Турбинный компрессор: Турбинные компрессоры

Содержание

Турбинные компрессоры

Различные компрессоры очень широко используются в работе современными производственными компаниями. С помощью этого оборудования решается огромный спектр самых разных задач. Основанными на поршнях компрессорами пользуются крупные заводы, производства поменьше эффективно внедряют в свою деятельность винтовые и турбинные компрессоры.

Турбокомпрессоры от аналогичного оборудования отличаются тем, что уменьшения объема воздуха в них не происходит. Высокое давление они создают из поступающего в них воздушного потока. В промышленности применяют турбокомпрессоры двух типов – одно или многоступенчатые. Друг от друга они отличаются в основном мощностью. Сфера использования такого оборудования также зависит от того, какую мощность оно может выдавать. Одноступенчатые турбокомпрессоры чаще всего относительно маломощны и применяются по большей части в быту и в малых производствах. В промышленности используют многоступенчатые турбокомпрессоры, которые могут создавать большее давление воздуха и поставлять существенные его объемы.

Подбор конкретной модели чаще всего основывается на том, какой объем сжатого воздуха необходим. Производительность турбокомпрессоров зависит от того, какое число ступеней в них имеется.

Широкое распространение такие агрегаты получили во многом благодаря своей долговечности. Можно очень долго использовать турбокомпрессор, если, конечно, приобрести оригинальную продукцию известного производителя. Качественный компрессор не требует ремонта длительное время и экономичен в эксплуатации. Стоит учитывать, что использование этого вида компрессоров целесообразно только тогда, когда объемы воздуха требуются значительные. Турбокомпрессоры применяют, как правило, там, где с имеющимися задачами не справляется винтовое оборудование. Срок эксплуатации и производительность компрессора – определяющие факторы в том случае, если применяться он должен будет длительное время. В этом плане более высокая цена турбинного оборудования вполне оправдана. Износу детали этих агрегатов практически не подвержены, стоимость обслуживания получается очень низкая (если, конечно, речь идет о крупных производствах, которые требуют больших объемов воздуха).

Плюсом является и отсутствие потерь энергии и возможность в таких устройствах регулировать мощность. В любой промышленности можно использовать турбинные компрессоры, поскольку это универсальное и очень эффективное оборудование.

Статья про устройство и принцип работы винтовых компрессоров

На сегодняшний день воздушные компрессоры представляют собой широкий выбор установок, различающихся между собой по принципу действия, оснащению и устройству, рабочим и другим характеристикам. Каждый тип оборудования имеет свои преимущества и особенности, которые делают выбор той или иной установки наиболее оптимальным. Однако при этом наиболее популярными являются винтовые компрессоры, устройство которых обеспечивает высокую эффективность и надежность работы оборудования.

Устройство компрессоров винтового типа

Установки, входящие в группу винтовых компрессоров, могут быть различны, но при этом они имеют оснащение, общее для всех видов оборудования данного типа. Входящие в состав винтовых компрессоров устройства выполняют определенные функции, обеспечивая при этом эффективную и бесперебойную работу установок.

В состав винтовых компрессоров входят следующие составляющие:

  • Воздушный фильтр всасывающий – выполняет функцию очистки воздуха, который попадает в компрессорную установку. Зачастую состоит из двух элементов – предварительного фильтра, находящегося в том месте, где происходит забор воздуха, а также фильтра, расположенного перед входным клапаном.
  • Входной клапан – обеспечивает регулировку производительности всего компрессора и оснащен пневматическим управлением. Регулирование работы установки обеспечивается переходом клапана на холостой ход.
  • Винтовой блок – представляет собой один из главных рабочих элементов установки винтового типа. В состав винтового блока входят два, расположенных параллельно по отношению друг к другу ротора, одни из которых имеет вогнутый винтовой профиль, а другой – выпуклый. Именно наличие роторов отличает устройство винтовых компрессоров и принцип их действия от установок других типов.
  • Ременная передача – представляет собой два шкива, задающих необходимую скорость вращения роторов. Один из шкивов расположен на винтовой паре, а другой находится на двигателе.
  • Электродвигатель – обеспечивает вращение винтовой пары посредством муфты, редуктора или же ременного привода.
  • Масляной фильтр – проводит очистку масла, прежде чем оно возвращается в блок с винтами.
  • Отделитель масла – бак, изготовленный из металла, в середине которого расположена перегородка с отверстиями. Сила инерции, возникающая при закрутке потока, приводит к очистке воздуха от масла специальным фильтром.
  • Термостат – обеспечивает наиболее оптимальный температурный режим. При низких значениях температуры масла, термостат пропускает его, не затрагивая при этом охлаждающий радиатор, что позволяет ускорить получение наиболее оптимальной температуры в установке.
  • Охладитель масла – выполняет функции охлаждения масла, после того, как оно отделилось от сжатого воздуха.
  • Концевой охладитель воздуха – охлаждает до необходимого уровня сжатый воздух перед тем, как он подается потребителю.
  • Предохранительный клапан – обеспечивает безопасную работу устройства и предотвращает его поломку. Данный клапан срабатывает при значительном повышении уровня давления в маслоотделительном баке, которое может вывести из строя все оборудование.
  • Система трубопроводов – имеет различные трубопроводы для воздушно-масляной смеси, воздуха и масла.
  • Реле давления – устанавливает параметры и режим работы установки в зависимости от показателей уровня давления. Так, при достижении максимального значения давления, работа винтовых компрессоров переходит на холостой ход. При снижении давления установка вновь начинает работать.
  • Блок управления – необходим для электронного управления и контроля над работой оборудования, а также позволяет передавать на дисплей все необходимые рабочие параметры и характеристики компрессора.
  • Вентилятор
    – предназначен для забора воздуха в компрессор с одновременным охлаждением рабочих деталей и элементов оборудования.

Принцип действия компрессоров винтовой группы

Действие винтовых компрессоров заключается в следующем. Посредством системы привода, двигатель приводит в движение винтовую пару, в которую затем поступает уже очищенный воздух. Далее происходит смешивание воздуха с маслом, которое необходимо для создания между роторами масляного клина. При вращении роторов происходит уплотнение зазора между нами и корпусом, что приводит к сжиманию воздуха и повышению давления. Кроме того, в данном процессе масло также выполняет функцию смазывания рабочих механизмов компрессорной установки.

 

 

После сжатия, смесь из масла и воздуха поступает в специальную емкость, где воздух отделяется от масла, затем охлаждается и подается на выход компрессорного оборудования. После охлаждения масло проходит дополнительную фильтрацию, а затем вновь подается в блок с винтами.

Подобное устройство и принцип работы винтовых компрессоров обеспечивает наличие в оборудовании высоких рабочих и технических показателей, позволяющих значительно повысить эффективность работы и производительность установки. Благодаря этому винтовые компрессоры сегодня являются одними из наиболее часто используемых установок, которые могут применяться как в промышленном масштабе, так и на небольших производствах.
Установки винтового типа могут быть различны в зависимости от типа привода, использованию масла, количеству ступеней и другим параметрам, исходя из которых необходимо выбирать наиболее оптимальный тип установки.

Категория в каталоге: 

устройство, схема, преимущества, особенности эксплуатации. Как выбрать винтовой компрессор

Винтовым называется компрессор, понижение давления в котором достигается за счет вращения двух винтов (роторов). По конструкции такие устройства принадлежат к ротационному компрессорному оборудованию.

Впервые винтовая модель была запатентована в 1934 г. На сегодня агрегаты данного типа являются наиболее распространенными в своем сегменте. Этому способствует их относительно небольшая масса и компактные габариты, надежность, способность функционировать в автономном режиме, экономичность в плане потребления электроэнергии и затрат на обслуживание. Невысокий уровень вибрации позволяет монтировать такие системы без обустройства специального фундамента, как в случае с поршневыми аналогами. В ряде направлений (судовые рефрижераторы, мобильные компрессорные станции и т. п.) роторные модели практически полностью вытеснили компрессоры других разновидностей. Такие устройства могут подавать воздух, сжатый до 15 атм., и обладать производительностью 1–100 м3/мин.

Преимущества винтовых компрессоров

По сравнению с центробежными и поршневыми моделями, устройства описываемого типа имеют следующие базовые преимущества.

  1. Крайне низкий (порядка 2–3 мг/м3) расход масла, что в разы меньше, чем у крупных поршневых моделей с лубрикаторной смазкой. Следовательно, воздух, подаваемый посредством винтовых агрегатов, будет намного качественнее и чище. Его можно применять для питания новейшего пневматического оборудования без установки фильтров дополнительной очистки.
  2. Пониженный уровень вибрации и шума (у некоторых моделей – соразмерный с шумностью бытовой техники). С учетом небольшого веса и габаритов это позволяет устанавливать описываемые устройства без специального фундамента непосредственно на производствах, где потребляется сжатый воздух, а также оснащать ими разноплановые мобильные комплексы.
  3. Наличие воздушного охлаждения. Во-первых, это устраняет необходимость устанавливать системы оборотного водоснабжения. Во-вторых, появляется возможность вторично использовать тепло, которое выделяется в результате функционирования компрессора, к примеру, для обогрева помещений.
  4. Надежность работы, безопасность и простота эксплуатации, способность длительное время функционировать без обслуживания. Это становится возможным благодаря наличию автоматических систем, посредством которых осуществляется управление и контроль над работой агрегата.

Устройство винтового компрессора

Стандартная модель состоит из следующих элементов.

  1. Фильтр, необходимый для очищения воздуха, поступающего в агрегат. Обычно состоит из первичного фильтра, монтируемого непосредственно на корпус в месте забора воздушных масс из атмосферы, и вторичного, который устанавливается перед клапаном 2.
  2. Всасывающий клапан. Позволяет предотвратить выброс масла и сжатого воздуха из компрессора в момент остановки последнего. Работает на пневматическом управлении. По конструкции представляет собой обычный подпружиненный клапан. Некоторые устройства оснащены аналогами пропорционального типа.
  3. Винтовой блок. Представляет собой основную рабочую часть агрегата. Состоит из двух винтов (роторов), изготовленных посредством высокоточной механической обработки и помещенных в корпус. Самый дорогой элемент устройства. Роторная пара оснащена датчиком термозащиты, вмонтированным возле патрубка 18. Данный контроллер выключает мотор, если температура на выходе роторов превысит отметку в 105 °С.
  4. Ременной привод (высокомощные модели оснащены прямой муфтовой передачей или редукторами). Задает скорость, с которой вращаются винты. Представляет собой 2 шкива, один из которых установлен на роторной паре, другой – на двигателе. Чем больше скорость, тем выше производительность компрессора, однако максимальное давление (рабочее) при этом снижается.
  5. Шкивы, размер которых задает скорость оборотов винтовой пары 4.
  6. Двигатель. Вращает роторы 4 посредством ременной передачи (в более новых моделях – муфты или редуктора). Оснащен датчиком термозащиты, который отключает мотор от сети при достижении максимально допустимых значений потребляемого электротока. Вместе с датчиком, описанным в пункте 3, обеспечивает безопасность функционирования устройства и защищает его от возникновения аварийных ситуаций.
  7. Масляный фильтр. Он очищает масло перед его возвратом в роторы.
  8. Маслоотделитель первичной очистки. Здесь воздух освобождается от масла под действием центробежной силы (поток закручивается, вследствие чего и отделяются частицы).
  9. Маслоотделительный фильтр. Обеспечивает второй этап очистки. Такой комплексный подход позволяет минимизировать остаточные масляные пары на выходе до 1,3 мг/м3, что является недостижимым значением для поршневых агрегатов.
  10. Предохранительный клапан. Необходим для обеспечения безопасности. Клапан срабатывает, если давление в маслоотделителе 8 превысит допустимый лимит.
  11. Термостат, обеспечивающий нужный температурный режим. Пропускает масляный состав, не разогретый до 72 °С, мимо охлаждающего радиатора 9. Это позволяет ускорить достижение оптимальной температуры.
  12. Маслоохладитель. После отделения от сжатого воздуха горячее масло попадает в данный резервуар, где охлаждается до нужной температуры.
  13. Воздухоохладитель. Перед подачей потребителю сжатый воздух охлаждается здесь до температуры, которая будет выше на 15–20 °С, чем окружающая среда.
  14. Вентилятор. Осуществляет забор воздуха, охлаждает рабочие элементы.
  15. Клапан холостого хода (электропневматический). Управляет функционированием всасывающего клапана 2.
  16. Реле давления. Обеспечивает работу агрегата в автоматическом режиме. В новых компрессорах реле заменено электронной системой управления.
  17. Манометр. Находится на лицевой панели, показывает давление внутри компрессора.
  18. Выходной патрубок.
  19. Прозрачное цилиндрическое утолщение на трубке, необходимое для визуального контроля над процессом возврата масла.
  20. Клапан минимального давления. Пока последнее не превышает 4 бар, он всегда будет закрытым. Также данный элемент выполняет функцию обратного клапана, поскольку отделяет пневмолинию и компрессор при остановке последнего или работе в холостом режиме.

Устройство помещено в корпус, который обычно изготавливается из стали. Он покрывается негорючим звукопоглощающим составом, устойчивым к маслу и прочим сходным веществам. Это конструкция наиболее распространенной модификации. В зависимости от модели и производителя схема и комплектация роторного компрессора может варьироваться.

Принцип действия компрессора

Через клапан 2 воздух из атмосферы, очищенный посредством фильтров 1, попадает в роторную пару 3. Здесь он смешивается с маслом. Последнее подается в резервуар сжатия для выполнения следующих задач.

  1. Уплотнить зазоры между винтами 3 и корпусом 16, а также между полостями роторов. Это позволяет минимизировать перетечки и утечки.
  2. Устранить касание винтов, обеспечив масляный клин между ними.
  3. Отводить тепло, которое индуцируется в процессе сжатия воздуха.

Сжатая в блоке 3 воздушно-масляная смесь подается в маслоотделитель 7, где разделяется на составляющие. Отсепарированное масло очищается на фильтре 6 и возвращается в блок 3. В зависимости от температуры предварительно оно может охлаждаться в радиаторе 9, что регулируется термостатом 8. В любом случае, масло будет циркулировать по замкнутому кругу. Воздух поступает в охлаждающий радиатор 13. После достижения нужной температуры он подается на выход компрессора.

Режимы работы

  • Пусковой (Start). Данный режим служит для оптимизации нагрузки на электросеть в момент запуска компрессора. Включение двигателя осуществляется по схеме «звезда», а через 2 секунды (отсчитываются по таймеру, который включается в момент нажатия на кнопку Start) он переключается на схему «треугольник», что соответствует рабочему режиму. Маломощные винтовые модели работают на прямом пуске.
  • Рабочий. В системе начинает увеличиваться давление. Для его контроля имеется 2 манометра. Первый находится на лицевой панели и показывает параметры внутри компрессора. Второй – на ресивере, он служит для контроля линии. После достижения максимально допустимого давления срабатывает соответствующее реле, в результате чего агрегат переходит на холостой ход из рабочего режима.
  • Холостой ход. Двигатель и роторы вращаются, перемещая газ по внутреннему контуру. Это необходимо для охлаждения воздушных масс. Данный режим служит для перевода компрессора в состояние ожидания или выступает в качестве подготовки перед полным выключением. В поршневых моделях холостого хода нет. Детальное описание работы устройства на таком режиме выглядит следующим образом. Реле 16 дает команду, запускающую пневмоклапан холостого хода и временное реле. Параметры последнего можно настроить. Пневмоклапан открывает канал между фильтром маслоотделителя 9 и всасывающим клапаном 2, вследствие чего давление внутри компрессора начинает снижаться с такой скоростью, чтобы достичь минимальной отметки (2,5 бар) в течение установленного времени. Это позволяет остановить двигатель без выброса масла в область фильтра 1. По истечении указанного периода реле времени дает команду отключить мотор. Система переходит в состояние ожидания. Если сжатие достигло минимальной величины раньше, чем сработало временное реле, снова включается рабочий ритм.
  • Ожидание. Продолжается, пока рабочее давление не опустится ниже минимальной отметки, после чего реле 16 вновь запускает механизм. Длительность данного режима зависит от скорости расходования воздуха.
  • Стоп (Stop). Служит для штатного выключения агрегата. Если при этом компрессор находился в рабочем ритме, он на некоторое время перейдет на холостой ход и только после этого отключится.
  • Alarmstop – экстренное выключение. Соответствующая кнопка находится на панели управления. Режим используется в случаях, если понадобилось срочно остановить двигатель. Агрегат выключается сразу, без промежуточного перехода на холостые обороты.

Разновидности винтовых компрессоров

Маслозаполненные. Один ротор в них является ведущим, второй – ведомым. Физический контакт между данными элементами предотвращается посредством впрыскиваемого масла (на 1 кВт мощности устройства подается 1 л/мин). Шумность работы подобного оборудования находится на уровне шума от бытовой техники – 60–80 Дб (при условии использования звукопоглощающих кожухов). Мощность двигателей может варьироваться в пределах 3–355 кВт, а объемные расходы – 0,4-54 м3/мин. Такое оборудование можно устанавливать непосредственно в рабочих цехах.

Безмасляные. Делятся на два подвида.

  • Компрессоры винтовые сухого сжатия. Оснащены синхронными электромоторами, которые приводят в движение оба винта, исключая контакт между ними. Они менее производительны по сравнению с моделями маслозаполненного типа. Из-за отсутствия масла нет и отвода тепла. Поэтому уровень сжатия достигает лишь 3,5 бар в одной ступени. Данный показатель можно поднять до 10 бар, если использовать вторую ступень и промежуточный рефрижератор. Но это, как и применение двух электромоторов вместо одного, увеличивает стоимость устройства.
  • Водозаполненные компрессоры. Самая технологичная модель, сочетающая все достоинства безмасляных и маслозаполненных вариантов. Водозаполненные агрегаты отличаются оптимальной производительностью и позволяют достигать сжатия 13 бар в одной ступени. Важным преимуществом подобных моделей является их экологичность, ведь традиционное компрессорное масло заменено на чистую, натуральную и не такую дорогостоящую воду. При этом обеспечивается внутреннее охлаждение. Вода обладает высокой удельной теплопроводностью и теплоемкостью. Вне зависимости от уровня конечного сжатия температура в ходе данного процесса повышается максимум на 12 °С. Этому способствует в том числе применение дозированного впрыска. Тепловая нагрузка на элементы устройства минимальна, следовательно, возрастает срок службы, надежность и безопасность агрегата в целом. Сжатый воздух не нуждается в дополнительном охлаждении. Циркулирующая в системе вода охлаждается до температуры окружающей среды. А влага, имеющаяся в сжатых воздушных массах, конденсируется и вновь возвращается в контур. В маслозаполненных моделях именно конденсат был загрязняющим веществом. Здесь же он используется в циркуляционном контуре за несколько часов (при нормальных условиях и непрерывной эксплуатации устройства). Следовательно, накопление отходов на станции практически нивелируется. Еще одно значимое достоинство водозаполненных компрессоров – возможность снизить на 20 % энергозатраты. Процесс сжатия в подобных устройствах приближается к идеальному изотермическому. Изготовление устройства обходится дешевле за счет отсутствия масляных фильтров, емкостей для отработанной масляной жидкости. Не приходится нести издержки и на переработку конденсата.

Безмаслянные модели используются в различных областях, но самые популярные сферы применения – пищевая, фармацевтическая и химическая промышленности.

Почему выгодно перейти на винтовое компрессорное оборудование

Как отмечалось выше, роторные модели постепенно вытесняют поршневые и центробежные варианты. Многие предприятия переходят именно на такие агрегаты, считая их более надежными, совершенными и экономичными. При этом стоимость роторных устройств выше, чем поршневых аналогов. Да и на замену оборудования (если речь идет именно о модернизации системы, а не о сборке новой установки) необходимо потратить определенную сумму. Разберемся более детально, в чем именно заключается выгода для предпринимателей, проведя сравнение винтовых и поршневых моделей. Но для начала необходимо понять, из каких статей расходов формируется стоимость любого компрессора. Окончательная сумма включает в себя следующие затраты.

  1. Приобретение агрегата.
  2. Оплата монтажных работ.
  3. Покупка расходных материалов.
  4. Оплата электроэнергии, потребляемой устройством.
  5. Ремонтные расходы.
  6. Покупка дополнительного оборудования. Например, это может быть очистительный комплекс для сжатого воздуха.
Расходы на приобретение агрегата

В этом плане более выгодными являются поршневые модели, цена которых на 20–40 % ниже стоимости винтовых аналогов. В то же время, это средства, затрачиваемые непосредственно на покупку оборудования. Но ведь его необходимо еще и установить. Поршневые модели имеют более значительные габариты и массу, в процессе работы они ощутимо вибрируют, поэтому нуждаются в обустройстве специального фундамента. Это существенно увеличивает стоимость монтажа. Если сравнивать общую сумму, которую необходимо потратить на покупку оборудования и его установку, то более выгодными оказываются именно роторные варианты.

Расходы на электроэнергию

КПД роторных компрессоров существенно больше. И чем выше производительность агрегата, тем более заметной будет эта разница. Имеет значение и тип устройства. Например, водозаполненные модели обеспечивают более высокую экономию энергоресурсов. Но даже маслозаполненные варианты низкой производительности, оснащенные традиционной схемой управления, на протяжении эксплуатационного периода несколько раз окупают свою стоимость за счет одной только экономии электричества. По критерию энергозатрат на генерирование одинакового объема сжатого воздуха поршневые агрегаты заметно проигрывают.

Некоторые винтовые модели позволяют еще больше увеличить экономию энергоресурсов. Речь идет о двухступенчатых агрегатах и устройствах с изменяемой частотой оборотов мотора. Подобное оборудование дает дополнительную экономию на 30 %. Важно и то, что имеется возможность регулировать производительность агрегата. Другими словами, компрессор будет генерировать столько сжатого воздуха, сколько потребляет оборудование в каждый конкретный момент. При таком режиме работы не возникнет ни переизбытка, ни дефицита. Оборудование будет функционировать с нужной производительностью, затрачивая энергоресурсы только на полезную работу.

Расходы на обслуживание и ремонт

Поршневые компрессоры нуждаются в регулярной замене колец поршней, клапанов, вкладышей и прочих элементов механизма. Роторные модели полностью избавляют пользователя от подобных проблем. В их механизме нет быстро изнашивающихся элементов. Потребность в ремонте возникает гораздо реже, а плановое обслуживание обходится гораздо дешевле. При соблюдении инструкции по эксплуатации такой агрегат способен прослужить около 20 лет, работая без ремонта в трехсменном режиме.

Удешевление обслуживания происходит еще и потому, что пропадает необходимость в постоянном присутствии рядом с оборудованием обслуживающего персонала. Роторные модели оснащены защитой, предотвращающей возникновение аварийных ситуаций. Например, оборудование отключается при перегреве или пиковых значениях электрического тока и способно работать в полностью автономном режиме.

В отличие от поршневых моделей, роторные аналоги поддерживают возможность комплектации блоками электронного управления, которые позволяют на программном уровне задать параметры функционирования агрегата на несколько недель вперед. Посредством электронного блока можно управлять и группой из нескольких механизмов, останавливая или запуская некоторые из них в зависимости от производственных потребностей в сжатом воздухе. Таким образом, комплекс функционирует с максимальной продуктивностью и без перерасхода ресурсов.

Покупка расходных материалов

Винтовые компрессоры имеют более эффективную систему маслоотделения, которая позволяет существенно снизить количество масляных фракций, смешивающихся со сжатым воздухом. Если уменьшается объем затрат основного расходного вещества, то снижается и стоимость его приобретения. Подобные агрегаты имеют более совершенную конструкцию (если сравнивать с поршневыми аналогами), которая позволяет установить современные СОЖ. Последние способны в несколько раз сократить частоту замены масляного состава.

Приобретение дополнительного оборудования

Поскольку в винтовых моделях масляные фракции отделяются эффективнее, нет необходимости покупать дополнительные комплексы очистки. А если сделать выбор в пользу более дешевого поршневого агрегата, придется приобрести еще и ресивер, который гасит возникающие в пневматической системе пульсации давления. Роторные аналоги не генерируют подобные пульсации. В большинстве случаев это позволяет избежать покупки дополнительных ресиверов.

Шумность работы винтовых агрегатов значительно ниже, чем у поршневых устройств. Посредством установки шумопогашающих кожухов можно еще сильнее снизить уровень звука и вибрацию, возникающие при функционировании компрессорного оборудования. Это позволяет монтировать его прямо в цехах, куда подается сжатый газ. Чем короче расстояние, на которое перемещается воздух, тем меньше появляется в нем конденсированной влаги и твердых фракций, которые способны серьезно навредить производственному превмооснащению.

Децентрализация компрессорного оборудования данного типа позволяет запускать только те единицы, которые понадобились в конкретный момент времени для обеспечения производства сжатым газом в необходимых объемах. Следует упомянуть и дополнительную выгоду, которая заключается в возможности задействования генерируемого компрессором тепла для нужд предприятия. Зачастую оно используется для отопления цехов.

Резюме

Роторные модели уступают поршневым аналогам равной производительности только по стоимости покупки. По всем остальным статьям (затраты на ремонт, закупку дополнительного оснащения и расходных материалов, оплату потребляемой энергии и работу обслуживающего персонала) они гораздо выгоднее и несколько раз окупают себя за эксплуатационный период. Таким образом, покупка винтового компрессорного оборудования – экономически оправданное и выгодное для предприятия решение.

Модели с частотным приводом

В середине 1990 гг. были созданы роторные компрессоры, оснащенные частотным приводом. Появление такого оборудования стало большим шагом к развитию и внедрению энергосберегающих технологий на производстве. Стоимость энергорессурсов постоянно увеличивается. Закономерно, что предприятия при модернизации своих мощностей стараются подобрать максимально экономичные варианты для замены устаревшего оснащения. И их выбор часто останавливается именно на роторных агрегатах с частотным приводом. Кроме надежности работы и способности функционировать в автономном режиме подобные агрегаты позволяют существенно оптимизировать энергозатраты.

Особенности конструкции и эксплуатации частотных приводов

Привод данного типа состоит из частотного преобразователя и асинхронного мотора. Последний преобразует электричество в механическую энергию, приводя в движение роторную пару. Частотный преобразователь служит для управления мотором. Он модифицирует переменный электроток одной частоты в переменный ток другой частоты.

В технической литературе чаще встречается термин «частотно-регулируемый электропривод». Подобное название обусловлено тем, что регулировка скорости оборотов мотора осуществляется посредством вариации частоты питающего напряжения, которое подается частотным преобразователем на двигатель. На сегодня подобные приводы широко применяются в различных сферах промышленности. Например, они задействованы в насосах, обеспечивающих дополнительную подкачку жидкости для сетей тепло- и водоснабжения.

Компрессорное оборудование с частотным приводом

Оснащение такого оборудования частотными приводами позволило получить агрегаты, обладающие рядом значимых достоинств по сравнению с простыми винтовыми моделями.

 

  • Плавный запуск. При включении обычного асинхронного электромотора возникают пусковые токи, превышающие номинальные в более чем 4 раза. Это провоцирует возникновение перегрузки в сети и накладывает ограничения на количество включений компрессорного оборудования в течение часа. Аналог с двигателем, оснащенным частотным преобразователем, запускается плавно, не провоцируя перегрузок в сети. Число пусковых операций у него будет меньше.
  • Способность поддерживать постоянное давление с высокой (до 0,1 бар) точностью, немедленное реагирование на все скачки данного параметра в сети. Каждый дополнительный бар нагнетания – это 6–8-процентное увеличение энергопотребления оборудования.
  • Обеспечение точного соответствия производительности компрессора и реальной потребности подключенного к нему оборудования в сжатом газе. Это позволяет минимизировать количество переходов агрегата в режим холостых оборотов. А ведь именно в моменты подобных переходов асинхронный электромотор обычной модели потребляет до 1/4 собственной номинальной мощности.

Посредством несложных расчетов получаем, что модель с частотным приводом за пятилетний период эксплуатации позволяет сэкономить до 25 % электроэнергии по сравнению с роторными моделями без частотного преобразователя. Некоторые производители обещают, что их оборудование способно сэкономить до 35 % ресурсов.

Другие способы оптимизации энергозатрат

На практике эффективность работы оборудования напрямую зависит от режима его функционирования. Нередко встречаются случаи, когда производители завышают показатели экономичности своего оборудования или в рекламных целях предоставляют неполную информацию. Пользователи компрессорных установок должны знать, что существуют и другие способы оптимизации энергозатрат, которые часто более просты и экономически выгодны. В качестве примера можно привести децентрализованный комплекс обеспечения сжатым газом. Он предусматривает установку нескольких компрессоров небольшой мощности вместо одного мощного агрегата, не всегда работающего на полную силу. Каждая единица подбирается в зависимости от объемов воздухопотребления конкретного оборудования. Поскольку не все производственные мощности могут быть задействованы в один момент времени, компрессорные агрегаты подключаются по мере необходимости.

Альтернативный вариант предусматривает монтаж нескольких винтовых моделей в единую сеть, которая оснащается одним пультом управления. Такая станция работает на 100 % своей мощности при пиковой нагрузке в сети. Как только потребность в сжатом газе снижается, ненужные мощности отключаются.

Кроме экономии энергоресурсов подобные мультикомпрессорные группы позволяют создать энергетический резерв. Если одна из единиц выйдет из строя, комплекс продолжит функционировать. Потеря мощности будет незначительной. Например, если в сеть входит 4 агрегата, то поломка одного из них снизит суммарную производительность только на 1/4.

Если же на предприятии будет установлен всего один, хоть и высокомощный агрегат, то его внезапная поломка может привести к полной остановке производственного цикла со всеми вытекающими убытками от простоя.

В настоящий момент степень изношенности компрессорного оборудования на многих предприятиях достиг критического уровня. Вопрос модернизации устройств подачи сжатого газа является очень актуальным. Надеемся, что данная статья поможет вам определиться с выбором компрессора, удовлетворяющего производственным потребностям вашего предприятия и современным требованиям к энергоэффективности, безопасности и надежности оборудования.

винтовой или поршневой – отличия

При выборе компрессора часто встает вопрос: что лучше — винтовой компрессор или поршневой? Долгое время все промышленные производства оснащались только поршневыми компрессорами. Но сейчас ситуация поменялась — на смену устаревшим «поршневикам» приходят современные винтовые компрессоры. Но оправдан ли такой выбор? Давайте разбираться! 

 

Схематичная конструкция винтового и поршневого компрессора

 

Отличия поршневого компрессора от винтового Для начала следует понять, чем отличаются компрессоры по принципу работы. В винтовом компрессоре воздух сжимается с помощью винтов, которые вращаются в противоположном друг другу направлении. Этот процесс происходит в маслонаполненном винтовом блоке, за счет чего трение ключевых элементов компрессора полностью исчезает. Поршневой компрессор сжимает воздух путем возвратно-поступательных движений поршня в цилиндре, и такая конструкция более подвержена трению. В нашем случае трение — главная причина износа и более низкого КПД, и поэтому срок службы винтового компрессора заметно длиннее поршневого. В среднем, срок эксплуатации поршневых компрессоров составляет 2-3 года, а у винтовых он легко достигает 10-12 лет. 

 

В каких ситуациях поршневой компрессор не подойдет?

Ключевое отличие винтового компрессора от поршневого в том, что два этих типа подходят для двух принципиально разных режимов работы.

 

Поршневой компрессор работает с остановками — это обуславливается особенностями его конструкции, а винтовой способен работать 24 часа в сутки, подавая сжатый воздух беспрерывно. Поэтому для задач, где требуется подача сжатого воздуха без перебоев, ваш лучший выбор — однозначно винтовой компрессор. 

 

Цена компрессора, его монтаж и уровень шума

Если рассматривать агрегаты примерно одинаковой производительности, поршневые компрессоры всегда дешевле винтовых на 20-40%. Однако не стоит сразу же делать выводы. 

 

Если у вас будет поршневой компрессор высокой производительности, то из-за высокого уровня шума и сильной вибрации для его установки потребуется соорудить специальный фундамент и в некоторых случаях выделить агрегату отдельное помещение. Это уже дополнительные затраты. 

 

В отличие от поршневых, винтовые компрессоры оснащены резиновыми опорами, которые гасят вибрации. Поэтому для установки ему будет достаточно ровной площадки. Звукоизоляционный кожух в его конструкции поглощает шум, благодаря чему возможна работа сотрудников в одном помещении с компрессором. Из этого следует, что винтовой компрессор можно установить рядом с потребителями сжатого воздуха, не тратя ресурсы на сооружение отдельных помещений и длинных пневмосетей.

 

Важный нюанс — затраты на электроэнергию

Чем еще отличается винтовой компрессор от поршневого, так это затратами на электроэнергию. Кроме затрат на покупку оборудования, электричество для его работы — это еще одна из ключевых статей расходов, которая по истечении пяти лет составляет практически стоимость компрессора при покупке. Энергозатраты у винтовых компрессоров гораздо ниже благодаря их высокому КПД. По итогу винтовые агрегаты окупают затраты на покупку гораздо быстрее поршневых. 

 

Винтовой компрессор Ekomak EKO 

 

Кроме того, существуют модели винтовых компрессоров с частотным преобразователем. Он способен регулировать производительность машины в зависимости от потребностей производства на данный момент. С его помощью возможно сэкономить дополнительные 30-50% расходов на электричество.

 

Простота обслуживания и срок работы

Еще один важный аспект при выборе компрессора — простота в обслуживании. В этом случае все аргументы в пользу винтовых компрессоров. Современные винтовые агрегаты оснащают электронными контроллерами с широким набором функций для управления параметрами. Поэтому риск аварийных ситуаций сведен к минимуму и появляется возможность программировать режимы работы компрессора на долгое время.

 

Срок службы винтового компрессора значительно длиннее: он рассчитан на беспрерывную работу. Поршневые компрессоры не могут так работать — перерывы обязательны. Также в поршневом агрегате необходимо часто менять клапаны, поршневые кольца, вкладыши и другие детали с быстрым износом.  

 

У винтовых компрессоров тоже есть расходные материалы: воздушные фильтры, масляные фильтры, сепараторы. Но они имеют гораздо больший срок службы и просты в замене. При условии их своевременной замены, качество сжатого воздуха у винтового компрессора гораздо лучше — в нем содержится меньше масла и твердых частиц.

 

Выводы: какой компрессор лучше — винтовой или поршневой?

  • Главное в выборе — определиться, какой режим работы необходим для ваших задач (только бесперебойная работа или же остановки допустимы). Если вам нужна беспрерывная подача сжатого воздуха, то выбирайте винтовой компрессор. 
  • Пусть вас не пугает высокая стоимость винтовых компрессоров — затраты окупятся за счет простоты установки, экономии электроэнергии и способности к беспрерывной работе. Учитывая все эти нюансы, ценовое преимущество поршневых компрессоров сводится к нулю.
  • В нашем каталоге вы найдете проверенные и качественные компрессоры для всех видов работ, в которых требуется сжатый воздух.
  • Если вы не хотите тратить время на подбор компрессора и боитесь ошибиться, обращайтесь к профессионалам компании «Волгаремсервис» — мы поможем подобрать компрессор специально под ваши потребности и ответим на любые вопросы.

Винтовой компрессор: принцип работы

   Их изобрел и запатентовал шведский изобретатель Альф Лисхольм еще в 1932 году и являются одним из самых распространенных типов оборудования для производства сжатого воздуха.


Винты винтового механизма компрессора
 
Устройство винтового компрессора
 
 Винтовой блок компрессора — основная рабочая часть устройства. Он состоит из двух идеально подогнанных друг к другу параллельно расположенных роторов (для их изготовления используются технологии высокоточной нарезки, и отклонение по размерам не может превышать 10 микрон). Один винт имеет выпуклый профиль, другой — вогнутый. В процессе вращения расстояние между лопастями сокращается, что ведет к компрессии воздуха и повышению давления внутри устройства. 


Винтовой блок компрессора

Устройство винтовой пары
  
 Конструкция винтовой пары зависит от разновидности компрессора. В масляных (маслозаполненных) установках один винт — ведущий, второй — ведомый. При этом для исключения трения в роторную пару постоянно впрыскивается минеральное или органическое масло, которое смазывает конструкцию и способствует ее охлаждению. Такие компрессоры могут долгое время работать без пауз, у них длительный срок службы, однако встает вопрос очистки производимого сжатого воздуха от масляных примесей.

   Безмасляные агрегаты в свою очередь делятся на установки сухого сжатия и компрессоры с водозаполнением. В водозаполненных устройствах масло заменено на воду. В безмасляных компрессорах оба винта оснащаются электромоторами и синхронно вращаются, не контактируя между собой. Путь подачи воздуха и путь масла, используемого для смазки остальных частей компрессора в таких установках не пересекаются, что позволяет получить на выходе воздух высокого качества — однако длительность непрерывной работы у таких компрессоров меньше, чем у масляных, а винтовая пара изнашивается быстрее. 


Безмаслянный винтовой компрессор Remeza ВК 75 2,5

Ключевые принципы работы винтового компрессора 

  В зависимости от разновидности компрессора и особенностей модельного ряда конкретного производителя конструкция устройства может отличаться, однако ключевые принципы работ остаются неизменными. Рассмотрим работу винтового компрессора на примере масляного устройства.

   1. Атмосферный воздух поступает в компрессор через вентилятор и входной всасывающий воздушный фильтр, позволяющий очистить воздух от пыли, грязи, твердых частиц и других примесей. Фильтрация может быть и многоступенчатой — в таком случае воздух сначала проходит через предварительный фильтр воздухозаборника, а затем поступает на фильтр, находящийся у входного клапана. Входной клапан оснащен пневмоуправлением, и регулирование его работы позволяет варьировать производительность компрессора или переключать его на холостой режим работы. Наличие клапана позволяет при остановке компрессора избежать выбросов масла и сжатого воздуха.

   2. Воздух поступает в винтовой блок. Вращение винтов от электромотора обеспечивается при помощи ременной или муфтовой передачи, в ряде моделей для этой цели используются редукторы. Скорость вращения является регулируемой — при ее повышении производительность компрессорной установки растет, однако максимальное рабочее давление падает.

   3. Воздушный поток поступает в маслоотделитель, где закручивается в вихреобразный поток. Под действием центробежной силы частицы масла отделяются. Маслоотделительный фильтр завершает процесс очистки, позволяя избавиться от остаточных паров смазочного материала. Отработанное масло поступает на масляные фильтры, которые очищают его от примесей и возвращают на винтовую пару. Для охлаждения горячего масла используются термостаты, оснащенные охлаждающими радиаторами и специальные маслоохладительные резервуары.

   4. Сжатый воздух поступает в воздухоохладитель, где его температура снижается до той, которая необходима потребителю. В процессе охлаждения воздух еще и осушается — сконденсированная влага оседает и впоследствии удаляется посредством сливных устройств.

   Компрессорные установки оснащаются реле давления (в современных высокотехнологичных установках они могут заменяться электронной системой управления), что позволяет установке работать в автоматическом режиме.

   Такой принцип действия обеспечивает винтовым компрессорам целый ряд преимуществ. Расход масла у них в разы меньше, чем у поршневых установок — соответственно, и качество производимого воздуха даже у маслозаполненных компрессоров значительно выше. Кроме того, такие компрессоры отличаются пониженным уровнем вибраций и шума — что в сочетании с компактностью и разумным весом делает возможной их установку непосредственно в рабочих помещениях, причем без обустройства фундамента. Винтовые компрессоры — надежное, безопасное и достаточно простое в эксплуатации оборудование с большими межсервисными интервалами, а наличие автоматизированных систем управления позволяет ему работать в полностью автономном режиме.

Винтовой компрессор. Многообразие областей применения

Хотя принцип работы винтовых компрессоров хорошо известен более 120 лет, широко применяться компрессоры винтового типа стали только последние 40 лет. Основная причина этому были небольшой коэффициент полезного действия и высокая стоимость изготовления их роторов.

Серьезные усилия по развитию винтовых машин начались в 1930х годах, когда Альф Лисхольм, шведский инженер использовал винтовой компрессор в качестве газовой турбины и все современные разработки этих машин базируются на этой его новаторской работе.

Две важные разработки в дальнейшем позволили решить трудности с производством точных роторов по приемлемой цене. Первая – это внедрение ассиметричного профиля ротора приблизительно 35 лет тому назад, который значительно сократил площадь полости, которая являлась причиной внутренних утечек и за счет этого повысился термодинамический коэффициент полезного действия этих машин почти до такого же уровня, что и у поршневых компрессоров. Вторая разработка – это внедрение примерно в то же время высокоточных инструментов по нарезке резьбы, которая сделала возможным изготовление точных и экономичных единиц сложной формы, таких как роторы.

С этих пор как результат их все улучшающейся эффективности, высокой надежности и компактной форме, винтовые компрессоры заняли значительное место на рынке компрессорной техники.

Винтовые компрессоры обладают рядом преимуществ.

Прежде всего, в отличие от поршневых машин, движущиеся части все вращаются и как результат могут работать на гораздо больших скоростях. Во-вторых, в отличие от лопастных машин, усилие соприкосновения внутри них низкое, что делает их очень надежными. Также в отличие от других типов компрессоров, все уплотнительные линии соприкосновения уменьшаются в длине, как только размер рабочей камеры уменьшается, и давление в ней увеличивается, это минимизирует выход газа из камеры вследствие утечки во время процесса сжатия или расширения.

Винтовые компрессоры используются сегодня для большого количества применений.

Винтовой компрессор – это машина объемного типа, которая работает без необходимости во всасывающих и нагнетательных клапанах. У нее есть возможность автоматически менять объем всасывания одновременно с понижением потребляемой мощности при частичной нагрузке. Винтовые компрессоры предоставляют намного больший рабочий диапазон и более низкие затраты на техническое обслуживание чем типичные поршневые компрессоры. Эти машины также меньше по размерам и создают меньший уровень вибрации, чем поршневые машины.

Винтовые компрессоры широко используются сегодня в химической и нефтехимической промышленности, газопереработке, в нефтяном секторе. Типичное применение включает охлаждение с использованием углеводородов, фторуглеводородов , а также аммиачного хладагента, улавливание паров и газов, сжатие топливных газов, природного газа, газа из органических отходов, хвостовых газов, СО2 и гелия.

Последние 20 лет винтовые машины стали популярны в газовой промышленности, там, где требуется дожимная техника и актуален сбор газов. Также в последние годы наметился рост их использования в сфере газов, растворенных в нефти.

Понижение пластового давления потребовало от промышленности найти новые более гибкие альтернативы традиционным поршневым компрессорам. Также свой вклад вносят государства и организации, борющиеся с загрязнением окружающей среды, требуя от промышленности консервировать газы, которые обычно выбрасываются в атмосферу в различных областях, связанных с попутными нефтяными газами.

Маслозаполненные винтовые компрессоры широко используются в различных областях применения, связанных с воздухом и охлаждением более пятидесяти лет. До начала 1990х годов эти машины не были серьезно представлены в газовой промышленности. До этого времени для сжатия природного газа повсеместно использовались в основном поршневые компрессоры. В случае освоенных месторождений и при пониженном пластовом давлении стали применяться винтовые компрессоры и как альтернатива и в дополнение к поршневым компрессорам.

Т.к. производители стараются увеличить рабочие показатели своих агрегатов, многие винтовые компрессоры для тяжелых условий эксплуатации предназначены для работы с давлением на всасе примерно 150 psig и давлением на нагнетании до 450 psig. Есть некоторые винтовые компрессоры, которые могут работать и с большими значениями давления при использовании корпуса из стального литья, но это редкость в газовой промышленности из-за капитальных затрат.

Винтовые компрессоры обычно используются для многих технологических газов, охлаждения по ходу технологического процесса, областей применения в газовой промышленности, включая автономное дожимное оборудование скважин, систем сбора газа низкого давления, дожимное оборудование низкой ступени для поршневого компрессора, для сжатия топочных газов, попутного нефтяного газа и систем сжатия УЛФ. Они используются для областей применения связанных с очищенными и сырыми газами, кислым газом, где концентрация h3S и/или CO2 более 80%. Винтовые компрессоры могут быть использованы для летучих газов таких как водород и для газов с большим молекулярным весом и удельной вязкости до2.0.

Сегодня винтовые компрессоры благодаря их широкому рабочему диапазону, диапазону изменения нагрузок, низким затратам на техническое обслуживание можно встретить там, где встречается газ из нетрадиционных источников.

В газовом применении винтовые компрессоры могут иметь рабочий диапазон от примерно 50 до 1500 лошадиных сил и оснащаться как электроприводом, так и приводом от двигателя

Винтовые компрессоры имеются в безмасляном и маслозаполненном исполнении. В конце 1950х годов шведская компания создала технологию с использованием масла в винтовом компрессоре и улучшила профиль ротора для достижения большей объёмной производительности и степени сжатия. После этого они дали лицензию многим производителям компрессорного оборудования по всему миру. Безмасляные винтовы компрессоры используются для технологических газов с 1970х годов. Маслозаполненные винтовые компрессоры используются во многих областях применения связанных с производственным процессом с 1980х годов.

Область применения безмасляных машин включает все технологические процессы, которые чувствительны к примесям в рабочей среде или там где смазочное масло может быть загрязнено рабочей средой. Они используются во многих уникальных областях применения для бутадиена, рециркуляционного газа стиролового мономера, кальцинированной соды, линейного алкилбензола и др. Во многих случаях использовался впрыск воды для охлаждения процесса сжатия.

Маслозаполненные винтовые компрессоры могут достигать немного большего коэффициента полезного действия чем «сухие» компрессоры и могут использовать масло для охлаждения.

С увеличением использования сепараторов для синтетических масел в последние 20 лет произошло значительное смещение использования в пользу маслозаполненных винтовых компрессоров во многих областях применения. Большинство применяемых сегодня винтовых машин для сжатия газов впрыскивают масло в рабочую область для смазки, уплотнения и охлаждения в количестве приблизительно равном от 10 до 20гал/мин на 100лс. Использование такого большого количества масла позволяет передать тепло выделяемое в процессе сжатия маслу и делает возможным низкие температуры на нагнетании даже при высокой степени сжатия.

Практически все газы могут быть сжаты:

  • аммиак
  • аргон
  • этилен
  • ацетилен
  • бутадиен
  • газообразный хлор
  • хлористоводородный газ
  • природный газ
  • газ, сжигаемый в факеле
  • доменный газ
  • болотный газ
  • гелий
  • газ известеобжигательной печи
  • коксовый газ
  • угарный газ
  • комбинации газообразных углеводородов
  • бытовой газ
  • пропан
  • пропилен
  • газ из скважины
  • двуокись серы
  • оксид азота
  • азот
  • стирол
  • газ на основе винилхлорида
  • водород
  • и др.

Ограничением в использовании винтовых компрессоров могут послужить диапазон давлений и температур и максимально допустимая скорость компрессора. Безмасляные компрессоры могут быть загружены механическим путем с перепадом давления до 12 бар, а маслозаполненные компрессоры до 20 бар. Более высокий перепад давлений также возможен в некоторых случаях. Производительность в этих компрессорах может быть до 60,000 м3/ч.

Винтовые воздушные компрессоры относятся к наиболее часто используемым типам воздушных компрессоров. Винтовые компрессоры могут подавать сжатый воздух непрерывно и они относительно не очень шумные. Они отличаются экономичным энергопотреблением и могут работать 24часа в сутки 7 дней в неделю на протяжении многих лет.

Компрессоры винтового типа в основном используются там, где существует большая потребность в сжатом воздухе. Имеются два типа компрессоров безмасляные и с впрыском масла.

Типичные области применения:

  • компрессоры для заполнения и опорожнения вагонов для перевозки сыпучих грузов и силоса.
  • стационарные компрессорные установки в химической промышленности и технологических процессах.
  • холодильные компрессоры в системах кондиционирования воздуха
  • компрессоры для подачи сжатого воздуха для пневмоинструмента для резки, сверления, забивания и шлифовки, для пневмоприводов и клапанов, вентиляционных систем, упаковки и укладывания на паллеты, для краскораспылителей и конвейерных систем.

Ниже приведены более подробно некоторые примеры применения винтовых компрессоров в различных отраслях промышленности:

Цементная промышленность

Сжатый воздух используется для различных областей применения в цементной промышленности (пылесборники, воздушные ножи, пневматические муфты, пневмоприводы и пылесборные системы фильтрации).

Электростанции.

Электростанции работают круглосуточно и непрерывная подача сжатого воздуха является здесь критичной для безаварийной работы.

Автомобильная:

Воздух без содержания масла используется в производственном процессе (пескоструйная обработка, пневматические инструменты, удаление покраски, пыли, надувка шин и т.д).

Сталеобрабатывающая промышленность

Воздух подается в печь для нагрева стали и охлаждения рулонной стали ( подача воздуха на горелки, охлаждение литья для пескоструйной обработки и тд.)

Химическая промышленность

Давление воздуха используется для транспортировки жидкостей под давлением, емкостей под давлением, в резервуарах для аэрации, точечного охлаждения, синтеза аммиака, автоматических системах контроля и др.

Пищевая промышленность

Винтовые компрессоры используются в производственных процессах ( смешивание смесей, транспортировка жидкостей под давлением, осушка продукции, охлаждение порошков, процессе упаковки и тд.)

Машиностроение

Охлаждение станков, сжатый воздух для робототехники, удаление обрезков таких как куски, порошок металла , пневмоинструмента и тд.

Фармацевтика

Производство лекарств, аэротенки, для упаковки лекарственных средств.

Строительство

Сжатый воздух используется для буров и пневмоинструмента (пневмодрели, молотки, пневматических клепальных молотов, гайковерты и тд.) для покрасочных работ, транспортировки грунтовых и сточных вод под давлением, сооружении свай и тд.

Горная промышленность

Экскаваторы, транспортировка угля и руды с использованием давления воздуха, закачка кислорода в шахты, пылесборные системы фильтрации.

Целлюлозно-бумажная промышленность

Воздух без содержания примесей масла используется во многих технологических циклах производственного процесса, таких как смешивание, распыление порошка, осушка продукции.

Хотя винтовые компрессоры на сегодняшний день, хорошо разработанный продукт, большой вклад технических наук в виде компьютерного моделирования и математического анализа на стадии проектирования делают дальнейшие улучшения в кпд и сокращение размеров и расходов возможными. Очевидно, что изменения грядут и в нефтехимической, химической и газовой промышленности. Винтовые компрессоры на данный момент уже доказали свое место центральной части во многих системах и заслужили репутацию надежных, эффективных, эксплуатационно гибких и не требующих больших затрат на техническое обслуживание.

Обзор винтовых компрессоров — AERZEN

Безмасляные винтовые компрессоры отвечают вашим самым высоким требованиям к решению задач

Безмасляные процессы сжатия становятся все более и более необходимыми в промышленности, медицине и производстве продуктов питания, чтобы обеспечить абсолютное отсутствие инородных материалов. Идеальный выбор? Безмасляные винтовые компрессоры AERZEN. Некоторые работают с обычным поршнем или компрессором со впрыском масла; при этом тепловая энергия рассеивается, а масло обеспечивает уплотнение зазоров. Однако для областей с высокими требованиями к гигиене настоятельно рекомендуется работать с безмасляными компрессорами при использовании фильтра давления. В этом случае вы можете быть уверены в полном отсутствии частиц масла в потоке воздуха. Это так называемые безмасляные системы. Винтовые компрессоры — это преимущественно роторные машины, которые работают в двух колебательных движениях, сжимая воздух во внутренней камере. Эта концепция не нова, но говоря об эффективности, надежности и легкости в техническом обслуживании, продукция AERZEN уникальна в своем роде. 

Энергоэффективность становится все более важной для винтовых компрессоров

Винтовые компрессоры основаны на концепции роторно-лопастного компрессора. Они сжимают газ путем вращения взаимосвязанных лопастей ротора, которые расположены по спирали. Таким образом, сжатие камеры постепенно уменьшается и объем газа сжимается с помощью лопастей. На электростанциях и в других отраслях промышленности необходимо надежное производство сжатого воздуха. Обычные компрессоры производят гораздо больше шума, чем винтовые компрессоры. Это связано с их функциональностью, потому что винтовые компрессоры по общему правилу имеют минимальное изнашивание. В результате вы получаете надежное и удобное в обслуживании оборудование для самых разных областей применения. Говоря об оборудовании с прямым или ременным приводом, вопрос для многих компаний заключается в том, должны ли они переходить на использование винтовых компрессоров одновременно. Эффективность во время сжатия особенно высока — что означает для вас снижение энергозатрат. В эпоху, когда цены на энергоносители являются очень важным аспектом, повторное использование тепловой энергии также играет большую роль.

Многозадачный винтовой компрессор

Огромная универсальность и гибкость винтовых компрессоров делают их идеальными для использования во многих областях. Они идеальны и надежны в сжатии воздуха, азота и других нейтральных газов, а также других классифицированных газов. Этот безмасляный вариант особенно подходит, когда другие компрессоры не могут устранить его. Принцип работы винтового компрессора обеспечивает значительное повышение энергоэффективности и более высокую производительность по сравнению с поршневыми компрессорами. По мере совершенствования технологий с каждым поколением оборудования возрастает и его эффективность. Вы найдете применение для безмасляных винтовых компрессоров там, где требуются самые высокие стандарты приспособляемости и долговечности. В этом случае транспортировка сыпучих продуктов и порошка пневматическим способом не представляет никаких проблем, потому что какие-либо загрязнения или посторонние частицы отсутствуют — в отличие от масляных устройств. Электростанции и химическая промышленность требуют надежной системы, которая обеспечивает подачу чистого насыщенного кислородом воздуха. В этом случае винтовые компрессоры AERZEN также будут идеальным выбором. 

Меньше вибраций — меньше шума

Предлагаются одно- и двухволновые роторно-лопастные компрессоры, особенно когда речь идет о винтовых компрессорах, которые обычно имеют две параллельно вращающиеся лопасти с различной резьбой. Они прилегают друг к другу, как зубы, и сжимают газ, который находится между ними. Если не использовать безмасляное оборудование, для охлаждения и герметизации будет закачиваться масло. Эта процедура, называемая жидкостным охлаждением, рекомендуется в том случае, когда условия эксплуатации подразумевают более высокую внешнюю температуру. Масло также может помочь свести износ оборудования к минимуму. Безмасляная конструкция премиум-класса работает без применения этих мер и благодаря высокоточным методам производства и синхронизированным зубчатым колесам с низким коэффициентом трения является абсолютно герметичной. Огромным преимуществом винтовых компрессоров является то, насколько они бесшумны во время использования. В отличие от поршневых компрессоров, которые необходимо останавливать посреди процесса. Вибрации внутри винтовых компрессоров значительно сокращены.

Сокращение обслуживания благодаря меньшему количеству движущихся деталей

Винтовые компрессоры чрезвычайно просты в обслуживании, поскольку количество движущихся частей у них сокращено. Из-за отсутствия колебательного усилия уровни сжатия менее подвержены растрескиванию и другим видам износа. Что касается эффективности сжатия, винтовой компрессор также имеет преимущества, потому что поршневые компрессоры теряют примерно десятую часть всасываемого воздуха через поршневые кольца. Винтовой компрессор показывает значительно меньшую потерю давления, которая редко превышает значение 0,1–0,2 процента. Учитывая основную конструкцию, винтовые компрессоры могут быть похожи на поршневые компрессоры, но с беспрецедентными возможностями, что позволяет значительно снизить затраты на энергию и выбросы CO² во время использования. Существует дальнейший потенциал оптимизации в отношении расхода сжатого воздуха при выполнении рабочих процессов винтового компрессора. При необходимости для выполнения требований к текущему классу эффективности доступны высокомощные двигатели с наивысшей энергоэффективностью. В этом случае будущая надежность особенно важна для клиентов, поскольку долговечность определяет, могут ли быть удовлетворены будущие требования соответствующего класса эффективности.

Отличная звукоизоляция благодаря оптимизации управления потоком

Энергоэффективность винтовых компрессоров можно оптимизировать с помощью различных мер. Было доказано, что особенно эффективны улучшения в притоке воздуха в блоке питания. В новейшем оборудовании Generation 5 plus от AERZEN все компоненты согласованы друг с другом для обеспечения оптимальной точности. Уменьшение потерь давления и улучшение впускных и выпускных отверстий помогают обеспечить требуемое конечное давление на стабильном и надежном уровне. Дополнительная изоляция не только снижает уровень шума во время использования, но и оптимизирует общее состояние потока. При использовании инновационной геометрии изоляции уровень звукового давления снижается. Кроме того, устройство действует как эффективный искрогаситель. Оборудование, оснащенное этой функцией, также одобрено для использования во взрывозащищенных электростанциях. Благодаря оптимальным характеристикам для этой изоляции не требуется дополнительный материал. Не нужно беспокоиться о загрязнении поврежденным изоляционным материалом и т. д. Соответствующие затраты на техническое обслуживание также отпадают. В гигиенически чувствительных областях, таких как пищевая промышленность и химические заводы, требуются не просто компрессоры, работающие без масла. Эффективная изоляция без опасности какого-либо загрязнения также является одной из наиболее важных проблем. При необходимости фильтр сжатого воздуха также можно использовать для очистки отработанного воздуха. В медицинской сфере подобные этим специальные фильтры подготовки сжатого воздуха так же распространены, как и система сепарации или осушители для других остаточных материалов. Чтобы избежать нежелательной влаги в области применения, ускорители и сушилки обеспечивают эффективное удаление любых признаков влаги, присутствующей в воздухе. Отсутствие следов жира в камере гарантировано в любое время, что позволяет квалифицировать новые модели как полностью безмасляные компрессоры.

Простота в эксплуатации и возможности гибкой модернизации

Удобное управление современных винтовых компрессоров не представляет проблем в сегодняшнем цифровом веке. Управление и техническое обслуживание отличаются легкостью и позволяют снизить затраты. Бесшумный ременный привод оборудования Generation 5 plus позволяет устанавливать различные ременные шкивы для достижения желаемого соотношения. Внесение изменений также не является проблемой. Компрессор остается гибким, позволяя приспосабливаться к определенным параметрам, и его не нужно заменять другой моделью с негибкими настройками. Ременной двигатель требует минимального технического обслуживания, а правильное натяжение гарантируется благодаря его собственному весу. Частоту вращения оборудования также можно контролировать электронным способом. Высокая точность и постоянство желаемого давления в большинстве случаев являются абсолютно обязательными требованиями. Встроенную панель управления можно найти непосредственно на корпусе. Оптимизируя размещение панелей управления на передней стороне оборудования, вы сэкономите место, компактно располагая их бок о бок. Также возможна проверка масла во время работы. Специальные масла AERZEN вдвое увеличивают интервал замены по сравнению с предопределенными значениями.

Самый важный критерий — качество

Высокое качество премиум-компрессоров AERZEN признано во всем мире. Низкие эксплуатационные расходы этих современных винтовых компрессоров сочетаются с великолепной надежностью и долговечностью при соблюдении самых высоких экономических и экологических критериев.

Компрессоры

Эта страница предназначена для учащихся колледжей, старших и средних школ. Для младших школьников более простое объяснение информации на этой странице: доступно на Детская страница.

Большинство современных пассажирских и военных самолетов оснащены двигателями газотурбинные двигатели, также называемые реактивными двигатели.Есть несколько разных типы газотурбинных двигателей, но все газотурбинные двигатели имеют некоторые общие детали. Все турбины двигатели имеют компрессор для повышения давления поступающий воздух до того, как он попадет в камеру сгорания. Производительность компрессора имеет большое влияние на общий двигатель представление.

Как показано на рисунке выше, существует два основных типа компрессоры: осевой и центробежный .На картинке компрессор слева называется осевым компрессором, потому что поток через компрессор проходит параллельно оси вращения. В компрессор справа называется центробежным компрессор, потому что поток через этот компрессор повернут перпендикулярно оси вращения. Центробежные компрессоры, которые использовались в первых реактивных двигателях, до сих пор используются на малых турбореактивных двигателях а также турбовальный двигатели и как насосы на ракета двигатели.Современный большой турбореактивный и турбовентилятор в двигателях обычно используются осевые компрессоры.

Почему переход на осевые компрессоры? Средняя, ​​одноступенчатая, центробежный компрессор может увеличить давление в 4 раза. аналогичный средний, одноступенчатый осевой компрессор увеличивает давление только на коэффициент 1,2. Но связать вместе несколько ступеней и изготовить многоступенчатый осевой компрессор . в многоступенчатый компрессор, давление перемножается из ряда в ряд (8 ступеней на 1.2 на ступень дает коэффициент 4,3). Это намного больше сложно изготовить эффективный многоступенчатый центробежный компрессор потому что на каждом этапе поток должен возвращаться к оси. Поскольку поток направлен перпендикулярно оси, двигатель с центробежный компрессор, как правило, шире, имеет большее поперечное сечение площадь, чем соответствующая осевая. Это создает дополнительные нежелательные сопротивление самолета. По этим причинам наиболее высокая производительность, высокое сжатие В турбинных двигателях используются многоступенчатые осевые компрессоры.Но если бы только требуется умеренная степень сжатия, центробежный компрессор намного проще в использовании.


Действия:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Газотурбинный двигатель | Британника

Полная статья

Газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочего тела, используемого для вращения турбины.Термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего, по меньшей мере, из компрессора, камеры сгорания и турбины.

Общие характеристики

Полезную работу или тягу можно получить от газотурбинного двигателя. Он может приводить в действие генератор, насос или воздушный винт или, в случае чисто реактивного авиационного двигателя, развивать тягу, ускоряя поток выхлопных газов турбины через сопло. Такой двигатель при той же мощности намного меньше и легче поршневого двигателя внутреннего сгорания.Возвратно-поступательные двигатели зависят от движения поршня вверх и вниз, которое затем должно быть преобразовано во вращательное движение с помощью механизма коленчатого вала, тогда как газовая турбина передает мощность вращающегося вала напрямую. Хотя концептуально газотурбинный двигатель представляет собой простое устройство, компоненты для эффективного агрегата должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих во время работы. Таким образом, установки газотурбинных двигателей обычно ограничиваются крупными установками, где они становятся рентабельными.

Циклы газотурбинного двигателя

Большинство газовых турбин работают в открытом цикле, в котором воздух забирается из атмосферы, сжимается в центробежном или осевом компрессоре, а затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который обходится вокруг секции горения и затем смешивается с очень горячими газами сгорания, необходим для поддержания температуры на выходе из камеры сгорания (фактически, на входе в турбину) на достаточно низком уровне, чтобы турбина могла работать непрерывно.Если установка должна производить мощность на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остальная часть доступна для обеспечения работы вала генератора, насоса или другого устройства. В реактивном двигателе турбина предназначена для обеспечения мощности, достаточной для привода компрессора и вспомогательных устройств. Затем поток газа выходит из турбины с промежуточным давлением (выше местного атмосферного давления) и проходит через сопло для создания тяги.

В первую очередь рассматривается идеализированный газотурбинный двигатель, работающий без потерь по этому простому циклу Брайтона. Если, например, воздух поступает в компрессор при температуре 15 ° C и атмосферном давлении и сжимается до одного мегапаскаль, он затем поглощает тепло из топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C перед тем, как расшириться через турбину обратно до атмосферного. давление. Этот идеализированный блок потребует выходной мощности турбины 1,68 киловатт на каждый киловатт полезной мощности с 0.68 киловатт потребляется для работы компрессора. Тепловой КПД установки (чистая произведенная работа, разделенная на энергию, добавленную через топливо) составит 48 процентов.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Фактическая производительность при простом разомкнутом цикле

Если для агрегата, работающего в пределах одного и того же давления и температуры, компрессор и турбина имеют КПД только на 80 процентов (, т.е. , работа идеального компрессора равна 0.В 8 раз больше фактической работы, в то время как фактическая мощность турбины в 0,8 раза больше идеальной мощности), ситуация кардинально меняется, даже если все остальные компоненты остаются идеальными. На каждый киловатт производимой полезной мощности турбина теперь должна производить 2,71 киловатт, а работа компрессора становится 1,71 киловатт. Тепловой КПД снижается до 25,9 процента. Это демонстрирует важность высокоэффективных компрессоров и турбин. Исторически сложность разработки эффективных компрессоров, даже более эффективных, чем эффективных турбин, задерживала разработку газотурбинного двигателя.Современные агрегаты могут иметь КПД компрессора 86–88 процентов и КПД турбины 88–90 процентов при проектных условиях.

КПД и выходную мощность можно увеличить за счет повышения температуры на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, а поскольку лопатки турбины движутся с высокой скоростью и подвергаются серьезным центробежным напряжениям, температура на входе в турбину выше 1100 ° C требует специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину существует также оптимальное соотношение давлений.Современные авиационные газовые турбины с охлаждением лопаток работают при температурах на входе в турбину выше 1370 ° C и при соотношении давлений около 30: 1.

Промежуточное охлаждение, повторный нагрев и регенерация

В авиационных газотурбинных двигателях следует обращать внимание на массу и диаметр. Это не позволяет добавлять дополнительное оборудование для повышения производительности. Соответственно, двигатели коммерческих самолетов работают по простому циклу Брайтона, идеализированному выше. Эти ограничения не применяются к стационарным газовым турбинам, в которые могут быть добавлены компоненты для повышения эффективности.Усовершенствования могут включать (1) уменьшение работы сжатия за счет промежуточного охлаждения, (2) увеличение мощности турбины за счет повторного нагрева после частичного расширения или (3) уменьшение расхода топлива за счет регенерации.

Первое улучшение будет заключаться в сжатии воздуха почти постоянной температуры. Хотя это не может быть достигнуто на практике, это можно приблизить с помощью промежуточного охлаждения (, т. Е. путем сжатия воздуха в два или более этапов и его водяного охлаждения между этапами до его начальной температуры).Охлаждение уменьшает объем обрабатываемого воздуха и, соответственно, необходимую работу по сжатию.

Второе усовершенствование включает повторный нагрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения. Этот процесс аналогичен повторному нагреву, используемому в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье улучшение.Здесь горячие выхлопные газы турбины проходят через теплообменник или регенератор для повышения температуры воздуха, выходящего из компрессора перед сгоранием. Это уменьшает количество топлива, необходимое для достижения желаемой температуры на входе в турбину. Однако повышение эффективности связано со значительным увеличением начальной стоимости и будет экономичным только для агрегатов, которые работают почти непрерывно.

Газовая турбина — Energy Education

Рис. 1. Газовая турбина с реактивным двигателем.Схема идет слева направо, детали указаны на рис. 2. [1]

Газовая турбина — это тип турбины, в которой используется сжатый газ для вращения с целью выработки электроэнергии или обеспечения кинетической энергии самолету или реактивному двигателю. Этот процесс называется циклом Брайтона. Во всех современных газовых турбинах сжатый газ создается путем сжигания такого топлива, как природный газ, керосин, пропан или реактивное топливо. Тепло, выделяемое этим топливом, расширяет воздух, который проходит через турбину, чтобы обеспечить полезную энергию. [2]

Эксплуатация

Газовые турбины теоретически просты и состоят из трех основных частей, как показано на рисунке 2: [2]

  1. Компрессор — Забирает воздух снаружи турбины и увеличивает его давление.
  2. Камера сгорания — сжигает топливо и производит газ под высоким давлением и высокой скоростью.
  3. Турбина — извлекает энергию из газа, поступающего из камеры сгорания.
Фигура 2.Схема газотурбинного двигателя. [3]
Компрессор

На Рисунке 2 воздух всасывается слева и поступает в компрессор, который состоит из многих рядов лопастей вентилятора. В некоторых турбинах давление воздуха может увеличиваться в 30 раз. [2]

Камера сгорания

Воздух под высоким давлением проходит в эту зону, куда подается топливо. Топливо постоянно впрыскивается в эту часть, чтобы энергия, проходящая через турбину, была постоянной.

Турбина

Турбина соединена валом с лопатками компрессора, и они вращаются отдельно. Компрессор соединяется с турбиной, которая соединена с выходным валом, и, поскольку турбина вращается отдельно, она может развивать огромные скорости из-за протекающего через нее горячего газа. Этот последний вал генерирует огромных лошадиных сил, при этом большие турбины самолета вырабатывают почти 110000 л.с. — в два раза больше мощности, генерируемой Титаником. [4]

Список литературы

Секция компрессора авиационного газотурбинного двигателя

Компрессорная секция газотурбинного двигателя выполняет множество функций.Его основная функция — подавать воздух в количестве, достаточном для удовлетворения требований горелок. В частности, для выполнения своей цели компрессор должен увеличивать давление массы воздуха, поступающей из воздухозаборника, а затем выпускать ее в горелки в необходимом количестве и при требуемом давлении.

Вторичная функция компрессора — подача отбираемого воздуха для различных целей в двигателе и самолете. Отводимый воздух забирается из любой из ступеней компрессора с различным давлением.Точное расположение выпускных отверстий, конечно, зависит от давления или температуры, необходимых для конкретной работы. Порты представляют собой небольшие отверстия в корпусе компрессора, примыкающие к конкретной ступени, из которой должен быть удален воздух; таким образом, различные степени давления доступны, просто нажав на соответствующую ступень. Воздух часто удаляется из конечной ступени или ступени самого высокого давления, поскольку в этот момент давление и температура воздуха максимальны. Иногда может возникнуть необходимость охладить этот воздух под высоким давлением.Если он используется для создания избыточного давления в кабине или для других целей, для которых избыток тепла был бы неудобным или вредным, воздух проходит через кондиционер, прежде чем он попадет в кабину. Отводимый воздух используется множеством способов. Некоторые из текущих применений отбираемого воздуха:

  1. Герметизация, обогрев и охлаждение кабины
  2. Противообледенительное и противообледенительное оборудование
  3. Пневматический пуск двигателей
  4. Вспомогательные приводы (ADU)

Типы компрессоров

Два основных типа компрессоров, которые в настоящее время используются в газотурбинных авиационных двигателях, — это центробежный поток и осевой поток.Компрессор с центробежным потоком достигает своей цели, собирая поступающий воздух и ускоряя его наружу за счет центробежного действия. Компрессор с осевым потоком сжимает воздух, в то время как воздух продолжает двигаться в своем первоначальном направлении потока, что позволяет избежать потерь энергии, вызванных поворотами. Компоненты каждого из этих двух типов компрессора выполняют свои индивидуальные функции при сжатии воздуха в секции сгорания. Ступень компрессора считается повышением давления.

Центробежные компрессоры

Центробежный компрессор состоит из рабочего колеса (ротора), диффузора (статора) и коллектора компрессора.[Рис. 1] Центробежные компрессоры имеют высокий подъем давления на ступень, который может составлять около 8: 1. Обычно центробежные компрессоры ограничиваются двумя ступенями из-за проблем с эффективностью. Двумя основными функциональными элементами являются крыльчатка и диффузор. Хотя диффузор представляет собой отдельный блок и размещается внутри коллектора и прикручивается к нему болтами, весь узел (диффузор и коллектор) часто называют диффузором. Для пояснения при ознакомлении с компрессором, агрегаты рассматриваются индивидуально.Рабочее колесо обычно изготавливается из кованого алюминиевого сплава, подвергается термообработке, механической обработке и полировке для минимального ограничения потока и турбулентности.

Рис. 1. (A) Компоненты центробежного компрессора; (B) Воздуховыпускной патрубок с поворотными лопатками для снижения потерь давления воздуха

В большинстве типов крыльчатка изготавливается из цельной поковки. Рабочее колесо этого типа показано на рисунке 1.Рабочее колесо, функция которого заключается в подборе и ускорении потока воздуха наружу к диффузору, может быть двух типов — одинарного или двойного входа. Принципиальные различия между двумя типами рабочих колес заключаются в размере и расположении каналов. Тип с двойным входом имеет меньший диаметр, но обычно работает с более высокой скоростью вращения, чтобы обеспечить достаточный воздушный поток. Крыльчатка с одинарным входом, показанная на рис. 2, обеспечивает удобный подвод воздуховодов непосредственно к проушине рабочего колеса (лопатки индуктора) в отличие от более сложных каналов, необходимых для доступа к задней стороне двухходового типа.Крыльчатка с одинарным входом, хотя и немного более эффективна в приеме воздуха, должна быть большого диаметра, чтобы подавать такое же количество воздуха, что и крыльчатка с двойным входом. Это, конечно, увеличивает общий диаметр двигателя.

Рис. 2. Рабочее колесо с одним входом
В воздуховоды компрессорных двигателей с двойным входом входит водоотводящая камера. Эта камера необходима для компрессора с двойным входом, потому что воздух должен входить в двигатель почти под прямым углом к ​​оси двигателя.Следовательно, чтобы создать положительный поток, воздух должен окружать компрессор двигателя под положительным давлением перед входом в компрессор. В некоторых установках в качестве необходимых частей водоотводящей камеры входят дверцы для забора дополнительного воздуха (дверцы для впуска воздуха). Эти обдувные двери пропускают воздух в моторный отсек во время наземной эксплуатации, когда потребность в воздухе для двигателя превышает поток воздуха через впускные каналы. Когда двигатель не работает, дверцы удерживаются закрытыми с помощью пружины.Однако во время работы двери автоматически открываются, когда давление в моторном отсеке падает ниже атмосферного. Во время взлета и полета давление набегающего воздуха в моторном отсеке помогает пружинам удерживать двери закрытыми.

Диффузор представляет собой кольцевую камеру, снабженную множеством лопаток, образующих серию расходящихся каналов в коллекторе. Лопатки диффузора направляют поток воздуха от крыльчатки к коллектору под углом, рассчитанным на сохранение максимального количества энергии, передаваемой крыльчаткой.Они также подают воздух в коллектор со скоростью и давлением, подходящими для использования в камерах сгорания. Обратитесь к рис. 1-A и обратите внимание на стрелку, указывающую путь воздушного потока через диффузор, а затем через коллектор.
Коллектор компрессора, показанный на рисунке 1-A, направляет поток воздуха из диффузора, который является неотъемлемой частью коллектора, в камеры сгорания. Коллектор имеет по одному выпускному отверстию для каждой камеры, так что воздух распределяется равномерно. Выходное колено компрессора прикреплено болтами к каждому из выходных отверстий.Эти отверстия для выпуска воздуха имеют форму каналов и известны под разными названиями, например, каналы для выпуска воздуха, выпускные колена или входные каналы для камеры сгорания. Независимо от используемой терминологии, эти выпускные каналы выполняют очень важную часть процесса диффузии; то есть они изменяют радиальное направление воздушного потока на осевое, в котором процесс диффузии завершается после поворота. Чтобы помочь локтям эффективно выполнять эту функцию, внутри локтей иногда устанавливают поворотные лопатки (каскадные лопатки).Эти лопатки уменьшают потери давления воздуха за счет гладкой поворотной поверхности. [Рисунок 1-B]

Осевой компрессор

Осевой компрессор имеет два основных элемента: ротор и статор. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер, из-за их угла и формы аэродинамического профиля. Ротор, вращаясь с высокой скоростью, всасывает воздух на входе в компрессор и перемещает его через ряд ступеней. От входа к выходу воздух проходит по осевому пути и сжимается в соотношении примерно 1.25: 1 на этап. Действие ротора увеличивает сжатие воздуха на каждой ступени и ускоряет его назад на несколько ступеней. При такой увеличенной скорости энергия передается от компрессора к воздуху в виде энергии скорости. Лопатки статора действуют как диффузоры на каждой ступени, частично преобразуя высокую скорость в давление. Каждая следующая пара лопаток ротора и статора составляет ступень давления. Количество рядов лопастей (ступеней) определяется требуемым количеством воздуха и общим повышением давления.Степень сжатия компрессора увеличивается с увеличением количества ступеней сжатия. В большинстве двигателей используется до 16 ступеней и более.

Статор имеет ряды лопаток, которые, в свою очередь, закреплены внутри кожуха. Лопатки статора, которые являются неподвижными, выступают радиально по направлению к оси ротора и плотно прилегают к каждой стороне каждой ступени лопаток ротора. В некоторых случаях корпус компрессора, в который вставлены лопатки статора, горизонтально разделен на половины. Верхнюю или нижнюю половину можно снять для осмотра или обслуживания лопаток ротора и статора.

Функция лопаток статора состоит в том, чтобы принимать воздух из воздухозаборника или из каждой предыдущей ступени, повышать давление воздуха и подавать его на следующую ступень с правильной скоростью и давлением. Они также контролируют направление воздуха к каждой ступени ротора, чтобы получить максимально возможную эффективность лопаток компрессора. На рисунке 3 показаны элементы ротора и статора типичного осевого компрессора. Лопастям ротора первой ступени может предшествовать узел входной направляющей лопатки, который может быть фиксированным или регулируемым.

Рисунок 3. Элементы ротора и статора типичного осевого компрессора

Направляющие лопатки направляют воздушный поток в лопасти ротора первой ступени под нужным углом и придают вихревое движение воздуху, поступающему в компрессор. Этот предварительный вихрь в направлении вращения двигателя улучшает аэродинамические характеристики компрессора за счет уменьшения лобового сопротивления лопаток ротора первой ступени.Входные направляющие лопатки представляют собой изогнутые стальные лопатки, обычно приваренные к стальным внутренним и внешним кожухам.

На выпускном конце компрессора лопатки статора сконструированы так, чтобы выпрямлять воздушный поток и устранять турбулентность. Эти лопатки называются правильными лопатками или узлом выпускных лопаток. Кожухи осевых компрессоров не только поддерживают лопатки статора и обеспечивают внешнюю стенку осевого пути, по которому следует воздух, но также обеспечивают средства для отвода воздуха из компрессора для различных целей.Лопатки статора обычно изготавливаются из стали, устойчивой к коррозии и эрозии. Довольно часто их окутывают (закрывают) лентой из подходящего материала, чтобы упростить проблему крепления. Лопатки приварены к кожухам, а внешний кожух прикреплен к внутренней стенке корпуса компрессора радиальными стопорными винтами.
Лопасти ротора обычно изготавливаются из нержавеющей стали, а последние ступени — из титана. Конструкция крепления лопастей к ободам дисков ротора различна, но обычно они устанавливаются в диски либо луковичным, либо еловым способом.[Рис. 4] Затем лезвия фиксируются на месте разными способами. Толщина наконечников лопаток компрессора уменьшена за счет вырезов, называемых профилями лопаток. Эти профили предотвращают серьезное повреждение лопасти или корпуса в случае контакта лопастей с корпусом компрессора. Это может произойти, если лопасти ротора слишком ослаблены или если опора ротора ослаблена из-за неисправного подшипника. Несмотря на то, что профили лопаток значительно сокращают такие возможности, иногда лопатка может сломаться под нагрузкой трения и вызвать значительное повреждение лопаток компрессора и узлов лопаток статора.Длина лопастей изменяется от входа к разгрузке, поскольку кольцевое рабочее пространство (от барабана до обсадной колонны) постепенно уменьшается к задней части за счет уменьшения диаметра обсадной колонны.
Рисунок 4. Распространенные конструкции крепления лопаток компрессора к диску ротора

[Рис. 5] Эта функция обеспечивает довольно постоянную скорость через компрессор, что помогает поддерживать постоянный поток воздуха.Ротор имеет барабанную или дисковую конструкцию. Ротор барабанного типа состоит из колец, которые имеют фланцы для прилегания друг к другу, при этом весь узел может быть скреплен сквозными болтами. Этот тип конструкции подходит для тихоходных компрессоров, где центробежные нагрузки невелики. Ротор дискового типа состоит из серии дисков, изготовленных из алюминиевых поковок, усаженных на стальной вал, с лопастями ротора, вставленными в обода диска. Другой метод конструкции ротора заключается в изготовлении дисков и вала из цельной алюминиевой поковки, а затем в закреплении болтами стальных коротких валов на передней и задней части узла, чтобы обеспечить опорные поверхности подшипников и шлицы для соединения вала турбины.Роторы барабанного и дискового типа показаны на рисунках 5 и 6 соответственно.

Рисунок 5. Ротор барабанного компрессора

Рисунок 6. Ротор дискового компрессора

Комбинация ступеней компрессора и ступеней турбины на общем валу представляет собой двигатель, называемый катушкой двигателя.Общий вал образуется путем соединения валов турбины и компрессора подходящим способом. Золотник двигателя поддерживается подшипниками, которые размещены в подходящих корпусах подшипников.



Как упоминалось ранее, в настоящее время используются две конфигурации осевого компрессора: с одним ротором / золотником и с двойным ротором / золотником, иногда называемым сплошным золотником и раздельным золотником (два золотника, два золотника).

В одной из версий компрессора со сплошным золотником (с одним золотником) используются регулируемые входные направляющие лопатки.Кроме того, переменными являются несколько первых рядов лопаток статора. Основное различие между регулируемой входной направляющей лопаткой (VIGV) и регулируемой лопаткой статора (VSV) заключается в их положении относительно лопастей ротора. VIGV находятся перед лопастями ротора, а VSV — за лопастями ротора. Углы входных направляющих лопаток и первых нескольких ступеней лопаток статора могут изменяться. Во время работы воздух поступает в переднюю часть двигателя и направляется в компрессор под правильным углом через регулируемую впускную направляющую и направляется VSV.Воздух сжимается и нагнетается в камеру сгорания. Топливное сопло, которое входит в каждую камеру сгорания, распыляет топливо для сгорания. Эти переменные контролируются в прямой зависимости от количества мощности, которое двигатель требуется для выработки положения рычага мощности.

Большинство турбовентиляторных двигателей относятся к компрессорному типу с раздельным золотником. В большинстве крупных турбовентиляторных двигателей используется большой вентилятор с несколькими ступенями сжатия, называемый золотником низкого давления. Эти турбовентиляторные двигатели включают в себя два компрессора с соответствующими турбинами и соединительными валами, которые образуют две физически независимые роторные системы.Многие системы с двумя роторами имеют роторы, вращающиеся в противоположных направлениях и не имеющие механического соединения друг с другом. Второй золотник, называемый золотником высокого давления, представляет собой компрессор для газогенератора и сердечника двигателя, подает воздух в секцию сгорания двигателя.

Преимущества и недостатки обоих типов компрессоров включены в следующий список. Несмотря на то, что каждый тип имеет преимущества и недостатки, каждый имеет свое применение в зависимости от типа и размера двигателя.

Преимущества центробежно-проточного компрессора:

  • Повышение высокого давления на ступень
  • КПД в широком диапазоне частот вращения
  • Простота изготовления и невысокая стоимость
  • Малый вес
  • Низкие требования к пусковой мощности.

Недостатки центробежно-проточного компрессора:

  • Его большая фронтальная площадь для заданного воздушного потока
  • Потери в очереди между ступенями

Преимущества осевого компрессора:

  • Высокая пиковая эффективность
  • Маленькая передняя поверхность для заданного воздушного потока
  • Прямоточный поток, обеспечивающий высокую эффективность гидроцилиндра
  • Повышенный рост давления за счет увеличения количества ступеней с незначительными потерями

Недостатки осевого компрессора:

Очистка высокоэффективного компрессора газовой турбины

Системы очистки газотурбинных компрессоров и химикаты для всех типов газовых турбин

Газовая турбина мощностью 50 МВт с некоторой степенью загрязнения, показывающая снижение мощности на 3% и увеличение теплового расхода на 1%, может потерять производительность, стоимость которой составит более 500 000 долларов США в год.Понимание того, что нашим клиентам необходимо поддерживать работу своих газовых турбин с максимально возможной производительностью и минимально возможными затратами, — вот что движет нашей страстью. Rochem предлагает решения для ваших проблем, связанных с загрязнением газовых турбин. В их число входят системы очистки двигателя, работающие на кривошипе (система промывки кривошипа) и система очистки двигателя в режиме реального времени (промывка на открытом воздухе), а также химикаты.

Как компрессоры загрязняются?

Несмотря на существующие сегодня высокотехнологичные системы очистки воздуха, попадание переносимых воздухом частиц в компрессор газовой турбины неизбежно.В результате происходит загрязнение поверхностей воздуховодов в компрессоре турбин, что приводит к снижению производительности и увеличению расхода топлива. Мировой опыт эксплуатации ясно показал, что изношенность компрессора с осевым потоком во время работы составляет основную часть потери производительности, связанной с газовыми турбинами. Из общей потери производительности газовой турбины примерно 70% обычно можно отнести к износу компрессора из-за засорения лопаток. Загрязнение лопатки осевого компрессора обычно связано с взвешенными в воздухе частицами размером от субмикрона до 10 микрон, и это является основным источником загрязнения.Другой возможный источник загрязнения компрессора — утечка масла из входного подшипника ротора компрессора.

Почему это загрязнение влияет на работу моего двигателя

Лопатки осевого компрессора создают гладкие профили, похожие на крыло самолета. Следовательно, производительность лезвия может ухудшиться из-за увеличения шероховатости поверхности или из-за изменений формы, вызванных отложениями лезвия. Отложения или засорение лопастей снижает как воздушный поток компрессора, так и общий тепловой КПД. Помимо нагнетания компрессора, падает давление из-за уменьшения массового расхода воздуха через сопло турбины.Таким образом, засорение будет распознаваться по падению мощности турбины для данной температуры выхлопных газов, сопровождающемуся более низким давлением нагнетания компрессора и увеличением тепловыделения, что приводит к более высокому расходу топлива.

Как чистить компрессор

  • Ручная чистка — этот метод требует много времени, трудозатрат и может привести к значительным потерям дохода из-за простоя.
  • Абразивная очистка — при этом типе очистки компрессора измельченная скорлупа грецкого ореха или что-то подобное попадает в воздухозаборник при работающем двигателе.Затем загрязнения удаляются дробеструйной очисткой. Однако производительность часто бывает недолговечной, и потенциальное повреждение поверхностных покрытий и засорение пути охлаждения может привести к необратимой потере производительности.
  • Влажная чистка — наиболее эффективная и наименее опасная — это выполнение строгого режима стирки, сочетающего в себе стирку в оперативном и автономном режиме с использованием химикатов Fyrewash и очищенной воды.
    • Оперативная очистка компрессора газовой турбины — это работа двигателя, работающего под нагрузкой.Промывочный раствор впрыскивается в воздухозаборник с помощью специально разработанных форсунок, чтобы обеспечить полное смачивание лопаток компрессора и эффективную очистку ступеней компрессора.
    • Автономная очистка выполняется при остановке двигателя и его проворачивании, промывочный раствор впрыскивается в воздухозаборник с помощью специально разработанных форсунок, чтобы обеспечить полное смачивание лопаток компрессора и эффективную очистку ступеней компрессора.

Какое оборудование мне нужно?

Rochem разрабатывает и производит специальные насадки.Эти форсунки обеспечивают оптимальное распределение капель по размеру и смачивание впускного отверстия компрессора, обеспечивая эффективную очистку лопаток компрессора при одновременном устранении потенциальной эрозии поверхности лопаток. Мы используем методы вычислительной гидродинамики и 3D-моделирования вместе с полевыми испытаниями для постоянного развития и повышения эффективности нашей системы. Наши системы подачи промывки разработаны для простоты использования и минимального обслуживания, обеспечивая при этом контроль подачи жидкости к форсункам в режиме онлайн и в автономном режиме.

Запросить сейчас

3 авиационных газотурбинных двигателя | Исследование силовых установок и энергетических систем коммерческих самолетов: сокращение глобальных выбросов углерода

будущее. Кроме того, общий коэффициент давлений 2 газовых турбин со временем увеличился, чтобы улучшить термодинамический КПД. Однако в то же время размер компрессора высокого давления, камеры сгорания и турбины уменьшился, что усугубило проблемы меньшего размера.

По мере повышения эффективности самолета и двигателя для полета требуется меньше мощности, поэтому объем двигателя и мощность, требуемые при неизменных характеристиках самолета, в будущем уменьшатся.

Возможность улучшения

С тех пор, как в конце 1940-х годов были построены первые авиационные газовые турбины, общий КПД — от расхода топлива до движущей силы — повысился примерно с 10 процентов до текущего значения, приближаясь к 40 процентам (см. Рис. 3.2). Вероятно, что скорость улучшения этих двигателей может продолжаться примерно на 7 процентов в десятилетие в течение следующих нескольких десятилетий при условии достаточных инвестиций в технологии.Потенциал общего улучшения лучше всего рассматривать с точки зрения составляющих КПД: термодинамической эффективности двигателя и тягового КПД движителя.

Как отмечалось выше, неясно, насколько близко к теоретическим пределам может быть возможно создание газовой турбины для коммерческого самолета, учитывая важные ограничения авиации в отношении безопасности, веса, надежности и стоимости. Несколько авторов рассмотрели вопрос о практических пределах для газовых турбин простого цикла с учетом потенциала новых материалов, архитектур двигателей и технологий компонентов.Их оценки индивидуальных пределов термодинамического и пропульсивного КПД несколько различаются (и могут по-разному разделить потери между термодинамическим и пропульсивным КПД), но они согласны с тем, что улучшение общего КПД на 30-35 процентов по сравнению с лучшими двигателями сегодня может быть достигнуто. Как показано на рисунке 3.7, термодинамический КПД двигателя может составлять 65-70 процентов, а тяговый КПД — 90-95 процентов.

Газотурбинные двигатели нуждаются в значительном улучшении, при этом общий КПД повышается на 30 или более процентов по сравнению с лучшими двигателями, находящимися в эксплуатации на сегодняшний день.Улучшения будут происходить за счет множества относительно небольших приращений, а не одной прорывной технологии.

Некоторые исследования показывают, что улучшение характеристик турбомашин и снижение потерь на охлаждение может улучшить термодинамический КПД на 19 процентов и 6 процентов соответственно. 3 Такой значительный выигрыш не достигается простым внедрением новой технологии в существующие двигатели. Скорее, это требует оптимизации цикла с учетом конкретных уровней рабочих характеристик компонентов, температурных возможностей и охлаждения.Практические циклы с промежуточным охлаждением или рекуперацией могут повысить эффективность еще на 4. 4 Усовершенствованные вентиляторы и гребные винты также могут повысить эффективность движителя на 10 процентов. 5 Конечно, практические ограничения тягового КПД не могут быть рассмотрены только на уровне двигателя без ссылки на конфигурацию самолета и интеграцию силовой установки, как обсуждается в главе 2.

Подводя итог, можно сказать, что авиационные газотурбинные двигатели имеют значительные возможности для улучшения, с потенциалом повышения общего КПД на 30 процентов или более по сравнению с лучшими двигателями, находящимися в эксплуатации на сегодняшний день, с потенциалом улучшения пропульсивного КПД примерно вдвое выше термодинамического КПД.Этот уровень производительности потребует множества технологических усовершенствований и будет происходить в виде ряда относительно небольших приращений, несколько процентов или меньше, а не за счет одной прорывной технологии. В следующем разделе обсуждаются многие из этих технологий.

___________________

2 Общий коэффициент давления — это отношение давления на выходе компрессора к давлению на входе компрессора.

3 D.K. Холл, 2011 г., «Пределы производительности осевых ступеней турбомашин», М.S. диссертация, Массачусетский технологический институт, Кембридж, Массачусетс,

4 Дж. Уурр, 2013, «Будущие архитектуры и технологии гражданских авиационных двигателей», представленный на 10-й Европейской конференции по турбомашинному оборудованию, http://www.etc10.eu/mat/Whurr.pdf.

5 Д. Карлсон, 2009, «Возрождение двигателей: новые циклы, новые архитектуры и возможности для развития персонала», представленный на 19-й Международной конференции ISABE по дыхательным двигателям, Монреаль, Канада.

Анализ производительности турбины и компрессора

с помощью моделирования | Ежегодное собрание PSIG

В этом документе описывается работа, проделанная TBG для обеспечения производительности турбин и компрессоров на газопроводе Боливия Бразилия. Анализ включает использование онлайн- и офлайн-симуляторов, включая программное обеспечение, разработанное специально для TBG, его турбин и компрессоров. В документе описаны все этапы анализа, начиная с полевых эксплуатационных испытаний; анализ вибрации, расхода топливного газа и рабочих точек, а также контроль помпажа и контроль пускового числа.Эта работа повысила надежность машин TBG более чем на 10% за несколько месяцев и позволяет TBG оптимизировать планирование капитальных ремонтов и остановок для технического обслуживания.

ВВЕДЕНИЕ

Целью данного документа является описание опыта ГТД в анализе производительности компрессоров и турбин с использованием набора инструментов, разработанных специально для ГТД на трубопроводе Боливия-Бразилия, чтобы предоставить ГТД необходимую информацию. для планирования всего технического обслуживания и особенно капитальных ремонтов.

ДОКУМЕНТ

1. Анализ производительности

При эксплуатации трубопровода одним из наиболее важных вопросов, которые необходимо контролировать, является производительность турбины и компрессоров, потому что это оборудование отвечает за транспортировку газа и доступность трубопровода. Для надлежащего контроля этой производительности и получения информации, лежащей в основе всех решений по техническому обслуживанию, в TBG есть группа, предназначенная для проведения этого анализа.

2. Разработка программного обеспечения

Чтобы выполнить потребность в точном анализе производительности, было разработано программное обеспечение для удовлетворения этой потребности.Этот инструмент может детально воспроизвести все условия эксплуатации турбины и компрессора, а также оценить расход топлива и контроль помпажа. Онлайн-симулятор также используется для сравнения и проверки результатов анализа.

2.1 — Этапы разработки:

Для разработки данного инструмента необходимо было изучить все характеристики станка и создать банк данных с максимальным количеством рабочих данных. Эти данные были получены из банка данных SCADA и в ходе выездов на места.TBG имеет два типа турбокомпрессорных станций, поэтому для этого были разработаны два разных набора инструментов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *