Турбокомпрессор механический нагнетатель: Доступ с вашего IP-адреса временно ограничен — Авито

Содержание

Турбокомпрессор или механический нагнетатель?

Многие автолюбители очень часто задаются вопросом касательно того, какое решение окажется в итоге лучшим-турбина или компрессор? Такой вопрос может возникнуть как при выборе нового автомобиля, так и при покупке машины б/у. Не менее часто с задачей такого выбора сталкиваются и любители тюнинга.

 Рекомендуем также прочесть статью о тюнинге топливной системы. Из этой статьи вы узнаете об устройстве системы, выборе форсунок и топливного насоса для форсированных двигателей.

Стоит отметить в самом начале, что оба устройства одновременно имеют как  ряд определенных преимуществ, так и недостатков. Все это однозначно влияет на конечный выбор. Отличия указанных систем заключаются не только во  внешнем виде, форме, весе, способе крепления на двигателе и габаритах, но и в главных принципах работы. Не всегда однозначно просто выявить все главные критерии при выборе того или иного устройства. Давайте разбираться в этом вопросе более подробно.

Содержание статьи

Механический нагнетатель и турбокомпрессор

Турбина представляет собой ротационный двигатель, особенностью которого является его постоянная и беспрерывная работа. Ранние попытки создать турбину предпринимались еще на заре развития человечества, но качественная реализация стала возможна только в 19 веке. Эпоха развития машиностроения позволила создать первые турбины, которые были паровыми. Турбина осуществляет преобразование кинетической энергии пара, газов или воды в полезную механическую работу. Турбины нашли свое применение во многих устройствах, а также стали неотъемлемой частью различных видов транспорта. Это касается как наземных средств передвижения,  так и морских судов наряду с воздушными летательными аппаратами.

Если говорить о компрессоре, то конструктивно устройство может иметь разные модификации и успешно применяется во многих промышленных областях. Главной его задачей становится сжатие и подача газа под давлением.

Дальнейшее развитие технологий привело к появлению своеобразного симбиоза турбины и компрессора. Разработка турбокомпрессора позволила значительно повысить КПД и мощность двигателей.

Как известно, получить максимальную мощность мотора без увеличения его объема можно при помощи принудительного нагнетания в камеру сгорания большего количества воздуха. Остается только подать больше топлива и мощность силового агрегата существенно возрастет. Как показывают приведенные в различных источниках данные, в среднем компрессор обеспечивает прибавку мощности до 50% и обеспечивает около 30% прироста крутящего момента.

Сейчас механические и турбокомпрессоры устанавливаются отдельно и даже в совокупности для увеличения мощности двигателя легковых и грузовых автомобилей. Их ставят на бензиновые и дизельные агрегаты. Данные решения являются оптимальным и наиболее экономичным вариантом прибавки «лошадей» в том случае, если нужно качественно увеличить мощность ДВС без увеличения объема цилиндров.

С этой задачей  успешно и по отдельности может справиться как полностью механический, так и турбокомпрессор. Но какое из этих решений лучше? Давайте сравним механический компрессор и турбокомпрессор.

Компрессор VS турбина

Разница между турбиной и компрессором наглядно продемонстрирована в тех отличиях, которые имеются у ряда  устройств подобного типа.

  • К основным преимуществам компрессора заслуженно относят бесперебойное и равномерное сгорание рабочей смеси. Это качественно влияет на правильность работы всего двигателя и исключает ряд неисправностей, которые могут потенциально возникнуть в процессе эксплуатации такого мотора.
  • Основным преимуществом турбины является то, что она не имеет привода от двигателя и питается от энергии выхлопных газов. Это не вызывает потери мощности. Компрессор же берет энергию от двигателя, отнимая при этом до 30% его мощности. Справедливости ради стоит добавить, что эта потеря наиболее проявляется в режиме максимальных нагрузок на ДВС.
  • Процесс установки турбины на двигатель является крайне сложным и трудоемким. Не менее сложна и настройка турбокомпрессора, которая потребует существенных финансовых затрат, установки многочисленного дополнительного оборудования и большого количества времени. Еще одним нюансом является то, что перед установкой турбокомпрессора как сам двигатель, так и в ряде случаев трансмиссию нужно существенно и основательно доработать, подготовить к таким сильно  возросшим нагрузкам. Если говорить о механическом компрессоре, то двигатель и КПП также дорабатывают, но делается это далеко не всегда, а  сама доработка может быть поверхностной.
  • Установить компрессор в подкапотное пространство и далее качественно его настроить намного проще, а еще легче произвести последующий правильный подбор параметров необходимой для нормальной работы мотора топливовоздушной рабочей смеси. Установка компрессора облегчена еще и тем, что имеются уже готовые комплекты для решения этой задачи.
  • Если турбину в автомобиле нужно настраивать только при помощи квалифицированного специалиста или самостоятельно обладать специальными знаниями, то компрессор не потребует специального оборудования, знаний и навыков. Такие особенности еще более упрощают процесс установки механического наддува.
  • Автомобильный турбокомпрессор излишне требователен к смазке и качеству ГСМ. Необходимо реализовать подвод масла под давлением, намного чаще менять указанное масло, организовать слив масла в поддон. Все это увеличивает расходы на последующее содержание авто и на работы по установке турбонаддува. Межсервисные интервалы по замене масла заметно сокращаются. Если не обслуживать турбомотор с завидной регулярностью, тогда машина относительно быстро ответит неисправностями и дополнительными проблемами. Компрессор в этом плане намного менее требователен к качеству топлива и ГСМ.
  • За турбиной требуется особый уход. Решение подразумевает целый список периодических процедур по обслуживанию. Механическому компрессору же главное обеспечить только чистоту поступающего воздуха, да и то применительно к кулачковым и шнековым решениям.
  • Турбина демонстрирует негативный эффект на низких оборотах, который называется «турбояма». При низком количестве оборотов от турбины ожидать чудес вовсе не стоит. Только средние и максимальные обороты позволяют добиться полной отдачи от силовой установки. В режиме повседневной эксплуатации в городе это не всегда удобно.

Автовладелец вполне может приобрести турбины новейшего поколения, которые лишены в большей мере такого недостатка и не так сильно зависят от оборотов ДВС, но и сумма итоговых затрат после покупки и доработок будет внушительной. Компрессор по своей производительности не зависит от оборотов машины и выходит на наддув при низких оборотах, обеспечивая при этом прогнозируемую мощность при любой скорости.

  • Компрессор представляет собой отдельное и независимое устройство в конструкции всего ДВС, что упрощает процесс его демонтажа, обслуживания и проведения ремонтных работ. Обслуживать компрессор относительно просто, так что намного более доступно получить качественный, менее затратный и квалифицированный ремонт элемента в случае необходимости.
  • К плюсам турбины можно заслуженно отнести более высокие обороты сравнительно с компрессором. Но и уровень нагрева турбонаддува намного выше, а перегревается турбина  заметно быстрее. Это негативно сказывается на всей работе и состоянии двигателя. Износ мотора при повышенных температурных режимах повышается, а также существенно возрастают требования к системе охлаждения ДВС.
  • Компрессор выходит на эффективный показатель практически сразу же после момента запуска двигателя. В этом заключается его безусловное преимущество. Турбина же на низких оборотах работать не будет. При этом не стоит забывать о том, что компрессор отнимает мощность у двигателя, а вот турбина не снимает с мотора часть мощности от дополнительной нагрузки.
  • К минусам компрессора однозначно относится повышенный расход топлива по сравнению с турбинами. КПД компрессора также заметно меньше. В плане топливной экономичности турбина в автомобиле представляется лучшим вариантом.
  • От двигателя компрессор приводится в действие приводным ремнем или цепью, что требует периодического обслуживания элемента. Если говорить о турбине, то затраты на её обслуживание по сравнению с уходом за компрессором все равно намного больше.
  • Подобрать компрессор или готовый комплект установки в свободной продаже однозначно проще и легче. На современном рынке представлен широкий выбор компрессоров различного типа. Выбор турбин сильно ограничен по сравнению с аналогичным выбором компрессоров.
  • Высококачественная современная турбина в ряде случаев стоит дороже механического компрессора. Несмотря на это, большинство автомобилей оснащаются именно турбонаддувом, так как турбина намного качественнее повышает производительность ДВС.

Что получается в итоге

  1. Компрессор обеспечивает более правильную и стабильную работу двигателя во всех режимах работы, продлевается долговечность мотора;
  2. Турбина не отнимает процент общей мощности ДВС;
  3. Компрессор проще установить и настроить;
  4. Турбина потребует организации подвода и слива масла;
  5. Компрессор имеет постоянную отдачу, а турбина зависит от оборотов ДВС;
  6. Турбина потребует регулярной диагностики и обслуживания, компрессор проще обслуживать;
  7. Компрессор потребляет больше топлива и демонстрирует меньший показатель КПД сравнительно с турбиной;
  8. Турбина устанавливается в двигатель с доработками, компрессор же представлен полностью отдельным устройством и обеспечивает простоту при монтаже;
  9. Турбина предоставляет лучшие показатели на высоких и максимальных оборотах и пиковых скоростных режимах; Компрессор выделяется подхватом в самом «низу»;
  10. Компрессор можно свободно подобрать и приобрести, причем сделать это можно практически под любую модель авто, а вот выбор турбин заметно ограничен;
  11. Стоимость компрессора и его установки получается более доступной по сравнению с турбиной;

Как вы уже поняли из всего вышесказанного, установка любого типа компрессора является не самой простой задачей. Перед установкой стоит тщательно взвесить все «за» и «против» относительно каждого из доступных решений по обеспечению наддува, а также просчитать необходимые итоговые показатели мощности в соответствии с поставленной задачей.

Сегодня же оптимальным можно считать систему двойного наддува, когда на одном моторе задействованы механический компрессор и турбонаддув одновременно. При этом устройства работают на разных оборотах, обеспечивая максимум эластичности и комфорта в широком диапазоне оборотов двигателя.

Читайте также

Мотоцикл: механический нагнетатель против турбокомпрессора

Нагнетатель воздуха на мотоцикле многими своими чертами похож на турбокомпрессор. На самом деле, обе эти системы выполняют примерно сходные функции. Фактически они идентичны, по крайней мере, с практической точки зрения, тем устройствам, которые помогают увеличить мощность обычного или крупного транспортного средства. Если, приобретая мотоцикл и желая, чтобы он был как можно более мощным, вы пытаетесь решить, какой из этих систем отдать предпочтение, то прочитайте краткий обзор и сравните нагнетатель с турбокомпрессором.

Механический нагнетатель мотоцикла

Для сжатия воздуха, подаваемого в двигатель мотоцикла, в нагнетателе применяется механический привод. Сжимая воздух и подавая его в мотор, нагнетатель увеличивает общее внутреннее давление. Чем выше давление воздуха, поступающего из системы впуска, тем интенсивнее двигатель может его использовать для сжигания топлива. В результате повышается мощность, но, с другой стороны, ускоряется износ деталей мотора. Отсюда можно сделать вывод, что непрерывное использование либо постоянное использование нагнетателя не совсем желательно.

Нагнетатели имеют довольно крупные размеры, из-за чего оснащённые ими мотоциклы значительнее крупнее и тяжелее, чем все остальные. Причина заключается в механической системе данного узла. Увеличивая размеры и массу мотоцикла, нагнетатели в какой-то степени вредят самим себе, поскольку двигателю требуется больше мощности, но в результате машина всё же становится гораздо быстрее и сильнее.

Турбокомпрессор мотоцикла

Турбокомпрессор выполняет ту же функцию, что и нагнетатель. Нагнетая воздух под давлением, турбонагнетатель повышает скорость сгорания топлива, что приводит к увеличению скорости и мощности мотоцикла. Тем не менее турбокомпрессор принципиально отличается от механического нагнетателя. В турбокомпрессоре сжатие воздуха осуществляет турбина, которая приводится в действие выхлопными газами. Такая система потребляет меньше энергии и имеет меньшие размеры и вес. Как следствие, турбокомпрессор увеличивает производительность двигателя эффективнее, чем нагнетатель.

Как уже упоминалось, функции обоих устройств одинаковые, а вот цены у них различаются. Причина, как можно догадаться, заключается в результативности их работы. В целом турбокомпрессоры успешнее справляются со своими задачами, но при этом они дороже. Более детальную информацию о конкретных системах и их модификациях, а также ответы на вопросы по поводу установки нагнетателя или турбокомпрессора на мотоцикл вы можете получить, обратившись к специалисту мастерской, занимающейся ремонтом и техобслуживанием автомобилей или мотоциклов.

Какой бы вариант Вы не выбрали, на первом месте остается безопасность: правильно подобранная мотоэкипировка всегда защитит от нежелательных последствий.

Механический нагнетатель автомобиля — устройство и принцип работы

Расскажем про основные механические нагнетатели воздуха для автомобиля. Какие бывают, их устройство и принцип работы.

Центробежные нагнетатели воздуха

Подобные нагнетатели в тюнинге получили наибольшее распространение. По конструкции они наиболее близки к турбонаддуву, поскольку имеют одинаковый принцип нагнетания воздуха. Разняться лишь способы привода. Работа осуществляется следующим образом. Принцип работы центробежного нагнетателя в следующем: воздух, пройдя по воздушному каналу в нагнетатель, попадает на лопасти крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии кожуха, где имеется диффузор. Далее воздух выталкивается в воздушный туннель (воздухосборник), который имеет улиткообразную форму.

Такая конструкция создает необходимое давление воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух поначалу движется быстро, и его давление мало. Но в конце улитки русло расширяется, скорость воздушного потока понижается, а давление увеличивается. Так создается необходимый подпор для накачки цилиндров двигателя.

Недостатки

Для эффективной работы крыльчатка должна вращаться очень быстро. Производимое компрессором давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 тысяч об/мин и более. И поскольку привод осуществляется от коленвала посредством ременной передачи на шкив турбины, шум от такого устройства сильный. Хотя многим этот характерный свист нравится.

К минусам относят некоторую задержку в срабатывании. Хотя она не столь заметна, как у турбонагнетателей.

Как правило, центробежный нагнетатель дает прибавку на высоких оборотах двигателя. Сначала давление нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает. Эта важно для поддержания высоких скоростей, а не интенсивности разгона.

Центробежные нагнетатели воздуха для автомобиля очень популярны. Низкая цена и простота установки сделали, что компрессоры этого типа почти вытеснили другие и стали популярны в тюнинге.

Объемные нагнетатели ROOTS

Компрессоры типа «Рутс» относятся к классу объемных нагнетателей. Конструкция их довольно проста и напоминает масляный шестеренчатый насос двигателя. В корпусе овальной формы вращаются в противоположные стороны два ротора, имеющие специальный профиль. Роторы насажены на оси, связанные одинаковыми шестернями.

Основное отличие — воздух сжимается не внутри, а снаружи компрессора, непосредственно в нагнетательном трубопроводе. Поэтому их иногда называют компрессорами с внешним сжатием.


Минусы

Поскольку процесс сжатия воздуха осуществляется вовне компрессора, его эффективная работа возможна лишь до определенных значений наддува. С ростом давления увеличивается просачивание воздуха назад, и КПД снижается. Мощность, затрачиваемая на вращение самого нагнетателя, может превысить добавочную мощность двигателя.

Еще один недостаток. В них создается турбулентность, способствующая росту температуры воздушного заряда. Наряду с обычным ростом температуры от непосредственно повышения давления, в рутс-компрессорах происходит дополнительный нагрев. Поэтому нагнетатели ROOTS в обязательном порядке оснащаются интеркулерами.

Шум от работы объемных компрессоров не столь сильный, как у центробежных, и имеет иную тональность. При этом, в отличие от центробежных, механические нагнетатели ROOTS эффективны на малых и средних оборотах двигателя. Эта особенность рутс-компрессоров сделала их наиболее пригодными для драг рейсинга, где ценится динамика разгона. Другой плюс – относительная простота конструкции.

Малое количество движущихся частей и малые скорости вращения делают эти механические нагнетатели одними из самых надежных и долговечных. Но сложность и высокая цена снизили их популярность.

Плюсы и минусы нагнетателей

Использование нагнетателей воздуха для авто может негативно сказаться на ресурсе двигателя. Как правило, поломку мотора вызывают повышенные обороты. Стало быть, использование нагнетателя, повышающего крутящий момент на низких и средних оборотах, может, наоборот, благоприятно сказаться на ресурсе.

С другой стороны, если добиваться большого роста мощности, многие штатные детали придется заменить на более прочные. Например, кованые поршни и шатуны будут совсем нелишними. Cжатие воздуха всегда сопряжено с повышением температуры. В некоторых компрессорах это повышение не существенно. Но для снижения потери мощности на привод нагнетателя воздух необходимо охлаждать.

Еще одна проблема – детонация. Высокая температура и давление подаваемого в цилиндры воздуха может привести, что в конце такта сжатия, когда поршень спрессует в цилиндре уже сжатую топливо-воздушную смесь, её температура и давление могут оказаться большими. Что вызовет преждевременную детонацию, т. е. взрыв.Чтобы избежать подобных проблем, можно перейти на высокооктановые сорта топлива, но часто этого мало. При достаточно больших значениях давления приходится производить декомпрессию, т. е. снижать степень сжатия. Правильный подбор свечей зажигания также немаловажен.

Турбокомпрессор или приводной нагнетатель?

КАКИМ ОБРАЗОМ турбокомпрессоры и приводные нагнетатели поднимают отдачу мотора? Они “заталкивают” в цилиндры дополнительный воздух, создавая положительное давление на впуске. Стремясь приготовить рабочую смесь оптимального состава, система управления двигателем также увеличивает подачу топлива. Поэтому при сгорании такого состава выделяется больше энергии и повышается мощность двигателя.

Турбокомпрессоры

“Турбодопинг” позволил поднять мощность 2,3-литровой “четверки” “Mazda 6 MPS” с базовых 160 до 260 л.с.

Обновленный “BMW X3” может похвастать новейшей трехлитровой дизельной “шестеркой” с двойным последовательным турбонаддувом.

ЭТИ УСТРОЙСТВА очень популярны. Их применяют на самых разных автомобилях, начиная с японских городских микролитражек вроде “Mitsubishi i” или “Subaru R1” и заканчивая такими спортивными монстрами, как “Saleen S7”.

В качестве источника энергии в турбокомпрессорах используются выходящие из цилиндров с большой скоростью и давлением отработавшие газы двигателя. Они вращают турбинное колесо, закрепленное на одном валу с насосным, которое, в свою очередь, нагнетает во впускной коллектор дополнительный воздух.

Турбокомпрессоры просты, относительно недороги и обладают высоким КПД, поскольку они не требуют дополнительного источника энергии. У этого вида нагнетателей есть свои особенности. Например, чем быстрее крутится коленвал, тем больше образуется выхлопных газов. Соответственно растет частота вращения турбины. Поэтому, если не ограничить давление наддува, рано или поздно (в частности, при резком закрытии дроссельной заслонки) произойдет поломка двигателя.

Как правило, роль предохранителя выполняет специальный перепускной клапан. При достижении заданного давления он открывает путь выхлопным газам в обход турбины. Регулируя сжатие пружины, можно выбирать момент срабатывания клапана. На современных двигателях обычно эту заботу берет на себя электроника, которая в зависимости от нагрузки на двигатель, его частоты вращения и множества других параметров управляет работой наддува.

Еще турбокомпрессоры отличаются большой инертностью. При малых оборотах коленвала давления выхлопных газов недостаточно, чтобы раскрутить турбину до необходимой для эффективной работы скорости, поэтому при резком ускорении происходит небольшой провал, так называемая турбояма (или турболаг). И только после 2.500-3.000 об/мин наддув “просыпается” и начинает выполнять свои функции.

На моторе “Porsche 911 Turbo” используются турбонагнетатели с изменяемой геометрией.

“MercedesBenz S65 AMG” оснащен двигателем V12, на каждом ряду цилиндров которого установлен свой турбокомпрессор.

Если же применить турбину небольшого размера, с малой инертностью, то ее производительности не хватит на высоких скоростях. Надо увеличивать частоту вращения. А прочность материалов небезгранична…

Поэтому инженерам приходится идти на компромиссы. К примеру, устанавливать на двигатель последовательно два турбокомпрессора: один маленький, другой побольше. Первый работает на малых оборотах, увеличивая крутящий момент и предотвращая появление турбоямы. Более производительное устройство включается в работу при большей частоте вращения, когда потенциал младшего “напарника” иссякает. Есть и переходный режим, когда обе турбины работают одновременно. Подобную схему можно встретить, скажем, на новом “BMW X3”.

Встречаются также моторы с параллельными небольшими турбонагнетателями. В таком случае каждый из них обслуживает только определенные цилиндры: например, один ряд Vобразного двигателя, как у “Mercedes-Benz S65 AMG”.

Другой способ борьбы с турболагом – компрессоры с изменяемой геометрией. В них направление потока выхлопных газов и сопротивление коллекторов их движению регулируется специальными заслонками или диафрагмами. Электроника управляет ими таким образом, чтобы турбина всегда поддерживала оптимальные рабочие обороты. Такое техническое решение применено, например, на “Porsche 911 Turbo”.

Эти меры удорожают и усложняют конструкцию турбокомпрессоров, но на сегодняшний день они пока популярнее приводных механических нагнетателей. Ведь почти все современные дизели оснащены именно турбонаддувом.

Приводные нагнетатели

Приводные компрессоры “Lysholm” в основном применяются на спорткарах вроде “Ford GT”.

Инженеры “Jaguar” предпочитают увеличивать отдачу моторов с помощью нагнетателей типа “Roots”. На фото – “Jaguar XJR”.

ОНИ ПРИВОДЯТСЯ механической передачей от коленвала двигателя. Соответственно производительность наддува напрямую зависит от частоты вращения мотора. То есть компрессор всегда обеспечивает необходимую подачу воздуха.

Приводные нагнетатели появились больше 100 лет назад, за это время создано множество их типов, но на автомобилях применяются в основном три: роторные (“Roots”), винтовые (“Lysholm”) и центробежные. Первые два подают воздух с помощью двух вращающихся цилиндрических роторов особой формы, а третий – лопатками крыльчатки.

Компрессоры “Roots” просты по конструкции, поэтому широко распространены на легковых машина х от “Mini” до “Jaguar”. Особенно популярны эти нагнетатели у спецов “Mercedes-Benz”, оснащающих ими многие свои модели.. На другой чаше весов – небольшой КПД, шумная работа и сильный нагрев. Поэтому “Roots” используют в основном для создания положительного давления не более 0,5-0,6 бара.

Нагнетатели “Lysholm” высокопроизводительны, компактны, отличаются высокой надежностью и хорошим КПД. Они могут создавать давление до одного бара и даже выше. Этим объясняется их распространенность на мощных скоростных машина х вроде “MercedesBenz SLR McLaren” или “Ford GT”. Но роторы сложной формы дороги в производстве. Кроме того, из-за особенностей конструкции (внутреннее сжатие воздуха) работу нагнетателя сопровождает навязчивый высокочастотный шум.

Центробежные устройства во многом похожи на турбокомпрессоры. Они компактны, недороги и долговечны, но их КПД не очень велик. К тому же на малых оборотах “центробежники” не очень эффективны. На серийных моделях такие устройства используются достаточно редко. Гораздо чаще их применяют тюнинговые ателье и фирмы, производящие эксклюзивные автомобили. Характерный пример – “Koenigsegg”.

Несмотря на определенные преимущества перед турбокомпрессорами, нагнетатели не столь популярны. Главным образом из-за больших размеров (в тесноте подкапотного пространства расположить их непросто), повышенной шумности, а также необходимости специального привода, который забирает часть мощности у двигателя и увеличивает расход топлива.

Последнюю проблему отчасти помогают решить различные муфты, управляемые электроникой. На определенных режимах они отключают коленвал от механического нагнетателя, экономя горючее.

Союз двух схем

Симбиоз приводного нагнетателя и турбонаддува позволил снять с 1,4-литрового мотора “Volkswagen Golf GT” 170 л.с.

Производителям эксклюзивных автомобилей полюбились центробежные нагнетатели. Компания “Koenigsegg”, например, устанавливает такие на модель “CCR”.

ПОКА двигателисты всего мира спорят о преимуществах и недостатках различных схем наддува, “Volkswagen” выпустил “Golf GT”. Мотор этого автомобиля уникален тем, что оснащен как турбонаддувом, так и приводным нагнетателем типа “Roots”.

На малых оборотах двигателя работает “Roots”, позволяя турбине раскрутиться до рабочих частот. Затем нагнетатель автоматически отключается, передавая эстафету турбонаддуву. В результате “четверка” скромного рабочего объема 1,4 л выдает 170 л.с.!

Похоже, будущее за такими “гибридными” системами, позволяющими соединить положительные качества известных конструкций и устранить их негативные свойства.

Автор
Юрий УРЮКОВ
Издание
Клаксон №23 2007 год
Фото
фото фирм-производителей

Supercharger — механический нагнетатель

Понятие, плюсы и минусы механического нагнетателя Supercharger

Механический наддув – это процесс увеличения давление некой смеси на впуске двигателя для повышения массы горючей смеси в цилиндре для  увеличения мощности относительно единицы объема двигателя.

Supercharger (cуперчарджер) также известный как компрессор Рутса — это механический нагнетатель использующий для собственного привода энергию коленчатого вала. Он является основным элементом механического наддува.

Главным функциональным плюсом cуперчарджера является то что он может закачивать воздух на минимальных оборотах, абсолютно без задержки, при этом рост силы наддува строго пропорционален оборотам двигателя.

Главным же минусом cуперчарджера является то что он обирает часть мощности двигателя на собственный привод.

На данный момент  механические нагнетатели практически не используются. Их место заменили турбонагнетатели (турбокомпрессоры). За редким исключением их продалжают устанавливают на легковые автомобили, если необходимо сделать разбег по мощности, дабы не изменять конструкции двигателя.

В среднем применение механического нагнетателя обеспечивает увеличение мощности двигателя до 50%, а крутящего момента на 30%. При этом механический нагнетатель отличают существенные потери мощности двигателя из-за затрат энергии на его привод. В разных механических нагнетателях они могут составлять до 30%.

Виды конструкций механического нагнетателя делятся в зависимости от типа привода.

  1. Прямое  крепление нагнетателя к фланцу коленчатого вала называют прямым приводом;
  2.  Ременной привод – характеризуется различными вида привода при помощи ремней. Делится на:
  3. Зубчатый   
    • Клиновой
    • Плоский
  4. Зубчатая передача  через цилиндрический редуктор
  5. Цепной привод;
  6. Электрический привод подразумевает под собой использования для привода электродвигателя.

Данный вид привода естественно является наиболее энерго-затратным и требует большей мощности для аккумуляторов, но при этом он не снижает мощности двигателя.

Механический нагнетатель можно условно  поделить на такие виды как:

  1. Объемные
    • Кулачковый – Roots, Eaton (Рутс, Итон)
    • Винтовой — Lysholm
  2. Центробежные

Объемные нагнетатели

Объемные нагнетатели  получили свое название из-за того что принцип их работы заключается в простой перекачке определенного объема воздуха без сжатия.

Кулачковый нагнетатель

Кулачковый нагнетатель является самым первым и от того самым старым и проверенным типом наддува. Его история развития стартовала 1859 году с работы двух талантливых братьев под фамилией Рутс (Roots). Изначально его использовали как промышленный вентилятор для продувки помещений. Чуть позже он получил широкое применение из-за своей простоты. Две помещенные в общий кожух прямозубые шестерни вращаются в разных направлениях, при этом перекачивая определенный объем воздуха от впускного до выпускного коллектора.

Спустя 90 лет другому американскому ученому Итону пришло в голову, как  можно усовершенствовать конструкцию. Прямозубые шестерни заменили на косозубые роторы, и воздух стал перемещаться вдоль, а не поперек как это было раньше. С того времени усовершенствование нагнетателей этого типа идет по пути увеличения количества зубчатых лопаток (косозубых роторов). В первоначальной модели Итона «Eaton» их было две, а теперь сложно встретить меньше четырех. Основными функциональными недостатками нагнетателей типа Рутс является:

  1. Неравномерная пульсационная подача воздуха создающие периодический недостаток давления. Увеличение количества зубчатых-лопастей и  изменение формы впускного и выпускного окна компрессора на треугольное, позволяет свести этот недостаток к минимуму.  К тому же эти конструктивные решения помогают сделать работу компрессоров Рутса намного тише и равномернее.
  2.  Во время выдавливания несжатого воздуха в трубопровод где находиться сжатый воздух, создается турбулентность, которая способствует росту температуры заряда воздуха. Это отрицательно сказывается на производительности ухудшая показатели калорийности топливной смеси из-за менее  полного сгорания. Данная проблема коленчатых компрессоров решается установкой инкулера.

Развитие машиностроение позволило полностью оценить плюсы и минусы нагнетателей Рутса и  получить из них максимум производительности.

Плюсы компрессоров Рутс:

  1. Компактность
  2. Простота конструкции
  3. Долговечность
  4. Эффективность на малых оборотах
  5. Низкий уровень шума

Винтовой нагнетатель

Винтовой нагнетатель (Lysholm) также как и компрессор «Рутса» относится к объемно-роторным нагнетателям и в своей работе использует те же принципы, но в отличии от своего более раннего коллеги рабочую нагрузку в нем исполняют пара роторов с взаимодополняющими профилями. На английском винтовой нагнетатель называют Lysholm  в честь его изобретателя Альфреда Лисхольма, который в 1936 году изготовил и запатентовал на него права.

Принцип работы компрессора Lysholm
  • Начиная встречное взаимное движение, пара роторов захватывает воздух.
  • Вдоль роторов воздух порциями проталкивается вперед попутно сжимаясь.

Следовательно, на выпуске окна компрессора не возникает турбулентности, как у компрессоров «Рутса». Это является главным отличием от роторно-шестеренчатых нагнетателей. Подобная схема работы обеспечивает стабильно высокую эффективность на всех уровнях нагрузки.

Плюсы компрессоров «Лисхольм»:
  1. Высокий КПД (70%)
  2. Надежность
  3. Компактная конструкция
  4. Низкий уровень шума.

 

Главным и единственным минусом компрессоров «Лисхольм» является очень слона форма роторов, из-за чего их производство является очень затратным и как следствие сам компрессор очень дорогой. Поэтому он не встречается в серийных авто и его производят очень мало компаний.

Центробежный нагнетатель

ентробежный нагнетатель получил на данный момент наиболее широкое применение среди всех механических нагнетателей. Главным образом его, используют в компоновке турбонаддува и реже как самостоятельное устройство наддува. Центробежный нагнетатель аналогичен турбонаддуву в плане нагнетания воздуха. Его основной деталью, как и у турбокомпрессора  является крыльчатка. У этой детали весьма сложная в исполнении конусообразная форма и от того насколько правильно она спроектирована и сделана зависит КПД всего нагнетателя.

Принцип действия центробежного нагнетателя:

  1. Воздух проходит по воздушному сужающемуся каналу  и раскручивает лопасти крыльчатки.
  2. Раскрученные лопасти, ведомые центробежной силой, отбрасывают воздух на периферию кожуха.
  3. Там установлен диффузор, снижающий потери давления. Порой он имеет лопатки с регулируемым углом атаки.
  4. Через диффузор воздух выталкивается в воздушный окружающий туннель (иначе воздухосборник) в форме улитки. Данная форма не случайна. Поток воздуха движется по каналу, который изначально был узким, а под конец стал широким, тем самым меняется скорость и давление воздушной массы на необходимые.

Главный недостаток  центробежного компрессора связан с базовым принципом, который приводит его в действие. Для работы ему необходимо огромная скорость вращения крыльчатки. Давление производимое компрессором равно квадрату скорости крыльчатки. Поэтому базовая скорость компрессора начинается от 40 тысяч оборотов за минуту и может достигать 200 тысяч. Понятно что для разгона на такую скорость ремень привода должен работать крайне быстро. Из-за чего от работы этого наддува появляется очень сильный шум и детали подвергаются быстрому износу. Частично проблема шума решается установкой дополнительного мультипликатора, при этом теряя часть КПД механического нагнетателя.

Огромная нагрузка накладывает высокие требования на качество материалов и точность обработки деталей нагнетателя.

К еще одному минусу данного механического нагнетателя можно отнести его инерционное действие, проявляющий себя в отставании срабатывании. На малых оборотах его эффективность ничтожна, но при увеличении оборотов происходит быстрый скачек в мощности. Из-за данной особенности центробежный нагнетатель устанавливают на машины, где требуется высокая мощность и скорость, взамен интенсивности разгона.

Плюсы центробежного нагнетателя:

Низкая цена и простота установки центробежного нагнетателя сделали его очень популярным среди автолюбителей.

Минусы центробежного нагнетателя:

Повышенный износ, шум и эффективность прибавки мощности исключительно на высоких оборотах.

Спиральные компрессоры (нагнетатели)

Леон Креукс в 1905 году подал заявку на патент для создания паровой машины, которая в процессе 10 лет доработки превратилась в компрессор с двумя спиральными витками, восьмью струями вместо четырех, внешней и внутренней камерой расположенными по бокам с разворотом в 180 градусов. Но на тот момент думать о массовом производстве компрессоров было очень рано. Не было материалов способных выдержать рабочую температуру и оборудования для точной обработки деталей. Последнее является решающим фактором, поскольку любая погрешность в изготовлении деталей, качестве или структуре поверхности могла привести к значительной потери КПД, быстрой поломке всего двигателя и нагнетателя в частности. Из-за этого его применение в машиностроении началось гораздо позднее.

Компания «Volkswagen» в середине 80-х годов начала активно экспериментировать с необычными спиральными компрессорами наиболее известными как G-lader устанавливая их на модели «Golf», «Passat», «Polo», «Carrado». Хотя сейчас это направление ею уже свёрнуто, работа инженеров VW в нем никогда не будет забыта. Их наработки продолжает использовать ряд (преимущественно немецких) производителей устанавливая спиральные компрессоры в свои авто.

Преимущества спирального компрессора:

  1. Высокий КПД -76%
  2. Хорошие уплотнения и как следствие хорошая отдача на малых оборотах.
  3. Низки уровень шума

Поршневые компрессоры

Одна из самых распространённых схем среди обычных воздушных компрессоров является поршневые компрессоры (нагнетатели). На данный момент они совершенно не используются в автомобиле строении, в отличие от судоходства, где устанавливаются почти на все крупные судна. Основным действующим элементом поршневого компрессора как это ни странно звучит, является поршень. При движении в нижнюю мертвую точку (НМТ) он выталкивает весь находящейся под ним сжатый воздух.

Шиберные (лопастные) компрессоры (нагнетатели также известные как ротационно пластинчатые компрессоры)

 

 

Говоря о незаслуженно забытых видах компрессорах, стоит обязательно упомянуть шиберные (лопастные) компрессоры – прекрасные в своей простоте конструкции и принципе действия апараты.
Устройство лопастного компрессора

В корпусе компрессора находится ротор чей размер составляет ¾ от внутреннего размера корпуса. Он смещен в одну из сторон относительно середины пары отверстий растянутых по всей длине цилиндра. На роторе нанесены несколько продольных канавок, в которые помещены лопатки. При вращении ротора воздух сначала засасывается в одну из долей (промежуток между лопатками), в момент когда лопасти выдвигаются  повинуясь центробежной силе, а затем сжимаются по пути подхода к выпускному отвествию.

Плюсы лопастного компрессора (нагнетателя)

Качественно изготовленные лопастные компрессоры могут создавать весьма и весьма большое давление. Если сравнивать их с теме же компрессорами Рутс  у них на 50% больше мощности, меньше шумность, выше КПД, меньше потери воздуха и его температура. К тому же они меньше отбирают мощности двигателя.

Минусы лопастного компрессора

Из-за свой конструкции лопастной компрессор имеет огромную фрикционную нагрузку между корпусом и шиберами (лопастями). Со временем  эксплуатации нагнетателя, увеличивался износ и потери воздуха, КПД существенно уменьшалось. Из-за этого лопастные компрессоры приходилось делали габаритными и низкооборотными. Что являлось недопустимо для развития машиностроения. О них стали отказывается и по не многу забывать. По пришествию долгих лет металлообрабатывающая отрасль шагнула далеко вперед. Появились новые материалы и технологии высоко-точной обработки, конструкторы стали задумывается о применении старых технических решений, которые ранее не нашли применения в жизни. Возможно, в скором будущем лопастные компрессоры вернутся в массовое производство.

В чем отличия приводного центробежного нагнетателя и турбины?

Вот как работают центробежные приводные нагнетатели

Внешне центробежные нагнетатели выглядят очень схоже со своими ближайшими родственниками – обычными турбинами. Действительно, между двумя системами подачи воздуха в цилиндры много общего, но тем не менее отличий у них не меньше.

 

Использование принудительной индукции для получения большей мощности с единицы объема двигателя может быть достигнуто несколькими различными способами. Одним из таких способов является применение нагнетателя центробежного типа, использующего механическую мощность двигателя, а не энергию выхлопных газов, для того чтобы загнать больше воздуха в цилиндры, сжечь больше топлива и получить больше мощности. Но как именно работает центробежный нагнетатель? Небольшой ликбез ниже.

 

Технические отличия центробежного нагнетателя от турбины

Центробежный нагнетатель очень похож на турбокомпрессор, если посмотреть на него со стороны такого технического элемента, как диффузор компрессора. В простонародье его называют «улиткой» за схожий внешний вид, и это не случайно.

 

Как в турбине, он использует крыльчатку для сжатия воздуха, поступающего извне, и принудительно направляет его в цилиндры двигателя. Главное конструктивное отличие, как вы уже догадались, заключается в отказе от использования выхлопных газов для раскручивания крыльчатки – центробежный нагнетатель вместо этого использует шкив, приводимый в движение двигателем механически. Поэтому он относится к типу приводных нагнетателей.

 

Смотрите также: Неисправности турбин: Эксплуатация, неисправности, восстановление и ремонт

Зачем нужно было городить такой огород, если уже существует очень схожая конструкция, появившаяся еще на заре автомобилестроения? Конечно же, в этом есть свой важный смысл и определенные преимущества.

Плюс. Поскольку вращение компрессора центробежного типа зависит от оборотов двигателя, центробежная турбина не будет нагнетать такое же количество воздуха на низких оборотах, как и на высоких. Это хорошо при обыденной эксплуатации автомобиля, например, в городе, в пробках или при вялотекущем движении. Пиковая мощность не будет достигаться до тех пор, пока вы не раскрутите мотор до более высоких оборотов. Значит, будет экономиться топливо.

 

Минус. В то же время моторы с установленными на них центробежными нагнетателями будут выдавать максимальную мощность на самых высоких оборотах, что создаст определенный дефицит энергии при начале разгона.

 

Таким образом, у двигателя с центробежным наддувом будет больше энергии на высоких оборотах. Это является одним из главных недостатков центробежных нагнетателей – у них достаточно узкий диапазон работы, стремящийся к максимальным оборотам двигателя.

 

Минус. Также центробежные турбины отличаются более сложной конструкцией и повышенными оборотами вращения крыльчатки. В конструкции появляется такой элемент, как повышающий редуктор (это лишний вес), а скорость вращения выходного шпинделя будет катастрофически огромной, вплоть до 250.000 оборотов в минуту! От таких нагрузок страдают конструктивные элементы, надежность падает.

 

Минус. Еще одним минусом можно назвать забор мощности турбины от двигателя. Она ведь приводится механически, а значит, мотору приходится трудиться за двоих.

 

Плюс При этом жесткая сцепка «двигатель – компрессор» дают положительный результат. Отзывчивость становится практически моментальной, «турбоямы» для этой конструкции не известны.

 

По этой причине такая система принудительного увеличения мощности подойдет не каждому автомобилю. Впрочем, автопроизводители повсеместно все чаще начинают использовать именно нагнетатели, предпочитая устанавливать их на свои новые модели автомобилей вместо классических турбин. Это обусловлено, в первую очередь, возможностью его тонкой настройки, скажем, при помощи бортового компьютера, который сможет включать и отключать турбину при изменениях исходных данных. Хотя практической необходимости с ПЦН в этом нет.

 

Небольшое видео на тему (для комфортного просмотра включите перевод субтитров)

Турбо – Автомобили – Коммерсантъ

Турбо

Журнал «Коммерсантъ Автопилот» №2 от , стр. 65

&nbspТурбо

       В двух предыдущих номерах рассматривались системы питания двигателей. При этом речь шла, в основном, о подаче бензина. В этой статье речь пойдет о втором, не менее важном компоненте топливо-воздушной смеси — о воздухе. И об устройствах для увеличения его подачи в двигатель.

       Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Самое простое решение — увеличить рабочий объем: чем больше сгорает топлива, тем выше мощность. Однако при этом существенно увеличиваются габариты и масса конструкции.
       Альтернативный подход — оставить рабочий объем двигателя прежним, но подавать в единицу времени больше топлива. Увеличить подачу бензина несложно, особенно, в системах впрыска. Но при этом для сохранения состава топливной смеси необходимо пропорционально увеличить и количество подаваемого в двигатель воздуха. Возможности двигателя самостоятельно всасывать воздух ограничены, поэтому не обойтись без специального устройства, повышающего давление и, следовательно, количество воздуха на впуске. Эти устройства обычно называют нагнетателями или компрессорами.
       
Механический нагнетатель
       Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1—4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.
       Есть конструкции и не совсем обычные. Одна их них — волновой нагнетатель Comprex (рис. 5) — принадлежит фирме Asea-Brown-Boweri. Ротор этого компрессора имеет аксиально расположенные камеры, или ячейки. При вращении ротора в ячейку поступает свежий воздух, после чего она подходит к отверстию в корпусе, через которое в нее попадают горячие отработавшие газы двигателя. При их взаимодействии с холодным воздухом образуется волна давления, фронт которой, движущийся со скоростью звука, вытесняет воздух в отверстие впускного трубопровода, к которому ячейка за это время успевает подойти. Поскольку ротор продолжает вращаться, отработавшие газы в это отверстие попасть не успевают, а выходят в следующее по ходу ротора. При этом в ячейке образуется волна разряжения, которая всасывает следующую порцию свежего воздуха и т. д.
       Нагнетатель Comprex уже опробован несколькими автомобильными производителями, а Mazda использует его на одном из своих серийных двигателей с 1987 года.
       Еще одна не совсем обычная конструкция — это спиральный, или G-образный (по форме буквы G, напоминающей спираль) нагнетатель. Идея запатентована еще в начале столетия, но из-за технических и производственных проблем на выпуск такого нагнетателя долго никто не решался. Первой, в 1985 году была фирма Volkswagen, которая применила его на двигателе купе Polo (1,3 л, 113 л. с.). В 1988 году появился более мощный нагнетатель G60, которым в течение нескольких лет комплектовались двигатели Corrado и Passat (1,8 л, 160 л. с.,), а Polo G40 выпускался вплоть до прошлого года.
       Схематично (рис. 6) конструкцию G-образного нагнетателя можно представить в виде двух спиралей, одна из которых неподвижна и является частью корпуса. Вторая — вытеснитель — расположена между витками первой и закреплена на валу с эксцентриситетом в несколько миллиметров. Вал приводится от двигателя ременной передачей с отношением около 1:2.
       При вращении вала внутренняя спираль совершает колебательные движения и между неподвижной (корпус) и обегающей (вытеснитель) спиралями образуются серпообразные полости, которые движутся к центру, перемещая воздух от периферии и подавая его в двигатель под небольшим давлением. Количество перемещаемого воздуха зависит от частоты вращения коленчатого вала двигателя.
       Система имеет сравнительно высокий (около 65%) КПД. Трущихся частей почти нет, поэтому износ деталей незначителен. Установленный на двигателе Polo нагнетатель G40 (40 и 60 в маркировке нагнетателей Volkswagen — это ширина спиральных камер в миллиметрах) имеет внутреннюю степень сжатия 1,0; максимальное давление наддува составляет 0,72 бар. При номинальной частоте вращения ротора 10200 об./мин. за один оборот подается 566 см куб. воздуха, т. е. почти 6000 л/мин.
       Схема управления механическим нагнетателем довольно проста (рис. 7). При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя.
       Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью всех, не только механических, систем наддува. При сжимании воздух, как известно, нагревается, а его плотность и, соответственно, количество кислорода в единице объема уменьшаются. Больше кислорода — лучше сгорание и выше мощность. Поэтому перед подачей в двигатель сжатый нагнетателем воздух проходит через охладитель, где его температура снижается.
       Преимущества спирального нагнетателя, как и большинства компрессоров с механическим приводом: достаточно большой крутящий момент и повышенная мощность двигателя при низких оборотах, быстрая, практически мгновенная реакция на нажатие педали газа. Недостатки: относительная сложность и нетехнологичность конструкции, большие потери в приводе.
       
Турбокомпрессор
       Более широко на современных автомобильных двигателях применяются турбокомпрессоры. Они более технологичны в изготовлении, что окупает ряд присущих им недостатков.
       Турбокомпрессор отличается от вышеописанных конструкций прежде всего схемой привода (рис. 8). Здесь используется ротор с лопатками — турбина, которая вращается потоком отработавших газов двигателя. Турбина, в свою очередь, вращает размещенный на том же валу компрессор, выполненный в виде колеса с лопатками.
       Выбранная схема привода (газовая вместо механической) определяет основные недостатки турбокомпрессора. При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время думает и лишь потом подхватывает. Объяснение простое — требуется время на раскрутку турбины, которая вращает компрессор. На рис. 9 показана реакция нагнетателей различных типов на увеличение числа оборотов двигателя. Приведенные кривые относятся к дизелю, но их характер сохраняется и для бензинового двигателя. Хорошо видно, что самую медленную реакцию имеет турбокомпрессор, волновой нагнетатель реагирует быстрее, механический нагнетатель срабатывает практически мгновенно.
       Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони. Легкий ротор повышает эффективность компрессора при низких оборотах двигателя: например, у 2,0 л турбодвигателя SAAB 9000 уже при 1500 об./мин. увеличение крутящего момента за счет наддува составляет 20%. Легкий ротор, кроме того, обладает меньшей инерционностью, что позволяет турбокомпрессору быстрее раскручиваться при нажатии педали газа и уменьшает «турбояму».
       Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Поиск новых материалов для турбин ведется многими фирмами. Основная сложность — высокая температура отработавших газов. Преуспели больше всего в этой области, пожалуй, японцы — они уже давно занимаются керамикой для двигателей внутреннего сгорания. Монолитная турбина, изготовленная из спеченного карбида кремния, при той же механической прочности весит в 3 раза меньше обычной и, соответственно, обладает гораздо меньшей инерцией. Кроме того, в случае разрыва ротора разлетающиеся осколки будут много легче — это дает возможность сделать корпус компрессора более тонким и компактным. А недавно конструкторам Nissan впервые в мировой практике удалось создать крыльчатку нагнетателя из пластмассы. Из какой — неизвестно, но говорят, получилась очень легкая.
       Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Одна задача решается довольно легко: избыточное давление наддува на высоких частотах вращения уменьшается, как правило, с помощью перепускного клапана.
       Другая задача сложнее. Полностью решить все проблемы можно было бы использованием турбины с изменяемой геометрией, например, с подвижными (поворотными) лопатками, параметры которой можно менять в широких пределах. Такие турбины широко применяются в авиации и других областях техники. Но в крошечном роторе автомобильного компрессора механизм поворота лопаток разместить трудно.
       Один из упрощенных способов — применение регулятора скорости потока отработавших газов на входе в турбину. В турбокомпрессоре Garrett VAT 25, который более подробно будет рассмотрен ниже, для этого используется подвижная заслонка.
       Схема управления давлением наддува 2,0 и 2,3 литровых двигателей SAAB 9000 показана на рис. 10. Называется она APC — Automatic Performance Control. Система APC во всех режимах работы двигателя поддерживает давление наддува на максимально допустимом уровне, не доводя двигатель до детонации. Для этого использован датчик (knock sensor), по сигналу которого при возникновении детонации блок управления открывает установленный в турбине перепускной клапан, и часть отработавших газов направляется в обход турбинного колеса, что снижает давление наддува и устраняет детонацию. Помимо этого датчика в систему APC входят также и другие, измеряющие частоту вращения двигателя, нагрузку, температуру и октановое число используемого топлива — этими параметрами определяется порог детонации.
       Использование APC позволило не только повысить степень сжатия 2,0 л двигателя до 9, но и сделало возможным использование топлива с низким октановым числом — до 91.
       
Топливная экономичность
       Повышение мощности двигателя, достигается ли оно увеличением его рабочего объема или применением наддува, неизбежно влечет за собой увеличение расхода топлива. Теоретически КПД двигателей с наддувом несколько выше, чем атмосферных, поэтому удельный (на единицу мощности) расход топлива у них должен быть ниже. На практике же за счет потерь при переходных процессах он получается примерно таким же.
       Конечно, и с турбодвигателем можно ехать относительно экономично, но тогда зачем он нужен? Поэтому сегодня конструкторы пытаются решить непростую задачу: уменьшить расход топлива при сохранении высокой мощности. Попробуем рассмотреть разные подходы к этой проблеме, предложенные, например, инженерами Audi и Peugeot.
       Одним из путей повышения экономичности двигателя, как известно, является увеличение степени сжатия. Но в двигателях с наддувом есть ограничение: наддув увеличивает компрессию, что приводит к возникновению детонации, особенно на высоких оборотах. Поэтому степень сжатия приходится искусственно снижать: в современном атмосферном двигателе она составляет около 10, а в двигателе с наддувом обычно не превышает 8.
       Конструкторам Audi удалось в определенной степени это ограничение преодолеть: в 5-цилиндровом 20-клапанном двигателе Audi S2 и Audi S4 объемом 2,2 л и мощностью 230 л. с. степень сжатия доведена до 9,3 — это для турбомотора необычно много. Результат: средний расход топлива при 90 км/ч — 7,5 л, в городе — 14 л/100 км. Двигатель пришел со спортивной Audi 200. Созданный на этой же основе мотор Avant RS2 также имеет довольно высокую степень сжатия — 9, но при таком же объеме развивает мощность 315 л. с. (за счет изменения параметров наддува). В то же время расход топлива в городе составляет лишь 14,5 л/100 км.
       Упоминавшийся выше турбированный 4-цилиндровый двигатель нового SAAB 9000 объемом 2,0 л тоже имеет степень сжатия 9. Мощность поменьше: 165 л. с., но и расход топлива на трассе менее 7, а в городе — около 12 л/100 км.
       Сравните эти параметры, например, с данными для Porsche 968 Turbo S. Спортивная машина, на экономию топлива особого внимания не обращали. Рабочий объем 3 л, 4 цилиндра 2 клапана/цилиндр, степень сжатия 8, мощность 305 л. с., расход топлива в городе — не менее 18 л/100 км.
       Поскольку конструкторы Audi для увеличения экономичности пошли по пути повышения степени сжатия, они смогли ограничиться турбокомпрессором вполне традиционной конструкции: К24 фирмы ККК (Kuhle, Kopp und Kausch). Схема управления наддувом тоже традиционная — избыточное давление при высоких оборотах ограничивается перепускным клапаном. Габариты К24 невелики, а параметры выбраны исходя из получения высокого крутящего момента на низких оборотах. Уже при 1950 об./мин. двигатель достигает своего максимального крутящего момента (350 Нм), который сохраняется до 3000 об./мин. Кривая момента достаточно плоская: 90% его величины расположены в диапазоне частот вращения 2300—5200 об./мин. Несмотря на простоту схемы управления, «турбояма» у указанного двигателя не ощущается.
       Конструкторы Peugeot выбрали другой подход. Новый 4-цилиндровый 16-клапанный двигатель Peugeot 405 Т16 имеет традиционную для турбодвигателей низкую степень сжатия 8. Но на нем использован довольно хитрый компрессор VAT 25 фирмы Garrett (не путать с VAT 69 — это совсем из другой области!). Применительно к компрессору сокращение VAT — это турбина с изменяемой площадью, или сечением (Variable Area Turbine). На входе отработавших газов в корпус турбины имеется подвижная заслонка с пневматическим приводом (рис. 11). На малых оборотах двигателя заслонка находится в прикрытом положении, уменьшая сечение канала, по которому проходит поток отработавших газов, поэтому даже при малом их объеме скорость потока получается достаточно высокой и обеспечивает необходимую частоту вращения турбины. При увеличении частоты вращения двигателя заслонка открывается, увеличивая проходное сечение — количество отработавших газов возрастает и, соответственно, повышается давление наддува. Поскольку VAT — решение упрощенное, и не в полной мере обеспечивает регулировку, перепускной клапан в схеме управления давлением наддува пришлось сохранить.
       Получилось, в целом, неплохо. Своего максимального крутящего момента 288 Нм двигатель Peugeot достигает при 2600 об./мин., и это значение сохраняется до 4500 об./мин. При этом 90% величины момента расположены в диапазоне 2300—5200 об./мин. При объеме 2,0 литра двигатель развивает мощность 200 л. с. (5000 об./мин.), а расход топлива в городе составляет менее 12 л/100 км.
       
Overboost
       Как правило, турбонаддувные двигатели имеют устройство Overboost, срабатывающее при резком нажатии на педаль газа и дополнительно повышающее давление наддува и максимальный крутящий момент двигателя (примерно на 10%). Это необходимо при резких ускорениях, например, при обгоне.
       На Audi с компрессором К24 включение этого режима достигается, в общем, традиционно: при резком и полном открытии дроссельной заслонки срабатывает электронный блок управления, который быстро закрывает регулировочный клапан давления наддува. Весь поток отработавших газов направляется через турбину, давление наддува дополнительно увеличивается — Overboost. В этом режиме уже при 2100 об./мин. крутящий момент двигателя достигает 380 Нм.
       Конструкторы Peugeot поступили по-другому. У компрессора Garrett VAT 25 (рис. 11) эффект Overboost достигается за счет того, что заслонка в корпусе турбины быстро откидывается в направлении турбинного колеса, резко увеличивая проходное сечение и, соответственно, поступающее количество отработавших газов. Крутящий момент двигателя 405 Т16 в этом режиме повышается до 318 Нм при 2400 об./мин.
       Повышенный крутящий момент сохраняется в течение ограниченного времени: у Audi — 16 секунд, у Peugeot — 45 секунд, что почти идеально для выполнения обгонов. Чтобы не уродовать двигатель, режим Overboost не действует, если частота вращение двигателя превышает 6000 об./мин. (Audi) или если включена 1-я передача (Peugeot).
       
Во что обходится наддув
       Бесплатным, как известно, бывает только ветер в камышах. За повышение мощности двигателей с наддувом приходится платить. И не только увеличением расхода топлива. Повышаются требования к его качеству — для большинства турбированных двигателей требуются бензины с октановым числом 96—98. Несмотря на то, что поршни, кольца, головки и шатуны усилены, ресурс двигателя ощутимо снижается, тем в большей степени, чем выше давление наддува. Можно считать, что в среднем ресурс двигателя с турбокомпрессором не превышает 100 тыс. км, а ресурс самого компрессора составляет около 10 тыс. часов. У механических нагнетателей он выше — около 25 тыс. часов. Для системы смазки турбокомпрессора требуются специальные масла, выдерживающие высокие температуры и частоты вращения более 100 000 об./мин. Температура в турбинной части компрессора доходить до 1000°С, поэтому его подшипники требуют дополнительного водяного охлаждения. Все изложенное для потребителя выливается в довольно значительное увеличение стоимости автомобиля и его обслуживания.
       Для бензиновых двигателей массовых моделей наддув вряд ли можно считать удачным способом повышения мощности. Volkswagen, например, в этом году отказался от упоминавшегося выше наддувного двигателя на Polo. Более перспективными, особенно с точки зрения топливной экономичности, видимо, можно считать такие направления, как многоклапанная техника, совершенствование систем впрыска, переобеднение смеси и ее послойное распределение в цилиндрах.
       Бензиновые двигатели с турбонаддувом — это, пожалуй, удел дорогих, со спортивным характером автомобилей. Maserati, например, может позволить себе выпускать все двигатели с системой наддува, да еще не с одним, а с двумя турбокомпрессорами — на V-образных двигателях. Такую конструкцию называют Twin Turbo. Запомнить легко — как Twin bed в гостинице. Иногда название трансформируется в Biturbo, что сути дела не меняет: турбокомпрессоры стоят параллельно и каждый обслуживает свою секцию цилиндров.
       Такой автомобиль, как правило, могут приобрести немногие. Правда, при нынешней российской налоговой политике, когда приходится платить пошлину с объема двигателя, некоторые могут предпочесть турбированный вариант, благо они все еще имеются в каталогах большинства производителей. Дело вкуса. И денег. Кстати Mercedes-Benz и BMW, продукция которых у нас столь популярна, не имеют сегодня ни одного серийного бензинового турбодвигателя.
       С экономической, экологической, да и многих других точек зрения весьма привлекательно выглядят турбированные дизели. Но об этом в следующий раз.
       
       Виталий Струговщиков
       

Комментарии

Вспомогательная система турбонаддува с внешним компрессором

Вспомогательная система турбонаддува с внешним компрессором

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Поддержка турбонагнетателя может предоставляться дополнительным компрессором — либо нагнетателем, либо меньшим турбонагнетателем, — которые используются для обеспечения наддува, когда основной турбонагнетатель не может этого сделать.Могут использоваться два основных типа наддува: нагнетатели с приводом от двигателя и электрические нагнетатели.

Введение

Хотя включение усилителя турбонагнетателя непосредственно в турбонагнетатель обеспечило бы аккуратное упаковочное решение, все же необходимо преодолеть множество проблем, прежде чем технология может быть принята для коммерческого применения на рынках двигателей легкой, средней и большой мощности. В качестве альтернативы доступны другие подходы, основанные либо на коммерчески проверенных технологиях, либо на технологиях с меньшими проблемами коммерциализации.Большинство из этих подходов основано на использовании другого компрессора в дополнение к турбонагнетателю. Этот дополнительный компрессор может обеспечить более высокое давление наддува при меньших расходах воздуха и более быстрый переходный отклик давления наддува, чем основной турбокомпрессор. Дополнительный компрессор может быть нагнетателем с механическим или электрическим приводом. Также можно использовать дополнительный турбокомпрессор, хотя и с меньшей пропускной способностью и меньшим моментом инерции, чем у первичного турбокомпрессора.

Хотя преимущества интеграции двигателя (например,g., электродвигатель) на вал турбокомпрессора, аналогичные преимущества могут быть получены при использовании отдельного компрессора, рис. 1. На этом рисунке показан эффект использования турбокомпрессора с перепускным клапаном и отдельного центробежного компрессора с электрическим приводом фиксированного размера на входе ( a) или выпускное отверстие (b) турбокомпрессора. Турбокомпрессор рассчитан на повышение выходной мощности бензинового двигателя 2,0 л SI на высоких оборотах. Красная пунктирная кривая представляет базовую мощность аналогичного двигателя, но в нем используется турбокомпрессор плюс нагнетатель с механическим приводом вместо [3299] .Цель состоит в том, чтобы согласовать выходную мощность базового двигателя при полной нагрузке с комбинацией турбонагнетателя и электрического нагнетателя. BMEP (240 Нм / л) прототипа базового двигателя 30 бар (3000 кПа) указывает на то, что он был значительно уменьшен.

Рисунок 1 . Смоделированный эффект добавления отдельного центробежного компрессора с электрическим приводом фиксированного размера перед входом (a) и после выхода (b) компрессора турбонагнетателя

Турбокомпрессор, рассчитанный на увеличение выходной мощности на высоких оборотах бензинового двигателя SI с уменьшенными габаритами.Красная пунктирная кривая представляет базовую мощность при использовании турбонагнетателя и нагнетателя с механическим приводом.

Потребляемая мощность при размещении компрессора фиксированного размера после выпуска компрессора турбонагнетателя значительно ниже, чем в случае его размещения перед входом. Основная причина заключается в том, что уменьшенный или скорректированный массовый расход (т.е. массовый расход с поправкой на температуру и давление) на входе компрессора турбокомпрессора значительно выше, чем на выходе; т.е. плотность на входе ниже.При заданном фактическом массовом расходе компрессор, расположенный на входе в турбокомпрессор, должен перемещать значительно больший объемный расход и работать с гораздо более высокой скоростью.

На рис. 2 показана характеристика скачка нагрузки механического нагнетателя и нагнетателя с электрическим приводом и сравнивается их с более традиционными вариантами без наддува, турбонагнетателя и нагнетателя [2813] . Показаны 2,0-литровый бензиновый двигатель с непосредственным впрыском (GDI) с турбонаддувом, тот же 2,0-литровый двигатель GDI с турбонаддувом, также оснащенный нагнетателем с электрическим приводом (VTES), двигатель с турбонаддувом, оснащенный механическим нагнетателем со сцеплением, двигатель 2.Двигатель GDI объемом 0 л с 2-ступенчатым турбонаддувом, двигатель 3,0 л без сцепления с механическим наддувом и безнаддувный двигатель с регулируемыми фазами газораспределения. Серая полоса показывает типичный диапазон серийных бензиновых двигателей с турбонаддувом. На рисунке показано влияние различных систем повышения не только на переходную характеристику на низкой скорости, но и на максимальное значение BMEP на низкой скорости. Как будет рассмотрено позже, на реакцию двигателя с турбонаддувом, оснащенного механическим нагнетателем со сцеплением, влияет необходимость управления включением сцепления.

Рисунок 2 . Переходная характеристика бензинового двигателя для нескольких вариантов наддува

Шаг нагрузки от BMEP 1 бар до полной нагрузки при 1500 об / мин

На рисунке 3, основанном на данных Burke [3299] , более подробно показано влияние нагнетателя с электрическим приводом. Результаты смоделированы для двигателя 2,0 л уменьшенного размера, обсуждаемого в связи с рисунком 1. Базовая линия — это нагнетатель с приводом от двигателя плюс турбонагнетатель. В других случаях нагнетатель с приводом от двигателя заменяется центробежным компрессором с электрическим приводом.Мощность нагнетателя с электрическим приводом ограничена до 12 кВт. Для стандартного переходного процесса входы исполнительного механизма для перепускной заслонки турбокомпрессора и электрическая мощность нагнетателя с электрическим приводом были почти мгновенно переключены с их настройки низкой нагрузки на настройку высокой нагрузки. Для принудительного переходного процесса перепускная заслонка и электрическая мощность изначально ступенчато устанавливаются на максимальный отклик (т.е. перепускная заслонка полностью закрыта и 12 кВт на компрессор с электрическим приводом) для обеспечения переходной характеристики, а затем ослабляются, чтобы избежать перерегулирования.Очевидно, что нагнетатель с электрическим приводом обеспечивает улучшенные характеристики по сравнению с базовой конфигурацией. При оборотах двигателя 1250 и выше установка компрессора с электрическим приводом после турбонагнетателя обеспечивает превосходное повышение производительности, в то время как производительность компрессора с электрическим приводом в положении перед турбонагнетателем значительно ухудшается. Использование гибкости компрессора с электрическим приводом за счет кратковременного приведения его в действие на полной мощности в сочетании с гибким управлением перепускным клапаном еще больше повышает производительность и доводит переходные характеристики до и после турбоустановок примерно до одного уровня.

Рисунок 3 . Время от запуска до целевого BMEP для бензинового двигателя объемом 2,0 л

Baseline — это компрессор с приводом от двигателя и турбонагнетатель. В других случаях нагнетатель с приводом от двигателя заменяется центробежным компрессором с электрическим приводом мощностью 12 кВт. Все результаты смоделированы, кроме базовых условий при 1000 об / мин.

Хотя на рис. 2 показано, что двигатель с турбонаддувом с электрическим приводом и турбонаддувом обеспечивает превосходную переходную реакцию на усилитель нагнетателя с механическим приводом, сложно управлять нагнетателем с электрическим приводом в течение более нескольких секунд.Однако нагнетатели с механическим приводом не сталкиваются с такой проблемой. Таким образом, двигатель с турбонаддувом с механическим приводом и турбонаддувом может быть откалиброван для более высоких уровней крутящего момента двигателя в устойчивом состоянии на низких оборотах. Нагнетатели с электрическим приводом могут быть объединены с турбиной, работающей на ОГ, приводящей в действие электрический генератор, чтобы образовать «электрический турбонагнетатель».

###

Плюсы и минусы турбокомпрессоров по сравнению с нагнетателями: инженерное объяснение

Вы когда-нибудь задумывались, в чем преимущество турбокомпрессора перед нагнетателем? Или наоборот? Что ж, больше не удивляйтесь, потому что это лучшее объяснение, которое вы, вероятно, когда-либо прочитали…

Когда втягивание атмосферного воздуха не обеспечивает достаточной мощности, производители и тюнеры обратились к принудительной индукции. Это лучший способ добиться значительного увеличения мощности практически с любым двигателем, и есть два основных способа добиться этого: наддув и турбонаддув.

В чем разница? Нагнетатель — это воздушный компрессор, приводимый в действие коленчатым валом двигателя, обычно связанный ремнем. В качестве альтернативы турбонагнетатель — это просто воздушный компрессор, приводимый в действие турбиной, работающей на выхлопных газах. Это одно ключевое отличие; нагнетатель требует мощности двигателя для работы, в то время как турбонагнетатель использует ненужную энергию, создаваемую двигателем. Вы можете предположить, что, поскольку турбонагнетатель работает на отработанных газах, он более эффективен, и вы правы!

1.Преимущества и недостатки турбокомпрессора:

Плюсы:

  • Значительное увеличение мощности.
  • Мощность в зависимости от размера: позволяет двигателям меньшего объема производить гораздо большую мощность по сравнению с их размером.
  • Лучшая экономия топлива: меньшие двигатели потребляют меньше топлива на холостом ходу и имеют меньшую вращательную и возвратно-поступательную массу, что улучшает экономию топлива.
  • Более высокий КПД: турбокомпрессоры расходуют энергию, которая обычно теряется в двигателях с наддувом и без наддува (выхлопные газы), поэтому рекуперация этой энергии повышает общий КПД двигателя.

Минус:

  • Turbo lag: турбокомпрессоры, особенно большие турбокомпрессоры, требуют времени, чтобы раскрутиться и обеспечить полезный наддув.
  • Порог наддува: для традиционных турбонагнетателей они часто рассчитаны на определенный диапазон оборотов, в котором поток выхлопных газов достаточен для обеспечения дополнительного наддува двигателя.Обычно они не работают в таком широком диапазоне оборотов, как нагнетатели.
  • Скачок мощности: в некоторых турбокомпрессорах, особенно с более крупными турбинами, достижение порогового значения наддува может обеспечить почти мгновенный скачок мощности, который может ухудшить сцепление шин или вызвать некоторую нестабильность автомобиля.
  • Потребность в масле: турбокомпрессоры сильно нагреваются и часто попадают в подачу масла в двигатель. Это требует дополнительной сантехники и более требовательных к моторному маслу.Нагнетатели обычно не требуют смазки моторным маслом.

Вот короткое видео о том, как работают турбокомпрессоры. Судите сами о моих способностях рисования, это второе видео, которое я когда-либо делал…

2.Преимущества и недостатки нагнетателя:

Плюсы:

  • Повышенная мощность: добавление нагнетателя к любому двигателю — быстрое решение для увеличения мощности.
  • Нет лагов: самое большое преимущество нагнетателя перед турбонагнетателем в том, что у него нет лагов. Подача мощности происходит немедленно, потому что нагнетатель приводится в движение коленчатым валом двигателя.
  • Повышение низких оборотов: хорошая мощность на низких оборотах по сравнению с турбокомпрессорами.
  • Цена: экономичный способ увеличения мощности.

Минус:

  • Менее эффективен: самый большой недостаток нагнетателей заключается в том, что они забирают мощность двигателя просто для выработки мощности двигателя. Они работают от ремня двигателя, соединенного с коленчатым валом, так что вы, по сути, приводите в действие воздушный насос с помощью другого воздушного насоса. Из-за этого нагнетатели значительно менее эффективны, чем турбокомпрессоры.
  • Надежность: со всеми системами принудительного впуска (включая турбокомпрессоры) внутренние части двигателя будут подвергаться более высоким давлениям и температурам, что, конечно же, повлияет на долговечность двигателя. Лучше всего строить двигатель снизу вверх, чтобы выдерживать такое давление, а не полагаться на стандартные внутренние компоненты.

Нагнетатели часто идут рука об руку с большими двигателями V8, и они, безусловно, способны производить большую мощность. Вот видео о том, как они работают:

Что я предпочитаю?

Как инженер, трудно не согласиться с эффективностью.Просто турбокомпрессоры имеют больше смысла, поскольку они повышают эффективность двигателя несколькими способами. Нагнетатели являются дополнительным требованием к двигателю, даже если они способны производить полезный наддув на низких оборотах. Но если вы не можете решить, можно использовать оба одновременно, и это называется двойной зарядкой.

Источник изображения: Mercedes AMG Petronas

Куда все пойдет в будущем?

Электрические турбины, вероятно, будут более распространены в транспортных средствах будущего, где электродвигатель раскручивает турбонагнетатель на низких оборотах, производя полезный наддув до тех пор, пока выхлопных газов не станет достаточно для питания турбонаддува.Именно это происходит в Формуле 1 с системой ERS, и это решение самого большого недостатка турбонаддува — турбо-лага.

Вот видео, объясняющее, как электрические турбокомпрессоры используются в двигателях Формулы 1:

Имея все это в виду, каковы ваши предпочтения; турбокомпрессор или нагнетатель? Или вы больше не интересуетесь бензином…?

Турбокомпрессор

и нагнетатель: различия, надежность и сравнение цен

Турбокомпрессор или нагнетатель могут увеличить мощность вашего двигателя и вывести вас на самую быструю полосу движения.Но как они работают?

Если есть один вывод из турбокомпрессоров и нагнетателей, то оба они связаны с мощностью. Сжимая воздух, поступающий в двигатель (процесс, известный как принудительная индукция), турбонагнетатели и нагнетатели распределяют дополнительную мощность на двигатель, закачивая больше топлива в цилиндр. Таким образом, цилиндр вырабатывает больше мощности при каждом взрыве, значительно увеличивая обороты и тем самым сырую мощность двигателя.

Различия между турбонагнетателями и нагнетателями самые разные.Хотя конечный результат один и тот же (больше мощности!), Любая путаница между ними, вероятно, связана с их похожими названиями. К концу этой статьи вы сможете легко отличить турбокомпрессоры от нагнетателей.

Турбокомпрессор и нагнетатель: основные отличия


Турбокомпрессоры и нагнетатели отличаются как большим, так и тонким образом. Ключевое различие — в том, как они подают питание на двигатель.

Турбокомпрессоры

Турбокомпрессоры не подключены к двигателю.Они используют поток выхлопных газов в качестве источника энергии, протягивая его через турбину, которая вращает компрессор. Турбокомпрессоры не такие мощные, как нагнетатели, но они оснащены компонентами, изменяющими смог, которые уменьшают количество выделяемого смога.

Недавнее исследование, опубликованное в International Journal of Emerging Trends in Engineering and Development, показало, что двигатели с турбонаддувом положительно влияют на топливную экономичность и выбросы углерода.

Турбокомпрессоры имеют среднюю частоту вращения 15000 об / мин.Исследование турбонагнетателей с изменяемой геометрией (VGT) показало, что крутящий момент на низкой скорости в большинстве автомобилей можно увеличить на 44%.

Нагнетатели

Нагнетатели напрямую связаны с двигателем ремнем. Они используют коленчатый вал двигателя в качестве источника энергии. Нагнетатели нагнетают сжатый воздух в двигатель для увеличения мощности. Это прямое соединение означает, что нагнетатели более мощные, чем турбокомпрессоры, но у них нет перепускного клапана, что означает, что они выделяют больше смога. Нагнетатели имеют среднюю скорость 50 000 оборотов в минуту.

Турбокомпрессор и надежность нагнетателя


Внутренняя цель системы принудительной индукции в сочетании с ее близостью к двигателю автомобиля означает, что надежность является ключевым вопросом при выборе между турбонагнетателем и нагнетателем. Очень важно учитывать, как долго и как часто вы можете использовать преимущества одного из них.

Турбокомпрессоры сложны и трудны в обслуживании. Они тише, чем нагнетатели, но также выделяют невероятное количество тепла, поэтому их необходимо правильно установить и изолировать.В среднем турбокомпрессор необходимо заменять каждые 100-150 км; в противном случае это может привести к повреждению двигателя.

Турбокомпрессоры стали привлекательными для автопроизводителей в последние годы, главным образом потому, что они обеспечивают большую мощность для небольших экономичных двигателей. Однако качественные турбодвигатели не рассчитаны на то, чтобы выдерживать силу турбокомпрессора. В конечном итоге это делает турбокомпрессоры менее надежными в долгосрочной перспективе.

По словам Джейка Фишера, директора по тестированию автомобилей Consumer Reports, «Небольшие турбодвигатели могут экономить топливо, обеспечивая при этом необходимую людям мощность, но только если двигатели надежны.Иногда дополнительная сложность означает, что в будущем возникнут проблемы ».

Эта «беда» вызывает споры. Многие автовладельцы ожидают, что их автомобиль преодолеет отметку в 200–250 км, прежде чем отправиться на пастбище. К сожалению, потребители не знают полного и долгосрочного воздействия турбокомпрессоров на их двигатели.

Нагнетатели, возможно, более надежны, чем турбокомпрессоры. Их легко устанавливать и обслуживать. Они громче, чем турбокомпрессоры — они значительно увеличивают число оборотов в минуту — и в результате они более распространены.

Турбокомпрессор против нагнетателя Плюсы и минусы


Есть небольшая разница между преимуществами и недостатками, которые возникают при выборе турбонагнетателя или нагнетателя. Оба предлагают уникальные преимущества, которые имеют свою цену.

Давайте взглянем на плюсы и минусы, которые они предоставляют.

Турбокомпрессор

Плюсы

  • Wastegate производит значительно меньше выбросов углерода
  • Идеально подходит для работы на большой высоте
  • Легкий вес, мало влияет на топливную экономичность автомобиля
  • Работает тихо
  • В целом более эффективно

Минусы

  • Турбонагнетателю требуется время для повышения мощности
  • Сложная установка и обслуживание
  • Работа очень горячая

Нагнетатель

Плюсы

  • Простота установки и обслуживания
  • Производит значительно больше мощности, чем турбокомпрессор
  • Обеспечивает повышение мощности при более низких оборотах
  • Тормозная мощность увеличивается на 30-45%
  • В целом более надежна

Минусы

  • Нет перепускного клапана = больше выбросов углерода
  • Громко работает
  • Остается активным при низких оборотах, отрицательно влияя на Экономия топлива автомобиля

В двух словах, турбокомпрессоры эффективны, недороги и могут помочь многим маломоторным транспортным средствам получить преимущества в мощности двигателя.Все нагнетатели — это резкое повышение мощности любой ценой.

Насколько мощны нагнетатели? Чиллер SRT Power Chiller, разработанный специально для Dodge Challenger SRT Demon 2018 года, установил новый рекорд мощности в 840 лошадиных сил и получил награду Popular Science’s Best of What’s New за 2017 год. Двигатель SRT с наддувом, Dodge разработал мощный нагнетатель, способный развивать огромную скорость.

Турбокомпрессор vs Цена нагнетателя


Турбокомпрессоры и нагнетатели близки по цене.Но это не значит, что они обязательно дешевые.

В целом, нагнетатели обычно дороже. Они могут быть специализированы в соответствии с конкретной маркой и моделью линейки автопроизводителей, что затрудняет замену или ремонт. Нагнетатели не производятся серийно, а их спрос и предложение влияют на текущую рыночную стоимость. Поскольку большинство новых автомобилей не имеют нагнетателя, нагнетатели часто изготавливаются на заказ для каждого конкретного двигателя или модели.

Более того, сама природа нагнетателя увеличивает его цену. В конце концов, это оборудование, которое может дополнительно вращать 65 000 оборотов в минуту. У этого бонуса есть своя цена.

Конец механических нагнетателей может быть на горизонте. Крис Коулэндс, директор отдела передовых разработок Fiat Chrysler Automobiles, считает, что в будущем нагнетатель будет заменен. «Я думаю, мы увидим, что электрический нагнетатель придет на смену механическому.”

Электрический нагнетатель будет более эффективным и экологически безопасным, но никто не знает, сколько он будет стоить.

Турбокомпрессоры обычно начинаются примерно с 400 долларов США и увеличиваются в цене в зависимости от марки и модели. Однако, поскольку турбокомпрессоры выделяют тепло и не связаны с самим двигателем, определенные компоненты должны быть установлены в автомобилях без турбонаддува, чтобы компенсировать дополнительную силу. Сюда могут входить некоторые, если не все, из следующего: впускной трубопровод, контроллер наддува, промежуточный охладитель, спускная труба, датчик детонации, а также топливный насос и трубопроводы большой мощности.

Не позволяйте дополнительным компонентам пугать вас турбокомпрессорами. В отличие от нагнетателей, многие современные автомобили включают турбокомпрессоры в стандартную комплектацию. Транспортные средства с турбонаддувом гораздо более распространены в Соединенных Штатах, в основном из-за того, что они работают на выхлопных газах, которые до сих пор не использовались.

Итоги по турбокомпрессорам и нагнетателям


Турбокомпрессоры и нагнетатели — отличный способ получить больше мощности от двигателя вашего автомобиля.Однако каждая система имеет уникальный набор компромиссов.

Турбокомпрессоры считаются более эффективным вариантом, потому что они приводятся в действие потоком выхлопных газов автомобиля — иначе расходуемым впустую источником энергии. Но в целом они не обеспечивают заметного увеличения мощности, если двигатель не работает на высоких оборотах.

Нагнетатели обеспечивают значительное преимущество в мощности по сравнению с турбокомпрессорами и просты в установке, но они дороги и все реже, чем турбокомпрессоры.

Ссылки:

  1. https://rspublication.com/ijeted/2016/sep16/13.pdf
  2. https://www.ijsr.in/upload/865069637Chap_28.pdf
  3. https: // www .consumerreports.org / car-Надежность-владелец-удовлетворение / проблемы-с-турбо-двигателем-надежностью /
  4. https://www.fcagroup.com/en-US/media_center/insights/Pages/srt_wins_popular_science_award.aspx
  5. https://www.caranddriver.com/features/a20879514/in-the-battle-between-superchargers-and-turbochargers-theres-a-clear-winner-for-now/

Supercharger vs.Турбокомпрессор | Институт J-Tech

Нагнетатель или турбокомпрессор? Сегодняшние потребители энергии имеют возможность выбрать индукционную систему для своего автомобиля. Когда дело касается автомобильных характеристик, мощность имеет значение. Мощность и крутящий момент могут быть существенно увеличены с помощью надстройки принудительной индукции, но чтобы выбрать лучший маршрут для вашей поездки, это помогает понять различия между двумя системами и то, как они работают.

Принудительная индукция 101

Может показаться странным, что больше воздуха, нагнетаемого в ваш двигатель, означает большую мощность.Разве двигатель не работает от топлива? да. Но двигатели внутреннего сгорания полагаются на воздух (кислород), чтобы питать топливо, заставляя его сгорать и гореть, преобразовывая его в энергию и производя энергию. Таким образом, идея нагнетания еще большего количества воздуха в двигатель для сжигания большего количества топлива и, в конечном итоге, выработки большей мощности — вот что такое нагнетатели и турбокомпрессоры.

В чем разница между нагнетателем и турбонагнетателем?

Обе системы представляют собой воздушные компрессоры, предназначенные для нагнетания дополнительного воздуха в двигатель.Но то, как они устроены и как работают, очень разные. Требуется мощность, чтобы сделать мощность против турбо-лага, давайте перейдем к этому.

Нагнетатель — Соединенный ремнем, идущим от коленчатого вала, нагнетатель вращается при вращении двигателя и нагнетает дополнительный воздух во впускное отверстие двигателя. Поскольку нагнетатель полагается на механическое вращение двигателя, он будет полагаться на мощность двигателя, чтобы заставить его вращаться, но как только он заработает, нагнетатель производит предсказуемую величину наддува, не полагаясь на какие-либо ограничения, такие как контроллер наддува.Вместо этого, чтобы регулировать количество производимого наддува, вы просто меняете шкив на конце нагнетателя, чтобы внутренние части вращались с большей скоростью, увеличивая количество воздуха внутри двигателя.

Турбокомпрессор — Как следует из названия, у турбонагнетателя есть настоящая турбина, которая использует выхлопные газы двигателя для вращения, заставляя компрессор нагнетать воздух в двигатель. По сути, он использует выхлопные газы для вращения турбины, которая, в свою очередь, всасывает дополнительный воздух, что приводит к дополнительной емкости для топлива.Больше топлива + больше воздуха = больше мощности.

Что лучше?

Оба обеспечивают повышение мощности, но турбонагнетатели могут иметь небольшую задержку во время ускорения, потому что мощность, создаваемая выхлопными газами, должна накапливаться, достаточная для вращения турбонагнетателя. Они также нагреваются и нуждаются в хорошем охлаждении, и их немного сложнее установить, учитывая интеркулер и выпускной коллектор. Но они, как правило, тише, чем Supercharger, и могут обеспечить больший прирост мощности в верхней части кривой мощности оборотов.

Какими бы ни были ваши предпочтения, с постоянно развивающимися технологиями в автомобильном мире никогда не будет скучно. Если вы более чем немного увлечены тем, что происходит под капотом, вам следует проверить программу по автомобильным или дизельным технологиям в J-Tech Institute. J-Tech идет в ногу со всеми последними достижениями автомобильной промышленности и обучает следующее поколение автомобильных и дизельных техников. Свяжитесь с J-Tech сегодня, чтобы узнать больше о карьере, которая помогает Америке двигаться за рулем.Или щелкните здесь, чтобы запланировать экскурсию по нашему объекту площадью 168 000 квадратных футов в Джексонвилле, Флорида.

Определение разницы между турбонагнетателями и нагнетателями

О турбонагнетателях и нагнетателях часто говорят на одном дыхании, и хотя между двумя устройствами есть сходство, есть также некоторые ключевые различия в их использовании в легковых автомобилях.

Обе технологии относятся к категории систем принудительного впуска, которые позволяют двигателю транспортного средства производить больше мощности, чем эквивалентный «безнаддувный» двигатель.Это достигается за счет сжатия воздуха в топливно-воздушной смеси до его воспламенения в цилиндрах двигателя. Это создает значительный наддув, который может обеспечить до 50% большей мощности двигателя.

Несмотря на то, что они используют одну и ту же концепцию принудительной индукции, основным различием между ними является способ питания компонентов сжатия воздуха. Нагнетатель приводится в движение коленчатым валом двигателя с помощью ремня, вала или цепи, тогда как турбокомпрессоры получают свою мощность от турбины, которая собирает энергию из выхлопных газов двигателя.

Турбокомпрессоры

Проще говоря, турбонагнетатель — это воздушный насос, который позволяет нагнетать больше воздуха в двигатель при более высоком давлении. Это воспроизводит эффект большего цилиндра, но с большей эффективностью. Турбина состоит из двух отдельных секций; со стороны компрессора и со стороны турбины. Сторона компрессора (или холодная часть) часто изготавливается из алюминия и выдерживает температуру до 70 ° C. Окружающий воздух втягивается в корпус компрессора, и крыльчатка компрессора сжимает воздух и разгоняет его до очень высоких скоростей.

Сторона турбины (или горячая часть) изготовлена ​​из чугуна или нержавеющей стали и может достигать температуры до 960 ° C, так как выхлопные газы вращают колесо турбины со скоростью до 280 000 об / мин. Корпус турбины направляет выхлопные газы из двигателя на лопатки турбинного колеса, и после того, как он проходит через турбинное колесо, газ затем выходит через выхлопную систему, как в транспортных средствах без наддува.

Как только начинается процесс сгорания, создается непрерывный цикл, и турбонагнетатель использует ненужную энергию выхлопных газов.Больше воздуха в цилиндре также обеспечивает больший поток топлива в цилиндр и, следовательно, увеличивает мощность.

Нагнетатели

Как упоминалось выше, нагнетатель приводится в действие двигателем механически и увеличивает количество всасываемого воздуха за счет сжатия воздуха выше атмосферного давления без создания вакуума. Это нагнетает больше воздуха в двигатель, обеспечивая наддув, что, в свою очередь, позволяет добавить больше топлива к заряду и, следовательно, увеличивает мощность двигателя.Есть два основных типа нагнетателей. Нагнетатели с принудительным рабочим объемом производят фиксированное давление, которое не сильно увеличивается по мере увеличения оборотов двигателя. Динамические компрессоры, как следует из названия, производят большее давление при увеличении оборотов двигателя.

Сравнение турбонагнетателей и нагнетателей

Помимо того, как работают эти два устройства (объяснено выше), еще одно ключевое отличие состоит в том, что в то время как нагнетателю для работы требуется мощность двигателя, турбонагнетатель использует отработанную (выхлопную) энергию, создаваемую двигателем.Это означает, что турбокомпрессоры в целом работают с более высоким КПД, используя энергию выхлопных газов, которая обычно теряется в двигателях с наддувом и без наддува.

Турбокомпрессоры

обеспечивают значительно увеличенную мощность двигателей, особенно позволяя двигателям меньшего размера вырабатывать гораздо больше мощности по сравнению с их размером, одновременно обеспечивая лучшую экономию топлива. С другой стороны, турбокомпрессоры, как правило, дают меньший наддув при более низких оборотах двигателя, в то время как турбонагнетатель набирает обороты; так называемая турбо задержка.

Нагнетатели

также увеличивают мощность двигателя и, поскольку они приводятся в движение коленчатым валом двигателя, обеспечивают хорошую мощность при низких оборотах двигателя без каких-либо задержек. Компромисс — снижение эффективности, поскольку нагнетатели используют мощность двигателя для выработки мощности двигателя.

Причина, по которой турбокомпрессоры используются чаще всего в Европе, заключается в том, что двигатели маленькие и четыре цилиндра входят в стандартную комплектацию. Нагнетатели могут обеспечивать наддув при более низких оборотах, чем турбонагнетатель, тогда как турбонагнетатель лучше всего работает на высоких оборотах двигателя.Турбокомпрессоры тише, а нагнетатели надежнее. Нагнетатели легче обслуживать, чем сложные турбокомпрессоры.

В заключение, сравнивая нагнетатели и турбокомпрессоры, нет явного победителя. Какой вариант лучше, зависит от самого транспортного средства и от того, как он обычно используется. По мере развития автомобильных технологий всегда будет востребован как производители, так и клиенты, стремящиеся к экономии энергии и топлива.

Электротурбокомпрессоров Garrett будут запущены в производство в 2021 году

Электрический турбокомпрессор Garrett Motion с силовой электроникой и аккумулятором

Garrett Motion

Электродвигатели, несомненно, с каждым годом становятся все более значительным и важным элементом автомобильной силовой установки.Непосредственная передача крутящего момента для поворота ведущих колес является наиболее очевидным вариантом использования, как в гибридных автомобилях, так и в электромобилях. Но моторы появляются повсюду, включая насосы для масла и охлаждающей жидкости, а теперь и турбокомпрессоры. Garrett Motion готовится к тому, что в 2021 году может быть впервые применен в производстве электрический турбокомпрессор.

Garrett был отделен от Honeywell в конце 2018 года, вернув часть первоначального названия, которое у него было до того, как оно было приобретено той же компанией в 2004 году. Garrett производит турбокомпрессоры с 1950-х годов и является одним из немногих лидеров рынка наряду с BorgWarner , BMTS, IHI и Mitsubishi, каждая из которых разрабатывает аналогичные технологии.

Давайте вернемся к краткому руководству по форсированию двигателя. Двигатель внутреннего сгорания вырабатывает мощность, воспламеняя смесь воздуха и топлива в цилиндрах. Чем больше сжигается воздуха и топлива, тем больше энергии можно произвести. Безнаддувный двигатель втягивает воздух через открытые клапаны за счет частичного вакуума, создаваемого поршнем, движущимся вниз в цилиндре. Нагнетатель — это насос с механическим приводом, который нагнетает больше воздуха в цилиндр. Обычно они приводятся в движение ремнем коленчатого вала.Они дают отличный отклик благодаря прямому приводу, но потребляют много энергии для движения на более высоких скоростях.

Турбокомпрессор делает то же самое, но приводится в движение выхлопными газами, выходящими из двигателя через турбину. Газы раскручивают турбину, которая находится на том же валу, что и колесо компрессора. Когда турбина вращается, компрессор нагнетает воздух в цилиндры. Турбины более эффективны, чем нагнетатели, благодаря меньшим паразитным потерям, но у них может быть задержка при раскрутке, пока они ждут давления выхлопа.Вот где на сцену выходит добавление электродвигателя.

На самом деле существует два различных типа устройств электрического наддува для двигателей, которые появились в последние несколько лет. Первый тип, который уже используется Volkswagen Group и Mercedes-Benz, — это электронный ускоритель. По сути, это просто компрессорная сторона турбонагнетателя в паре с электродвигателем. Размер компрессора по своей природе ограничен размером двигателя, необходимого для его вращения на высоких скоростях, и электронные бустеры используются в последовательной комбинации с турбинами с приводом от выхлопных газов.Электронный бустер обеспечивает быструю реакцию двигателя на низких частотах, а затем, по мере роста давления, более крупный турбонаддув вступает во владение, обеспечивая максимальный наддув.

Электронный турбонагнетатель, задуманный Гарреттом и его конкурентами, объединяет электродвигатель с турбонагнетателем в одном блоке. На более низких скоростях двигатель может быстро раскручивать турбонаддув и создавать наддув, обеспечивая превосходный крутящий момент на низких скоростях и управляемость. По мере роста давления выхлопных газов он берет на себя работу по управлению электронным турбонаддувом. Это позволяет инженерам использовать компрессор и турбину большего размера для большего наддува, что, в свою очередь, позволяет уменьшить рабочий объем двигателя.Большие колеса на турбонагнетателе обычно вызывают еще большую задержку отклика, но электродвигатель решает эту проблему.

Компоновка электронного турбонаддува имеет еще одно преимущество. Когда водитель отпускает педаль акселератора, выхлопные газы и инерция колес заставляют турбонаддув некоторое время вращаться. В этот момент двигатель становится генератором, который может заряжать аккумулятор. В сочетании с электрической системой 48 В e-turbo способствует рекуперации энергии, которая обычно теряется в выхлопной трубе.В свою очередь, эта энергия затем используется для раскрутки электронного турбо, когда требуется следующее ускорение. Электронный турбонагнетатель менее сложен в упаковке, чем комбинация электронного усилителя и обычного турбонагнетателя.

По словам Джеффа Даффа, директора по разработке приложений в компании Garrett, в зависимости от конкретной конфигурации двигателя и размеров электронного турбонагнетателя, электронный турбо может способствовать повышению топливной эффективности до 10%, хотя в большинстве случаев это будет примерно На 2-4% лучше.

Это повышение эффективности можно еще больше усилить за счет уменьшения габаритов двигателя.Дополнительная отзывчивость e-turbo преодолевает потерю мощности меньшего рабочего объема. Обычно двигатели с турбонаддувом работают на обедненной топливовоздушной смеси с низким наддувом, чтобы обеспечить некоторую дополнительную мощность в этом рабочем диапазоне. Однако это повышает температуру сгорания и производит больше NOx. Быстрое ускорение и ускорение электронного турбонаддува позволяет двигателю работать с идеальным соотношением воздух-топливо в этом диапазоне.

И наоборот, обычный турбокомпрессор с турбиной меньшего размера для быстрого реагирования нагревается на высоких скоростях.Как правило, эти конфигурации переходят на более богатую топливную смесь по мере увеличения скорости, что охлаждает турбину, но также больше загрязняет и потребляет больше топлива. Размер электронного турбонагнетателя может соответствовать более крупной турбине, которая остается более прохладной, но не жертвует отзывчивостью и, опять же, поддерживает идеальное соотношение воздух-топливо для снижения выбросов по всем направлениям.

При использовании на дизельном двигателе электронный турбо может способствовать снижению выбросов NOx на 20%. Это будет особенно важно для тяжелых условий эксплуатации, в которых в настоящее время используется дизельное топливо.Несмотря на то, что предпринимаются многочисленные попытки электрифицировать двигатели в этих более крупных транспортных средствах, большая часть аккумуляторов по-прежнему представляет собой проблему, поскольку снижает полезную нагрузку. Аккумуляторы особенно опасны при перевозках на дальние расстояния. Использование электронных турбин на этих больших дизелях может снизить количество вредных веществ, выделяемых этими двигателями.

Garrett еще не объявляет, какой производитель или тип двигателя будет использовать его электронный турбонагнетатель в 2021 году. Пока ни один из других производителей турбонагнетателей не объявил о конкретных запусках производства, но не удивительно, если один или несколько из них прибудут в продажу. сроки, аналогичные программе запуска Гарретта, или вскоре после нее.

Предполагается, что первичный электропривод

займет еще большую долю на рынке новых транспортных средств в 2020-х годах, при этом Navigant Research прогнозирует, что к 2030 году на электромобили с аккумуляторной батареей будет приходиться более 15% мировых продаж легких грузовиков. Однако двигатели внутреннего сгорания в паре с разная степень электрификации, вероятно, будет существовать еще много лет, и Гарретт намеревается стать частью этой смеси.

Турбокомпрессор и нагнетатель (похожие, но разные)

Основное отличие турбокомпрессора отнагнетатель — это способ, которым каждый получает питание. Турбокомпрессоры отводят выхлопные газы. Нагнетатель приводится в движение двигателем автомобиля с помощью ремня или цепи, соединенной с распределительным валом. Оба они увеличивают мощность двигателя, действуя как турбина, проталкивая больше воздуха в двигатель через впускной коллектор. Этот процесс объясняется и называется «принудительной индукцией». «Безнаддувный» двигатель — это любой двигатель, не оборудованный турбонагнетателем или нагнетателем.

Турбокомпрессоры и наддув работают как компрессор, нагнетая больше кислорода в двигатель.Основные преимущества — лучшая производительность, а в случае с турбонаддувом — лучший расход бензина. Альфред Бючи, великий швейцарский инженер, изобрел турбокомпрессор в 1905 году. На протяжении многих лет турбины широко использовались в двигателях кораблей и самолетов. Они также очень распространены в дизельных двигателях, используемых в грузовиках, автобусах и других тяжелых транспортных средствах. Первым серийным автомобилем, в котором использовался турбокомпрессор, был Chevrolet Corvair 1962 года. Затем они появились на Porsche в 1970-х годах. Готлиб Даймлер, инженерный гений, который впоследствии основал автомобильную компанию Mercedes Benz, начал работу над ранними версиями нагнетателей, получив патент на способ использования шестеренчатого насоса для нагнетания воздуха в двигатель в 1885 году.Более ранние версии нагнетателей использовались в доменных печах еще в 1860 году. Mercedes представила свои двигатели Kompressor, оборудованные нагнетателями, в 1921 году. Двигатель, оборудованный нагнетателем и турбонагнетателем, называется «двойным нагнетателем».

Турбокомпрессор или нагнетатель, что быстрее?

У нагнетателя более быстрый отклик, поскольку он напрямую зависит от скорости вращения коленчатого вала автомобиля. Он работает постоянно, независимо от того, как быстро вы едете или как едете.

Чем быстрее вращается двигатель, тем быстрее вращается нагнетатель, поскольку больше воздуха нагнетается в камеру сгорания. Нагнетатель обычно обеспечивает двигатель более высокой мощностью, повышенной производительностью и большим наддувом во всем рабочем диапазоне двигателя сверху вниз. Горячие выхлопные газы приводят в действие турбокомпрессор, создавая короткое время задержки с момента открытия дроссельной заслонки нажатием педали газа вниз. Обычно на то, чтобы зарядить аккумулятор, требуется несколько секунд.Турбокомпрессоры обеспечивают большую мощность на низких или высоких оборотах двигателя в зависимости от типа используемого турбонагнетателя.

Турбины

очень популярны в дизельных двигателях, где они используются для создания дополнительного крутящего момента, необходимого для питания автобусов и двигателей локомотивов. Турбины выделяют огромное количество тепла, и их необходимо смазывать тем же маслом, которое протекает через двигатель. Это возможная проблема технического обслуживания, так как масло изнашивается быстрее и его нужно менять чаще. Большинство нагнетателей не нужно смазывать моторным маслом.Нагнетатели не производят столько дополнительного тепла, как турбонагнетатели.

Как турбокомпрессор или нагнетатель влияет на стоимость автомобиля?

Если рассматривать турбокомпрессор и нагнетатель с точки зрения стоимости автомобиля, то эффект очень незначителен. Предположим, что автомобиль или грузовик были оснащены турбонаддувом или нагнетателем, поскольку в качестве оригинального оборудования это не означает, что автомобиль сохраняет свою ценность ни в лучшую, ни в худшую сторону. Если вы доплатили за нагнетатель или турбокомпрессор на своем автомобиле, он сохранит это значение, когда вы пойдете его продавать, как и любой другой желаемый вариант.Добавление турбонагнетателя в стандартный комплект двигателя при покупке нового автомобиля обычно стоит около 1000 долларов дополнительно. Имейте в виду, что турбокомпрессоры гораздо более популярны, когда дело доходит до модернизации двигателя. В 2018 году было доступно более 200 моделей легковых и грузовых автомобилей с турбонаддувом в качестве опции. В том же году было доступно всего 30 моделей с нагнетателем. Последние цифры аналогичны для 2019 модельного года. В некотором смысле турбины и нагнетатели — это еще одна вещь, которая может выйти из строя в автомобиле.Старые автомобили с турбонаддувом могут нуждаться в дополнительном техническом обслуживании. Перегретые двигатели были проблемой на некоторых старых моделях автомобилей, оснащенных турбонаддувом. Турбины прошли долгий путь, поскольку они стали более популярными. Коробка передач и тормоза — другие возможные проблемные области. Если вы планируете купить автомобиль с турбонаддувом, обратитесь к квалифицированному механику для осмотра этих деталей. Турбины нового поколения, как правило, доставляют меньше хлопот.

Можно ли добавить в автомобиль турбокомпрессор или нагнетатель?

Вы можете добавить в автомобиль послепродажную систему нагнетания, но это очень большие затраты и, вероятно, не будет хорошей инвестицией и не стоит этих денег.Нагнетатели бывают трех основных конфигураций, известных как корневые, двухвинтовые и центробежные. Нагнетатели обычно входят в стандартную комплектацию многих типов гоночных автомобилей, где все зависит от скорости, а в некоторых случаях они фактически не разрешены для использования на улице.

Помните о любых гарантиях на ваш автомобиль, которые могут быть аннулированы при установке нагнетателя. Вы можете добавить к своему автомобилю турбокомпрессор на вторичном рынке, но это тоже очень дорого и, вероятно, не стоит потраченного времени или дополнительных денег. Любая экономия топлива, которую вы получите от добавления турбонаддува, будет очень маленькой по сравнению с тем, сколько будет стоить турбонаддув двигателя.Вам нужно будет купить турбокомпрессор, модернизировать топливную систему и, возможно, заменить модуль управления двигателем, который является мозгом двигателя. Вы также можете заменить весь двигатель в своем автомобиле на модель с турбонаддувом, но, опять же, это очень дорогой способ.

Сколько стоит установка турбокомпрессора по сравнению с нагнетателем в автомобиль?

Установка нагнетателя послепродажного обслуживания будет стоить от 1500 до 7500 долларов, и ее не должны пробовать автомеханики-любители.Советы по установке доступны в виде видео на сайтах различных компаний, и с ними можно связаться по электронной почте для получения дополнительной информации. Также необходимо увеличить размер и мощность системы охлаждения автомобиля, оснащенного нагнетателем послепродажного обслуживания. Добавление турбонагнетателя к безнаддувному двигателю — сложная и дорогая работа. Турбокомпрессор на вторичном рынке продается по цене от 500 до 2000 долларов. Вам также необходимо будет заменить несколько других компонентов двигателя или купить комплект для переоборудования турбокомпрессора. К тому времени, когда вы заплатите за комплект, турбонагнетатель, дополнительные детали и рабочую силу, вы легко можете приблизиться к 5000 долларов.Суть в том, что это непростая сборка, и если вы не делаете это в качестве хобби, это будет потраченными впустую деньгами.

Влияние турбонагнетателя и нагнетателя на мощность?

Турбокомпрессоры и нагнетатели повышают мощность за счет впрыска большего количества воздуха в двигатель. Турбокомпрессор приводится в действие выхлопными газами, которые являются отходами, поэтому они имеют тенденцию быть более экономичными. Нагнетателю на самом деле требуется мощность, чтобы повернуть его.Эта мощность принесена в жертву лучшей производительности. Дополнительная мощность, поставляемая нагнетателем, не бесплатна. По оценкам экспертов, установка нагнетателя в двигатель автомобиля повысит производительность на 30-50% по сравнению с аналогичным автомобилем без двигателя с наддувом. Имейте в виду, что, поскольку нагнетатель работает от мощности двигателя, он также вычитает до 20% энергии двигателя. Производители автомобилей, в том числе Mercedes, теперь предлагают электрические нагнетатели, которые приводятся в действие электродвигателем, а не двигателем автомобиля.Это относительно новое нововведение, и вопрос о том, насколько хорошо они работают, все еще обсуждается. Добавление турбонагнетателя к двигателю автомобиля также даст вам прирост мощности примерно на 30-40%. Некоторые автомобили оснащены двумя турбинами, одна из которых предназначена для повышения давления на более низких оборотах, а вторая — для уменьшения отставания в производительности. Поскольку турбокомпрессоры выделяют очень много тепла, некоторые из них оснащены «промежуточными охладителями». Интеркулеры работают очень похоже на радиаторы. В турбонагнетателе они охлаждают выхлопные газы перед их отправкой обратно в двигатель, что также повышает производительность.Оба типа систем принудительной индукции создают больше лошадиных сил. Турбокомпрессоры имеют более экономичный смысл, если вы пытаетесь сэкономить газ, в то время как нагнетатель обеспечивает более быструю и сбалансированную работу.

Влияние турбонагнетателя и нагнетателя на экономию топлива?

Турбокомпрессор обычно помогает автомобилю увеличить расход топлива, потому что двигатель меньшего размера может быть использован для достижения той же производительности.Ожидайте, что двигатель с турбонаддувом будет примерно на 8-10% более экономичен, чем тот же двигатель без турбонаддува. Поскольку мощность двигателя регулирует нагнетатели, они не являются надежным способом экономии топлива. Они позволяют использовать двигатель меньшего размера в автомобиле для достижения той же производительности, что и двигатель большего размера, но они не предназначены для экономии газа. Установлены нагнетатели для повышения производительности. Они не лучший выбор с точки зрения топливной экономичности.

Нагнетатель или турбокомпрессор вредны для вашего двигателя?

Нагнетатели и турбокомпрессоры неплохо подходят для вашего двигателя.Они использовались в двигателях с момента их первоначальной разработки. Они предлагают преимущество увеличения производительности двигателя. Турбокомпрессоры также могут повысить экономию топлива, но имеют больше движущихся частей, что может потребовать дополнительного обслуживания. Нагнетатели повышают производительность, но на самом деле не экономят бензин.

Заключение

Во многих отношениях нет ничего нового в том, как работают турбокомпрессоры и нагнетатели и что они делают.Оба они имеют одинаковую функцию нагнетания большего количества воздуха в двигатель, что создает больше лошадиных сил. Турбо-двигатель использует побочный продукт двигателя в виде выхлопных газов. Сам двигатель — за исключением новых электрических нагнетателей, доступных на некоторых моделях, — приводит в действие нагнетатель. Двигатели с турбонаддувом, как правило, более экономичны. Двигатели с наддувом — это больше для повышения производительности. Их влияние на стоимость при перепродаже очень мало с точки зрения плюса или минуса. Деньги, которые вы заплатили авансом за двигатель, оборудованный турбонагнетателем или нагнетателем, сохранят свою ценность, когда пришло время продать или обменять свой автомобиль.Оба они увеличивают производительность двигателя примерно на 40%. Турбокомпрессоры и нагнетатели — это механические устройства, которые в какой-то момент могут нуждаться в обслуживании. Из этих двух у турбокомпрессора есть больше вещей, которые могут выйти из строя. Стоимость добавления нагнетателя или турбокомпрессора к автомобилю в качестве товара на вторичном рынке не имеет никакого экономического смысла. Если посмотреть на плюсы и минусы, а также на различия, то нижняя часть на самом деле связана с производительностью и топливной экономичностью при сравнении турбонагнетателя и нагнетателя.

Ремонт RepairSmith — это самый простой способ отремонтировать ваш автомобиль. Впервые автовладельцы могут отремонтировать свой автомобиль на подъездной дорожке или в одном из наших сертифицированных магазинов.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *