Турбокомпрессор | это… Что такое Турбокомпрессор?
Турбокомпрессор турбореактивного двигателя:
2. Компрессор низкого давления
3. Компрессор высокого давления
7. Турбина
Турбокомпрессор или газотурбинный нагнетатель — центробежный или осевой компрессор, работающий в паре с турбиной.[1] Являются основным конструктивным элементом газотурбинных двигателей.[2]
Содержание
|
Газотурбинные двигатели
Схема двигателя с турбовентилятором.
1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.
Основной агрегат, состоящий из центробежного или осевого компрессора и газовой турбины для его привода, установленных на одном валу, называется турбокомпрессором. Основным назначением турбокомпрессора является повышения давления рабочего тела газотурбинного двигателя за счет его нагнетания компрессором, который получает мощность от турбины. Турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором, называется газогенератором. Турбокомпрессор низкого давления турбореактивного двигателя (ТРДД), состоящий из компрессора низкого давления (вентилятора) и турбины, иногда называют турбовентилятором.
Автомобильные
Разрез автомобильного турбокомпрессора
Основная статья: Турбонаддув
В автомобилях турбокомпрессор, используется для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания за счет энергии выхлопных газов для повышения его характеристик.
Для двигателей малой мощности[источник не указан 402 дня] применяют турбокомпрессоры с центростремительной турбиной, а на двигателях большой мощности[источник не указан 402 дня] (тракторные, тепловозные, судовые) — с осевой турбиной.[источник не указан 402 дня] Компрессор всегда центробежный,[источник не указан 402 дня] так как осевой компрессор имеет более сложную конструкцию и склонность к помпажу. Наименьшие размеры имеют турбокомпрессоры для двигателей легковых автомобилей — диаметр их колес порядка 50 мм. Наибольшие размеры у судовых турбокомпрессоров — диаметр колес — до 1,2 м.
Примечания
См. также
- Газовая турбина
Ссылки
- Турбокомпрессор — статья из Большой советской энциклопедии
Это заготовка статьи о технике. Вы можете помочь проекту, исправив и дополнив её. Это примечание по возможности следует заменить более точным. |
Турбокомпрессор: устройство,принцип работы,фото,видео.
Содержание статьи
Турбина в двигателе или как бывает называют турбокомпрессов дает больше мощности агрегату. Чтоб понять как устроен и принцип работы системы, рассмотрим это все в деталях.
Немного о турбокомпрессоре
Турбокомпрессор или его ещё называют «газотурбинный нагнетатель» (Centrifugal compressors или очень популярно называть «Turbocharger») — это осевой или центробежный компрессор, что функционирует вместе с турбиной. Это конструктивный основной элемент в автомобилях с газотурбированными двигателями.
Давление во впускной системе можно повысить при помощи установки турбокомпрессора, использующего энергию отработавших газов. При его использовании масса воздуха, имеющегося в камерах сгорания, увеличивается. Механический нагнетатель не так эффективен, как турбированный компрессор газов, потому что мощность двигателя не используется для привода.
Тем не менее, после установки центробежной турбины некоторые потери мощности неизбежны. Отработавшие газы из цилиндров не находят выхода, так как турбина преграждает их путь наружу. На двигатель приходится большая нагрузка по очистке цилиндров, вследствие того, что в выпускном тракте создаётся огромное давление. На эту задачу тратится некоторая часть мощности двигателя авто. Конечно, эта потеря ничтожна в сравнении с приростом мощности двигателя объёмом в 30–40%.
После установки центробежной турбины, можно столкнуться с ещё одной проблемой, которая в обиходе называется турбояма. Выходная мощность двигателя изменяется с отставанием от смены давления отработавших газов. Главными факторами, из-за которых образуется турбояма, являются силы трения, инерционность и нагрузка турбины.
Принцип работы автомобильного турбокомпрессора
Турбокомпрессор является сложным устройством, используемым в целях увеличения мощностных характеристик двигателя благодаря большему количеству воздуха, который подается в цилиндры. Принцип работы турбокомпрессора сводится к следующему:
- при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной уже во впускном коллекторе;
- поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
- так, в мотор поступает большее количество воздушной массы, а значит, в него подается и больше топлива. Как известно, чем больше сгорает топливной смеси, тем мощнее становится двигатель. Задача автомобильного турбокомпрессора как раз и состоит в том, чтобы поставлять в силовой агрегат больше воздуха для сжигания большего количества топлива, за счет чего и достигается значительная прибавка мощности.
Что такое турбо-яма?
Стоит добавить, что крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.
Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители, так или иначе, смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.
Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.
Функция турбины, настройка и ее дефекты
Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.
Например, только трехцилиндровый 1,0 литровый турбомотор может выдавать мощность в 90 л.с. Добиться такой же производительности обычный бензиновый трехцилиндровый мотор без дорогостоящих модификаций не сможет ни один автопроизводитель.
Также 1,0 литровый турбированный трехцилиндровый двигатель имеет более низкий расход топлива и небольшой уровень выхлопных газов СО2.
Именно поэтому турбированные моторы стали очень распространенными в малолитражных бензиновых автомобилях за последние несколько лет.
Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.
В большинстве случаев работа современных турбокомпрессоров основана на тех же принципах, которые создал Швейцарский изобретатель Альфред Бучи. То есть большинство турбин в современных автомобилях работают от давления, образующего от выхлопных газах в камере сгорания двигателя.
Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя. Например, подобная турбо технология используется в дизельном 4,0 литровом моторе Audi V8 TDI, который устанавливается на кроссовер SQ7.
Эксплуатация и техническое обслуживание автомобильных турбин
С каждым годом во всем мире ужесточаются экологические требования к выхлопу современных автомобилей. В результате все больше новых автомобилей оснащаются турбинами. Таким образом автопроизводители пытаются выпускать автомобили, которые будут соответствовать жёстким экологическим нормам. Увы, без использования турбин в современных автомобилях добиться сокращения уровня вредных веществ в выхлопе без миллиардных инвестиций невозможно.
Виды и срок службы турбокомпрессоров
Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект «турбоямы». Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:
- Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
- Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.К минусам турбокомпрессоров можно отнести и небольшой срок службы турбины. Для бензиновых двигателей он в среднем составляет 150 000 километров пробега машины. В свою очередь, ресурс турбины дизельного двигателя несколько больше и в среднем достигает 250 000 километров. При постоянной езде на высоких оборотах, а также при неправильном подборе масла сроки эксплуатации могут сократиться в два или даже в три раза.В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ПРИМЕНЕНИЯ ТУРБОНАДДУВА
1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.
2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.
3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.
5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.
О НЕДОСТАТКАХ
У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.
Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
Схема турбины с изменяемой геометрией (VNT)
Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.
Подшипники турбокомпрессора
Подшипники турбокомпрессораХанну Яаскеляйнен
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.
Резюме : Подшипники являются важным компонентом турбокомпрессора, который влияет на его долговечность и надежность. Современные подшипники турбокомпрессора можно разделить на два основных типа: системы гидродинамических подшипников скольжения и системы шарикоподшипников. Другие потенциальные технологии подшипников включают воздушные подшипники из фольги и активные магнитные подшипники.
- Особенности конструкции
- Подшипники скольжения
- Шариковые подшипники
- Другие системы подшипников
Системы подшипников турбокомпрессора часто упускают из виду, но это важный компонент турбокомпрессора. Правильно спроектированная система подшипников может определить разницу между конструкцией турбонагнетателя, которая работает эффективно и действенно в течение всего срока службы двигателя, и той, которая страдает от проблем с долговечностью. Системы подшипников турбонагнетателя также развиваются в условиях повышенного давления для снижения расхода топлива и выбросов двигателя. Новые двигатели часто требуют более высокой эффективности турбонагнетателя, что во многих случаях может быть частично достигнуто за счет снижения потерь из-за системы подшипников.
Система подшипников турбокомпрессора должна быть устойчива к [2538] :
- Высокая осевая нагрузка. Высокое давление наддува, воздействующее на крыльчатку компрессора, может создавать значительные осевые нагрузки. В турбинах с изменяемой геометрией тяговая нагрузка может быть еще выше из-за способности VGT управлять компрессором с более высоким давлением наддува при малых расходах. Низкий расход в VGT обычно означает малую настройку сопла и низкое статическое давление, действующее на рабочее колесо турбины, которое не может значительно компенсировать соответствующую тягу компрессора.
- Масляные загрязнители.
- Задержка подачи масла. Низкая температура окружающей среды и длинные трубы подачи масла могут увеличить время, необходимое смазочному маслу для достижения турбонагнетателя при запуске двигателя. Даже на низких оборотах холостого хода скорость турбонагнетателя может быть относительно высокой вскоре после запуска, что может привести к проблемам с износом подшипниковой системы.
- Горячее отключение. Продолжительная работа при высокой температуре выхлопных газов с последующей немедленной остановкой двигателя без холостого хода может привести к локальному перегреву и закоксовыванию масла в корпусе подшипника и последующему повреждению поверхностей подшипника.
В эпоху повышенного давления по снижению выбросов и расхода топлива снижение трения в подшипниках может сыграть решающую роль в улучшении выбросов при холодном запуске и экономии топлива. Кроме того, по мере снижения вязкости моторного масла либо за счет использования масел с низкой вязкостью, либо за счет разбавления топливом во время довпрыска для регенерации DPF, системы подшипников турбонагнетателя должны адаптироваться для поддержания динамической стабильности ротора и предотвращения повышенного износа [3414] .
Современные системы подшипников коммерческих турбокомпрессоров можно разделить на два основных типа: системы гидродинамических подшипников скольжения и системы шарикоподшипников.
###
Турбокомпрессоры с фиксированной геометрией
Турбокомпрессоры с фиксированной геометриейХанну Яаскеляйнен
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : В простейшей конструкции турбокомпрессора геометрия турбины и компрессора фиксирована, а давление наддува полностью определяется потоком выхлопных газов. Байпас со стороны выхлопа, или перепускной клапан, является распространенным средством достижения лучшего контроля давления наддува с турбинами с фиксированной геометрией. Вестгейт может быть встроен в турбонагнетатель со стороны турбины или может представлять собой отдельный клапан, подключенный к внешнему трубопроводу. Пневматическое срабатывание перепускной заслонки под давлением было обычным явлением, но во многих новых конструкциях используется вакуумное и электрическое срабатывание.
- Введение
- Байпас со стороны выхлопа (Wastegate)
- Конструкция вестгейта
- Перепускной клапан
- Байпас со стороны впуска
Введение
Самая простая конструкция турбокомпрессора с точки зрения управления — это конструкция, в которой геометрия турбины и компрессора фиксирована и в которой не используются средства для управления давлением наддува. Давление наддува, обеспечиваемое этим типом турбокомпрессора, полностью определяется потоком выхлопных газов двигателя и характеристиками турбокомпрессора. Турбокомпрессор оптимизирован для конкретных условий эксплуатации. Размер турбины турбонагнетателя и/или отношение A/R имеют тенденцию быть относительно большими для данного применения из-за необходимости такого размера турбонагнетателя, чтобы в условиях самого высокого расхода турбонагнетатель не превышал скорость или не создавал чрезмерное давление наддува. Хотя давление наддува, близкое к номинальным, можно выбрать с помощью размера турбонагнетателя, переходная характеристика и давление наддува при более низких оборотах двигателя могут пострадать. Кроме того, на больших высотах скорость турбонагнетателя будет иметь тенденцию к увеличению, что может привести к проблемам с помпажем и / или превышению скорости турбонагнетателя, если только это не будет объяснено увеличением размера турбонагнетателя. Однако для некоторых двигателей, работающих в основном в ограниченном числе установившихся режимов, неуправляемый турбонагнетатель с турбиной с фиксированной геометрией может оказаться вполне удовлетворительным.
Для приложений, которые испытывают широкий диапазон условий эксплуатации и которые должны обеспечивать хорошие динамические характеристики, например, для легковых автомобилей, турбонагнетатель с фиксированной геометрией без контроля давления наддува не подходит. Для контроля давления наддува турбокомпрессоров с турбинами с фиксированной геометрией в этих приложениях можно использовать два метода:
- Байпас со стороны выпуска , также известный как перепускной клапан , для перепуска части потока на входе турбины, или
- Байпас со стороны впуска для перепуска потока на входе компрессора.
Байпас со стороны выхлопа (Wastegate)
Добавление перепускного клапана, который позволяет части выхлопных газов обходить турбину, является более распространенным средством достижения лучшего контроля давления наддува с турбинами с фиксированной геометрией. В большинстве приложений это позволяет использовать турбину с фиксированной геометрией меньшего размера или с меньшим отношением A/R, которая способна обеспечить большую мощность для компрессора при более низком расходе выхлопных газов, для данного приложения, рисунок 1 9.0026 [2629] . Переходная характеристика также значительно улучшается из-за улучшенной эффективности низкого расхода, а также меньшей инерции вращения турбонагнетателя.
На рисунке 1 синяя линия представляет турбокомпрессор с турбиной с фиксированной геометрией, а красная линия представляет турбокомпрессор с меньшей турбиной с фиксированной геометрией. Ни одна из турбин с фиксированной геометрией не имеет вестгейта. Обратите внимание, что турбонагнетатель с турбиной меньшего размера будет завышать скорость и форсировать двигатель при относительно низких оборотах двигателя. Добавление перепускной заслонки к турбокомпрессору с меньшей турбиной может значительно улучшить наддув на более низких оборотах двигателя, избегая при этом избыточного наддува и превышения скорости турбонагнетателя на более высоких скоростях. Количество улучшений зависит от того, насколько хорошо контролируется вестгейт.
Рисунок 1 . Влияние размера турбины и вестгейта на давление наддува и скорость турбонагнетателя(Источник: Cummins Turbo Technologies)
На рис. 2 показан другой пример, но с точки зрения карты компрессора. Показана характеристика наддува при полной нагрузке с фиксированной геометрией и турбокомпрессором с регулируемым перепускным клапаном. Каждая турбина рассчитана таким образом, чтобы обеспечить двигателю одинаковое давление наддува, массовый расход всасываемого воздуха и скорость вращения при номинальной мощности. Турбина с фиксированной геометрией без байпаса должна иметь возможность обрабатывать весь поток выхлопных газов при номинальной мощности и, как правило, обеспечивать меньшее давление наддува при более низком расходе воздуха двигателя.