Устранение стука гидрокомпенсаторов: Присадка для гидрокомпенсаторов, убираем стук в гидриках

Содержание

Присадка для гидрокомпенсаторов, убираем стук в гидриках

Иногда едешь в какой-нибудь машине и сразу чувствуешь, что стучат гидрокомпенсаторы, но водитель даже на замечает этого. Да, кто привык ремонтировать автомобиль в автосервисе, они могут только сказать, спереди что-то стучит или сзади.

Содержание статьи:

  1. Почему стучат гидрокомпенсаторы?
  2. Какая присадка лучше от стука гидрокомпенсаторов?
  3. Видео.

 

Почему стучат гидрокомпенсаторы

Причины появления стука гидрокомпенсаторов могут быть низкое давление моторного масла в системе ДВС, плохое качество масла или из-за увеличения зазоров сопряженных деталей. Сами зазоры клапанов можно отрегулировать двумя способами.

Нормальной причиной считается стук гидрокомпенсаторов на холодную, то есть когда мотор только завели и он не успел прогреться. Но этот стук должен исчезать через несколько секунд. Если стук не проходит, двигатель уже горячий, то это указывает на проведение внепланового ремонта. Если не делать мелко-текущий ремонт, то потом придется делать капитальный ремонт двигателя.

Гидрокомпенсатор — это устройство, регулирующее тепловой зазор клапанов газораспределительного механизма (ГРМ). Простыми словами, гидрокомпенсатор — это плунжер, в который приходит моторное масло из системы ДВС.Гидрокомпенсатор располагается между клапаном и кулачком вала ГРМ. В момент полного закрытия клапана, гидрокомпенсатор пружиной прижимается к кулачку распределительного вала. Во время проворачивания вала, кулачок толкает гидрокомпенсатор (ГК) из через специальный клапан из плунжерной пары выдавливается порция масла, после чего масло перестает подаваться.

Затем опять появляется зазор и через 180 градусов поворота вала цикл повторяется. Поэтому гидрокомпенсатор должен правильно выставлять зазор клапанов вне зависимости, двигатель горячий или холодный, и вне зависимости от степени теплового расширения.

Кто не читал, прочитайте рекомендуемый материал: почему вибрирует двигатель на холостом ходу.

По мере износа деталей в двигателе, автоматически выставлять нужные зазоры уже не всегда получается. На это влияет и качество моторного масла. Грязное масло имеет твердые частички, которые мешают работе гидриков. Если появления стуков гидрокомпенсаоторов не принимать меры по их устранению, то детали ГРМ будут выходить из строя, будут зависать клапана.

 

Какой присадкой убрать стук гидрокомпенсаторов

Такой способ подходит, если автомобиль имеет небольшой пробег, детали не изношены. Присадка улучшит свойства масла и, скорее всего, улучшит работу системы.

На рынке автохимии сейчас очень большой выбор. Какую присадку взять?

Для устранения шума гидрокомпенсаторов присадки дают хороший эффект, если в двигатель залито синтетическое или гидрокрекинговое моторное масло.

Покупать надо не в мелких лавках на дороге, а в крупном магазине, будет меньше вероятности приобрести подделку.

Три присадки для удаления стука гидрокомпенсаторов:
  1. Liqui Moly Hydro Stobel Additiv — Ликви Моли Гидро Стосел Аддитив. Улучшает работу гидриков. Эта присадка заливается в моторное масло.
  2. XADO — Ксадо. Именно для гидрокомпенсаторов. Ксадо чистит масляные каналы, улучшает качество масла.
  3. Wagner Windigo — Вагнер Виндиго. Не очень распространенное средство в России и странах СНГ, но отзывы хорошие.

Сам я пока эти присадки не использовал, но по отзывам в интернете от водителей, эти три вида хорошо зарекомендовали себя.

Также есть специальные средства для раскоковки двигателя. Об этом тоже интересно.

 

Видео

Проверка Ликви Моли присадку для устранения шума гидрокомпенсаторов. Антишум.

Почему стучат гидрики и как убрать стук своими руками.

Что делать, если стучат гидрокомпенсаторы в ДВС.

Автор публикации

15 Комментарии: 25Публикации: 324Регистрация: 04-03-2016

Про стук гидрокомпенсаторов на горячую или на холодную – причины и лечение

Для достижения высоких показателей КПД силовой установки кулачок распредвала и толкатель клапана должны плотно контактировать между собой. На некоторых автомобилях, например на Hyundai Solaris, это обеспечивается путем регулировки тепловых зазоров. С прогревом мотора они исчезают благодаря расширению деталей. Ряд двигателей, к примеру, ВАЗ 21124 или 21126, не требуют вмешательства, поскольку в них установлены гидравлические компенсаторы (ГК).

Почему возникает стук гидрокомпенсаторов ГРМ на холодную: вероятные причины

 


ГК – деталь неприметная. Она именуется гидротолкателем, если установлена непосредственно между кулачком распределительного вала и ножкой клапана, т.е. вместо толкателя. Гидроопору можно увидеть в газораспределительных механизмах с коромыслами.

Конструкция и принцип работы гидравлического компенсатора зазора

Понять природу стука гидрокомпенсаторов в двигателе на горячую или на холодную невозможно без знания основ функционирования механизма. Эта деталь позволяет за счет давления масла выбирать свободный зазор при любой температуре двигателя.

Рабочие моменты проще разобрать на конструкции обычного гидротолкателя. Он включает примитивные конструктивные элементы:

  1. Плунжер, один торец которого неплотно контактирует с внутренней поверхностью толкателя, другой – содержит шариковый клапан.
  2. Цилиндр, по стенке которого двигается плунжер.
  3. Отверстие для забора масла из канала маслосистемы ГБЦ.


Маслоэмульсия поступает через канал головки блока цилиндров и проточку в толкателе во внутреннюю полость плунжера. Под воздействием давления жидкости шарик преодолевает сопротивление пружины и открывает путь маслосоставу в замкнутую полость цилиндра.

Эмульсия быстро заполняет пространство и начинает двигать плунжер с толкателем вверх. В момент достижения плотного прилегания гидротолкателя к кулачку, полость цилиндра заполняется до отказа и жидкость двигает шарик вверх, закрывая таким образом шариковый клапан.

Из-за чего стучат гидрокомпенсаторы на холодную

Гидравлический компенсатор будет бесшумно выполнять свою функцию, если обеспечены должные уровень, качество и давление смазки. В ином случае будут стуки. Время их проявления свидетельствует о неисправностях различного происхождения.

К сведению. Довольно часто стучат «гидрики» у неопытных владельцев, не осведомленных, как часто менять масло в двигателе автомашины.

 



Встретить стук гидрокомпенсаторов на холодную можно по следующим причинам:
  • Некачественный или грязный маслосостав.
  • Неверно подобранная смазка. Не рекомендуемые производителем показания холодной и рабочей вязкости приводят к тому, что маслоэмульсия не проталкивается в непрогретом состоянии через микронные каналы и не заполняет рабочую полость гидротолкателей или гидроопор.
  • Загрязнение каналов маслосистемы ГБЦ и ГК. Это приводит к уменьшению проходного сечения отверстий, что делает невозможным проталкивание холодного вязкого масла через них.
  • Износ механизма. Повреждение шарикового клапана или поверхностей плунжера приводит к тому, что смазка постоянно стравливается из подплунжерного пространства.
  • Заклинивание плунжерной пары из-за чрезмерного количества нагара в сборочной единице.
  • Проблемы с давлением в масляной магистрали. Могут быть вызваны неисправностью маслонасоса или забитым маслофильтром.

Неполадки или стук гидрокомпенсаторов газораспределительного механизма на горячую: основания для диагностики неисправности

Характер функционирования силовой установки, достигшей рабочего температурного режима, отличается от холодного состояния. Здесь и расход поменьше, и эластичность получше. Да и природа стука гидротолкателей может быть другой.

На холостом ходу

Провоцировать шумную работу гидравлических компенсаторов могут те же факторы, которые актуальны в случае появления стуков на холодную. Чаще всего – это засор продуктами нагара и износа маленьких отверстий и каналов маслосистемы. В результате этого маслонасос не может обеспечить должного давления для прохождения смазки по узким сечениям.

Впрочем, стук гидрокомпенсаторов на горячую может возникнуть и по другим причинам:

  • Недостаточный уровень масла в системе. Оптимальный уровень смазки в картере измеряется после 10-минутной стоянки. След должен быть на равном расстоянии от меток Max и Min. Многие водители предпочитают смещать объем маслосостава в сторону максимальной отметки, что отвечает рекомендациям многих производителей.
  • Увеличились габариты посадочных мест под ГК в результате перегрева двигателя.

 

В процессе езды

Бывает и такое, что гидравлические компенсаторы стучат на высоких оборотах, а на холостых демонстрируют бесшумную работу при любой температуре. Это возникает по двум причинам:

  • Вспенивание малоэмульсии. Возможно при переливе смазывающей жидкости: уровень находится выше максимальной отметки.
  • Засасывание воздуха маслонасосом. Вероятно при недостаточном объеме маслосостава в картере.

Нередко шум не зависит от частоты вращения коленвала. Тогда мастера с уверенностью твердят о возникновении зазора между кулачком и толкателем. Природа его происхождения определяется после разборки ГБЦ. Это может быть как повреждение контактной поверхности, так и закоксовывание гидрокомпенсатора.

К сведению. Стучать могут не все гидромодули. Поиск дефектной единицы производится путем перемещения гидротолкателя вдоль оси деревянным клином. Если какой-то компенсатор опускается быстрее других, его стоит извлечь и заменить, либо почистить.

Самостоятельное устранение стука в двигателе от гидрокомпенсаторов без разбора: внутренняя мойка

Неприятный цокот, сопровождающий работу гидротолкателя, беспричинно не возникает. Безразличное отношение к выбору смазки, использование подделок и продуктов из бюджетного сегмента приводит к образованию лаковых отложений и нагара в каналах масляной системы и на поверхностях гидроопор. Игнорирование заводских рекомендаций также укорачивает ресурс компенсаторных деталей.

Легкая неполадка


Быстро ликвидировать стук гидрокомпенсаторов или его устранение без разбора головки блока цилиндров возможно лишь на начальном этапе, когда неисправность только начала проявляться на холодную. Если использовалось качественное масло, и регулярно производилась его смена, а после крайней замены внезапно застучали ГК, необходимо срочно залить новую смазку и сменить фильтр. Вполне вероятно, что попалась поддельная канистра.

Не уверены в качестве предшествующих маслосотавов, а гидравлические компенсаторы только начинают постукивать – покупайте промывочное масло, к примеру, от Лукойл, и промывайте 15-20 минут на «холостых». Работы осуществлять на новом фильтре.

Запущенный случай

Устранить стук гидрокомпенсаторов на высоких оборотах без разборки двигателя тяжелее. Технология очистки мотора от нагара без демонтажа деталей здесь актуальна, но не всегда помогает. Все зависит от степени загрязнения гидрокомпенсаторов.

В особых случаях на помощь приходят агрессивные составы в виде аптечного димексида. Он отмывает детали любой степени закоксованности. Однако методика непроста и требовательна к начальному состоянию силовой установки. В частности, внутри не должно быть покрашенных деталей и хрупких пластиковых конструктивных элементов.

 

Рекомендации специалистов

Безусловно, лучшим вариантом будет очистка промывочным маслом с предварительной подготовкой силового агрегата. Если она не помогает, лучше разобрать ГБЦ и путем ручной диагностики выявить неисправные ГК. Далее извлечь их и почистить, либо поменять.

В крайних случаях на помощь приходят специальные присадки. Они временно устраняют неисправность, отлаживая неизбежное вскрытие клапанной крышки. С лучшей стороны показали себя присадочные составы от Liqui Moly и XADO.

Короткий Help

Внезапно возникнувший стук гидрокомпенсаторов механизма газораспределения на холодном моторе и/или на горячем свидетельствует о проблемах в маслосистеме. Редко стучит ГРМ в связи с износом или заклиниванием ГК.

Недостаточный уровень масла, некачественная смазка, закоксованные каналы, проблемы с маслонасосом, забитый фильтр – все это влияет на давление в маслосистеме, к которому очень чувствительны гидротолкатели. На начальных стадиях при условии продолжительного использования качественных смазывающих продуктов помогает заливка качественного и отвечающего требованиям производителя маслосотава.

Решить вопрос можно без разборки силового агрегата – путем промывки промывочным маслом. Агрессивные составы применять можно в ограниченных сериях агрегатов, да и риск забить микронные отверстия велик. Отсрочить вскрытие ГБЦ помогают спецприсадки.

Стучат гидрокомпенсаторы | Секреты и Нюансы

Как понять, что стучит или не работает именно гидрокомпенсатор. Определение и устранение причин стука, а так-же замена и настройка гидрокомпенсатора Нива 21214 энжектор.

 

Симптомы и причины

На слух, стук гидрокомпенсатора имеет молоточковый звук, как будто бьют дробь металлическим молоточком по чугунной болванке.

Звук сравнительно не громкий, из салона машины может быть слышен как громкое тиканье, и изменять громкость, а то и вовсе пропадать на разных режимах.

При этом движок может подтраивать на холостых, а то и конкретно троить. Лампочка давления масла не мигает и не горит.

Причины могут быть следующие:

  1. Вышли из строя резиновые втулки рампы
  2. Засорилась магистраль рампы
  3. Открутились втулки гидрокомпенсаторов
  4. Трещина в проставке рампы
  5. Вышел из строя гидрокомпенсатор (варианты в конструкции)

Выявление и устранение неисправностей

1. Резиновые втулки масляной рампы.

Резиновая втулка рампы уплотняет соединение масляной магистрали с проставкой рампы.

Вследствии длительной эксплуатации, резина теряет свои свойства и масло, вместо того, чтоб поддерживать нужное давление в гидрокомпенсаторе, протекает наружу и обратно в картер. В результате гидрик, если сказать по простому, пустеет и появляется стук.

Для устранения данной неисправности достаточно снять крышку головки блока цилиндров и открутив три гайки крепления корпуса подшипников распредвала, снять магистраль рампы и заменить резиновые втулки.

Зачастую, эта простая операция, решает все проблемы.

2. Магистраль масляной рампы.

По магистрали осуществляется подача масла к стаканам гидрокомпенсаторов.

Магистраль масляной рампы может засориться вследствии использования некачественного моторного масла, а так-же из-за несвоевременной замены масла в двигателе.

Промыть её можно бензином или жидкостью для промывки карбюратора, а затем продуть компрессором или качком, после чего поставить на место.

3. Втулки гидрокомпенсаторов.

Втулка или стакан — это деталь, которая вкручивается в головку блока и в которую вставляется гидрокомпенсатор.


При длительной работе затяжка втулки ослабевает, что приводит к потере давления масла в гидрокомпенсаторе.

Ослабленную втулку можно сразу определить, так как она будет вращаться от руки. В таком случае её нужно подтянуть рожковым ключом на 22, со сточенными по внешней стороне рожками.


По другому в данной ситуации не подлезешь.

Момент затяжки 2.2-2.4 кг., что означает с усилием, но без фанатизма. Если непривычно и страшно, тогда надо снять корпус подшипников распредвала и протянуть динамометрическим ключом.

Есть ещё вариант, при котором можно не снимать распредвал. Нужно вынуть рокер, что может получится с помощью пинцета, кое какой матери и растудыта через коромысло и тогда можно будет поджать втулку накидным динамометром, после чего с теми же помощниками, поставить рокер на место.

Если не получится, то ничего не теряем. Так и так снимать распредвал.

А так — это последняя операция, которую можно выполнить без снятия корпуса подшипников распредвала, и если после выполнения всего вышеперечисленного, стук в двигателе не прекратился, а он прекращается в 50% случаев, то идём дальше.

4. Трещина в проставках масляной рампы.

Проставка это деталь, которая находится между головкой блока цилиндров и втулкой гидрокомпенсатора. Она, как и магистраль, осуществляет доставку масла к гидрокомпенсатору.

Довольно часто прослабление втулки приводит к выходу из строя проставки, в результате чего масло не доходит до гидрокомпенсатора.

Обычно трещина или излом появляются между кольцами и шейкой проставки, и чтобы их обнаружить, а затем и устранить, то есть заменить вышедшие из строя детали, придётся снимать звёздочку распредвала и корпус подшипников распредвала с самим распредвалом (постель).

Как это сделать правильно, можно прочитать по запросу Как заменить цепь ГРМ, здесь же я заострю внимание лишь на некоторых нюансах, не зная которые можно сильно осложнить себе жизнь.

  1. Лучше сразу снять капот, в противном случае вся дальнейшая работа будет очень затруднена.
  2. Снимать звёздочку распредвала можно только после того, как поршневая будет выставлена в верхнюю мёртвую точку, и никак иначе. Только в этом положении возможно без особых усилий снять звёздочку вместе с цепью, а затем поставить её на место без снятия гидронатяжителя.
  3. Необходимо перед снятием скрепить цепь и звёздочку проволокой
  4. Необходимо закрепить звёздочку так, чтоб она после снятия с распредвала не соскользнула вместе с цепью вниз, что может привести к соскакиванию цепи со звёздочки коленвала. Если по простому, то нужно соорудить перекладину и подвесить к ней звёздочку.
  5. После этого, с помощью фонарика, визуально проверить состояние успокоителя цепи и башмака натяжителя цепи, если обнаружится износ этих эбонитовых деталей, то лучше их заменить. Ох, сколько клапанов погнулось из-за них.
  6. После снятия звёздочки и постели нужно собрать рокера и разложить их по порядку, чтоб потом, при сборке, поставить их на те-же места, на которых они стояли.
  7. Затем нужно вывернуть втулки с гидрокомпенсаторами и так-же разложить их по порядку.

Теперь можно внимательно осмотреть проставки и, если нужно, заменить вышедшие из строя.

5. Вышел из строя гидрокомпенсатор.

Гидрокомпенсатор — это устройство для автоматического регулирования зазора клапанов. Выйти из строя он может только от использования некачественного моторного масла и от несвоевременной замены масла в двигателе, и дальше вы это поймёте.

С железом гидрика, скорее всего, ничего не случится, а вот шариковый клапан и жиклёрные отверстия легко могут забиться, поэтому, чтобы устранить неисправность, гидрокомпенсатор нужно разобрать, промыть, продуть и вновь собрать. Промывать только соляркой.

Конструкция гидрокомпенсатора

Для того, чтоб вытащить плунжер из стакана, используется рожковый ключ на 10. шейка плунжера как раз такого размера.

Зажимаем ключ в тиски.

Вставляем в него шейку плунжера.


И отвёрткой, или чем-то похожим, сковыриваем стакан. Идёт довольно трудно. Придётся применить усилие и возможно не с первого раза.


Из стакана, тоже отвёрткой, но поменьше, достаём клапан, а затем и пружину.

Замена и прокачка

Все детали гидрокомпенсатора

Как видите, и в стакане, и в плунжере, и в клапане имеются отверстия и их необходимо прочистить, промыть и продуть. Особенно отверстие в шариковом клапане. Промывать только соляркой.

Затем сборка в обратном порядке, и тут есть один нюанс. Для того, чтоб вставить стопорную пружинку, потребуется очень тонкий и твёрдый инструмент. Хорошо подходят маникюрные ножницы.

На снимке показано не совсем правильно, так как в одной руке фотоаппарат, а в другой ножницы и у меня нет третьей руки. Вообще-то, нужно надавить на головку плунжера, а кончиком ножниц подтолкнуть пружинку внутрь. Входит с небольшим усилием. Ну вы понимаете…

После сборки гидрокомпенсатор должен плавно сжиматься до шейки и возвращаться на место без заеданий. Вот в таком состоянии его и нужно установить на место.

Если что-то заедает, или не сжимается, или ещё появляются какие-то непотребства, то гидрик нужно менять.

Новый гидрокомпенсатор, так-же необходимо разобрать и промыть. Можно и не разбирать, но тогда его придётся прокачать.

Делается это следующим образом: устанавливаем гидрик в тиски, дном и головкой к губкам тисков, и сжимаем до упора, пока из него не выдавится всё масло, то есть несколько раз. Проще разобрать и промыть, так как сжимается очень туго.

Не прокачанный гидрокомпенсатор работать не будет.

После запуска двигателя, в течении нескольких секунд будет слышен стук, но очень быстро исчезнет, так как гидрокомпенсатор наберёт необходимый уровень масла и займёт необходимое для своего клапана положение.

На этом всё. Если вы выполните все рекомендации, данные в этой статье, то гидрокомпенсаторы, а значит и движок, будут работать как часы.

Раздел Домоводство >>>Подраздел Автомобиль и другая техника >>>

Присадка в двигатель для гидрокомпенсаторов: что лучше выбрать

Начнем с того, что по мере износа двигателя, а также с учетом ряда других факторов и условий, силовой агрегат может начать работать более шумно или даже стучать. В одних случаях причиной стука может оказаться моторное масло и снижение давления в системе смазки, тогда как в других мотор стучит в результате увеличения зазоров между сопряженными деталями.

Характер и причина стука двигателя может отличаться. Выделяют стук поршней, шатунов, клапанов, подшипников коленвала и т.д. Зачастую появление таких посторонних звуков указывает на необходимость регулировки или разборки двигателя для выполнения дефектовки и ремонта. Еще среди различных продуктов на рынке автохимии можно встретить такое решение, как присадка от стука в двигателе.

Важно понимать, что если силовому агрегату необходим ремонт, то в этом случае использование присадки может только на какое-то время всего лишь замаскировать, но не решить проблему. Если говорить о подшипниках скольжения (вкладыши шатунные и коренные), тогда это вполне справедливо. Однако стоит выделить, что в некоторых случаях присадка может оказаться эффективным способом борьбы со стуком. Например, если речь идет о гидрокомпенсаторах. Давайте рассмотрим этот вопрос более подробно.

Содержание статьи

Почему стучат гидрокомпенсаторы

Как правило, на многих современных двигателях с пробегом появляется шум гидрокомпенсаторов, который водители  обычно фиксируют на холодную. Сразу отметим, в подобной ситуации кратковременный стук ГК, который исчезает через несколько секунд после запуска  холодного ДВС, вполне можно считать нормой. Если же гидрокомпенсаторы продолжают стучать достаточно длительное время или стук не уходит даже после прогрева, это указывает на проблемы с данными элементами.

В двух словах, гидрокомпенсатор — устройство, которое предназначено для автоматической регулировки тепловых зазоров клапанов механизма газораспределения двигателя внутреннего сгорания. Фактически, гидрокомпенсатор является плунжером, в который поступает моторное масло из системы смазки двигателя.

Не вдаваясь в подробности, компенсатор стоит между клапаном и кулачком распредвала. Принцип работы состоит в том, что когда клапан закрыт, происходит прижатие ГК посредством пружины к кулачку распредвала. Затем при повороте вала происходит сдавливание гидрокомпенсатора, из плунжерной пары через специальный клапан выдавливается немного моторного масла, далее выход масла перекрывается.

После снова образуется зазор, который при проворачивании вала на 180 градусов будет повторно нивелирован за счет пружины плунжерной пары и закачанной в ГК свежей порции масла. Такая работа гидрокомпенсатора позволяет независимо от температуры двигателя и степени теплового расширения деталей всегда выставить необходимый зазор клапанов. Гидрокомпенсаторы позволяют избежать необходимости регулировать клапана, их наличие исключает какие-либо настройки и упрощает обслуживание ДВС.

Естественно, первой причиной стука ГК является износ данных элементов. При этом важно понимать, что подача смазки в тонкие каналы, чтобы получить возможность автоматически выбирать зазор, также значительно повышает требования к качеству самого моторного масла.

Другими словами, неподходящее по своим свойствам или грязное масло способно вывести гидрокомпенсаторы из строя, в результате чего сначала они начинают стучать и шуметь. Далее проблема может прогрессировать, что выражается в виде сбоев в работе ГРМ, зависании клапанов и т.д.

Как убрать стук гидрокомпенсаторов присадкой и какой состав лучше залить

Вполне очевидно, что в случае серьезных неполадок ГК лучше сразу заняться ремонтом ГБЦ. Если же стук компенсаторов появился не так давно, а замена моторного масла на свежее не дала ощутимых результатов, тогда  выходом из сложившейся ситуации могут оказаться специальные присадки.

Другими словами, если детали не имеют сильной выработки или же ремонт по той или иной причине нет возможности выполнить своевременно, качественная присадка во многих случаях способна нейтрализовать посторонние шумы, причем иногда на достаточно длительный срок.

Главной задачей становится выбор оптимального варианта, так как в продаже имеется большое количество восстанавливающих, защитных, противодымных, антифрикционных и других составов разных производителей. Прежде всего, внимание стоит уделять оригинальным  присадкам известных производителей, которые рассчитаны на устранение стука ГК и хорошо сочетаются с синтетическими или гидрокрекинговыми моторными маслами.

Итак, если мотор зашумел и для решения проблемы нужна присадка, стук гидрокомпенсаторов лучше всего убирать составами, которые специально для этого предназначены. Если точнее, в продаже имеются присадки, которые направлены именно на уменьшение стука ГК. Такие добавки могут оказаться лучше и обеспечить более выраженный эффект, чем универсальные комплексные средства для защиты двигателя, улучшения свойств базового масла и т.д.

Прежде всего, с учетом многообразия разных составов на рынке, не следует отдавать предпочтение дешевым продуктам  и средствам неизвестных производителей. Также следует помнить о том, что всегда существует риск приобрести фальсификат. По этой причине присадки лучше покупать в официальных точках продажи или в проверенных автомагазинах.

Что касается самих присадок, как показывает практика, для устранения стука гидрокомпенсаторов следует выделить три состава:

  • Liqui Moly Hydro Stossel Additiv
  • XADO для гидрокомпенсаторов
  • Wagner Windigo для улучшения работы ГК

Данные продукты хорошо зарекомендовали себя, практическое применение в большинстве случаев наглядно демонстрирует, что  после заливки данных присадок в двигатель отмечается стойкий положительный эффект. Другими словами, относительно высокая стоимость указанных препаратов по сравнению с аналогами  вполне оправдана их результативностью.

Рекомендуем также прочитать статью о том, как определить, что стучит в двигателе. Из этой статьи вы узнаете о том, какие стуки в моторе указывают на те или иные неисправности, как определить причину без разборки ДВС, а также какие способы помогают определить характер стука и точно локализовать возникшую проблему.
  • Состав Liqui Moly улучшает работу гидрокомпенсаторов, а также частично восстанавливает изношенные поверхности в двигателе. Присадку необходимо добавлять в моторное масло. Хотя состав совместим со смазками разных производителей, его оптимально использовать с моторными маслами LM.

В том случае, если износ ГК незначительный, через относительно небольшой промежуток времени (после пробега около 50-100 км.), стук ГК и посторонние шумы должны исчезнуть или же интенсивность стука заметно снижается. Также при использовании присадки для гидрокомпенсаторов вместе с маслом Liqui Moly производитель обещает дополнительное улучшение характеристик самого масла и увеличение ресурса смазки.

  • Что касается XADO, данный производитель также предлагает присадку, которая по своему принципу действия похожа на Liqui Moly.

Состав после введения в масло улучшает свойства смазки, чистит масляную систему и каналы, а также в той или иной степени «реставрирует» поверхности. В результате удается уменьшить или полностью устранить стук гидрокомпенсаторов в двигателе.

  • Завершает список очищающая присадка в двигатель Wagner. Производитель не так хорошо известен на рынке СНГ, однако многие водители отзываются о продукции данного бренда в положительном ключе.

Компания предлагает специально разработанную линейку продуктов для борьбы со стуком гидрокомпенсаторов. Отметим, на практике, особенно если сравнивать присадки Вагнер с другими известными аналогами, эффективность может быть выражена не так заметно, однако на момент написания данного материала такое решение самое доступное по цене на фоне конкурентов.

Читайте также

После замены гидрокомпенсаторов все равно стук

Практически на всех автомобильных двигателях происходит процедура регулировки клапанов. Процедура регулировки клапанов, это выставления зазоров между клапаном и толкателем. На двигателях, где тепловой зазор клапанов регулируется вручную, делать это необходимо с определенной периодичность. Для это нужен определенный навык, поэтому инженеры придумали автоматическую регулировку зазоров. Но есть и проблемы у данной технологии — это стук гидрокомпенсаторов о котором сегодня и пойдет речь.

Гидрокомпенсатор – является устройством, которое позволяет автоматически выставлять зазор между клапаном и толкателем двигателя. Оно представляет собой металлический цилиндр в котором находится пружина и обратный клапан.

Принцип действия заключается в изменении длины цилиндра гидрокомпенсатора на всю длину зазора в ГРМ. Работает данное устройство от обратной пружины и давления масла.

Гидрокомпенсатор представляет собой не хитрое устройство цилиндрической формы которое состоит из плунжеров, клапан обратного действия и пружина.

Огромное преимущество гидрокомпенсаторов заключается в том, что они автоматически регулируют зазоры клапанов и избавляют владельца автомобиля, от данной процедуры. Но помимо плюсов существуют и минусы данной технологии. Основной из них – стук на холодную или на горячую в случае неисправности.

Как стучат гидрокомпенсаторы

Стук гидрокомпенсаторов напоминает цокот, очень похожий на цокот не натянутой цепи. Доносится он из головки блока цилиндров. С ее верхней части. Стук компенсаторов может проявляться на холодную или на горячую, либо же присутствовать всегда, в зависимости от износа компенсаторов.

Как мы знаем, работа гидрокомпенсаторов напрямую связана с маслом. Когда двигатель холодный, масло еще просто не попало в гидрокомпенсаторы, поэтому мотор может какое-то время характерно цокать. Но спустя короткое время, если нет других предпосылок – стук пропадет.

Очень явно данный симптом наблюдается на отечественных классических моторах, которые устанавливаются в Нивы последних годов выпуска. В свое время в компанию “ВАЗ” счастливые обладатели данных моторов писали коллективное письмо и требовали отзывную компанию.

Причины стука гидрокомпенсаторов

К основным причинам стука гидриков можно отнести две неисправности:

  1. механическая части гидрокомпенсатора
  2. масло подачи двигателя к гидрокомпенсатору

К механическим неисправностям можно отнести:

  1. Выработка и износ плунжерной пружины. Чаще всего является естественным износом, возникает из-за того, что кулачки распредвала оставляют выработку на поверхности.
  2. Засорение гидрокомпенсатора. А именно засорение клапана который отвечает за масло подачу. В следствии данной неисправности гидрокомпенсатор начинает залипать.
  3. Завоздушивание. Возникает при недостаточной подачи масла в механизм.
  4. Нагар и загрязнение основных элементов гидрокомпенсатора. Возникает при использовании некачественного масла или присадок.

Неисправности масло подачи к гидрокомпенсатору, могут быть вызваны:

  • Неисправность масляного фильтра.
  • Низкое давление масла
  • Неправильная вязкость масло, либо не то масло
  • Перегрев мотора, вследствие чего масло теряет свои свойства.

Как говорилось ранее стук гидрокомпенсаторы возможен как на горячую, так и на холодную.

Когда мотор хорошо прогрет, и появляется отчетливый стук гидриков который означает, что есть проблемы с маслом. Возможно масло уже потеряло свои свойства и требует замены. Либо залито масло, которое не подходит по регламенту к вашему мотору. Так же не исключен вариант засорившегося масляного фильтра.

Помочь в данном случае может замена масла и масляного фильтра. Если стук на горячую остался, стоит продиагностировать другие элементы двигателя. Возможно проблема в них.

Что касается стука на холодную, то тут не стоит беспокоится, практически всегда данный стук не является критичным.

Что делать если стучат гидрокомпенсаторы?

Прежде всего, нужно определить какой гидрокомпенсатор стучит. Для мотористов определить какой гидрокомпенсатор вышел из строя обычно не составит труда. Да вы и сами сможете это сделать. Это просто.

Для этого нужно снять клапанную крышку. Так же потребуется устройство которое называется фонендоскоп.

Фонендоскоп устройство с длинной спицей на конце и наушниками.

Если данного устройства нет под рукой, можно попробовать воспользоваться стетоскопом. Суть я думаю Вы уже поняли, нужно прослушать где же сильнее всего стучит, таким образом можно определить какой гидрокомпенсатор барахлит.

В случае обнаружения неисправного гидрокомпенсатора, можно попробовать устранить стук путем чистки. Для этого его нужно разобрать и промыть в солярке или керосине. В некоторых случаях это помогает устранению стука. Если нет, то увы придется менять. Их стоимость не так велика и лучше это сделать как можно быстрее, потому что в противном случае последствия могут быть печальными.

Как проверить гидрокомпенаторы

Проверить гидрокомпенсаторы самому достаточно просто. Устройство по своему строению не сложное.

Для того чтобы выяснить исправность, нужно попробовать нажать на внутреннюю часть гидрокомпенсатора (которая прилегает в клапану). Если она легко проминается, то значит гидрокомпенсатор неисправен, если нет, то значит с ним все в порядке.

Можно ли ездить со стучащими компенсаторами?

Как уже говорилось ранее, запускать данную неисправность нельзя. Убитые гидрокомпенсаторы, оказывают очень негативное воздействие на весь привод газораспределительного механизма. Ремонт его стоит, очень не дешево. Также стук гидриков приводит к более быстрому износу всех элементов ГБЦ.

Минусы гидрокомпенсаторов

Кроме всех перечисленных положительных качеств этой замечательно технологии, у нее есть несколько значительных минусов.

  • Практически всегда бывает стук гидрокомпенсаторов на холодно двигателе.
  • Гидрокомпенсаторы плохо работают при высоких оборотах.

Поменяли гидрокомпенсаторы а они все равно стучат

Стук новых гидрокомпенасторов после замены не всегда может быть связан с их неисправностью или браком. Как говорилось выше, работа этих устройств зависит от масла. Если новые компенсаторы не заполнены маслом, то они будут какое-то время постукивать пока не заполнятся.

Специалисты рекомендуют при установке гидрокомпенсаторов, заполнять их маслом, чтобы избежать их работы на сухую.

Для того чтобы не было проблем с гидрокомпенсаторами нужна регулярная замена масла, тут вы можете об этом узнать — через сколько нужно менять масло в двигателе.

Несомненно, технология применения гидрокомпенсаторов, очень удобна. Ее применяют множество различных производителей в двигателях как для бюджетного так и для премиум сегмента. Но некоторые все так же используют технологию ручной регулировки клапанов, например компания Honda. Это связано с тем, что их моторы являются высоко оборотистыми, а как мы говорили ранее гидрокомпенсаторы, так же в механизме газораспределения банально мало места, так как там в большинстве случаев используется фирменная технология Vtec и для гидрокомпенсаторов очень мало места.

  • Список форумовДиагностика и ремонт mitsubishiДиагностика и ремонт Mitsubishi
  • Поиск

"Обкатка" новых гидрокомпенсаторов; должны ли стучать новые?

Модераторы: mek, indy

"Обкатка" новых гидрокомпенсаторов; должны ли стучать новые?

#1 Сообщение Sungod » 27 апр 2014, 13:17

Re: "Обкатка" новых гидрокомпенсаторов; должны ли стучать но

#2 Сообщение McClaud » 27 апр 2014, 13:57

Самая распространенная неисправность современных двигателей – стук гидрокомпенсаторов. Причин множество, в своём большинстве они связаны с качеством масла. Что делать при данной неисправности и как с ней бороться расскажет данный материал.

Что такое гидрокомпенсатор и как работает гидрокомпенсатор

Гидрокомпенсатор – простое устройство для автоматической регулировки зазора в приводе клапанов, устраняющее необходимость разбирать двигатель при его техническом обслуживании. Гидрокомпенсатор, в просторечии «гидрик» представляет собой миниатюрный гидроцилиндр, меняющий свою длину при нагнетании вовнутрь моторного масла.

Объем масла компенсирует зазор между штоком клапана и кулачком распределительного вала. Масло в полость гидрокомпенсатора попадает через клапан с очень небольшим отверстием, а выходит наружу через естественные зазоры клапанной пары. Насколько хорошо работает «гидрик» зависит от поступления масла и от состояния плунжерной пары, отсутствия износа или заклинивания.

Как понять, что стучит именно гидрокомпенсатор

Неисправный гидрокомпенсатор издает резкий стук, стрекот, с частотой вдвое меньше частоты оборотов двигателя.

Неисправным считается гидрокомпенсатор, который стучит более пары минут после запуска двигателя или стучит после полного прогрева двигателя. Стук прослушивается сверху двигателя и может быть неслышен из салона автомобиля.

Почему стучит гидрокомпенсатор

Причины стука гидрокомпенсатора «на холодную» (при непрогретом моторе):

  1. Слишком густое масло, на непрогретом двигателе, плохо заходит в полость гидрокомпенсатора. Нужно время, чтобы полость заполнилась маслом
  2. Забита загрязнениями масляная магистраль или клапан гидрокомпенсатора. Загрязнения появляются при низком качестве или при затянутых сроках смены моторного масла, а также могут являться продуктами износа некоторых деталей двигателя.
  3. Износ или заклинивание плунжера гидрокомпенсатора. Бывает от естественного износа или от попадания абразивных загрязнений в моторное масло.

Причины стука гидрокомпенсатора «на горячую» (на прогретом моторе):

  1. Заклинивание плунжерной пары гидрокомпенсатора из-за естественного износа или загрязнения. Задиры на плунжере блокируют его движение и гидрокомпенсатор полностью теряет работоспособность. Зазор не выбирается и гидрокомпенсатор стучит.
  2. Слишком малая вязкость прогретого масла, масло вытекает через зазоры плунжерной пары быстрее, чем подается насосом. Некачественное масло или слишком жидкое для данного двигателя масло сильно разжижается при прогреве и легко вытекает через технологические зазоры.

3. Повышенный уровень масла в двигателе, вспенивание масла из-за перемешивания коленчатым валом или из-за попадания воды в двигатель. Следует проверить уровень масла в двигателе, а также использовать только высококачественные моторные масла.

Самый простой способ устранить стук гидрокомпенсаторов

Самый простой и действенный способ, помогающий в большинстве случаев, добавка в масло специальной присадки Liqui Moly Hydro-Stossel-Additiv. Присадка промывает масляные каналы, удаляет загрязнения и восстанавливает подачу масла в гидрокомпенсаторы. Кроме того, присадка немного загущает масло, компенсируя тем самым их естественный износ. Присадка добавляется в прогретое моторное масло, полное действие наступает после примерно 500 км пробега.

Как еще можно устранить стук гидрокомпенсаторов

  1. Замена гидрокомпенсаторов Достоинства: гарантированный результат. Недостатки: дорого и долго). Нужно учитывать, что на некоторые иномарки, сначала нужно заказать детали, дождаться, пока они придут, и записаться на ремонт в сервисе. На большинстве двигателей, при замене гидрокомпенсаторов потребуются дополнительные затраты на одноразовые детали, например, прокладки или герметик.
  2. Тщательная промывка масляной системы специальными промывками, например: Liqui Moly Oil-Schlamm-Spulung. Достоинства: сравнительно недорого. Недостатки: результат не гарантируется.

3. Возможно, в запущенных случаях, потребуется замена масляного насоса или очистка масляных магистралей двигателя с его частичной или полной разборкой.

Что будет, если не устранить стук гидрокомпенсаторов

Если не заниматься устранением стука гидрокомпенсаторов, то можно проездить довольно долго без особых проблем, но, со временем, двигатель будет работать громче, с вибрациями, упадет мощность и увеличится расход топлива, а далее произойдет износ всего клапанного механизма, в частность распределительного вала двигателя. Его замена — очень дорогое мероприятие.

Итог

Если стук гидрокомпенсаторов неоднократно возникает, то нет смысла дожидаться ухудшения ситуации. Добавка присадки Hydro-Stossel-Additiv решит проблему и предотвратит развитие износа на длительное время.

ВИДЕО

;

Технология двигателя Hot Rod Почему гидравлические роликовые подъемники Johnson используются в вашем двигателе

Johnson Lifters хочет стать вашим источником подъемников клапанов. Являясь основным поставщиком с производственными мощностями высшего уровня, 90-летняя компания безупречно функционирует в условиях высоких нагрузок и низкой толерантности OEM, где проверки контроля качества являются обязательными и частыми. Важной частью программы контроля качества Johnson Lifter является выявление и решение общих проблем с подъемниками. В частности, подъемники с гидравлическими клапанами долгое время страдали от мнения, что они не годятся для работы, но это далеко не так.

Джонсон ставит галочку на этом заблуждении и указывает на успех сверхмощных гоночных пакетов COPO Camaro от Chevrolet, каждый из которых оснащен гидравлическими роликовыми подъемниками Johnson. Выбор компании Chevrolet Johnson Lifters - это не фантазия о дартс. Компания Johnson была выбрана из-за ее репутации производителя прецизионных высококачественных сборок, которые обычно работают в соответствии с требованиями. Для обеспечения такого качества работы Johnson следует строгому режиму, который учитывает все вопросы производства и использования, связанные с гидравлическими роликовыми подъемниками.

Несколько лет назад у Chrysler были проблемы с гидравлическими подъемниками в двигателях Viper. Лифты часто застревали, и проблема становилась настолько серьезной, что специализированные магазины, такие как Arrow Racing, начали вставлять блоки и устанавливать меньшие подъемники GM LS в качестве средства защиты. Джонсон вмешался, определил причину и исправил подъемники Chrysler калибра .904, чтобы устранить ее; тем самым укрепляя свою репутацию в области качества и передового опыта в области проектирования на рынке OEM.

Гидравлические подъемники - это фактически прецизионные компоненты двигателя, которые работают с очень маленькими зазорами.Они разработаны для обеспечения нулевого зазора ресниц. Там, где для сплошных подъемников требуется небольшой зазор или зазор клапана между клапаном и коромыслом или толкателем кулачка, гидравлические подъемники устраняют этот зазор и обеспечивают более точное управление клапаном, бесшумную работу и сниженные характеристики износа. Для механических подъемников (сплошных) требуется зазор клапана для регулировки теплового расширения. Гидравлические подъемники состоят из прецизионного стального цилиндра с внутренним поршнем. Прочная пружина удерживает поршень на внешнем пределе его хода.Масло под давлением подается к каждому подъемнику через небольшое отверстие, поступающее из галереи подъемника под давлением. Когда клапан закрыт, подъемник заполняется маслом. Когда выступ распределительного вала начинает фазу подъема, он сжимает поршень, который закрывает впускное отверстие для масла. Поскольку масло несжимаемо, это более высокое давление делает подъемник надежным во время фазы подъема.

По мере того, как выступ распределительного вала проходит через его вершину, нагрузка на плунжер подъемника уменьшается, а внутренняя пружина возвращает поршень в нейтральное состояние, чтобы подъемник мог заправить масло.Этого небольшого диапазона хода поршня подъемника достаточно, чтобы исключить постоянную регулировку зазора.

Гидравлические роликовые подъемники являются общими для всех современных двигателей с толкателем. Они предлагают тихую, безотказную работу с пониженным трением и нагрузкой на клапанный механизм, но они не лишены своих уникальных особенностей, требующих инновационных решений. Вот где Johnson Lifters сияет ярче всего. Они выявляют и решают типичные проблемы подъемников для обеспечения оптимальной производительности и надежности.

Несмотря на то, что гидравлические и механические роликовые подъемники схожи по внешнему виду и функциям, они испытывают одни и те же силы, снижающие их производительность. Распространенной проблемой механических роликовых подъемников является ударная нагрузка на крошечные роликовые подшипники во время каждого цикла клапана. Один или несколько маленьких роликов подвергаются ударам за каждый цикл, и со временем они довольно сильно изнашиваются. Это вызвано зазором клапана, который захлопывает ролики во время каждого цикла. Проблема возникает и у некоторых гоночных двигателей с чрезмерным давлением пружины, но у гоночных двигателей гораздо меньше циклов, чем у горячих уличных двигателей.Механические роликовые подъемники на улице часто подвергаются большему ущербу, чем гоночные двигатели, потому что гоночные подъемники чаще проверяются и при необходимости заменяются.

[pro_ad_display_adzone]

Гидравлические роликовые подъемники также имеют ролики с игольчатыми подшипниками, но они не подвергаются сильным ударным нагрузкам, как механический подъемник, поскольку в клапанном механизме присутствует предварительная нагрузка и нет зазоров, которые необходимо принять. Гидравлические роликоподъемники часто критикуют за то, что они не способны выдерживать более высокое давление пружины, необходимое для работы на высоких оборотах.В серийном подъемнике давление пружины на высоких оборотах плюс инерционная нагрузка давят на поршень подъемника, что приводит к меньшему подъему клапана. В зависимости от величины предварительного натяга и передаточного числа коромысел это может привести к потере подъема клапана на 0,050-0,075 дюйма, что лишит двигатель его окна воздушного потока, предусмотренного конструктивными характеристиками, и ухудшит работу кулачка. Чрезмерное кровотечение из подъемника, вызванное неправильным зазором между поршнем и отверстием внутри подъемника, является основной причиной того, что мы называем откачкой подъемника. Решением этой проблемы являются строго контролируемые зазоры внутри корпуса подъемника и превосходная конструкция клапана, которая поддерживает более быстрое заполнение внутренней масляной полости.

Подкачка подъемника - еще одна неприятная проблема, которая возникает при повышенных оборотах. Это происходит из-за того, что пружина теряет контроль над клапаном из-за недостаточного давления пружины, гибких толкателей или тяжелых компонентов клапанного механизма. Когда это происходит, происходит разделение компонентов, и давление масла заставляет внутренний поршень упираться в стопорную скобу в верхней части подъемника. Это приводит к тому, что подъемник удерживает клапан в открытом состоянии на некоторое количество, обычно достаточное для повреждения; И снова крошечные ролики ударяются о чрезмерную нагрузку.

Заводские спецификации предварительного натяга обычно сжимают плунжер подъемника на 1–1-1 / 2 оборота после нулевого зазора. При использовании штифта коромысла с резьбой 24 дюйма на дюйм полный оборот обеспечивает предварительный натяг около 0,040 дюйма. Полтора оборота равняются примерно 0,060 дюйма. У большинства заводских подъемников диапазон хода плунжера составляет около 0,120 дюйма. Таким образом, полтора оборота предварительного натяга помещают плунжер подъемника примерно посередине всего доступного хода. Это оставляет до 0,060 дюйма, доступного для удержания клапана в открытом состоянии, если подъемник нагнетает давление.Уменьшение предварительного натяга до 1/4 оборота (от 0,010 до 0,015 дюйма) уменьшает ход предварительного натяга и обычно достаточно, чтобы насос подъемника не удерживал клапан в открытом состоянии. Из-за сильной накачки подъемника клапан иногда может оставаться открытым настолько, что клапан может повредить поршень.

Обычный трюк в драг-рейсинге сжимает плунжер подъемника почти до конца доступного хода (0,020–0,030 дюйма) при помощи до двух или более оборотов регулировочной гайки. Это сделано для предотвращения откачки подъемника из-за высокого давления пружины.Это заставляет подъемника работать почти как солидный подъемник. Это исключает возможность сжатия из-за газированного масла. Эта проблема часто приводила к потере мощности тормозных гонщиков, поскольку подъемник не обеспечивает полный заданный подъем клапана. Устраняя сжатие в масляной полости, подъемник может передавать полный подъем клапана, как указано разработчиком кулачка.

Еще одним средством решения этих проблем было внедрение гидравлических подъемников с коротким ходом, построенных с меньшим диапазоном хода внутреннего поршня.Расстояние хода составляет лишь половину от стандартного подъемника, что ограничивает возможность откачки поршня подъемника. Меньший ход допускает очень ограниченный диапазон движения для захвата воздуха и накачки, когда встречается поплавок клапана. Подъемники с коротким ходом позволяют использовать более высокое давление пружины клапана с гидравлическими роликовыми подъемниками. Они наиболее эффективны при использовании с традиционной регулировкой на 1/4 поворота вниз для дальнейшего ограничения диапазона хода.

Для решения многих из этих общих проблем с подъемниками Johnson Lifters поддерживает феноменальный контроль зазоров между поршнем подъемника и отверстием.Это точно контролирует скорость отвода воздуха из подъемника и поддерживается запатентованной конструкцией, которая быстрее заполняет масляную камеру. Зазор в отверстии подъемника измеряется в микронах. Этот термин означает, что зазор не видно, но он действительно есть. Один микрон равен 0,0000393 дюйма, и хотя они не говорят, сколько микрон составляет стабильный подъемник, они знают, каков этот показатель и как его поддерживать. Частично этот контроль обеспечивается обработкой отверстия подъемника и способом его получения, а частично - квалифицированной сборкой.

Джонсон довольно религиозно придерживается обоих принципов. Жесткие допуски строго соблюдаются, и только очень опытные техники собирают подъемники. В то время как некоторые производители нанимают обычных уличных работников, сборщику требуется в среднем около восьми лет, прежде чем сборщик сможет построить подъемники Johnson без тщательного контроля. Результаты говорят сами за себя, поскольку подъемники Johnson легко справляются с давлением в седле, превышающим 300 фунтов, и до 800 фунтов плюс над передней частью кулачка.

Давление пружины - враг всех подъемников, особенно гидравлических подъемников.Выступая в качестве механизма передачи линейного движения для клапанного механизма, подъемник также действует как прецизионный амортизатор, так что металлические детали не подвергаются повторяющемуся контакту с высокими напряжениями. Как и механические ролики, гидравлические ролики повышают производительность и долговечность при более низком давлении пружины. Они также отдают предпочтение более легким компонентам клапанного механизма, более коротким более жестким толкателям для минимизации прогиба и стабильным узлам коромысел, которые обеспечивают плавную работу.

Невозможно переоценить использование более жестких и легких компонентов клапанного механизма.Разработчики клапанного механизма уделяют пристальное внимание моменту инерции, необходимому для активации коромысла, и жесткости компонентов, необходимой для точной передачи движения кулачка. Точно так же титановые ретейнеры обеспечивают больший контроль по малоизвестной причине. Верхняя половина пружины перемещается на гораздо большее расстояние, чем нижняя половина, и именно здесь возникают проблемы с управлением и скачок пружины. Более легкий фиксатор сводит к минимуму силу, которую должна контролировать пружина, позволяя ей работать более эффективно.

Еще одним важным фактором является вязкость масла. Более тяжелые масла имеют тенденцию сопротивляться работе гидравлического подъемника, хотя кажется, что они могут обеспечить превосходную гидравлическую подушку. Масло должно удерживать давление с узкими внутренними зазорами подъемника и эффективно перемещаться по каналу заправочного клапана, чтобы поддерживать контроль над внутренним поршнем. Представители Johnson также подчеркивают важность чистого моторного масла для удовлетворительной работы гидравлического подъемника. Поскольку зазоры измеряются в микронах, можно легко нарушить работу подъемника из-за грязного масла.Регулярная замена масла и фильтров имеет решающее значение, и они также отмечают, что обычная практика замачивания подъемников в моторном масле перед установкой на самом деле может вызвать проблемы. Это потому, что обычно их помещают в масляную ванну, которую не накрывают. Все микроскопические частицы ворса, пыли и других загрязнений, плавающие в воздухе, оседают на поверхности масла и попадают в подъемники. Джонсон обнаружил, что грязные подъемники на сегодняшний день являются наиболее частой причиной проблем с подъемниками.

Проблемы с гидравлическим подъемником

Накачка подъемника

Возникает, когда пружина теряет контроль
клапана, вызывая состояние поплавка, при котором колеблющийся зазор позволяет внутренней камере полностью заполниться и удерживать поршень от стопорного кольца замка. Когда это происходит, предварительная нагрузка подъемника может удерживать клапан в открытом положении на 0,050 дюйма или более.

Откачка подъемника

Высокое давление пружины и инерционная нагрузка слишком сильно сжимают поршень, что приводит к потере общего подъема клапана и снижению производительности.Когда тюнер настраивает клапан на минимальную предварительную нагрузку, он сокращает ход до того, как подъемник накачивает. Он почти прочный, с достаточным предварительным натягом для поддержания гидравлической функции. Это очень популярная тактика настройки, но она не всегда обеспечивает оптимальную производительность. Обычно он обеспечивает на несколько сотен больше оборотов в минуту, но с более жестким действием клапана. От трех четвертей до одного оборота регулировочной гайки часто обеспечивается прирост производительности, поскольку более плавное действие обеспечивает хорошее управление клапаном. А чем меньше масла в полости высокого давления, тем меньше ход поршня, и легче быстро заполнять камеру в каждом цикле.

Значительный потенциал производительности проявляется в очень узком окне работы гидравлического подъемника. Это позволяет некоторым двигателям, оборудованным гидравлическими подъемниками, приближаться к характеристикам механических подъемников в зависимости от области применения. Насколько вы полагаетесь на конструкцию распределительного вала и головки блока цилиндров для обеспечения оптимальной эффективности и воздушного потока, вы также должны полагаться на прецизионные подъемники, которые надежно переносят характеристики конструктора кулачка на клапанный механизм для обеспечения максимальной производительности.При сборке высокопроизводительных двигателей о подъемных механизмах с клапанами часто обращают внимание, но Johnson Lifters ставит перед собой задачу убедиться, что вы получите всю производительность, присущую гонке или высокопроизводительному уличному двигателю.

Устранение детонации: 9 способов предотвратить детонацию двигателя

(изображение любезно предоставлено carboncleaningusa.com)

Detonation - отличная вещь, если вы смотрите шоу фейерверков или, возможно, смотрите MacGyver.

Внутри вашего двигателя? Не так много.

На самом деле, вероятно, будет лучше, если вы любой ценой избежите детонации в том, что касается вашего двигателя. Детонация возникает, когда из-за чрезмерного тепла и давления в камере сгорания топливно-воздушная смесь воспламеняется сама по себе. Вместо типичного единственного ядра пламени внутри камеры это создает множественное пламя, которое сталкивается со взрывной силой. Это вызывает резкое, внезапное повышение давления в цилиндре, в результате чего внутренние детали двигателя - поршни, кольца, подшипники, прокладки и т. Д. - подвергаются серьезной перегрузке, а также возникает свистящий или стук.Худший сценарий: вы столкнулись с дорогостоящим, если не катастрофическим, повреждением двигателя.

Излишне говорить, что это не идеальная ситуация. Вот почему вместе с Summit Racing и Fel-Pro, мы составили список из девяти вещей, которые вы можете сделать, чтобы избежать проблемы с детонацией.

№1. Поднимите октановое число

Чем выше октановое число, тем лучше способность топлива противостоять детонации.

Большинство двигателей прекрасно работают на стандартном октановом числе 87; однако двигатели с высокой степенью сжатия (9.0: 1 и выше) или принудительная индукция (нагнетатели или турбины) могут потребовать октанового числа 89 или выше. Кроме того, приложения, в которых двигатель испытывает повышенную нагрузку или напряжение, например буксировка или тяжелая транспортировка, могут потребовать дополнительных уровней октанового числа. По сути, все, что вызывает более высокую температуру и давление сгорания или заставляет двигатель работать более горячим, чем обычно, может привести к детонации.

Может быть, пора поднять октановое число.

№2. Сохраняйте приемлемую степень сжатия

Статическое сжатие 9.0: 1 - обычно рекомендуемый предел для уличных двигателей без наддува (хотя двигатели с датчиками детонации могут выдерживать более высокую степень сжатия). Для принудительной индукции может потребоваться статическое соотношение 8,0: 1 или меньше в зависимости от величины наддува. Степень сжатия более 10,5: 1 может вызвать детонацию даже при использовании бензина премиум-класса 93.

Уловка состоит в том, чтобы поддерживать степень сжатия в разумном диапазоне для перекачиваемого газа, если только ваш двигатель не рассчитан на работу на гоночном топливе.Для этого вам может потребоваться использовать поршни с более низким уровнем сжатия, выбрать головки блока цилиндров с большими камерами сгорания или попробовать использовать прокладку под прокладку головки из меди с базовой прокладкой для уменьшения сжатия. Кроме того, если вы расточили цилиндры двигателя или фрезеровали головки цилиндров, это повысит степень сжатия, и вам, возможно, придется что-то делать.

№ 3. Проверьте свое время

Чрезмерное опережение зажигания может привести к слишком быстрому повышению давления в цилиндрах и, в конечном итоге, к детонации.Сбросьте время до заводских характеристик. Если это не сработает, замедлите отсчет времени на пару градусов или попробуйте повторно откалибровать кривую опережения распределителя, чтобы контролировать детонацию.

№4. Управляйте своим ускорением

Управление количеством наддува в двигателе с принудительным впуском имеет решающее значение.

Слишком сильный наддув может привести к детонации, поэтому вам нужно либо А) уменьшить наддув, либо Б) оснастить двигатель, чтобы он выдерживал большее ускорение. Например, в системе с турбонаддувом вам необходимо убедиться, что ваш перепускной клапан работает правильно, чтобы стравить избыточное давление наддува.Утечки в вакуумных соединениях, неисправный датчик давления во впускном коллекторе или неэффективное управление соленоидом перепускной заслонки могут привести к тому, что турбонагнетатель будет выдавать слишком много наддува. Эти вещи следует исправить. И вы также можете добавить более производительный интеркулер , пока вы работаете с ним.

Для применений с наддувом ознакомьтесь с нашими статьями по основам нагнетания (Часть 2), и Основы воздуходувки (Часть 3) , чтобы узнать о правильных уровнях наддува и их отношении к сжатию.

№ 5. Наблюдать за смесью

Обедненные топливно-воздушные смеси склонны к детонации.

Проверьте свою топливно-воздушную смесь и отрегулируйте соответственно. Состояние обедненной смеси может быть признаком более серьезной проблемы, такой как утечки воздуха в вакуумных линиях или некачественные прокладки. Это также может быть вызвано грязными топливными форсунками , засоренными форсунками карбюратора или засорением топливного фильтра. Если ваш двигатель испытывает колебания или грубую работу на холостом ходу, возможно, вы имеете дело с обедненным топливом и вам нужно внести соответствующие регулировки или исправления до того, как произойдет детонация.

Нагар вокруг клапана. (Изображение любезно предоставлено carsandparts.com)

№6. Выдуть углерод

Углеродные отложения - частая причина детонации в двигателях с большим пробегом.

По существу, нагар может накапливаться в камере сгорания и на верхней части поршней до тех пор, пока не изменится общая компрессия двигателя. Кроме того, отложения могут создавать изолирующий эффект, который замедляет передачу тепла от камеры сгорания к головке цилиндров.Если отложения накапливаются достаточно (и сжатие увеличивается), может произойти детонация.

Как и указанная выше бедная топливная смесь, нагар может быть признаком другой проблемы: изношенных направляющих клапанов, износа цилиндров, поломки поршневых колец , или нечасто заменяемого масла. Выясните первопричину отложений, устраните все проблемы, а затем удалите отложения с помощью химического очистителя, проволочной щетки или скребка (требуется удаление головок).

№ 7. Проверьте свой датчик детонации

Многие двигатели поздних моделей имеют датчик детонации , который может выйти из строя.

Датчик детонации реагирует на вибрацию в определенном диапазоне частот. Когда частоты, которые обычно возникают при детонации, обнаруживаются, датчик детонации сообщает компьютеру транспортного средства о необходимости на мгновение замедлить зажигание до тех пор, пока детонация не прекратится. В случае неисправности этот датчик перестанет работать.

Если на вашем автомобиле горит индикатор «Проверьте двигатель», возможно, у вас неисправен датчик детонации (среди прочего). Вы можете проверить бортовую компьютерную систему, прочитав код неисправности двигателя с помощью подходящих инструментов . Или вы можете проверить датчик детонации, постучав гаечным ключом по коллектору рядом с датчиком и наблюдая за изменением времени. Если отсчет времени не замедляется, датчик может быть неисправен. Вам нужно будет найти соответствующую диагностическую таблицу в руководстве по обслуживанию вашего автомобиля, чтобы определить причину.

№ 8. Прочтите свои свечи зажигания

(Изображение любезно предоставлено Dynamicefi.com)

Обязательно прочитайте нашу предыдущую публикацию о , как читать свечи зажигания.

Вы можете многое сказать о характеристиках вашего двигателя, прочитав свои свечи.Например, если свечи зажигания выглядят желтоватыми, покрытыми пузырями или сломаны, они могут быть слишком горячими для применения. Попробуйте использовать свечи зажигания с более холодным диапазоном нагрева, чтобы избежать потенциальной детонации. Дополнительные советы см. В нашей публикации о диапазоне нагрева свечей зажигания .

№ 9. Подумайте о своей системе охлаждения

Если ваш двигатель перегревается, в нем больше шансов получить искровую детонацию. Вот почему вы должны убедиться, что ваша система охлаждения находится в хорошем состоянии.Проверьте уровень охлаждающей жидкости и при необходимости долейте. Убедитесь, что размер вашего вентилятора соответствует случаю. И обратите внимание на плохой водяной насос, отсутствующий кожух вентилятора, слишком горячий термостат , проскальзывающую муфту вентилятора - практически все, что может помешать вашей системе охлаждения работать эффективно.

Руководство по гидравлическому проектированию: Гидравлическая работа кульвертов

Якорь: # i1016336

Раздел 3: Гидравлическая работа кульвертов

Якорь: # i1016341

Параметры

Гидравлическое управление и производительность водопропускной трубы включают: ряд факторов.Вы должны определить, оценить или рассчитать каждый фактор как часть гидравлического проектирования или анализа.

Следующие процедуры предполагают установившийся поток, но могут включать обширные вычисления, пригодные для компьютерного применения. Эти процедуры заменяют упрощенные ручные методы других руководств. TxDOT рекомендует компьютерные модели для всех окончательных проектных приложений, хотя ручные методы и номограммы могут использоваться для первоначального планирования.

Якорь: # i1016356

Верхний уровень под контролем входа

Входной контроль происходит, когда ствол водопропускной трубы передает больший поток, чем может принять впускной канал. Входной контроль есть возможно, если уклон водопропускной трубы крутой гидравлически (d c > d u ). Секция управления водопропускной трубы работает под входным контролем находится сразу внутри входа.Когда течение в стволе - поток со свободной поверхностью, критическая глубина возникает при или около этого места, и режим потока сразу после сверхкритично. В зависимости от условий ниже водопропускной трубы на входе в водопропускную трубу может произойти гидравлический скачок. Под контролем входа, гидравлические характеристики после входной регулирующей секции не влияют на пропускную способность водопропускной трубы.Высота поверхности воды выше по течению и геометрия входа (форма цилиндра, площадь поперечного сечения и edge) являются основными регуляторами потока.

Полиномиальное уравнение пятой степени на основе регрессионного анализа используется для моделирования входного контрольного напора для заданного расхода. Аналитический уравнения, основанные на принципах минимума энергии, согласованы с уравнения регрессии для моделирования потоков, которые создают управляющие головки на входе вне диапазона данных регрессии.Применяется только уравнение 8-4. когда 0,5 ≤ HW ic / D ≤ 3,0.

Якорь: #LDJDRTHO

Уравнение 8-4.

где:

    Якорь: #RIAJVHUV
  • HW ic = входной контрольный напор (фут.или м)
  • Анкер: #YJEROWII
  • D = подъем водопропускной трубы баррель (футы или м)
  • Якорь: #IIHJVKFT
  • a от до f = коэффициенты регрессии для каждого типа водопропускных труб (см. следующие стол)
  • Якорь: #XYXFACPX
  • S 0 = уклон водопропускной трубы (фут./ фут. или м / м)
  • Якорь: #EQWSLNHY
  • F = функция среднего слив слива проходит через водопропускную трубу; подъем ствола водопропускной трубы; а для коробчатых и арочных водопропускных труб - ширина ствола B, показанная в уравнении 8-5.

Якорь: #HQGQQDMS

Уравнение 8-5.

где:

    Якорь: #YHTNQBGY
  • W = ширина или пролет водопропускной трубы (фут.или м).
  • Якорь: # i1010985 Таблица 8-1: Коэффициенты регрессии для входных управляющих уравнений

    RCP

    Квадратный край с перегородкой

    0.087483

    0,706578

    -0,2533

    0.0667

    -0,00662

    0,000251

    Конец канавки с перегородкой

    0.114099

    0,653562

    -0,2336

    0.059772

    -0,00616

    0,000243

    Выступающий конец паза

    0.108786

    0,662381

    -0,2338

    0.057959

    -0,00558

    0,000205

    Кольцо со скошенной кромкой

    0.063343

    0,766512

    -0,316097

    0.08767

    -0,00984

    0,000417

    Усовершенствованный (факельный) вход

    0.2115

    0,3927

    -0,0414

    0.0042

    -0,0003

    -0,00003

    CMP

    Верхняя стенка

    0.167433

    0,53859

    -0,14937

    0.039154

    -0,00344

    0,000116

    Под углом

    0.107137

    0,757789

    -0,3615

    0.123393

    -0,01606

    0,000767

    Проектирование

    0.187321

    0,567719

    -0,15654

    0.044505

    -0,00344

    0,00009

    Усовершенствованный (факельный) вход

    0.2252

    0,3471

    -0,0252

    0.0011

    -0,0005

    -0,00003

    Ящик

    Расширяющаяся стенка крыла 30-70º

    0.072493

    0,507087

    -0,11747

    0.02217

    -0,00149

    0,000038

    Параллельно стенке крыла 15º

    0.122117

    0,505435

    -0,10856

    0.020781

    -0,00137

    0,0000346

    Стена крыла прямая

    0.144138

    0,461363

    -0,09215

    0.020003

    -0,00136

    0,000036

    Стена крыла 45º с верхней фаской

    0.156609

    0,398935

    -0,06404

    0.011201

    -0,00064

    0,000015

    Параллельная перегородка со скосом

    0.156609

    0,398935

    -0,06404

    0.011201

    -0,00064

    0,000015

    Наклон 30º с фаской кромок

    0.122117

    0,505435

    -0,10856

    0.020781

    -0,00137

    0,000034

    Наклон 10-45º со скошенной кромкой

    0.089963

    0,441247

    -0,07435

    0.012732

    -0,00076

    0,000018

    Овальный

    В> Д

    Квадратный край с перегородкой

    0.13432

    0,55951

    -0,1578

    0.03967

    -0,0034

    0,00011

    Конец канавки с перегородкой

    0.15067

    0,50311

    -0,12068

    0.02566

    -0,00 189

    0,00005

    Выступающий конец паза

    -0.03817

    0,84684

    -0,32139

    0.0755

    -0,00729

    0,00027

    Овальный

    D> B

    Квадратный край с перегородкой

    0.13432

    0,55951

    -0,1578

    0.03967

    -0,0034

    0,00011

    Конец канавки с перегородкой

    0.15067

    0,50311

    -0,12068

    0.02566

    -0,00 189

    0,00005

    Выступающий конец паза

    -0.03817

    0,84684

    -0,32139

    0.0755

    -0,00729

    0,00027

    CM

    Труба арка

    Верхняя стенка

    0.111261

    0,610579

    -0,194937

    0.051289

    -0,00481

    0,000169

    Под углом

    0.083301

    0,795145

    -0,43408

    0.163774

    -0,02491

    0,001411

    Проектирование

    0.089053

    0,712545

    -0,27092

    0.792502

    -0,00798

    0,000293

    Конструкционная плита

    Труба арка

    Выступающая - угловая пластина (17.7 дюйма или 450 мм)

    0,089053

    0,712545

    -0.27092

    0,792502

    -0,00798

    0.000293

    Выступ - угловая пластина (30,7 дюймов или 780 мм)

    0.12263

    0,4825

    -0,00002

    -0.04287

    0,01454

    -0,00117

    CM арка

    (плоское дно)

    Параллельная перегородка

    0.111281

    0,610579

    -0,1949

    0.051289

    -0,00481

    0,000169

    Под углом

    0.083301

    0,795145

    -0,43408

    0.163774

    -0,02491

    0,001411

    Тонкостенное проектирование

    0.089053

    0,712545

    -0,27092

    0.792502

    -0,00798

    0,000293

    Для HW i / D> 3.0, уравнение 8-6, отверстие уравнение, используется для оценки высоты истока:

    Якорь: #VHVWXHXH
  • Определить потенциальный напор от центра тяжести отверстия водопропускной трубы, который приблизительно как сумма перевернутого возвышения и половины подъем водопропускной трубы. Эффективная площадь, A, и коэффициент отверстия, C, неявны.
  • Якорь: #WUMBRYVP
  • Определите коэффициент k, переставив Уравнение 8-6 с использованием разряда, который создает отношение HW / D равное 3 в уравнении регрессии, Уравнение 8-7 (т. е. верхний предел из Уравнение 8-1):

Якорь: #DMVJDPQX

Уравнение 8-6.

где:

    Якорь: #MJPFEMLH
  • Q 3.0 = расход (cfs или m 3 / s), при котором HW / D = 3.
  • Обычно для проектов TxDOT это не считается эффективным проектировать водопропускные трубы для HW i / D <0.5. Однако если такое условие вероятно, минимальная энергия потока в открытом канале уравнение (уравнение водослива) следует использовать с добавлением коэффициент потери скоростного напора. Уравнение минимальной энергии с потеря скоростного напора, скорректированная коэффициентом потерь на входе, в целом описывает низкопоточный участок входного регулирующего напора кривая.Однако численные ошибки при расчете расхода для очень маленькие глубины имеют тенденцию к увеличению скоростного напора, поскольку поток приближается к нулю. Для большинства одиночных системные случаи, потому что потоки, которые вызывают это, относительно малы.

    Во многих требуемых расчетах для решения нескольких водопропускных труб кривая регулирования на входе должна непрерывно уменьшаться до ноль для сходимости итерационных вычислений.Поэтому компьютерные модели измените это уравнение, чтобы скоростной напор постоянно уменьшался к нулю, когда поток приближается к нулю.

    «Графики» в HDS-5 (FHWA, Гидравлический дизайн магистральных водопропускных труб) содержат указания по графическому раствор истока под контролем входа.

Якорь: # i1016524

Верхний уровень воды под контролем выхода

Управление выходом происходит, когда ствол водопропускной трубы не может пропускания потока, достаточного для впускного отверстия. Торговая точка контроль возможен только тогда, когда гидравлическая линия уклона внутри водопропускная труба на входе превышает критическую глубину.(См. Главу 6 для Гидравлический анализ линии уклона). вероятно, когда водопропускная труба находится на пологом склоне (d n > d c ). Также возможно испытать розетку контроль с водопропуском на крутом склоне (d n < d c ) с высоким нижним бьефом, таким, что в водопропускной трубе существует поток или полный поток.

Верхний уровень водопропускной трубы на выходе является функцией разряда, геометрии сечения трубопровода, характеристик шероховатости канала, длина трубы, профиль трубы, геометрия входа (до в незначительной степени) и (возможно) уровень нижнего бьефа.

Напор водопропускной трубы под контролем выхода можно регулировать, для практических целей путем изменения размера, формы и шероховатости водопропускной трубы.Необходимо учитывать как входное, так и выходное управление для определения верховья. В следующей таблице приведены сводные условия. вероятно, будет контролировать исток водопропускной трубы. См. Рисунок 8‑4 и На рис. 8‑5 показаны соответствующие процедуры для определения.

Якорь: # i1011268 Таблица 8-2: Условия, которые могут возникнуть Контрольная труба верховья

Гидравлически крутой склон, заводь не погружает на критическую глубину внутри входа

Входной регулятор

Гидравлически крутой склон, заводь погружает на критическую глубину внутри входа

Выходной контроль

Гидравлически крутой склон, заводь близко к критической глубине на входе

Колебание между впуском и управление выходом.

Гидравлически пологий склон

Выходной контроль

Выходной регулирующий напор определяется с учетом общие потери энергии, которые происходят от выхода водопропускной трубы до водопропускной трубы вход.Рисунки 8-7 и 8-8 и соответствующие процедуры в Разделе 4 следует использовать для анализа или проектирования водопропускной трубы.

Выход управления исток HW Глубина ос (измеряется от выкидной линии входа) выражается в единицах балансировки энергии между выходом из водопропускной трубы и входом в водопропускную трубу как указано уравнением 8-8.

Якорь: #VIKPXNVE

Уравнение 8-8.

где:

    Якорь: #BHADEPTH
  • v = скорость потока в водопропускной трубе (фут / с или м / с).
  • Якорь: #WCXGJCQD
  • g = гравитационный ускорение = 32.2 фут / с 2 или 9,81 м / с 2 .
  • Для удобства баланса энергии на выходе, потери энергии через баррель, и баланс энергии на входе следует учитывать при определении выходное управление напором.

    Когда нижний бьеф управляет выходным потоком, уравнение 8-10 представляет собой уравнение баланса энергии на выходе из трубопровода.Традиционный Практика заключалась в игнорировании потерь на выходе. Если проигнорировать убытки на выходе, гидравлический трубопровод внутри водовода на выходе, выход глубину, H o , следует считать такой же как гидравлическая линия уклона за пределами трубопровода на выходе и Уравнение 8-10 использовать не следует.

Якорь: #TDBEYERM

Уравнение 8-10.

где:

    Якорь: #HSPQNYWB
  • h vo = скоростной напор внутри водопропускной трубы на выходе (футы или м)
  • Якорь: #JGSMESQC
  • h TW = скоростной напор в нижнем бьефе (футы или м)
  • Якорь: #WHCFTJFQ
  • h o = потеря напора на выходе (фут.или м).
  • Глубина выхода, H o , является глубиной гидравлической линии уклона внутри водопропускной трубы на выходе. Глубина выпуска устанавливается на основе условий, показанных ниже.

    Якорь: # i1011287 Таблица 8-3: Условия глубины выхода

    Глубина забоя (TW) превышает критическая глубина (d c ) в водопропускной трубе на выходе

    Склон пологий с гидравлической точки зрения

    Установить H o , используя Уравнение 8-10, взяв за основу нижнюю часть воды.

    Глубина забоя (TW) ниже критической глубины (d c ) в водопропускной трубе на выходе

    Склон пологий с гидравлической точки зрения

    Установить H o как критическая глубина.

    Равномерная глубина больше чем верх бочки

    Уклон гидравлически крутой

    Установить H o как большее из значений глубины ствола (D) и глубины, используя уравнение 8-10.

    Равномерная глубина меньше верх ствола и нижнего бьефа превышает критическую глубину

    Уклон гидравлически крутой

    Установить H o , используя Уравнение 8-10.

    Равномерная глубина меньше верх ствола и нижний бьеф ниже критической глубины

    Уклон гидравлически крутой

    Игнорировать, т.к. скорее всего, не.

    ПРИМЕЧАНИЕ. Для ручных вычислений и некоторых компьютерных программ H o является принимается равным глубине нижнего бьефа (TW). В таком случае, расчет потери напора на выходе (h o ) быть бессмысленным, поскольку линия энергетической отметки в водопропускной трубе на выход всегда будет суммой глубины нижнего бьефа и скорости голова внутри водопропускной трубы на выходе (h vo ).

Якорь: # i1016693

Потери энергии через трубопровод

Практика отдела - учитывать поток через канал встречается в одной из четырех комбинаций:

Якорь: # i1016723

Свободный поверхностный поток (тип A)

Если в водопропускной трубе наблюдается свободный поверхностный поток, гидравлический параметры меняются с глубиной потока по длине водопропускная труба, как показано на Рисунке 8‑9.Необходимо рассчитать профиль подпора по глубине выхода, H o .

Якорь: # i1002558grtop

Рисунок 8-9. Выходной регулирующий напор для водопровода с Свободная поверхность

По определению подпор со свободной поверхностью от выпускного конца водопропускной трубы может влиять на верхнюю часть воды только при докритическом потоке условия существуют в водопропускной трубе.Докритическое течение со свободной поверхностью на выходе будет существовать, если водопропускная труба находится на пологом склоне с глубина выхода (H o ) ниже, чем выход перекрытие или если водопропускная труба находится на крутом склоне с нижним бьефом выше чем критическая глубина на выходе из водопропускной трубы и ниже, чем на выходе софит.

непосредственный Метод Step Backwater используется для определения поверхности воды. профиль (и потери энергии) через канал.Глубина, Хо, равна используется как начальная глубина d1. Для докритического течения расчеты начните с выхода и продолжайте движение вверх по потоку. Использовать глубина, H o , как начальная глубина, d 1 , в расчетах Direct Step.

При использовании прямого шагового метода, если входной конец канал достигается без превышения расчетной глубины ствола глубины (D), он проверяет, что вся длина трубы подвергаясь свободному поверхностному течению.Установите расчетную глубину (d 2 ) на входе как H i и обратитесь к Энергетическому балансу на входе для определения истока.

При использовании прямого шагового метода, если расчетная глубина (d 2 ) достигает или превышает глубину ствола (D), внутренняя часть входного отверстия погружена. См. Тип AB - Свободная поверхность на выходе и полный поток на входе для описания.Это условие возможно, если теоретическое значение равномерной глубины превышает глубина ствола.

Якорь: # i1016776

Полный поток в трубопроводе (тип B)

Если в трубопроводе имеется полный поток, скорость потерь энергии через ствол является постоянным (для устойчивого потока), как показано на рисунке 8‑10.Гидравлическая линия уклона рассчитывается исходя из глубины выпуска, H o , на выходе.

Якорь: # i1002570grtop

Рисунок 8-10. Управление выходом, полностью погруженный поток

Полный поток на выходе возникает, когда глубина выхода (H o ) равна или превышает глубину ствола D.Полный поток поддерживается на всем протяжении трубу, если уклон трения круче, чем уклон трубы, или если уклон трения более пологий, чем уклон канала, но канал не достаточно длинный, чтобы гидравлическая линия уклона опустилась ниже вершины ствола.

ПРИМЕЧАНИЕ: См. Тип BA - подводный выход, свободный поток на входе. чтобы определить, заполнен ли весь трубопровод.

Уравнение 8-11 определяет потери энергии (потери на трение) через канал:

Якорь: #FTOKLUIC

Уравнение 8-11.

где:

    Якорь: #MQEXCFMA
  • h f = потеря напора из-за трения в стволе водопропускной трубы (фут.или м)
  • Якорь: #VXAAUKWX
  • S f = крутизна трения (футы или м) (см. уравнение 8-13).
  • Анкер: #ESBNSCFI
  • L = длина водопропускной трубы с полным потоком (футы или м).
  • Уравнение 8-12 используется для вычисления глубины гидравлического линия отметки на внутренней стороне впускного конца трубы.Обратитесь к энергетическому балансу на входе, чтобы определить верхний уровень воды.

Якорь: #BCFLLAXX

Уравнение 8-12.

где:

    Якорь: #WETXWKPY
  • H i = глубина гидравлической линии уклона на входе (футы или м)
  • Якорь: #QVOEEIFM
  • h f = потери напора на трение (фут.или m) как рассчитано по уравнению 8-11.
  • Якорь: #ECDWUTXS
  • S o = уклон водопропускной трубы (футы / фут или м / м)
  • Анкер: #EFKUIRYD
  • L = длина водопропускной трубы (футы или м)
  • Якорь: #XEUUKLCS
  • Ho = глубина выпуска (фут.или м).
  • Уравнение 8-13 используется для расчета крутизны трения. Если трение уклон более пологий, чем уклон трубопровода, гидравлическая линия уклона может опуститься ниже верха ствола. Если это произойдет, обратитесь к Типу BA - Полный поток на выходе и свободный su

Гидравлический прыжок - Типы и характеристики гидравлического прыжка

Что такое гидравлический прыжок?

Гидравлический скачок - это скачок или стоячая волна, образующаяся при изменении глубины потока воды из сверхкритического в докритическое состояние.

Когда наклон открытого канала уменьшается от крутого до умеренного, глубина потока воды увеличивается до критической глубины, и в какой-то момент возникает неустойчивость потока. Поток становится турбулентным до тех пор, пока ниже по потоку не будет достигнута новая нормальная глубина. Это называется гидравлическим прыжком.

Определение различной глубины потока в открытом канале:

Требуется понимать, что такое разные глубины потока, чтобы понять определение гидравлического прыжка.

Глубина потока:

Глубина потока - это глубина, на которой вода течет над уровнем земли в открытом канале.

Критическая глубина:

Критическая глубина открытого канала - это минимальная глубина воды над уровнем земли, при которой скорость потока очень высока, а течение имеет большую турбулентность. Скорость воды на этой глубине называется критической скоростью.

Сверхкритическая глубина:

Сверхкритическая глубина - это глубина воды, которая меньше критической глубины, и она представляет собой очень тяжелую и сверхкритическую ситуацию для основных потоков, происходящих в плотинах, плотинах и многих ирригационных сооружениях.Скорость воды на этой глубине больше критической. Течение в этой области называется сверхкритическим.

Докритическая глубина:

Докритическая глубина - это глубина, превышающая критическую глубину. Скорость воды на этой глубине меньше критической. Течение в этой области называется докритическим.

Основные характеристики гидравлического прыжка:

1. Скачок неустойчивый, неравномерный

2. В зависимости от направления ветра и сильного ветра он меняет свои свойства и иногда может быть неустойчивым и волнистым.

Использование гидравлического прыжка:

Гидравлический скачок обязательно образуется для уменьшения энергии воды, когда сток падает в водосброс. Становится необходимым уменьшить его энергию и поддерживать стабильные скорости, это явление называется диссипацией энергии в гидротехнических сооружениях.

Типы гидравлических прыжков - на основе числа Фруда:

В основном гидравлический скачок возникает во многих типах в зависимости от топографических особенностей и шероховатости поверхности слоя, а также многих других естественных взаимосвязей.Этот тип гидравлического прыжка, вероятно, можно выразить на основе числа Фруда:

.

1. Необычный гидравлический прыжок - Число Фруда (от 1 до 3):

Нерегулярный скачок нерегулярный, неправильно сформированный, и в частицах воды есть определенные турбулентности.

2. Слабый прыжок - число Фруда (от 3 до 6)

Слабый скачок имеет место, когда скорость в воде очень низкая, и частицы воды не могут быть стабильными и текут по-разному.

3.Качающийся гидравлический прыжок - число Фруда (6-20)

Осциллирующий скачок образуется, когда колеблющаяся струя входит в сверхкритическое состояние, и там количество частиц начинает колебаться по часовой стрелке или против часовой стрелки, образуя более слабые приливы или волны на верхней поверхности. Также поток зависит от сильного потока воздуха в одном направлении.

4. Устойчивый гидравлический прыжок - число Фруда (от 20 до 80)

При устойчивом прыжке поверхность слоя довольно шероховатая, поэтому частицы начинают стремиться в одном направлении с большой скоростью и турбулентностью, потери на трение больше в этом типе прыжка.

5. Сильный гидравлический прыжок - число Фруда (больше 80)

Сильный прыжок - это идеальный прыжок, образующийся, когда потери на трение больше, давление воздуха одинаковое, а скорость очень высока, поэтому потери имеют место. Вода меняет свое состояние с суперкритического на докритическое на очень короткой длине по сравнению со всеми другими типами гидравлических прыжков, поэтому этот прыжок очень предпочтителен для плотин.

Подробнее:

Что такое плотина? Типы водосливов и водосливов

Гидрологический цикл - процесс и компоненты

Типы дождемеров для измерения количества осадков

Работы поперечного дренажа и их виды

Гидравлические резервуары - Типы расширительных резервуаров, их функции и применение

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *