блок заслонки впускного коллектора.
Урок 3 - Снижение концентрации вредных выбросов в отработавших газах, Сажевый фильтр с покрытием (DPF), Сервисные функции через IDS, Обзор DPF, Обзор системы управления DPF, Датчики температуры отработавших газов, Датчик перепада давления DPF, Датчик относительного давления.
81 страница.

Системы впрыскивания дизельного топлива и управления двигателем. Система впрыска Common-Rail фирмы Delphi (rus.) Учебное руководство Ford.
В настоящей технической информации описывается система Common-Rail фирмы Delphi.
Содержание: Введение, Краткий обзор систем, Предельные показатели токсичности отработавших газов и выброса вредных веществ,
Урок 1 - Топливная система, Общая информация, Топливный фильтр, Система высокого давления, Топливный насос, инжекторы.
Урок 2 - Система управления двигателем, Краткий обзор систем, Сервисные функции через IDS (Интегрированная диагностическая система), PCM, Чувствительные элементы, CKP-датчик, CMP-датчик, MAPT-датчик, ECT-датчик, MAFT (массовый расход и температура воздуха)-датчик, HO2S, Датчик положения TC, APP, Датчик температуры топлива, Датчик давления топлива, Давление топлива за пределами рабочего диапазона, Исполнительные механизмы, Клапан управления всасыванием топлива, Электромагнитный клапан форсунки, Электрический клапан EGR, Байпасный клапан охладителя системы рециркуляции отработавших газов (Евро V), Электрический блок заслонки впускного коллектора.
Урок 3 - Снижение концентрации вредных выбросов в отработавших газах, Сажевый фильтр с покрытием (DPF), Сервисные функции через IDS, Обзор DPF, Обзор системы управления DPF, Датчики температуры отработавших газов, Датчик перепада давления DPF, Блок управления заслонкой впускного коллектора, Топливный насос системы испарения топлива, Топливный испаритель, Указание по периодичности замены масла.
52 страницы.

Замена свечей накала на дизельном двигателе AAZ (rus.) Фотоотчет!

Дизельные двигатели: Глава 1. Дизельные двигатели и системы впрыска топлива (rus.) Полное руководство "Сделай сам".
Дизельные двигатели: Глава 2. Текущее обслуживание. Проверки и регулировки (rus.) Полное руководство "Сделай сам".
Дизельные двигатели: Глава 3. Детали топливной системы и рекомендации по их замене (rus.) Полное руководство "Сделай сам".
Дизельные двигатели: Глава 4. Технические данные (rus.) Полное руководство "Сделай сам".
Дизельные двигатели: Глава 5. Диагностика неисправностей. Блоксхемы. (rus.) Полное руководство "Сделай сам".
Дизельные двигатели: Глава 6. Инструмент и оборудование (rus.) Полное руководство "Сделай сам".

Рядные многоплунжерные топливные насосы высокого давления дизелей (rus.) Учебное пособие Robert Bosch GmbH, 2009. Данная книга является частью серии «Технические инструкции», касающейся методов обеспечения впрыска топлива в дизелях. В ней находит объяснение каждый важный аспект множества конструкций ТНВД и их компонентов, таких как корпусы ТНВД и нагнетательные клапаны, также как и проникновение в принципы их работы. В книге имеются также главы, посвящённые регуляторам частоты вращения и системам автоматического регулирования и управления, описание функциональных режимов, таких как ограничение промежуточной и максимальной частоты вращения, конструктивных типов ТНВД и принципов действия. Приводятся также объяснения устройства и работы таких важных компонентов систем топливоподачи дизелей, как форсунки и распылители форсунок. В главе, посвящённой способам технического обслуживания, описываются методы испытаний и регулировок элементов топливных систем дизелей. Отдельно даются подробные объяснения принципов работы систем электронного управления дизелей (EDC).
Содержание: Обзор топливных систем дизелей, Технические требования, Обзор топливных систем с рядными многоплунжерными ТНВД, Области применения, Типы ТНВД, Состав системы, Регулирование, Система топливоподачи (линия низкого давления), Топливный бак, Топливные линии (трубопроводы топливоподачи), Фильтр дизельного топлива, Дополнительные клапаны рядных многоплунжерных ТНВД, Топливоподкачивающие насосы рядных многоплунжерных ТНВД, Применения, Устройство и принцип работы, Насосы ручной прокачки, Предварительный топливный фильтр, Система подачи топлива самотёком, Стандартные рядные многоплунжерные ТНВД «Тип РЕ», Установка и система привода, Устройство и принцип действия, Варианты конструкций ТНВД, Многоплунжерные рядные ТНВД типа РЕ для работы на альтернативных топливах, Работа рядных многоплунжерных ТНВД, Регуляторы и системы автоматического регулирования и управления рядных многоплунжерных ТНВД, Разомкнутые и замкнутые системы управления, Принцип действия регулятора частоты вращения/системы автоматического регулирования, Режимы работы (определения), Формирование регуляторных характеристик, Назначение регулятора/системы автоматического регулирования (управления), Типы регуляторов частоты вращения/систем автоматического регулирования (управления), обзор конструктивных типов регуляторов частоты вращения, Механические регуляторы частоты вращения, Регулировочные устройства, Пневматическое устройство остановки двигателя Тип PNAB, Муфты опережения впрыска топлива, Механизмы электромагнитного привода, Полудифференциальный датчик с кольцом замыкания, Рядные многоплунжерные ТНВД с управляющей муфтой, Устройство и принцип действия, Распылители форсунок, Штифтовые распылители форсунок, Распылители соплового типа, Дальнейшее развитие конструкций распылителей, Форсунки, Стандартные форсунки, Форсунки со ступенчатым упором, Двухпружинные форсунки, Форсунки сдатчиком подъёма иглы распылителя, Линии высокого давления, Арматура соединений линий высокого давления, Трубопроводы линий высокого давления, Электронное управление дизелей, Технические требования, Обзор систем управления, Системные блоки, Рядные многоплунжерные ТНВД, Технология технического обслуживания, Стенды для испытаний ТНВД, Испытание рядных многоплунжерных ТНВД, Испытание форсунок, Аббревиатуры. 154 стр. 70 Mb.

Диагностика дизельных двигателей (rus.) Автор: Г.Губертус. Книга содержит подробные описания диагностики систем впрыска топлива, механического и электронного регулирования дизельных двигателей, дает представление о методах поиска неисправностей и о специальном оборудовании для регулировок систем питания дизелей. Представлены новейшие узлы и агрегаты. Большое внимание уделено снижению токсичности отработавших газов.
Содержание: Стратегия поиска неисправностей и методы диагностики, распределительные ТНВД фирмы Bosch типа VP37/36 с электронным управлением, распределительные ТНВД фирмы Bosch типа VP30 и VP44 с электронным управлением, ТНВД Epic фирмы Lucas, аккумуляторная система впрыска топлива фирмы Bosch, система с насос-форсунками фирмы Lucas/Delphi, система с насос-форсунками Bosch, рядный ТНВД с дополнительной втулкой. 177 стр. 149 Мб.

Дизельные топливные системы с электронным управлением (rus.)

Denso. Common rail system (eng.) Service manual
В фирменном руководстве Denso Corporation подробно описаны принципы работы, функции, конструкция, диагностика и техническое обслуживание распространенных систем топливоподачи Common Rail. Руководство хорошо иллюстрировано. 6 Mb. 185 стр.

Handbook of Diesel Engines (eng.) Справочник по дизельным двигателям. Это английское издание дает всесторонний обзор дизельных двигателей от малых одноцилиндровых двигателей до больших 2-х тактных судовых двигателей. Пятьдесят восемь известных специалистов помогали создавать эту книгу. В дополнение к основам дизельных двигателей, в руководстве подробно рассматриваются вопросы энергоэффективности, выбросы выхлопных газов, системы впрыска, электронное управление двигателем и традиционных и альтернативных видов топлива. 634 страниц, 25 Мб.

Система впрыскивания и разогрева (накаливания). Двигатель 1.9л/66кВт (rus.) Руководство по ремонту

Система впрыскивания и разогрева (накаливания). Двигатель 1.9л/81кВт (rus.) Руководство по ремонту

1.9 SDI Система впрыскивания и разогрева (накаливания) (rus.) Руководство по ремонту

Дизельный двигатель - Система питания и разогрева (накаливания) (rus.) Руководство по ремонту

Диагностика компонентов системы впрыска Bosch EDC 15v (rus.) Для автомобилей Volkswagen Passat 1.9D TDI 1997-2000 г.в.

Электронная система управления дизелем Bosch EDC 16 (rus.) Устройство и принцип действия. Пособие по программе самообразования

VW Passat B5 1997-2000: Системы топливопитания дизельных двигателей (rus.) Описаны автомобили с двигателями: AFN, AVG, AHU, AHH, AJM, ATJ.

VW Passat B5 1997-2000: Система предпускового подогрева дизельных двигателей (rus.)

Замена расходомера на турбодизеле VW Golf 4 / VW Bora (VW Passat B5) (rus.) Фотоотчет

Volkswagen Polo 1994- : Дизельная топливная система (rus.)

Разборка и чистка геометрии турбины двигателей AHH, AFN и др. (rus.) Фотоотчет

VW Golf III: Система впрыска дизельного двигателя (rus.) Диагностика и неисправности

VW Golf 3 / Vento 1992-1996: Топливная система - дизельные двигатели (rus.)

VW Golf I: Дизельная система впрыска (rus.) Диагностика и неисправности

Four cylinder diesel 1977-1983 (eng.) Учебник по поиску неисправностей в старых дизелях VW.

Volkswagen Sharan (Seat Alhambra, Ford Galaxy) 1995 ->: Системы питания и выпуска отработавших газов (rus.) Система питания, система впрыска топлива бензинового двигателя Motronic M3.8.1, Motronic M3.8.5, Motronic ME7.1, Motronic ME7.5, Simos, SEFI (ECC-V), система впрыска топлива дизельного двигателя, турбокомпрессор, система выпуска.

Diesel fuel injection system. Двигатель AAZ (eng.)

Diesel Turbo Direct Injection (TDI) system, servicing. Двигатель 1Z, AHU (eng.)

Volkswagen 2.0L Engine BHW: Fuel supply system components (eng.) Компоненты топливной системы
Volkswagen 2.0L Engine BHW: Diesel Direct Fuel Injection System, servicing (eng.) Обслуживание системы впрыска
Volkswagen 2.0L Engine BHW: Charge air system with turbocharger (eng.) Турбочарджер

Как здесь найти нужную информацию?
Расшифровка заводской комплектации автомобиля (англ.)
Расшифровка заводской комплектации VAG на русском!
Диагностика Фольксваген, Ауди, Шкода, Сеат, коды ошибок.

Если вы не нашли информацию по своему автомобилю - посмотрите ее на автомобили построенные на платформе вашего авто.
С большой долей вероятности информация по ремонту и обслуживанию подойдет и для Вашего авто.

Функция впрыска дизельного топлива

Система впрыска топлива лежит в основе дизельного двигателя. Сжимая и впрыскивая топливо, система нагнетает его в воздух, который был сжат до высокого давления в камере сгорания.

В состав системы впрыска дизельного топлива входят:

  • ТНВД - нагнетает топливо до высокого давления
  • Трубка высокого давления - подает топливо в форсунку
  • форсунка - впрыскивает топливо в цилиндр
  • подкачивающий насос - всасывает топливо из топливного бака
  • фильтр топливный - фильтрует топливо

Некоторые типы топливных баков также имеют топливный отстойник на дне фильтра для отделения воды от топлива.

Функции системы

Система впрыска дизельного топлива выполняет четыре основные функции:

Подача топлива

Элементы насоса, такие как цилиндр и плунжер, встроены в корпус насоса высокого давления. Топливо сжимается до высокого давления, когда кулачок поднимает плунжер, а затем направляется в инжектор.

Регулировка количества топлива

В дизельных двигателях поступление воздуха практически постоянно, независимо от частоты вращения и нагрузки.Если количество впрыска изменяется в зависимости от частоты вращения двигателя и время впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.

Регулировка момента впрыска

Задержка зажигания - это период времени между моментом впрыска, воспламенения и сгорания топлива и достижением максимального давления сгорания. Поскольку этот период времени почти постоянен, независимо от частоты вращения двигателя, таймер используется для регулировки и изменения момента впрыска, что позволяет достичь оптимального сгорания.

Распылительное топливо

Когда топливо нагнетается топливным насосом под давлением, а затем распыляется из форсунки, оно полностью смешивается с воздухом, улучшая воспламенение. Результат - полное сгорание.

границ | Преимущества и недостатки дизельных одно- и двухтопливных двигателей

Введение

Обедненная смесь, воспламенение от сжатия (CI), непосредственный впрыск (DI) - самый эффективный двигатель внутреннего сгорания (ДВС) (Zhao, 2009; Mollenhauer and Tschöke, 2010).Он производит выбросы оксидов азота и твердых частиц (ТЧ) из двигателя, которые нуждаются в последующей обработке, чтобы соответствовать чрезвычайно низким пределам, установленным для транспортных средств (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), несмотря на то, что качество воздуха невысокое. не только под влиянием транспортных выбросов, но и из многих других источников. Одних только стратегий сжигания (Khair and Majewski, 2006) было недостаточно для достижения порогового значения выбросов, и требовались специальные катализаторы сжигания обедненной смеси, особенно для NOx, в дополнение к фильтрам твердых частиц в выхлопных газах.Несмотря на свой экономический успех, дизельные двигатели столкнулись с ужесточением законодательства по выбросам во всем мире (Knecht, 2008; Zhao, 2009) ценой постепенного отказа от технологии, нацеленной на нереалистичные минимальные дополнительные улучшения.

У дизеля есть плюсы и минусы как все. Он имеет эффективность преобразования топлива при полной и частичной нагрузке, превышающую эффективность стехиометрических ДВС с искровым зажиганием (SI), как с прямым впрыском, так и с впрыском топлива (PFI). CIDI ICE имеют пиковый КПД около 50% и КПД выше 40% на большинстве скоростей и нагрузок.Напротив, у двигателей SI ICE пиковый КПД составляет около 30%, и этот КПД резко снижается за счет снижения нагрузки. CI ICE поставляют механическую энергию по запросу с эффективностью преобразования топлива, которая также выше, чем эффективность электростанций на сжигании топлива, производящих электричество. По данным EIA (2018), в 2017 году в США угольные парогенераторы работали со средней эффективностью 33,98%. Парогенераторы на нефтяном и природном газе работают примерно с одинаковой эффективностью 33.45 и 32,96%. Газотурбинные генераторы работают с пониженным КПД на 25,29% для нефти и 30,53% для природного газа. КПД генераторов с двигателями внутреннего сгорания выше, чем у газовых турбин и парогенераторов: 33,12% для нефти и 37,41% для природного газа. Только парогазовые генераторы, не на нефти с КПД 34,78%, а на природном газе с КПД 44,61%, превосходят генераторы внутреннего сгорания.

При сравнении электрической мобильности двигатели CIDI ICE по-прежнему имеют бесспорные преимущества для транспортных приложений (Boretti, 2018).Однако CIDI ICE страдает от плохой репутации, что ставит под угрозу его потенциал. Дизельные двигатели CIDI ICE в недавнем прошлом не смогли обеспечить удельные выбросы NOx для сертификационных циклов холодного пуска во время прогретых реальных графиков вождения, которые сильно отличались от сертификационных циклов (Boretti, 2017; Boretti and Lappas, 2019). Этот досадный случай был разыграен против CIDI ICE, чтобы создать впечатление, что этот двигатель экологически вреден для выбросов загрязняющих веществ, хотя это не так.

Большие выбросы NOx двигателей CIDI ICE являются результатом большого образования NOx в цилиндрах, работающих в условиях избыточного обедненного воздуха стехиометрии, в сочетании с неправильной работой системы последующей обработки. Катализатор сжигания обедненной смеси в ДВС CIDI менее развит, чем трехкомпонентный каталитический преобразователь (TWC) стехиометрических ДВС SI (Heywood, 1988; Zhao, 2009; Mollenhauer and Tschöke, 2010; Reşitoglu et al., 2015). Кроме того, не учитывалась длительная разминка при эксплуатации (Boretti and Lappas, 2019).Кроме того, некоторые производители, применяющие впрыскивание мочевины в доочистку, решили вводить меньше мочевины, чем необходимо, когда это не строго требуется сертификацией выбросов. Точно так же некоторые производители также сосредоточились на вопросах управляемости и экономии топлива, а не на выбросах, когда их строго не спрашивали, вдали от условий эксплуатации, вызывающих озабоченность при сертификации выбросов. Таким образом, несоблюдение требований по выбросам NOx в случайно выбранных условиях не было фундаментальным недостатком двигателей CIDI ICE в целом, а только конкретных продуктов, разработанных в соответствии с правилами выбросов и требованиями рынка в конкретное время.Противники двигателей CIDI ICE не считают, что эти двигатели оснащены уловителями твердых частиц с почти идеальной эффективностью, и циркуляция автомобилей, оснащенных этими двигателями, в сильно загрязненных районах приводит к лучшим условиям для выхлопной трубы, чем условия впуска, для твердых частиц, что способствует для очистки воздуха.

Настоящая статья представляет собой объективный обзор плюсов и минусов экономичного сжигания, CIDI ICE, которые намного лучше, чем предполагалось. Поскольку ДВС, безусловно, потребуется в ближайшие десятилетия, дальнейшие улучшения сжигания обедненной смеси CIDI ICE будут полезны для экономики и окружающей среды.Помимо дизельных двигателей CIDI ICE, в этой работе также рассматриваются двухтопливные двигатели, работающие на дизельном СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизель-CNG (Maji et al. , 2008; Shah et al., 2011; Ryu, 2013) или дизель-СНГ (Jian et al., 2001; Ashok et al., 2015). Работа с небольшим количеством дизельного топлива и гораздо большим (с точки зрения энергии) количеством гораздо более легкого углеводородного топлива с пониженным содержанием углерода до водорода позволяет дополнительно снизить выбросы твердых частиц из двигателя вне двигателя, а также CO . 2 выбросов и освобождение от компромисса PM-NOx, влияющего на стратегии впрыска только дизельного топлива, также сокращают выбросы NOx из двигателя.Также рассмотрены тенденции развития двухтопливных двигателей CIDI ICE.

Использование биодизеля для производства низкоуглеродного дизельного топлива с использованием однотопливного подхода, безусловно, является еще одним вариантом сокращения выбросов CO 2 . Хотя эта возможность не влияет на выбросы загрязняющих веществ, производство биотоплива в целом растет, но не ожидаемыми темпами (IEA, 2019), и вопрос о соотношении продуктов питания и топлива (Ayre, 2007; Kingsbury, 2007; Inderwildi and King, 2009) также может иметь негативный вес в мире с прогнозируемым неизбежным водным и продовольственным кризисом (United Nations, 2019).Кроме того, преимущества биотоплива перед LCA являются давними и противоречивыми дискуссиями в литературе (McKone et al., 2011).

Существует возможность выбросов метана от двухтопливных дизельных двигателей, работающих на природном газе (Camuzeaux et al., 2015). Поскольку метан является мощным парниковым газом, этот аспект следует должным образом учитывать при сокращении выбросов парниковых газов. Существует не только возможность утечки метана из транспортных средств, оснащенных двухтопливными дизельными двигателями, работающими на СПГ. Также существуют выбросы метана при добыче нефти и газа.Помимо выбросов метана при добыче природного газа, существуют выбросы электроэнергии, связанные с эксплуатацией завода по производству СПГ. Хотя СПГ (и КПГ), безусловно, будет иметь преимущества по сравнению с дизельным топливом, это преимущество может быть меньше, чем то, что можно было бы вывести из отношения C-H топлива. Безусловно, существует проблема сокращения выбросов метана, связанных с производством, транспортировкой и сжижением природного газа (Ravikumar, 2018).

Наконец, в то время как фумигация природного газа для двухтопливных дизельных двигателей широко используется, поскольку она намного проще и может быть достигнута за счет низкотехнологичных преобразований, и, таким образом, большинство транспортных средств используют этот подход, дизельные двигатели переведены на дизельное топливо и фумигационный природный газ страдают от значительного снижения эффективности преобразования топлива по сравнению соригинальный дизель, как при полной, так и при частичной нагрузке, с пониженной мощностью и удельным крутящим моментом. Если природный газ смешивается (окуривается) с всасываемым воздухом перед подачей в цилиндр, а дизельное топливо используется в качестве источника воспламенения, количество вводимого природного газа ограничивается возможностью детонации предварительно смешанной смеси. Кроме того, нагрузка обычно регулируется дросселированием впуска, как в обычных бензиновых двигателях, а не количеством впрыскиваемого топлива, как в дизельном двигателе.Поскольку цель состоит в том, чтобы обеспечить равные или лучшие характеристики (мощность, крутящий момент, переходный режим) и выбросы новейшего дизельного топлива с двухтопливной конструкцией, эта двухтопливная конструкция должна предусматривать прямой впрыск дизельного и газообразного топлива.

Происхождение плохой репутации дизеля

Плохая репутация дизеля и, в целом, двигателя внутреннего сгорания (ДВС) является результатом действий Калифорнийского совета по воздушным ресурсам (CARB), а также Агентства по охране окружающей среды США (EPA) (Parker , 2019), с « Diesel-gate » только один шаг.

В те времена водородная экономика была более вероятной моделью будущего для транспорта, лучше, чем любая другая альтернатива, учитывая прерывистость производства энергии ветра и солнца (Crabtree et al., 2004; Muradov and Veziroglu, 2005; Marbán and Valdés- Солис, 2007). Предполагалось, что в автомобилях будут использоваться ДВС, работающие на возобновляемом водороде (H 2 -ICE), со всем, кроме кардинальных изменений, которые требовались в технологии двигателей, но усилия в основном были направлены на хранение и распространение.Примерно в те же дни была популярна идея экономики метанола, в которой метанол, произведенный с использованием возобновляемого водорода и CO 2 , улавливаемого угольными электростанциями, был прямой заменой традиционного бензинового топлива (Olah, 2004 , 2005). H 2 -ICE стал историей после того, как CARB рассмотрел BMW Hydrogen 7, первый автомобиль с двигателем внутреннего сгорания, который был поставлен на рынок, который не квалифицировался как автомобиль с нулевым уровнем выбросов (CO 2 ). В 2005 году BMW предложила автомобиль Hydrogen 7 как автомобиль с нулевым уровнем выбросов.При сжигании водорода в выхлопной трубе был в основном водяной пар и абсолютно не выделялся CO 2 , но Агентство по охране окружающей среды США не согласилось с нулевым уровнем выбросов CO 2 (Nica, 2016). Агентство по охране окружающей среды США заявило, что у транспортного средства все еще был ДВС, с возможностью того, что масло, используемое для смазки, могло попасть в цилиндр, образуя CO 2 . Тот факт, что общий расход масла составлял ничтожно малые 0,04 л масла на 1000 км, не учитывался. Из-за неофициальных обсуждений BMW отказалась от исследования водородных ДВС.Все остальные производители оригинального оборудования впоследствии прекратили свои исследования и разработки.

Что касается негативного отношения CARB и Агентства по охране окружающей среды США к ДВС в целом, в 2011 году BMW предложила в качестве концепт-кара аккумуляторно-электрический i3 с возможностью расширения запаса хода (Ramsbrock et al., 2013; Scott and Burton, 2013). . Расширитель запаса хода представлял собой небольшой бензиновый ДВС, приводивший в действие генератор для подзарядки аккумулятора. Внедрение расширителя диапазона позволило увеличить запас хода автомобиля и снизить стоимость, вес и объем аккумуляторной батареи, что является серьезной проблемой для экономики и окружающей среды.Поскольку производство планируется начать только в 2013 году, CARB сразу же поспешил установить правила, предотвращающие оптимизацию этой концепции, выпустив в 2012 году (CARB, 2012) чрезмерно долгое правило, предписывающее, что расширитель диапазона должен использоваться только для достижения ближайшей подзарядки. точка. В промежутке между другими требованиями CARB запросил у транспортного средства с расширителем запаса хода номинальную дальность полета не менее 75 миль, дальность действия меньше или равную дальности действия батареи от вспомогательной силовой установки, и, наконец, чтобы Вспомогательная силовая установка не должна включаться, пока не разрядится аккумулятор.В результате всех этих ограничений BMW изо всех сил пыталась сделать расширитель диапазона конкурентоспособным, и в конечном итоге они недавно прекратили производство i3 с расширителем диапазона (Autocar, 2018).

Эти два события помогают объяснить « diesel-gate » 2015 года и последующий « дизель-фобию ». Дизельный двигатель был популярен (для легковых автомобилей) в основном в Европе, и ЕС продвигал дизельные автомобили для решения проблем изменения климата. В то время было ясно, что преждевременный переход к электромобильности мог привести к экономической и экологической катастрофе.Таким образом, концерн Volkswagen стал мишенью скандала « дизельные ворота ». Дизельные ДВС обеспечивали низкие выбросы CO 2 , конкурируя с аккумуляторными электромобилями в анализе жизненного цикла, при этом выделяя меньше, чем предписано, загрязняющих веществ в ходе испытаний, предписанных в то время. Легковые автомобили тестировались на соответствие правилам выбросов в течение заданного цикла, в лаборатории, в повторяемых условиях с надлежащим оборудованием. Международный совет по чистому транспорту (ICCT) организовал случайную езду по дорогам на различных дизельных транспортных средствах и измерения загрязняющих веществ с помощью PEM.Они обнаружили, что транспортные средства, оптимизированные для производства низких удельных (на км) выбросов CO 2 и выбросов загрязняющих веществ в определенных условиях, не могут обеспечить такие же удельные выбросы при любых других условиях, как это было логично. EPA выпустило уведомление о нарушении в отношении Volkswagen, что привело к огромному штрафу в следующих судебных исках. « Diesel-gate » обошлась VW более чем в 29 миллиардов долларов в виде штрафов, компенсаций и обратных закупок, в основном в Соединенных Штатах (физ.орг, 2018). Часть миллиарда долларов Volkswagen была направлена ​​на поддержку мобильности электромобилей с аккумулятором, финансирование инфраструктуры подзарядки электромобилей в США отдельными поставщиками (O'Boyle, 2018). Затем « Diesel-gate » был использован для определения конца мобильности на базе ICE (Raftery, 2018; Taylor, 2018).

Предполагаемый избыточный выброс NOx автомобилями, оснащенными дизельными ДВС CIDI, которые начинались с « diesel gate », по-прежнему популярны, хотя и не соответствуют действительности (Chossière et al., 2018) утверждает, что дизельные автомобили вызвали в 2015 году 2700 преждевременных смертей только в Европе из-за их выбросов NOx « сверх ». Эта работа не является объективной при анализе выбросов дизельного двигателя. Неверно утверждать, что дизельные автомобили в ЕС выбрасывают на дороге намного больше NOx, чем нормативные ограничения. Как было написано ранее, правила выбросов регулируют выбросы загрязняющих веществ в конкретных условиях лабораторных испытаний, а не во всех других возможных условиях.Неразумно ожидать определенной экономии топлива и выбросов регулируемых загрязнителей и углекислого газа, которые не зависят от конкретного испытания. Чтобы иметь выбросы « превышение », сначала необходимо установить лимит для конкретного применения, а затем измерить « превышение » при определенных условиях. Заявление о преждевременной смертности, вызванной избыточными выбросами NOx от дизельных транспортных средств, основано на завышенной разнице выбросов NOx, предполагая, что выбросы намного хуже, чем фактические, и сравнивая этот выброс с невероятной эталонной ситуацией, близкой к нулю.Требование также основано на завышенной оценке числа смертей на счет этого дифференциального выброса. Эти два предположения не подтверждаются доказанными данными.

Поскольку более современные дизельные автомобили заменили еще более загрязняющие автомобили, единственное возможное объективное утверждение, которое можно сделать о выбросах старых и новых дизельных автомобилей в Европе, основанное на неоспоримых доказательствах, основано только на правилах рассмотрения жалоб на выбросы время их регистрации. Поскольку правила выбросов стали все более ограничительными, хотя и подтверждено только лабораторными сертификационными испытаниями, как показано в таблице 1, неверно предполагать, что дизельные ДВС CIDI выбрасывают больше NOx, чем раньше.В то время как легковые автомобили с дизельным двигателем, соответствующие стандарту Euro 6, должны были выделять менее 0,08 г / км NOx при проведении лабораторных испытаний NEDC, дизельные автомобили, соответствующие стандартам Euro 5–3, в противном случае могли выделять 0,18, 0,25 и 0,50 г / км на тот же тест, а дизельные автомобили, соответствующие стандартам Euro 1 и 2, должны были подтвердить только пороговые значения выбросов 0,7-0,9 и 0,97 г / км в одном и том же тесте. Нет никаких измерений, подтверждающих, что старые дизельные автомобили, которые соответствовали предыдущим правилам Евро, были более экологически чистыми по всем критериям загрязнения, включая NOx, во время реального вождения, чем новейшие дизельные автомобили.Кроме того, характеристики выбросов обычно ухудшаются с возрастом, а отсутствие технического обслуживания может еще больше усугубить ситуацию. Это утверждает, что Chossière et al. (2018) непоследовательно.

Таблица 1 . Нормы выбросов Евросоюза для легковых автомобилей (категория М) положительного (бензин) и компрессионного (дизельного) исполнения.

Преимущества и недостатки двигателя CIDI с экономным расходом топлива

Основным преимуществом сжигания обедненной смеси, CIDI ICE, является эффективность преобразования топлива, которая намного выше, чем у стехиометрических, SI ICE, как при полной нагрузке, так и, более того, при частичной нагрузке (Heywood, 1988; Zhao, 2009; Mollenhauer and Чёке, 2010).В то время как у легковых автомобилей с обедненной топливной смесью CIDI ICE на дизельном топливе пиковая эффективность преобразования топлива составляет около 45%, пиковая эффективность легковых автомобилей со стехиометрическими двигателями SI ICE, работающими на бензине, составляет всего около 35%. Снижение нагрузки за счет количества впрыскиваемого топлива, эффективности преобразования топлива при сжигании обедненной смеси, CIDI ICE является высоким в большей части диапазона нагрузок. И наоборот, при уменьшении нагрузки, дросселируя впуск, эффективность преобразования топлива стехиометрического, SI ICE резко ухудшается при уменьшении нагрузки.Это дает возможность легковым автомобилям, оборудованным системой сжигания обедненной смеси CIDI ICE, потреблять гораздо меньше топлива и, следовательно, выделять гораздо меньше CO 2 во время ездовых циклов (Schipper et al., 2002; Zervas et al., 2006; Johnson , 2009; Zhao, 2009; Mollenhauer, Tschöke, 2010; Boretti, 2017, 2018; Boretti, Lappas, 2019).

Бедное сжигание после обработки в целом (дизельные ДВС CIDI изначально работают на обедненной смеси, за исключением случаев экстремального использования рециркуляции выхлопных газов, EGR), однако, гораздо менее эффективны, чем стехиометрическая после обработки преобразователями TWC бензиновых ДВС SI (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007).Следовательно, выбросы регулируемых загрязняющих веществ, в частности NOx, в течение рабочих циклов, которые в значительной степени отклоняются от сертификационных циклов, являются намного более продолжительными и требуют, чтобы двигатель работал в значительной степени полностью прогретым, намного больше в ДВС, работающем на обедненной смеси, чем стехиометрические ДВС. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, содержат твердые частицы, что является обычным недостатком, даже в меньшей степени, двигателей с прямым впрыском, включая SI DI ICE. ТЧ возникают, когда закачиваемая жидкость, еще жидкая, взаимодействует с пламенем, образуя сажу.Сажа образуется в богатых топливом областях камеры сгорания (Hiroyasu and Kadota, 1976; Smith, 1981; Neeft et al., 1997). Постное сжигание, CIDI ICE, таким образом, нуждаются в ловушках для частиц (Neeft et al., 1996; Saracco et al., 2000; Ambrogio et al., 2001; Mohr et al., 2006). Однако это также является возможностью, поскольку циркуляция в областях с фоновыми частицами может обеспечить лучшее качество воздуха в выхлопной трубе, чем во впускной. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, являются более дорогими, обычно с турбонаддувом.Двухтопливная работа с LPG, CNG или LNG не приносит никаких недостатков с точки зрения регулируемых загрязняющих веществ или CO 2 , а только дает преимущества.

Эффективность преобразования топлива

Без нацеливания на рекуперацию отработанного тепла (WHR) дизельные двигатели CIDI ICE доказали свою способность достигать максимальной эффективности преобразования топлива около 50%, обеспечивая при этом чрезвычайно высокое среднее эффективное давление в тормозах в гонках на выносливость (Boretti and Ordys, 2018). Благодаря высокому давлению, высокой степени распыления, высокой скорости потока и быстродействующим инжекторам, несколько стратегий впрыска позволяют контролировать процессы сгорания, происходящие в объеме камеры сгорания, для наилучшего компромисса между работой давления, повышением давления и пиковое давление.

Хотя системы рекуперации отработанного тепла (WHR), безусловно, могут улучшить стационарную эффективность преобразования топлива дизельных двигателей (Teng et al., 2007, 2011; Teng and Regner, 2009; Park et al., 2011; Wang et al., 2014; Yu et al., 2016; Shi et al., 2018), переходные процессы при холодном пуске - это ахиллова пята традиционных WHR. Кроме того, WHR увеличивают вес, тепловую инерцию, проблемы с упаковкой и сложность. Инновационные концепции WHR, использующие контур охлаждающей жидкости в качестве подогревателя модифицированного « turbo steamer » (Freymann et al., 2008, 2012) без использования двойного контура, требуют значительных исследований и разработок.

Результаты, достигнутые Audi в гонках на выносливость (Audi, 2014) менее чем за десять лет разработок, имеют большое значение. С 2006 по 2008 год Audi использовала двигатель V12 TDI в Audi R10 TDI. Двигатель объемом 5,5 л развивал крутящий момент 1100 Нм. На номинальной скорости очень тихий твин-турбо выдавал около 480 кВт. В 2009 и 2010 годах Audi перешла на V10 TDI в Audi R15 TDI. Он был короче и легче двенадцатицилиндрового.Рабочий объем 5,5 л был распределен на два цилиндра меньше. Двигатель имел примерно 440 кВт и крутящий момент более 1050 Нм. Верхний BMEP превышал 24 бара. Затем, с 2011 по 2013 год, Audi перешла на V6 TDI в Audi R18 TDI, R18 ultra и R18 e-Tron Quattro. Уменьшение объема двигателя привело к увеличению объема двигателя до 3,7 л. Легкий и компактный двигатель V6 TDI развивал более 397 кВт и крутящий момент более 900 Нм. Система Common Rail создавала давление до 2600 бар. Верхний BMEP превышал 30 бар.

Когда основное внимание уделялось экономии топлива, в 2014 году двигатель V6 TDI в Audi R18 e-Tron Quattro был оснащен модернизированным V6 TDI с рабочим объемом 4,0 л. Максимальная мощность составляла 395 кВт, а максимальный крутящий момент превышал 800 Нм. Давление закачки составило более 2800 бар. Расход топлива снизился более чем на 25% по сравнению с 3,7-литровым двигателем. Последняя (2016 год) выходная мощность 4-литрового двигателя составляла 410 кВт, что соответствует 870 Нм крутящего момента при максимальной скорости 4500 об / мин.Это преобразовалось в BMEP 27,3 бар в рабочей точке максимальной скорости / максимальной мощности. Последние двигатели имели ограниченный расход топлива, так что для системы рекуперации энергии 6 МДж (ERS) для торможения максимальный расход топлива составлял 71,4 кг / ч. Для дизельного топлива с низшей теплотворной способностью (НТС) 43,4 МДж / кг мощность потока топлива составила 860,8 кВт. Таким образом, максимальная мощность была получена при пиковом КПД торможения η = 0,475, что намного больше, чем максимальный КПД многих серийных высокоскоростных дизельных двигателей, которые могут работать, вплоть до максимального КПД η = 0.45 при более низких оборотах двигателя.

Из расчетов максимальный крутящий момент, а также максимальная эффективность торможения были получены при скоростях <4500 об / мин, что является технологическим пределом диффузионного горения (Boretti and Ordys, 2018). Из-за постоянного времени, необходимого для испарения топлива и смешивания с воздухом, фаза диффузионного сгорания имеет продолжительность в градусах угла поворота коленчатого вала, которая увеличивается с частотой вращения двигателя. Таким образом, на скоростях выше 4500 об / мин продолжительность фазы сгорания обычно становится чрезмерной, и гораздо лучшая мощность достигается на более низких скоростях.Максимальный крутящий момент, скорее всего, превышал 916 Нм, что соответствует BMEP 29 бар. Пиковая эффективность преобразования топлива с большой вероятностью приближалась к η = 0,50. Дальнейшие разработки в области гонок были в пределах легкой досягаемости, в то время как деятельность была остановлена ​​после « diesel-gate ». Более высокое давление впрыска и более совершенный турбонаддув, такой как современный F1 e-turbo или супер турбонаддув (Boretti and Castelletto, 2018; Boretti and Ordys, 2018), могли бы быть полезны для обычных серийных дизельных двигателей для легковых автомобилей.

Лабораторные испытания выбросов

Прошлая сертификация выбросов, которая проводилась производителями оригинального оборудования (OEM) и не подвергалась независимым испытаниям, была связана с неточностями в тестах и ​​несоответствием цикла сертификации (Boretti, 2017; Boretti and Lappas, 2019). Короткий, сильно стилизованный новый европейский ездовой цикл (NEDC) был чрезвычайно далек от реальных условий вождения, с которыми сталкиваются европейские пассажиры. Поскольку более двух десятилетий OEM-производители были вынуждены сосредоточить свои RandD на производстве двигателей, соответствующих требованиям и экономичных в течение этого цикла, из-за обострения холодного запуска, другие возможные применения не регулировались и оставались на усмотрение OEM.Неточности (и осторожность) в том, как проводились испытания, привели к множеству несоответствий, начиная с большого разброса выбросов углекислого газа (CO 2 ) при потреблении теоретически одного и того же литра топлива (Boretti and Lappas, 2019). Новый согласованный во всем мире цикл испытаний легких транспортных средств (WLTC), который недавно заменил NEDC, из-за « diesel gate » (Chossière et al., 2018), лучше, будучи немного длиннее. Тем не менее, это по-прежнему связано с условиями вождения, отличными от тех, которые используются в часы пик в густонаселенных районах (Boretti and Lappas, 2019).

С исторической точки зрения, правила выбросов из года в год ужесточаются и ужесточаются, но заявлено, что они измеряются только в ходе предписанных лабораторных испытаний. В таблице 1 представлены нормы выбросов Европейского Союза (ЕС) для легковых автомобилей (категория M) с принудительным (бензин) и компрессионным (дизель) воспламенением. Несгоревшие углеводороды (HC) + NOx были предписаны для бензина и дизельного топлива только стандартами Euro 1 и 2. Выбросы были проверены через NEDC с использованием лабораторной процедуры динамометрического стенда.На протяжении многих лет от OEM-производителя требовалось производить автомобили, выбрасывающие меньше, чем регулируемый загрязнитель, в течение определенного цикла сертификации во время лабораторных испытаний. Реальное вождение было нематериальным понятием, не переведенным ни в какие законодательные требования. Снижение предельных значений выбросов NOx и PM в стандартах Евро 5 и 6 привело к резкому увеличению затрат на последующую обработку и к увеличению, а не снижению расхода топлива, что иногда вызывает проблемы с управляемостью.Еще раз важно понимать компромисс между экономией топлива и выбросами загрязняющих веществ и осознавать, что чрезмерные запросы по одному критерию могут привести к невозможности удовлетворить другие критерии.

Выбросы от вождения в реальном мире

Только недавно Европейский Союз (ЕС) ввел тесты на выбросы выхлопных газов в реальных условиях движения (RDE). Выбросы от дорожных транспортных средств теперь измеряются с помощью портативных анализаторов выбросов (PEM). Тест RDE должен длиться 90–120 минут и включать один городской (<60 км / ч), один сельский (60–90 км / ч) и один участок автомагистрали (> 90 км / ч) равного веса, покрывающий расстояние не менее 16 км.Затем в пределах выбросов RDE используются коэффициенты соответствия, относящиеся к лабораторным испытаниям на динамометрическом стенде. Что касается NOx, коэффициент соответствия составляет 2,1 с сентября 2017 года для новых моделей и с сентября 2019 года для всех новых автомобилей. Остальные факторы соответствия еще предстоит определить. Хотя тест RDE по-прежнему не является репрезентативным для реального вождения в густонаселенных районах, он неточный, субъективный, невоспроизводимый и еще не определяющий (Boretti and Lappas, 2019), это, безусловно, шаг вперед.

Реальные данные по австралийским выбросам от вождения транспортных средств до введения новых правил предложены ABMARC (ABMARC, 2017). В отчете, подготовленном для Австралийской автомобильной ассоциации, представлены результаты испытаний на выбросы и расход топлива 30 различных легковых и легких коммерческих автомобилей, измеренные с помощью PEMS на австралийских дорогах. Большинство автомобилей соответствовали стандартам Euro 4, 5 и 6, а один из них соответствовал стандартам Euro 2. Реальный расход топлива протестированных автомобилей по сравнению с результатами цикла сертификации был в среднем на 23% выше, на 21% выше для автомобилей с дизельным двигателем, с 4% ниже до 59% выше и на 24% выше для автомобилей с бензиновым двигателем, начиная с 3% ниже до 55% выше.У одного транспортного средства, работающего на сжиженном нефтяном газе, реальный расход топлива на 27% выше, чем результат цикла сертификации. Один подключаемый к сети гибридный автомобиль имел реальный расход топлива на 166% выше, чем результат цикла сертификации с полным состоянием заряда, и на 337% выше при испытании с низким уровнем заряда. Показатели расхода топлива для автомобилей с дизельными сажевыми фильтрами включают поправочный коэффициент, учитывающий регенерацию фильтра.

Таким образом, расхождения между лабораторными испытаниями и реальным вождением были разными не только для автомобилей, оснащенных дизельными ДВС CIDI, но также и для автомобилей с бензиновыми ДВС SI, а также с традиционными и гибридными силовыми агрегатами.Однако основным отличием были выбросы NOx дизельных двигателей CIDI. В соответствии с последними правилами ЕВРО, автомобили должны соответствовать все более строгим стандартам выбросов регулируемых загрязнителей, а также сокращать выбросы CO 2 . Поскольку эти требования противоречили друг другу и их трудно было удовлетворить, несоответствие между реальным расходом топлива и результатами цикла сертификации увеличивается с увеличением стандарта. Автомобили, соответствующие стандарту Euro 6, имели наибольшее расхождение между реальными результатами и результатами цикла сертификации.

Что касается выбросов, то у 13 транспортных средств превышены удельные выбросы NOx, предписанные для цикла сертификации. Из этих 13 автомобилей 11 были дизельными. Только 1 из 12 автомобилей с дизельным двигателем произвел выброс NOx в пределах цикла сертификации. Пять автомобилей с бензиновым двигателем превысили лимит выбросов CO в рамках цикла сертификации. Только 1 автомобиль с дизельным двигателем превысил предел PM цикла сертификации. В среднем выбросы NOx и PM у автомобилей с дизельным двигателем были в 24 и 26 раз выше, чем у автомобилей с бензиновым двигателем, а выбросы CO у автомобилей с дизельным двигателем были в 10 раз ниже, чем у автомобилей с бензиновым двигателем.Транспортные средства с дизельным двигателем превысили предел NOx сертификационного цикла на 370%, а автомобили с бензиновым двигателем выбросили 43% от предельного значения NOx цикла сертификации. Автомобили с бензиновым двигателем выбрасывают 95% предельного количества CO, установленного в сертификационном цикле. Автомобили с дизельным двигателем выбрасывают 20% от предельного количества CO, установленного в цикле сертификации. Что касается ТЧ, то выбросы дизельных автомобилей составили 43% от предельного количества ТЧ сертификационного цикла, а от автомобилей с двумя бензиновыми бензинами с прямым впрыском (GDI) - 26% от предельного количества ТЧ цикла сертификации.Что касается выбросов NOx от двигателей с обедненным горением CI, результаты измерений были лучше, чем заявленные для « diesel gate » или заявленные в таких работах, как (Chossière et al., 2018).

Новые правила были введены после « diesel gate », а дизельные двигатели CIDI были улучшены. Европейские реальные данные по выбросам от вождения транспортных средств после введения новых правил представлены ACEA (2018a). В ходе правильно проведенной экспериментальной кампании, в повторяемых условиях, с надлежащим оборудованием и с применением научного метода, Европейская ассоциация автопроизводителей (ACEA) недавно показала, что все 270 протестированных автомобилей с дизельным двигателем были ниже пределов выбросов, установленных недавно. тесты по вождению в реальных условиях (RDE), как общие, так и городскиеНи один из транспортных средств не превышал установленный в настоящее время удельный выброс NOx в 165 мг / км (ACEA, 2018a), рис. 1. Подробные результаты утверждения типа для 270 типов дизельных транспортных средств, соответствующих требованиям RDE, доступны в ACEA (2018b). . Результаты RDE для отдельных автомобилей можно найти на сайте (ACEA, 2018c).

Новые данные, опубликованные ACEA, недвусмысленно свидетельствуют о том, что дизельные автомобили последнего поколения имеют низкий уровень выбросов загрязняющих веществ на дорогах и являются экономичными. Испытания проводились в реальных условиях вождения водителями различных национальных органов по сертификации.270 новых типов дизельных автомобилей, сертифицированных по последнему стандарту Euro 6d-TEMP, были представлены на европейском рынке за последний год. Все эти автомобили с дизельным двигателем показали очень хорошие результаты ниже порогового значения NOx теста RDE, которое теперь применяется ко всем новым типам автомобилей с сентября 2017 года. Большинство этих автомобилей имеют выбросы NOx значительно ниже более строгого порога, который будет обязательным с января 2020 года. test гарантирует, что уровни выбросов загрязняющих веществ, измеренные во время нового лабораторного испытания WLTP, будут подтверждены на дороге.Каждый протестированный автомобиль представляет собой «семейство », состоящее из похожих автомобилей различных вариантов. Эта деятельность доказывает, что дизельные автомобили, доступные сейчас на рынке, имеют низкий уровень выбросов в любом приемлемом состоянии. Немецкий автомобильный клуб (ADAC) недавно подсчитал, что на 30 октября 2018 года было доступно 1206 различных автомобилей, совместимых с RDE, как с бензиновым, так и с дизельным двигателем (ADAC, 2018a). Следовательно, дизельные ДВС CIDI не заслуживают плохой репутации, которую они получили из-за « дизельных ворот », что является скорее политическим, чем технологическим вопросом.

Современные дизельные автомобили, поддерживаемые политикой обновления парка и в сочетании с альтернативными силовыми агрегатами, могут сыграть важную роль в содействии городам в достижении целей по качеству воздуха при одновременном повышении топливной эффективности и сокращении выбросов CO 2 в краткосрочной и среднесрочной перспективе . Недавние дорожные испытания, проведенные ADAC (2018b), показали, что новейшие автомобили с дизельным двигателем выбрасывают в среднем на 85% меньше NOx, чем автомобили стандарта Euro 5, а наиболее эффективные дизельные автомобили стандарта Euro 6, соответствующие требованиям RDE, выделяют на 95–99% меньше NOx по сравнению с автомобилями Euro 5.Каждый протестированный автомобиль выделяет меньше лимитов для каждого регулируемого загрязнителя. Эти автомобили также обеспечивают исключительную экономию топлива. Кроме того, есть возможность производить еще меньше CO 2 и менее регулируемых загрязняющих веществ, переходя на двухтопливное дизельное топливо - СПГ, КПГ или СНГ.

PM Преимущества дизельных автомобилей

Дизельные двигатели не являются мишенью из-за того, что транспортный сектор вносит свой вклад в общее качество воздуха. Однако, поскольку качество воздуха во многих частях мира оставляет желать лучшего, а дизельные фильтры твердых частиц могут помочь улучшить качество воздуха, аргумент PM может фактически быть использован в пользу мобильности на основе дизельного топлива, а также против альтернатив, таких как электрические мобильность.Хотя неверно утверждать, что более современные автомобили с дизельным двигателем выделяют « излишков » NOx и ухудшают качество воздуха, более современные автомобили с дизельным двигателем способствуют очистке воздуха загрязненных территорий, например, от твердых частиц. Согласно Таблице 1, старые дизельные автомобили были произведены в соответствии с гораздо менее строгими правилами PM. Загрязнители воздуха выбрасываются из многих естественных и антропогенных источников, последние включают сжигание ископаемого топлива в электроэнергетике, промышленности, домашнем хозяйстве, транспорте, промышленных процессах, использовании растворителей, сельском хозяйстве и переработке отходов.Следовательно, наличие транспортных средств с выбросами ТЧ из выхлопной трубы потенциально ниже, чем на впуске, - это возможность очистить воздух.

Табачный дым в окружающей среде (ETS) вызывает загрязнение помещений мелкими ТЧ, превышающее допустимые пределы для транспортных средств. Данные, сравнивающие выбросы ТЧ от ETS и автомобиля с дизельным двигателем Euro 3, показывают, что концентрации ТЧ в помещении в 10 раз превышают выбросы от двигателя с дизельным двигателем Euro 3 на холостом ходу (Invernizzi et al., 2004). Пределы PM были радикально улучшены для Euro 4, 5 и 6, если быть точным, в 10 раз.Исследование Всемирной организации здравоохранения (ВОЗ) (Martuzzi et al., 2006) показывает значительное воздействие PM 10 на здоровье городского населения 13 крупных итальянских городов, оцениваемое как 8 220 случаев смерти в год, что связано с концентрациями PM 10 выше 20 мкг / м. Это 9% смертности от всех причин (без учета несчастных случаев) среди населения старше 30 лет. Эти уровни PM 10 не являются результатом использования новейших автомобилей с чистым дизельным двигателем.

Характеристики сажевых фильтров (DPF) относительно сложные (Fiebig et al., 2014). Новейшие технологии DPF более эффективны для больших размеров, в то время как менее эффективны или даже отрицательны для меньших нанометрических размеров. Мониторинг часто ограничивается PM 10 - частицами диаметром 10 микрометров или PM 2,5 - частицами диаметром 2,5 микрометра. DPF может улавливать от 30% до более 95% микрометрических ТЧ (Barone et al., 2010). При оптимальном сажевом фильтре выбросы ТЧ могут быть снижены до 0,001 г / км или менее (Fiebig et al., 2014), что в 5 раз меньше, чем в настоящее время 0.005 of Euro 6. Хотя эта мера массы не учитывает загрязнение субмикрометрическими и нанометровыми частицами, в настоящее время нет контроля над этим типом загрязнителя из любого источника.

Если новые автомобили с дизельным двигателем не выбрасывают больше NOx, чем старые автомобили с дизельным двигателем, они, безусловно, выбрасывают гораздо меньше ТЧ и, возможно, при некоторых обстоятельствах способны очищать воздух от ТЧ, производимых из других источников, которые не являются адекватным направлением деятельности директивных органов. . Случай Гонконга, который не является худшим на Земле, описан в Haas (2017).Помимо местных выбросов из различных источников, в том числе от легковых автомобилей, в Гонконг есть значительное количество загрязняющих веществ, привезенных из материкового Китая. Хотя данные о загрязнителях в Китае ограничены, хорошо известно, что Гонконг сталкивается с серьезными проблемами со здоровьем, связанными с загрязнением воздуха, в основном импортируемым с материка. Загрязнение воздуха в Гонконге не так плохо, как в Китае или Индии, где токсичное облако, получившее название « airpocalypse », часто покрывает значительную часть этих стран, но это все еще один хороший пример того, что более современные дизельные автомобили заменяют на дорога старые автомобили оказывают положительное влияние.

Из множества типов аэрозольных частиц, циркулирующих в атмосфере, одним из самых разрушительных является PM 2,5 . Во многих районах Китая и Индии уровни PM 2,5 и PM 10 намного превышают рекомендованные ВОЗ, рис. 2. Руководящие принципы ВОЗ (среднегодовые): PM 2,5 из 10 мкг / м 3 и PM 10 из 20 мкг / м 3 . Во всем мире средний уровень загрязнения атмосферного воздуха колеблется от <10 до более 100 мкг / м 3 для PM 2.5 , и от <10 до более 200 мкг / м 3 , для PM 10 . Случаи плохого качества воздуха широко распространены не только в Китае и Индии. Тем не менее, промышленный центр южного побережья Китая является одним из районов с наиболее высоким уровнем загрязнения, как Пекин и Дели. В то время как Пекинский « airpocalypse » подавляется решительными мерами, в основном направленными на использование угля, но также ограничивающими движение любого транспортного средства (South China Morning Post, 2018), « airpocalypse » Дели достигает нового невероятно высокий, также благодаря « выжиганию стерни » из окрестностей (Indiatimes, 2018).

Рисунок 2 . Карта PM 2,5 для Азии осенью 2018 года в режиме реального времени. Показаны только области, покрытые станциями. Изображение с Земли Беркли, www.berkeleyearth.org.

Качество воздуха в Гонконге не самое лучшее (Haas, 2017). Уровни загрязнителей превышают стандарты ВОЗ более 15 лет. На пиках они более чем в пять раз превышают допустимые уровни. Выбросы от транспортных средств и судов являются одними из крупнейших местных источников загрязнения.Свою роль играют и электростанции, которые почти полностью зависят от ископаемого топлива, в основном угля. Однако около 60-70% PM поступает из материкового Китая. Этот поток чрезвычайно актуален, особенно зимой, когда импортируемый PM составляет около 77% от общего количества. В последние годы резко возросли масштабы астмы и бронхиальных инфекций. Только в Гонконге было зарегистрировано более 1600 фактов, а не гипотетических, как у Chossière et al. (2018), преждевременная смерть в 2016 году только из-за загрязнения воздуха (Haas, 2017).

В дополнение к улучшенным стандартам топлива и расширению использования электромобилей, значительное распространение новейших дизельных транспортных средств, оборудованных уловителями твердых частиц, может еще больше способствовать улучшению качества воздуха в городе, которое по-прежнему не соответствует ни одному руководству ВОЗ.Что касается возможности использовать электромобили, заряжаемые электростанциями, работающими на горючем топливе, электромобили могут фактически способствовать загрязнению ТЧ. Согласно Hodan and Barnard (2004), наибольший источник PM 2,5 из антропогенных источников - это износ шин и дорожного покрытия. Поскольку электромобили тяжелее и имеют более высокий крутящий момент, чем автомобили на базе ДВС, они производят намного больше PM 2,5 . Следовательно, увеличение количества электромобилей сделает Гонконг еще более грязным по отношению к PM, поскольку они производят PM 2.5 , и они не могут сжигать ТЧ, произведенные из других источников, например дизельный ДВС CIDI, оснащенный уловителем твердых частиц.

Как показано на Рисунке 1 и в Таблице 1, автомобили, оснащенные новейшими двигателями ХИ, не производят избыточных NOx, а из Рисунков 2, 3 видно, что во многих регионах мира концентрация ТЧ в воздухе намного выше, чем можно найти. в выхлопной трубе автомобилей, оснащенных новейшими дизельными двигателями CIDI, таблица 1 и NO 2 концентрации также довольно велики. Двухтопливный режим работы на СПГ, КПГ или СНГ с неизменным в остальном транспортным средством, в котором установлен сажевый фильтр, может еще больше способствовать очистке окружающего воздуха от твердых частиц.

Рисунок 3 . Среднемесячные концентрации для Китая в январе 2015 г.: PM 2,5 , вверху, и NO 2 , внизу. Изображения с Земли Беркли, www.berkeleyearth.org.

Преимущества двухтопливного дизельного топлива - СПГ / СНГ / КПГ

Современные технологии

Дизель-СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизельное топливо-СПГ (Maji et al., 2008; Shah et al., 2011; Ryu, 2013) или дизельное топливо-СНГ (Jian et al., 2001; Ashok et al., 2015) двигатели обеспечивают, например, эффективность преобразования дизельного топлива и удельную мощность, улучшая при этом выбросы как регулируемых загрязнителей (PM, NOx), так и CO 2 . СПГ может использоваться для большегрузных автомобилей из-за криогенного хранения. LPG (и CNG) может быть предпочтительным для применения в легковых и легких транспортных средствах.

Дизельные двигатели по-прежнему производят значительное количество диоксида углерода (CO 2 ) и выбросы твердых частиц (ТЧ) из двигателя из-за диффузионного сгорания тяжелых углеводородов, высокого отношения C / H и жидкого дизельного топлива.Выбросы оксидов азота (NOx) из двигателя также являются неотъемлемой частью процесса сжигания обедненной смеси в избыточном воздухе (Heywood, 1988). Как PM, так и NOx могут быть уменьшены за счет последующей обработки, хотя стратегии сжигания дизельного топлива часто определяются для наилучшего компромисса между NOx и PM.

Использование газообразного топлива с пониженным содержанием углерода, такого как природный газ, который в основном представляет собой метан CH 4 , в жидкой форме, как СПГ, или в газовой форме, как СПГ, или сжиженный нефтяной газ (СНГ), в основном пропан C 3 H 8 , имеет интуитивно понятные основные преимущества в выбросах CO 2 по сравнению сдизельное топливо переменного состава, но примерно C 13,5 H 23,6 . Поскольку испарение намного проще, существуют также преимущества для выбросов ТЧ из двигателя и, следовательно, косвенно также для выбросов NOx из двигателя по сравнению с дизельным топливом (Kathuria, 2004; Chelani and Devotta, 2007; Yeh, 2007; Engerer and Horn, 2010; Лин и др., 2010; Кумар и др., 2011).

СПГ, КПГ и СНГ имеют меньшее соотношение углерода и водорода. Следовательно, гораздо меньше CO 2 выбрасывается для получения такой же мощности при примерно такой же эффективности преобразования топлива.CNG - это нагнетаемый газ. СПГ также является газом в нормальных условиях. LPG в нормальных условиях жидкий, но испаряется намного быстрее, чем дизельное топливо. Это практически сводит к нулю выбросы твердых частиц (кроме выбросов пилотного дизеля). Поскольку СПГ, КПГ и СНГ представляют собой высокооктановое топливо с низким цетановым числом, их трудно использовать отдельно в двигателе с воспламенением от сжатия. Проблема решается при работе на двух видах топлива (westport.com, 2019a, b). Воспламенение вызывает небольшое количество дизельного топлива. СПГ, КПГ или СНГ, впрыскиваемые до или после зажигания впрыска дизельного топлива, могут затем сгореть в смеси с предварительным смешиванием или диффузией.Первая фаза сгорания вызывает быстрое повышение давления. Скорость сгорания второй фазы определяется скоростью впрыска СПГ, КПГ или СНГ и предназначена для поддержания давления во время первой части такта расширения.

Одной из основных проблем при использовании СПГ или КПГ является удельный объем топлива, так как плотность газа при нормальных условиях низкая. Это создает проблемы для системы впрыска, которой требуются форсунки с гораздо большей площадью поперечного сечения дизельного топлива, и значительно затрудняет быстрое срабатывание и возможности многократного впрыска, характерные для последних дизельных форсунок.Это также проблема для хранения, поскольку объем топлива, необходимый для данного количества энергии на борту транспортного средства, намного больше, чем у дизельного топлива. СПГ имеет лучшую объемную плотность, но для поддержания низкой температуры ему нужна криогенная система. КПГ имеет меньшую объемную плотность и требует дополнительных резервуаров под давлением.

Система Westport HPDI для дизельного топлива и КПГ / СПГ - это технология, хорошо зарекомендовавшая себя десятилетиями (Li et al., 1999; westport.com, 2015). Вначале HPDI представлял собой простой основной впрыск природного газа после предварительного впрыска дизельного топлива.В последнее время HPDI развивается в сторону более сложных стратегий, регулирующих предварительно смешанное и диффузионное сжигание природного газа, как это было предложено Боретти (2013).

Традиционный HPDI в тяжелых ДВС позволяет ДВС, работающему на природном газе, сохранять рабочие характеристики, аналогичные характеристикам дизеля, при этом большая часть энергии обеспечивается за счет природного газа. Небольшой пилотный впрыск дизельного топлива (5–10% энергии топлива) используется для зажигания непосредственно впрыскиваемой газовой струи. Природный газ горит в режиме диффузионного горения с контролируемым смешением (Li et al., 1999; westport.com, 2015).

Технологии будущего

В нескольких работах описаны тенденции развития технологии HPDI. McTaggart-Cowan et al. (2015) отчет о двухтопливных форсунках 600 бар для СПГ. Событие сгорания СПГ ограничено давлением впрыска, которое определяет скорость смешивания и сгорания. Значительное повышение эффективности и снижение PM достигаются при высоких нагрузках, и особенно на более высоких скоростях, за счет увеличения давления впрыска с традиционных 300 бар до новейших 600 бар.Скорость горения ограничена. McTaggart-Cowan et al. (2015) сообщают о выгодах эффективности от более высоких давлений около 3%, добавленных к снижению выбросов твердых частиц на 40–60%.

Различные формы сопла рассматривались Mabson et al. (2016). Инжектор «, сопла с парными отверстиями, » был разработан для уменьшения образования твердых частиц за счет увеличения уноса воздуха из-за взаимодействия струй. Выбросы CO и PM были наоборот в 3–10 раз выше при использовании сопел с парными отверстиями. Сопло с парными отверстиями давало более крупные агрегаты сажи и большее количество частиц.

Mumford et al. сообщают об улучшениях Westport HPDI 2.0 (Mumford et al., 2017). HPDI 2.0 обеспечивает лучшие характеристики и уровень выбросов по сравнению с HPDI первого поколения, а также только с базовым дизельным двигателем. Мамфорд и др. (2017) также обсуждают потенциал и проблемы более высокого давления закачки.

Стратегии сжигания с контролируемой диффузией и с частичным предварительным смешиванием рассмотрены Florea et al. (2016) с помощью Westport HPDI. Сгорание с частичным предварительным смешиванием, называемое DI 2 , является многообещающим, повышая КПД двигателя более чем на 2 пункта по сравнению со стратегией сгорания с контролируемой диффузией.Модуляция двух фаз горения, потенциально более полезная, в работе не исследуется.

Режим горения DI 2 также исследован в Neely et al. (2017). Природный газ впрыскивается во время такта сжатия перед зажиганием впрыска дизельного топлива. Показано, что такое сгорание природного газа с частичной предварительной смесью улучшает как термическую, так и эффективность сгорания по сравнению с традиционным двухтопливным режимом сгорания с фумигацией. Сгорание природного газа с частичной предварительной смесью также обеспечивает повышение теплового КПД по сравнению со сгоранием с регулируемой диффузией по базовой линии, когда впрыск природного газа происходит после впрыска дизельного топлива.

Влияние стратегии впрыска на выбросы и характеристики двигателя HPDI изучено Faghani et al. (2017а, б). Они исследуют влияние позднего дополнительного впрыска (LPI), а также сгорания с небольшим предварительным смешиванием (SPC) на выбросы и характеристики двигателя. При использовании SPC впрыск дизельного топлива задерживается. Работа SPC при высокой нагрузке снижает PM более чем на 90% с улучшением топливной эффективности на 2% при почти таком же уровне NOx. Однако SPC имеет большие колебания от цикла к циклу и чрезмерную скорость нарастания давления.ТЧ не увеличивается для SPC с более высоким уровнем рециркуляции отработавших газов, более высоким глобальным коэффициентом эквивалентности на основе кислорода (EQR) или более высокой пилотной массой, что обычно увеличивает количество ТЧ при сжигании с регулируемым смешиванием HPDI. LPI, последующий впрыск 10–25% от общего количества топлива, происходящий после основного сгорания, приводит к значительному сокращению PM с незначительным влиянием на другие выбросы и характеристики двигателя. Основное сокращение PM от LPI связано с уменьшением количества топлива при первом впрыске. Вторая закачка дает незначительный нетто-вклад в общие PM.

Двухтопливный инжектор дизель-СПГ Westport HPDI дает отличные результаты. Однако есть фундаментальный недостаток этого подхода. Он не обладает такими же характеристиками, как дизельные форсунки последнего поколения, как по расходу, так и по скорости срабатывания и распылению дизельного топлива. Таким образом, может быть предпочтительным соединение с одним дизельным инжектором последнего поколения со специальным инжектором для второго топлива, чтобы обеспечить лучшие характеристики впрыска как для дизельного, так и для второго топлива.Более высокое давление впрыска и более быстрое срабатывание являются движущими силами улучшенных режимов сгорания.

Двухтопливные дизель-водородные ДВС CIDI с возможностью установки двух прямых форсунок на цилиндр были исследованы, например, в (Boretti, 2011b, c). Один инжектор использовался для дизельного топлива, а другой - для водорода. Смоделированный дизельный двигатель, преобразованный в двухтопливный дизель-водород после этого подхода, продемонстрировал КПД при полной нагрузке до 40–45% и снижение потерь в КПД, снижая нагрузку, работающую немного лучше, чем базовое дизельное топливо в каждой рабочей точке.Хотя использование двух форсунок на цилиндр не представляет проблемы для новых двигателей, сложно установить две форсунки при модернизации существующих дизельных двигателей. Специализированные форсунки прямого действия для СПГ, СНГ или КПГ требуют дальнейшего развития для конкретного применения.

Использование двух специализированных форсунок, а не одной двухтопливной форсунки с более высоким давлением впрыска, более быстрым срабатыванием и полной независимостью от впрыска отдельных видов топлива, обеспечивает гораздо большую гибкость в формировании впрыска.Двухтопливный режим обычно характеризуется предварительным впрыском / предварительным впрыском дизельного топлива, за которым следует основной впрыск второго топлива. Предпочтительно, чтобы второе топливо не впрыскивалось полностью после зажигания впрыска дизельного топлива. Его можно впрыскивать до или одновременно с дизельным топливом или после дизельного топлива, причем не только за один впрыск, но и за несколько впрысков. Таким образом, второе топливо может гореть частично предварительно смешанным и частично диффузионным.

Возможны разные режимы горения. « Controlled » HCCI - один из таких режимов.В управляемом HCCI второе топливо впрыскивается первым, и воспламенение дизельного топлива происходит до ожидаемого начала самовоспламенения HCCI (Boretti, 2011a, b). HCCI не имеет преимуществ с точки зрения эффективности преобразования топлива по сравнению с объемным сгоранием в центре камеры, окруженной воздушной подушкой. Гомогенное горение всегда страдает большими потерями тепла на стенках и неполным сгоранием на гашение пламени. HCCI также не создает пикового давления во время такта расширения, обеспечивая пиковое давление точно в верхней мертвой точке.Тем не менее, HCCI может иметь преимущества для выбросов из двигателя, поскольку это чрезвычайно низкотемпературный процесс, и это событие сгорания намного ближе к теоретически лучшему изохорному сгоранию из анализов цикла давления.

Наиболее интересные режимы - это предварительное смешение, диффузия или модулированное предварительное смешение и диффузия в центре камеры. При предварительно смешанном, но стратифицированном сгорании второе топливо впрыскивается в центр камеры и сжигается за счет впрыска дизельного топлива до однородного заполнения всей камеры.При диффузионном сгорании второе топливо впрыскивается в центр камеры после того, как воспламенение впрыска дизельного топлива создает подходящие условия для того, чтобы следующее сгорание проходило под контролем диффузии, и там оно сгорает. Существует возможность для предварительного впрыска второго топлива, а также для современного или последующего впрыска второго топлива в отношении пилотного / предварительного впрыска дизельного топлива, которые должны быть тщательно сформированы для обеспечения максимальной эффективности преобразования топлива. , в пределах ограничений по выбросам из двигателя, скорости нарастания давления и пиковому давлению.

Альтернатива электрической мобильности все еще преждевременна

Экологичность и экономичность дизельной мобильности не признается многими странами, которые в противном случае задумывались о преждевременном переходе к электрической мобильности, не решив сначала многие проблемы электромобилей, то есть высокую экономичность и экологические затраты на строительство, эксплуатацию и утилизацию автомобилей, ограниченные характеристики этих тяжелых транспортных средств из-за все еще неадекватных технологий аккумуляторов, отсутствие инфраструктуры для подзарядки только за счет возобновляемых источников энергии.

Номинально для решения проблемы глобального потепления, а не загрязнения воздуха, Великобритания, Франция и Китай обсудили прекращение мобильности на базе ICE к 2040 году. Однако данные МЭА (IEA, 2018) показывают, что производство геотермальной электроэнергии Солнце, ветер, приливы, волны и океан по-прежнему составляли около 1% от общего количества в 2015 году, при этом общий объем первичной энергии (ОППЭ) значительно превышает производство электроэнергии. Поскольку доля солнечной и ветровой энергии в TPES по-прежнему невелика, нет смысла предлагать только электромобили, даже если забыть о других ключевых вопросах, связанных с поиском электрической мобильности.

В настоящее время анализ жизненного цикла выбросов CO 2 (LCA) не показывает явного преимущества электрической мобильности по сравнению с мобильностью на базе ДВС (Boretti, 2018). Пример LCA для электрической мобильности критически зависит от того, как вырабатывается электричество, которое без огромного увеличения накопления энергии, а не просто увеличение зарегистрированной мощности ветра и солнца, нуждается в поддержке ископаемым топливом. С 1990-х годов в аккумуляторных технологиях произошел прогресс, но пока еще не произошло необходимого прорыва.Производство, использование и утилизация электромобилей по-прежнему слишком дорого с экономической и экологической точек зрения, а также возникают дополнительные проблемы с материалами, необходимыми для производства батарей, которые подвержены большему риску истощения, чем ископаемое топливо (Boretti, 2018). . Кроме того, эти материалы добываются неэтично в очень немногих местах.

Amnesty International (Onstad, 2019) недавно отметила, что индустрия электромобилей (EV) продает себя как экологически чистые, но при этом многие из своих аккумуляторов производят на ископаемом топливе и неэтичных минералах, испорченных нарушениями прав человека.Маловероятно, что имеется достаточно сырья для удовлетворения ожидаемого резкого спроса на литий-ионные батареи электромобилей и подключенные к сети аккумуляторные системы для хранения периодически возобновляемой энергии ветра и солнца (Jaffe, 2017). Кроме того, без учета какого-либо четкого пути рециркуляции и отрицательных прошлых (и настоящих) примеров рециркуляции промышленно развитыми странами за счет экологического ущерба в развивающихся странах (Minter, 2016) электрическая мобильность может привести к значительному ущербу для экономики. и окружающая среда.

Хотя электрическая мобильность, безусловно, может решить некоторые из проблем загрязнения воздуха, связанных с транспортом, маловероятно, что это может произойти в ближайшее время, она не решает проблемы загрязнения из других источников, и это еще не так дружелюбно, в целом , где все включено. Потребление топлива для сжигания все еще резко увеличивается, и существует очень мало примеров технологических возможностей для преобразования химической энергии топлива в механическую или электрическую энергию с более высокой эффективностью преобразования энергии топлива и снижением выбросов загрязняющих веществ дизельных ДВС CIDI.Переход на электрическую мобильность в транспортном секторе потребует огромных затрат, в том числе с точки зрения выбросов парниковых газов.

Обсуждение и выводы

Хотя ICCT, Агентство по охране окружающей среды США и CARB описывают автомобили с дизельным двигателем как вредные для окружающей среды, последние тесты вождения, проведенные ACEA, показывают, что это неверно. Современные дизельные автомобили имеют относительно низкие выбросы CO 2 и загрязняющих веществ, включая NOx и PM. Само по себе движение дизельных автомобилей в сильно загрязненных районах может улучшить качество воздуха, загрязненного другими источниками, а не только старыми дизельными автомобилями.

Дизельные ДВС

CIDI могут быть улучшены и более экологичны благодаря дальнейшим усовершенствованиям в системе впрыска, а также в системе дополнительной обработки. ДВС CIDI также можно улучшить, просто приняв двухтопливную конструкцию со сжиженным нефтяным газом, сжатым природным газом или сжиженным природным газом в качестве второго топлива. Эти альтернативные виды топлива обеспечивают такие же или лучшие характеристики ДВС, работающего только на дизельном топливе, в том, что касается установившегося крутящего момента, мощности и эффективности преобразования топлива, а также переходных процессов, при этом значительно улучшая выбросы CO 2 , а также Выбросы PM и NOx из двигателя.

В дополнение к лучшему соотношению CH для выбросов CO 2 , преимущества двухтопливных ДВС CIDI с СПГ, КПГ или СНГ также проистекают из возможности регулирования фаз предварительного смешивания и диффузии сгорания путем впрыска второй топливо, которое намного легче испаряется и менее склонно к самовоспламенению до, после или после предварительного / пилотного дизельного топлива. Также особенно важен для СПГ охлаждающий эффект за счет криогенного впрыска. Дальнейшие разработки в системе впрыска являются предметом особого внимания при разработке двухтопливных ДВС CIDI.

Преимущества дизельных или двухтопливных двигателей CIDI ICE по сравнению с любыми другими альтернативными решениями для транспортных приложений в настоящее время не признаются ни одним директивным органом. Европейские автопроизводители уже приостановили свои планы исследований и разработок своих ДВС, чтобы сосредоточиться только на электромобилях. Учитывая нерешенные проблемы, связанные с электромобильностью, это может вскоре оказаться неправильным для экономики и окружающей среды. Использование более современных дизельных транспортных средств и транспортных средств, работающих на двухтопливном дизельном топливе, может только спасти жизни, но не привести к смертности, улучшая качество воздуха, ограничивая при этом истощение природных ресурсов и выбросы CO 2 , не требуя чрезмерных усилий и кардинальные изменения.

Вклад авторов

Автор подтверждает, что является единственным соавтором данной работы, и одобрил ее к публикации.

Конфликт интересов

Автор заявляет, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Ссылки

Амброджио, М., Саракко, Г., и Спеккиа, В. (2001). Сочетание фильтрации и каталитического сжигания в уловителях твердых частиц для очистки выхлопных газов дизельных двигателей. Chem. Англ. Sci. 56, 1613–1621. DOI: 10.1016 / S0009-2509 (00) 00389-4

CrossRef Полный текст | Google Scholar

Ашок Б., Ашок С. Д. и Кумар К. Р. (2015). Дизельный двухтопливный двигатель LPG - критический обзор. Александр. Англ. J. 54, 105–126. DOI: 10.1016 / j.aej.2015.03.002

CrossRef Полный текст | Google Scholar

Autocar (2018). BMW прекращает производство расширителя диапазона i3 . Доступно на сайте: www.autocar.c

Топливные форсунки для судового дизельного двигателя

Топливные форсунки для судового дизельного двигателя Главная || Дизельные двигатели || Котлы || Системы питания || Паровые турбины || Обработка топлива || Насосы || Охлаждение ||

Топливные форсунки для судового дизельного двигателя

Функция системы впрыска топлива - подавать нужное количество топлива в нужный момент и в подходящем состоянии для процесс горения.Следовательно, должна быть какая-то форма измерения подача топлива, средства синхронизации доставки и распыления топливо.

Впрыск топлива достигается за счет расположения кулачков на распредвал. Этот распределительный вал вращается с частотой вращения двигателя для двухтактного двигателя. и на половине оборотов двигателя для четырехтактного. Есть две основные системы в использовании, каждый из которых использует комбинацию механических и гидравлические операции. Самая распространенная система - это рывковый насос; в другой - это common rail.

align = "left"> align = "left"> align = "left"> Типичная топливная форсунка показана на рисунке. Видно два основные детали, форсунка и держатель форсунки или корпус. Высокого давления топливо попадает и проходит по каналу в теле, а затем в проход в сопле, заканчивающийся камерой, окружающей игольчатый вентиль.

Игольчатый клапан удерживается закрытым на скошенном седле с помощью промежуточный шпиндель и пружина в корпусе инжектора.Весна давление, а, следовательно, и давление открытия форсунки, можно установить с помощью компрессионная гайка, действующая на пружину. Форсунка и корпус инжектора изготовлены как подходящая пара и точно отшлифованы, чтобы хороший сальник. Оба соединены гайкой сопла.


Система впрыска мазута для дизельного двигателя
align = "center">

Игольчатый клапан открывается, когда давление топлива воздействует на коническая грань игольчатого клапана оказывает достаточное усилие, чтобы преодолеть сжатие пружины.Затем топливо поступает в нижнюю камеру и вытолкнули через серию крошечных отверстий. Маленькие отверстия имеют размер и расположены так, чтобы распылять или разбивать на крошечные капли все жидкое топливо, которое затем легко сгорит. Как только насос форсунки или распределительный клапан отключает подачи топлива под высоким давлением игольчатый клапан быстро закроется под сила сжатия пружины.

Все двухтактные тихоходные двигатели и многие среднеоборотные четырехтактные двигатели теперь почти непрерывно работают на тяжелом топливе.А Поэтому необходима система циркуляции топлива, которая обычно внутри топливной форсунки. Во время впрыска топливо под высоким давлением будет откройте циркуляционный клапан для проведения инъекции. Когда двигатель остановлен подкачивающий топливный насос, подающий топливо, которое циркулирующий направляет вокруг корпуса инжектора.

Старые конструкции двигателей могут иметь топливные форсунки, которые циркулируют с охлаждающая вода.


Топливная система дизельного двигателя
align = "center">
Краткое объяснение того, как работает топливная система в судовом дизельном двигателе?

Из бункерных баков топливо перекачивается перекачивающим насосом в отстойник, из отстойника мазут очищается до служебный бак.Из служебного бака мазут перекачивается через топливная система под давлением к двигателю.

Топливо сначала проходит через комплект холодных фильтров к комплекту подкачивающие насосы мазута, повышающие давление мазута примерно до 12 15 бар, подавая топливо через комплект подогревателей и viscotherm, комплект фильтров тонкой очистки затем к топливной рампе и к топливные насосы двигателя, где давление поднимается примерно до 250 300 бар для распыления топливной форсункой.

Нагреватель в системе снижает вязкость мазута в системе для эффективного сгорания. Требуемая температура будет зависеть от от качества жидкого топлива, которое будет варьироваться в зависимости от температуры не должна превышать 150 ° C. Фильтр тонкой очистки в системе нержавеющий. стальная сетка для фильтрации частиц размером более 50 микрон или менее для двигатели меньшего размера. Фильтры необходимо регулярно чистить.

Важна плотность мазута, сжигаемого в дизельном двигателе. потому что некоторые виды топлива разной плотности несовместимы в резервуарах может происходить образование тяжелых шламов.


Связанная информация:
  • Функция топливной форсунки для дизельного двигателя

  • Функция системы впрыска топлива состоит в том, чтобы подавать необходимое количество топлива в нужный момент и в подходящем состоянии для процесс горения. Следовательно, должна быть какая-то форма измерения подача топлива, средства синхронизации доставки и распыления топливо.
    Подробнее .....
  • Обслуживание топливных фильтров

  • Механическое отделение твердых примесей от масляных систем (топливных и смазка) достигается за счет использования фильтров и сетчатых фильтров.Ситечко обычно это фильтр грубой очистки для удаления более крупных загрязняющих частиц. И то и другое устроены как полнопоточные агрегаты, обычно монтируются попарно (дуплекс) с один в качестве резервного ..
    Подробнее .....
  • Процесс смешивания жидкого топлива

  • Смешивание - это смешивание двух видов топлива, обычно тяжелого и морского дизельное топливо. Намерение состоит в том, чтобы производить топливо средней вязкости. подходит для использования во вспомогательных дизелях. .
    Подробнее .....
  • Центрифугирование мазута

  • Как жидкое топливо, так и смазочные масла требуют обработки перед подачей в двигатель.Это будет включать хранение и нагревание для разделения наличие воды, грубая и тонкая фильтрация для удаления твердых частиц, а также центрифугирование.
    Подробнее .....
  • Микробиологическое заражение судового мазута

  • В смазочных маслах и смазочных материалах могут присутствовать микроорганизмы, то есть бактерии. мазут. При подходящих условиях они могут расти и размножаться на феноменальные ставки. Их присутствие приводит к образованию кислот и шлам, пятна на металле, отложения и серьезная коррозия..
    Подробнее .....
  • Руководство по контролю отделения тяжелой нефти и топливным бакам

  • Изменения в технологии нефтепереработки приводят к получению тяжелого жидкого повышенной плотности и обычно загрязнены каталитическими мелкими частицами. Эти представляют собой небольшие частицы катализаторов, используемых в процессе очистки. Они есть чрезвычайно абразивен и должен быть удален из топлива перед его попаданием двигатель.
    Подробнее .....
  • Обработка жидкого топлива для судостроения

  • Сырая нефть в настоящее время является источником большинства жидких углеводородов для судового использования.Синтетическое топливо разрабатывается, но, вероятно, тоже будет дорого для движения корабля. Твердое топливо, такое как уголь, возвращается в небольшой путь для определенных специализированных торговых пробегов. Различные изысканные продукты сырой нефти, вероятно, останутся основными формами морских топливо.
    Подробнее .....
  • Масляная система для дизельного двигателя

  • Масляная система для дизельного двигателя может быть рассмотрена в двух части системы подачи топлива и впрыска топлива. Подача топлива связана с предоставление жидкого топлива, пригодного для использования системой впрыска.
    Подробнее .....


Machinery Spaces.com посвящен принципам работы, конструкции и эксплуатации всего оборудования. предметы на корабле, предназначенные в первую очередь для инженеров, работающих на борту, и тех, кто работает на берегу. По любым замечаниям, пожалуйста Свяжитесь с нами

Copyright © 2010-2016 Machinery Spaces.com Все права защищены.
Условия использования
Прочтите нашу политику конфиденциальности || Домашняя страница ||

Топливная форсунка дизельных двигателей - морское исследование


Изображение предоставлено: www.riceweightloss.com

Старые двигатели с продувкой по контуру могут иметь одну форсунку, установленную по центру головки цилиндров. Поскольку выпускной клапан находится в центре головки блока цилиндров в современных двигателях с прямоточной продувкой, топливные клапаны (2 или 3) расположены по периферии головки.
Давление, при котором работает форсунка, можно регулировать, регулируя нагрузку на пружину. Давление, при котором работают форсунки, различается в зависимости от двигателя, но может достигать 540 бар.

- Топливные форсунки достигают этого за счет использования подпружиненного игольчатого клапана.
- Топливо под давлением от топливного насоса подается вниз по корпусу форсунки в камеру форсунки чуть выше, где игольчатый клапан крепко удерживается на своем седле сильной пружиной.
- Когда плунжер топливного насоса поднимается в цилиндре, в камере нарастает давление, воздействуя на нижнюю часть иглы, как показано. Когда эта сила преодолевает направленную вниз силу пружины, игольчатый клапан начинает открываться.
- Топливо теперь воздействует на зону посадки клапана и увеличивает подъемную силу.
- Когда это происходит, топливо попадает в пространство под иглой и проталкивается через небольшие отверстия в сопле, где оно выходит в виде «распыленной струи».

Кредит изображения: www.marinediesels.co.uk

В конце поставки давление резко падает, и пружина быстро закрывает игольчатый клапан.

РАСПЫЛЕНИЕ

Распад топлива на очень мелкие частицы, когда он впрыскивается в цилиндр.
Правильное распыление облегчает начало горения и гарантирует, что каждая мельчайшая частица топлива окружена частицами кислорода которые он может объединить

Изображение предоставлено: www.marineinsight.com

Относится к расстоянию, на которое частицы топлива проходят или проникают в камеру сгорания.

- Относится к модели движения прицела в камере сгорания в конце сжатия.
Форма распыления топлива конусообразная.

- Это происходит, когда во время впрыска наблюдается чрезмерная скорость распыления топлива, вызывающая контакт с металлическими частями двигателя, и одним из результатов является горение пламени

Корпус клапана топливной форсунки обычно имеет фланец на верхнем конце, а нижний конец имеет резьбу для размещения корпуса форсунки и накидной гайки форсунки
Корпус форсунки содержит четыре отверстия.Одно предназначено для впуска топлива, а другое - для клапана заливки топлива, эти два отверстия соединены через общее пространство внутри топливного сопла или через кольцевое пространство.

Изображение предоставлено: DieselNet

Игла клапана, которая очень точно вошла в направляющую машины в корпус форсунки, удерживается на коническом седле непосредственно над отверстиями для распыления.
Небольшой зазор между иглой и корпусом форсунки, чтобы учесть изменения температуры при работе с нагретым топливом.

Некоторые форсунки имеют внутренние охлаждающие каналы, выходящие в сопло, через которые циркулирует охлаждающая вода.Это необходимо для предотвращения перегрева и подгорания насадки.
Форсунки современных двухтактных крейцкопфных двигателей не имеют внутренних каналов водяного охлаждения. Они охлаждаются за счет комбинации интенсивного охлаждения канала в головке блока цилиндров, расположенной рядом с карманами клапана, и топлива, которое рециркулирует через инжектор, когда толкатель находится на основании кулачка или когда двигатель остановлен.

Помимо охлаждения форсунки, рециркуляция топлива при остановленном двигателе поддерживает правильную вязкость топлива для впрыска, предотвращая его охлаждение.
Анимация напротив показывает принцип, по которому работает одна система.
Топливные форсунки должны содержаться в хорошем состоянии, чтобы поддерживать оптимальную эффективность и предотвращать возникновение условий, которые могут привести к повреждению цилиндра. Форсунки должны быть заменены в соответствии с рекомендациями производителя, отремонтированы и испытаны. Пружины могут ослабнуть при повторном срабатывании, что приведет к открытию инжектора при более низком давлении, чем предусмотрено. Игольчатый клапан и седло могут изнашиваться, что вместе с изношенными отверстиями сопла приведет к неправильному распылению и подтеканию

1.Перегрев ИЛИ при охлаждении:
Если охлаждение форсунки снижено из-за системы охлаждения топливного клапана или плохой теплопередачи к головке цилиндров, рабочая температура форсунки повысится. Это может вызвать: -
- Размягчение иглы и седла, что увеличивает вероятность утечки из форсунки и / или,
- Топливо расширяется / выкипает из топливного мешка, что приводит к образованию углеродистой трубы и повышению уровня углеводородов и дыма. в выхлопных газах.

2.Переохлаждение:
Чаще встречается на старых судах с отдельными системами водяного охлаждения топливного клапана. Когда форсунка переохлаждена, кончик форсунки опускается ниже температуры конденсации, и возникает кислотная коррозия из-за серы в жидком топливе. Это может вызвать сильную коррозию наконечника инжектора, что приведет к нарушению формы распыления.

3. Утечка из форсунки:
Эта неисправность приведет к образованию углеродных труб, поскольку капля топлива горит близко к наконечнику и остаются углеродные отложения.Формирование труб будет иметь прогрессивное влияние, влияя на форму распыления топлива, и это можно определить по повышенной температуре выхлопных газов и уровням дыма.
Утечку форсунки иногда можно определить по дефекту седла (седло больше не узкое, и это вызвано): -
- Недостаточное охлаждение,
- Грязь в топливе, повреждающая / истирающая посадочную поверхность,
- Чрезмерная игла удар клапана из-за чрезмерного времени работы, чрезмерного подъема иглы или усилия пружины.

4. Слабая пружина:
Это заставит инжектор открываться и закрываться при более низком давлении. Таким образом, в течение этих периодов впрыска размер капель топлива будет увеличиваться.
Увеличенный размер капель в начале сгорания приведет к снижению максимального давления в цилиндре (позднее сгорание), в то время как увеличенный размер капель в конце сгорания приведет к увеличению температуры выхлопных газов и дыма (дожигание).
Причиной слабой пружины обычно является усталость металла из-за чрезмерного количества операций.

5. Провисшая игла:
Небольшая утечка между игольчатым клапаном и его корпусом необходима для смазки движущихся частей. Однако избыточная утечка из-за провисания иглы позволит большему количеству и большему размеру частиц топлива пройти между клапаном и корпусом.
Количество утечки не должно влиять на работу инжектора, если оно не является чрезмерным, но частицы грязи между иглой и корпусом могут увеличить трение и замедлить работу иглы.
Причиной провисания иглы обычно является плохая фильтрация топлива, вызывающая износ иглы и корпуса.

6. Плохое распыление:
Это увеличивает размер капель топлива, что увеличивает время, необходимое для сгорания. Это приведет к увеличению шума двигателя, выхлопного дыма, температуры выхлопных газов и т.д. Плохое распыление может быть вызвано низким давлением впрыска (износ топливного насоса), высокой вязкостью топлива и засорением отверстия форсунки, например, угольными трубами.

7.Плохое проникновение
Это уменьшит смешение топлива и воздуха и увеличит избыточное обогащение в центральной части цилиндра. Таким образом, только после сгорания в центральной области расширяющиеся газы будут перемещать топливный заряд в богатое воздухом внешнее кольцо цилиндра, где присутствует наибольшая масса воздуха.
Это увеличит время, необходимое для сгорания, поскольку смесь топлива и воздуха во многих областях неправильная, и, следовательно, увеличится дожигание, температура выхлопа и дымность.
Причины плохого проникновения - пониженное давление впрыска и засорение отверстий форсунки, например, рожков или отложений в мешочке.

8. Избыточное проникновение
Это происходит, когда плотность воздуха внутри цилиндра снижается или возникают отверстия слишком большого размера. Поток жидкости проходит слишком далеко в цилиндр, так что имеет место сильный удар жидкости о стенку гильзы. Это удалит смазку гильзы, и после горения значительно увеличится температура стенки гильзы и ее тепловое напряжение.
Если это чрезмерное проникновение вызвано продолжительными операциями на малой мощности, то следует установить насадки с «малой скоростью».

Форсунки с медленным пропариванием могут использоваться, когда требуется регулярная и продолжительная работа двигателя при 20-50% мощности.
Диаметр отверстия сопла уменьшен до
мм. Уменьшите проникновение в менее плотный воздух в цилиндре
ii. Поддерживайте достаточный уровень распыления и давление впрыска, так как массовый расход снижается.

Если двигатель работает в течение длительного периода на низких уровнях мощности / скорости с форсунками "нормального" размера, то распыление будет уменьшаться, что приведет к увеличению шума двигателя, механической нагрузки, выхлопного дыма, температуры выхлопных газов и расхода топлива.

1. Сильно увеличенные отверстия вызывают перегрев, возможно обгорание верхней поверхности поршня, а также вызывают отложение нагара в пространстве охлаждения поршня, если охлаждается маслом. Это также может вызвать повышенный износ цилиндра и поршневого кольца.

2. Если отверстия забиты, то разбрызгивание топлива будет происходить до такой степени, что это приведет к несовершенному сгоранию. Это, в свою очередь, может значительно снизить выходную мощность и вызвать все механические проблемы, которые обычно возникают после сжигания.
3. Если форсунки негерметичны или пружина повреждена, обгорает верхняя поверхность поршня, а также вызывает отложение нагара в охлаждающем пространстве поршня, если масло охлаждается. Это также может вызвать повышенный износ цилиндра и поршневого кольца и привести к пожару из продувки.

1. О раннем впрыске обычно свидетельствует стук в цилиндре. На диаграмме мощности максимальное давление будет значительно выше. Температура выхлопных газов будет низкой.

2. Негерметичный клапан можно определить по индикаторной диаграмме, которая показывает пониженное давление сгорания.Это будет некоторое снижение выходной мощности, повышение температуры выхлопных газов примерно на 10 ° C и дымность газов. Блокировка форсунок и выхлопных отверстий. Пульсация турбонагнетателя также является частью индикации

.

3. После сжигания произойдет повышение температуры и давления выхлопных газов. Максимальная высота диаграммы мощности и тяги будет уменьшена. Другими признаками являются задымленность выхлопа, возможные возгорания на всасывании, засорение выхлопной системы, помпаж турбонагнетателя

.

4. Забитые топливные форсунки - эффективность сгорания двигателя зависит от распыления топлива, формы и направления струй топлива.Так что отверстия должны быть чистыми. Первым внешним признаком накопления нагара будет повышение температуры выхлопных газов из-за того, что топливо не смешивается должным образом с воздухом и, следовательно, не сгорает полностью за отведенное время. Мощность снижена, выхлоп задымлен.

  • Топливные форсунки должны содержаться в хорошем состоянии, чтобы поддерживать оптимальную эффективность и предотвращать возникновение условий, которые могут привести к повреждению цилиндра.
  • Форсунки
  • должны быть заменены в соответствии с рекомендациями производителя, отремонтированы и испытаны.
  • Пружины могут ослабнуть при повторном срабатывании, что приведет к открытию форсунки при более низком давлении, чем предусмотрено.
  • Игольчатый клапан и седло могут изнашиваться, что вместе с изношенными отверстиями сопла приведет к неправильному распылению и подтеканию.
  • Во время работы необходимо обеспечить надлежащее охлаждение. Очистить охлаждающие каналы при капитальном ремонте.
  • Должен использоваться соответствующий сорт жидкого топлива, и его следует использовать после надлежащей очистки, чтобы предотвратить увеличение конических и овальных распыленных отверстий из-за абразивных материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *