Устройство электрогенератора: Генератор — устройство и принцип работы, типы и основные характеристики.

Содержание

Генератор — устройство и принцип работы, типы и основные характеристики.

Это устройство, которое механическую энергию вращения двигателя преобразует в электрическую. В зависимости от назначения генератора применяются асинхронные и синхронные альтернаторы 1-но или 3-х фазного исполнения.

Синхронные альтернаторы отличаются более высоким качеством вырабатываемой электроэнергии и способностью выдерживать 3-х кратные мгновенные перегрузки. Они построены конструктивно сложнее асинхронных: например, у них на роторе находятся обмотки.

Асинхронные альтернаторы дешевле и устроены гораздо проще синхронных: их ротор напоминает обычный маховик, но качество генерируемого электричества невысокое. Если к генератору с таким генератором подключается электродвигатель с большими пусковыми токами (холодильник, насос, электроинструмент), то нужно делать соответственный запас по мощности выбираемого генератора с асинхронным генератором, который не переносит пиковых перегрузок. Асинхронные применяются только в некоторых переносных моделях, в профессиональных и стационарных устанавливаются только синхронные.

Альтернаторы


Однофазный малой мощности
Мощный трёхфазный

Частота выходного напряжения генератора зависит от частоты вращения приводного двигателя, которая в свою очередь зависит от величины нагрузки и от количества полюсов альтернатора. Чем больше нагрузка, тем меньше частота вращения двигателя и, соответственно, меньше частота выходного напряжения. Чтобы частота вырабатываемой электроэнергии не выходила за пределы, определенные ГОСТом, применяются регуляторы оборотов двигателя.

Частота вращения двигателя стабилизируется двумя видами регуляторов:
  • механическими, которые настроены таким образом, что при нагрузке 75-90% частота выходного напряжения равна 50 Гц. Соответственно, на более малых нагрузках (10-30 % от номинала генератора) частота напряжения будет в пределах 52-53 Гц;
  • электронными, предназначенными поддерживать постоянную частоту 50 Гц вне зависимости от суммарной нагрузки на двигатель.
    Генераторы с электронной стабилизацией частоты вращения двигателя стоят дороже обычных с механическим регулятором.

Силовая часть альтернатора и цепи нагрузки комплектуется автоматами защиты или трёхполюсными переключателями-автоматами с ручным или электрическим приводом. Напряжение можно снимать либо через вмонтированные в распределительный щит розетки (на маломощных генераторах), либо через клеммные выводы.

Устройство и принцип работы генератора переменного тока — урок. Физика, 9 класс.

Проведём опыт по получению индукционного тока. Будем вдвигать и выдвигать постоянный магнит в катушку, соединённую с гальванометром.

 

 

Рисунок \(1\). Опыт по получению индукционного тока

 

Можно наблюдать отклонение гальванометра в одну и другую стороны. Это значит, что по катушке течёт индукционный ток, у которого изменяется как модуль, так и направление с течением времени. Такой ток называется переменным током.


Переменный ток создаётся и в замкнутом контуре изменяющимся магнитным потоком, пронизывающим его площадь. Изменение магнитного потока связано с изменением индукции магнитного поля. Величину магнитного потока можно изменить, поворачивая контур (или магнит), то есть меняя его ориентацию по отношению к линиям магнитной индукции.

 

 

Рисунок \(2\). Изменение магнитного потока при вращении постоянного магнита


Этот принцип получения переменного электрического тока используется в механических индукционных генераторах — устройствах, преобразующих механическую энергию в электрическую. Основные части: статор (неподвижная часть) и ротор (подвижная часть).

 

 

Рисунок \(3\). Схема генератора: \(1\) — корпус; \(2\) — статор; \(3\) — ротор; \(4\) — скользящие контакты (щётки, кольца)


В промышленном генераторе статором является цилиндр с прорезанными внутри него пазами, в которые уложен витками провод из меди с большой площадью поперечного сечения (аналогично рамке). Переменный магнитный поток в таких витках порождает переменный индукционный электрический ток.


Ротор — это постоянный магнит или электромагнит. Электромагнит представляет собой обмотку с железным сердечником внутри, по которому течёт постоянный электрический ток. Он подводится от внешнего источника тока через щётки и кольца.

 

Какая-либо механическая сила (паровая или водяная турбина) вращает ротор. Вращающееся одновременно с ним магнитное поле образует изменяющийся магнитный поток в статоре, в котором возникает переменный электрический ток.

 

 

Рисунок \(4\). Устройство гидрогенератора: \(1\) — статор; \(2\) — ротор; \(3\) — водяная турбина

Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие.

Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.


Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию.

Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами.

Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.


Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока.

На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т.е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы — обычно 2…3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в «треугольник» фазные токи меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у «звезды» больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».

Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т.е. получается «двойная звезда». Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом «+» генератора, а другие три с выводом «—» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.  Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т.д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т.е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+» генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя» используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное — только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы — полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т. к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с «массой» и выводом «+» генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колеи — скользящая, со стороны привода — плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства — резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец.
У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта — клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8…2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т.п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

Устройство бензинового генератора, принцип работы бензинового генератора

Бензиновые генераторы остаются довольно востребованными портативными источниками питания среди многих слоев населения. Однако, несмотря на свое удобство, устройство требует соблюдения определённых правил в ходе своей эксплуатации, о которых вы сможете узнать ниже.

 

Устройство бензинового генератора

Перед началом процесса установки и эксплуатации настоятельно рекомендуем ознакомиться с устройством бензинового генератора. Архитектура большинства бензиновых источников питания включает в себя:

  1. Датчики и индикаторы:
    • Вольтметр. Показывает уровень выходной мощности производимого электричества. В зависимости от модели генератора, бывает как аналоговым, так и электронным. Последние могут предоставлять более широкий спектр данных, включая общий уровень потребляемой энергии от разных устройств. Подлежит замене и может быть приобретен отдельно.
    • Датчик уровня топлива. Отображает количество заправленного бензина. Включает в себя индикатор с поплавком, который замеряет уровень оставшегося топлива. Существуют также цифровые версии датчиков, выводящие данные об остатке бензина в процентах.
    • Контрольная лампочка. Сигнализирует об исправности работы генератора.
  1. Переключатели на контрольной панели:
    • Кнопка включения 12 V. Включает подачу тока через розетку на 12 V.
    • Выключатель двигателя. В зависимости от типа стартера, выключатель представляет из себя либо кнопку запуска двигателя (при внешнем стартере), либо переключатель режима (при встроенном или автоматическом).
    • Предохранитель (прерыватель цепи). Обеспечивает экстренное и безопасное отключение генератора в случае короткого замыкания, защищая устройство от перегрева и аварии.
  1. Контакты и выходы для потребителей:
    • Розетка 12 V. Выход постоянного тока, пригодный для подпитки неэнергоёмких устройств.
    • Розетка 220 V. Стандартный выход постоянного тока, используемый для подключения генератора к сети потребителей.
    • Клемма заземления. При соединении с рамой корпуса и заземлителем обеспечивает устройству надежное заземление.
  1. Корпус устройства:
    • Рама. Основа, на которой установлен бензиновый генератор.
    • Топливный бак. Резервуар для топлива, за счет которого осуществляется работа бензинового генератора.
    • Рукоятка ручного стартера. С помощью нее производится зажигание двигателя и запуск источника питания.
    • Воздушный фильтр. Обеспечивает очистку топливных выхлопов от вредных химических веществ. Нуждается в регулярной чистке и подлежит замене.
    • Топливный кран. Отвечает за начало и прекращение подачи бензина в камеру сжигания.
    • Крышка и щуп для масла. Для проверки уровня масла в генераторе.
    • Пробка для слива масла. Закрывает резервуар для слива масла.
    • Защитный экран глушителя.

 

Особенности обслуживания и работы бензинового генератора

Заземление

Обязательным условием эксплуатации бензинового генератора является его заземление. В случае отсутствия или неправильной установки последнего использовать источник электропитания строго запрещается, ведь есть высокий риск поражения пользователя током в ходе эксплуатации генератора. В качестве заземлителей чаще всего используется лист оцинкованного железа достаточных размеров (минимум 1000 х 500 мм) либо стержень из металла не менее 1,5 см в диаметре.

На каждом генераторе обязательно присутствует клемма заземления, которая соединяется с заземлителем, погруженным в землю до уровня влажных слоев грунта, посредством крепко закрепленного провода. Минимальное сопротивление, необходимое контуру для обеспечения надежного заземления равняется 4 Ом.

Для проведения заземления обязательно требуется привлечь специалиста, который имеет при себе необходимое оборудование и защиту для безопасного завершения работ.

Проверка уровня масла и заправка устройства

Топливный генератор нуждается в определенном уходе, как и любое другое устройство. В первую очередь, речь идет о своевременной замене масла и дозаправке. Если без бензина источник питания не способен работать, то нехватка масла в картере двигателя может привести к серьезной поломке оборудования и способствует быстрому выходу его из строя. Проверка уровня масла осуществляется посредством щупа, установленного в крышку горловины. Предварительно протерев его, опустите щуп в маслоналивную горловину до упора, а затем посмотрите, до какого уровня тот покрылся маслом. Стоит отметить, что данная процедура выполняется исключительно при выключенном и остывшем двигателе (не раньше, чем через пять минут после отключения генератора) и желательно проводить её перед каждым запуском бензинового генератора.

Перед тем, как заправить устройство бензином, убедитесь, что используете марку топлива, указанную разработчиком генератора в соответствующей инструкции. В зависимости от типа двигателя, назначается разный состав топлива. Так, двухтактные двигатели работают на основе маслобензиновой смеси в строгих пропорциях (обычно они также указываются в инструкции), в то время как четырёхтактные заправляются чистым и неразбавленным топливом. Тем не менее, слабо этилированный бензин запрещается использовать в любых генераторах.

Запуск бензинового генератора

Процедура запуска бензинового генератора включает в себя ряд действий, выполнять которые следует в следующей строгой последовательности:

  1. Убедитесь, что к топливному генератору не подключены никакие энергопотребители, а сам он обеспечен достаточным объемом бензина и масла.
  2. Переведите предохранитель в выключенное состояние.
  3. Обеспечьте подачу бензина к двигателю посредством топливного крана.
  4. Если мотор был неактивен несколько часов и успел остыть (или вовсе не запускался ранее), закройте соответствующей ручкой воздушную заслонку. В обратном случае, оставьте её открытой.
  5. Предварительно переведя выключатель двигателя в положение «On», запускайте генератор посредством стартера (если он не автоматический). Для этого требуется потянуть на себя его ручку и резко дернуть вверх, когда почувствуете сопротивление.
  6. В течение 3-5 минут дайте двигателю прогреться, после чего откройте воздушную заслонку. Пропустите этот пункт, если на этапе 4 заслонка не закрывалась.

Отключение генератора

Так же, как и запуск, отключение топливного источника питания происходит по определенной схеме:

  1. Сначала отключаются устройства-потребители.
  2. Выключается предохранитель.
  3. Затем отключается зажигание.
  4. В последнюю очередь топливным краном прекращается подача бензина.

Тут же стоит подметить, что в тех случаях, когда электрогенератор работал на высоких нагрузках, перед его выключением следует дать двигателю поработать несколько минут в штатном режиме.

Газовый генератор: устройство, характеристики, подключение, выбор

Многие современные устройства требуют запитки электрической энергией. Но далеко не всегда существует возможность подключиться к сети. Причиной тому является относительное удаление линий или постоянное перемещение потребителя. В таких ситуациях на помощь приходит газовый генератор, как альтернативный вариант автономного электроснабжения на тех же стройках, загородных домах, промышленных предприятиях и даже военных объектах.

Устройство и принцип работы

Рисунок 1: конструкция газового генератора

Конструктивно газовые электростанции представляют собой устройство, которое состоит из блоков:

  • Для подачи, смешивания или генерации газа (их наличие и конструкция может отличаться в зависимости от модели и принципа работы устройства).
  • Двигателя внутреннего сгорания (ДВС), в котором происходить горение  газа.
  • Генераторного – получает вращающее усилие от ДВС.
  • Электронный блок – комплекс приборов, позволяющий осуществлять контроль над режимами работы всех элементов газгена и их параметрами (давление газа, напряжение и т.д.).
  • Рамы или корпуса, которые осуществляют несущие функции для оборудования. В некоторых ситуациях могут защищать генератор от механических повреждений.
Рисунок 2: Принцип действия газового генератора

Посмотрите на рисунок, здесь показан принцип действия газового генератора. Изначально от источника газоснабжения, в данной ситуации рассматривается вариант подачи газа из баллона 1, подается горючее вещество в ДВС. При этом баллонный газ движется через редуктор и закрепленный хомутами шланг. При возгорании газа в ДВС возникает вращающий момент, передающийся на электрический генератор посредством вала. Генератор, от такого воздействия начинает вырабатывать напряжение для однофазных или трехфазных потребителей.

Основные характеристики газовых генераторов

При выборе конкретной модели газового генератора предприятие или бытовой потребитель отталкивается от определенных параметров. Которые устанавливают их функциональные данные и предопределяют возможность установки газового генератора для тех или иных целей.

Продолжительность работы

В зависимости от задач, которые ставятся перед источником электроэнергии газовые генераторы подразделяются на:

  • Устройства постоянного действия – представляют собой автономную электростанцию, которая работает для постоянного электроснабжения какого-либо потребителя без подключения внешних сетей.
  • Агрегаты для периодического включения – используются в промышленных установках с плавающим графиком работы или для дачных участков, небольших поселений и т.д.
  • Устройства аварийного электроснабжения – позволяют запитывать приборы при отключении электричества в основной сети.

Количество фаз

В зависимости от количества фаз такие источники электричества подразделяются на однофазные и трехфазные. Первые, в большинстве своем, используются для бытовых потребителей или небольших промышленных цехов со стандартной линейной нагрузкой. Второй тип применяется для трехфазных сетей, к которым подключаются многофазная нагрузка – двигатели, промышленные объекты, мощное станочное оборудование и т.д. В работе которых требуется использование нескольких фаз.

Тип используемого топлива

Наиболее часто встречаются газовые генераторы, работающие на природном газе. При наличии в непосредственной близи газовой магистрали подключение может производиться от нее, но при этом необходимо получить разрешение газовой службы. В противном случае в качестве источника природного газа можно установить баллоны для запитки газового генератора.

Помимо классического топлива, могут использоваться газы с низкими или высокими параметрами тепловыделения. Это позволяет задать определенные режимы работы, к примеру, может применяться газ с низкой детонирующей способностью или с малым содержанием определенного вещества (пропана, бутана или других примесей). Поэтому по типу топлива разделяют такие установки, которые работают на бутане, пропане, биогазе и других комбинациях газовой смеси.

Мощность

Наиболее важной характеристикой газовых электрогенераторов является мощность, которую тот способен выдать на выходе. Так как от этого параметра будет зависеть возможность подключения тех или иных электрических приборов. В настоящее время выпускаются приборы на мощность от 2 до 500кВт. Для обеспечения достаточного резерва мощности конкретная модель выбирается по принципу суммирования всех промышленных или бытовых приборов, подключенных к сети и прибавления к полученной величине 20 – 30% для запаса.

Тип охлаждения

Из-за постоянного сгорания топлива газовый генератор может перегреваться. Для предотвращения воздействия высокой температуры на элементы конструкции они подвергаются охлаждению. На практике применяют два типа охлаждения – воздушное и водяное.

Воздушное подразделяется на естественное (используется в открытых моделях с небольшой мощностью  и рабочей температурой) и принудительное. Последний вариант воздушного охлаждения подразумевает различные способы обдува и направления воздушного потока на двигатель и генератор.

Жидкостное охлаждение помимо функции отбора тепла от газового генератора также позволяет использовать разогретую воду для отопления или обогрева жилых или производственных помещений.

Тип пуска

Тип пуска в газовых генераторах подразделяются на ручной и автоматический запуск. Первый вариант является наиболее актуальным в случаях, когда установка включается редко и этот процесс имеет периодичность или его можно предусмотреть (приезд на дачу, работа на строительной площадке и т.д.) Автоматическое включение подходит в тех случаях, когда необходимо обеспечить резервное питание при исчезновении  основного.

Регулировка напряжения (AVR)

Большинство газовых генераторов оснащаются блоком АВР, который позволяет контролировать напряжение, выдаваемое потребителям. Данный блок обеспечивает качественное снабжение электрическим током и является стабилизатором, выравнивающим кривую в соответствии с заданными параметрами. Благодаря чему питание приборов ни чем не будет отличаться от запитки внешним источником электроснабжения.

Наиболее эффективными в плане стабилизации напряжения являются инверторные агрегаты. Такие газовые генераторы вырабатывают переменное напряжение, затем преобразуют его в постоянное, а после постоянный ток и напряжение инвертируют в переменное с идеальными параметрами.

Вариант исполнения

Рисунок 3: открытый и закрытый газовый генератор

В зависимости от особенностей исполнения выделяют открытые и закрытые газовые генераторы. Первый вариант устанавливается внутри помещений и подразумевает отсутствие защитного кожуха. Открытые газовые генераторы обладают лучшими параметрами естественного охлаждения и меньшим весом, но при этом издают больше шума. Закрытые можно использовать для наружной установки, так как внешний кожух предотвращает нарушение работы от  атмосферных осадков и других факторов.

Также конструктивно газовый генератор может оснащаться колесами для перемещения. Их наличие значительно упрощает манипуляции даже с небольшими моделями. Поэтому при покупке стоит задуматься о наличии колес, если вы будет передвигать газовый генератор.

Степень защиты IP

Уровень защиты любого газового котла отличается по шкале от 0 до 5. Где 0 обозначает, что модель вообще не имеет защиты от внешних факторов. А 5 – это самая высокая степень защиты, позволяющая эксплуатировать установку даже в самых неблагоприятных условиях. Данный параметр указывается на корпусе устройства. Следует отметить, что наиболее распространенной для бытовых нужд является степень IP от 2 до 3.

Уровень шума

Любой газовый, дизельный или бензиновый генератор создает определенный уровень шума. Но звук, в зависимости от расстояния, имеет свойство ослабевать. Поэтому в среднем бытовые модели могут создавать звуковое давление от 40 до 100дБ. Установки высокой мощности имеют куда более высокий показатель, но для его уменьшения применяются специальные меры.

В зависимости от места его расположения, этот параметр может значительно усугублять рабочий процесс устройства. К примеру, на открытом пространстве шумность не так ощущается, как и в каком-либо технологическом процессе на производстве. А вот в домашних условиях, небольшие размеры комнаты и высокий уровень звука  может вызвать дискомфорт у жильцов. Поэтому стоит обеспечить шумоизоляцию самого газового генератора или места его установки.

Габариты

Размеры газового генератора во многом зависят от мощности расположенного в нем оборудования. Поэтому, как правило, маломощные агрегаты имеют габариты 1 м×0,5 м×0,5 м или близкие к ним. А устройства большой мощности в районе 2 м×1 м×1 м и более. Самые мощные генераторы имеют размер 5 м×2 м×2 м.

Тип машины

По типу машины газовые резервные источники подразделяются на асинхронные и синхронные. Первые отличаются более простой конструкцией, но при этом сдают в параметрах качества вырабатываемой электроэнергии. Вторые более сложные и дорогие в эксплуатации, но на выходе потребитель получает стабильные параметры мощности, тока и напряжения. Поэтому для чувствительных потребителей необходимо устанавливать газовые генераторы с синхронным двигателем.

Преимущества и недостатки

К преимуществам газовых генераторов следует отнести:

  • Большой моторесурс и КПД, в сравнении с генераторами на других видах топлива.
  • Неприхотливы в работе – могут легко функционировать при температуре от – 50°С до +50°С в сравнении с теми же генераторами на дизельном топливе.
  • Более длительный срок эксплуатации за счет отсутствия осадков из продуктов сгорания газа в сравнении с твердым топливом и нефтепродуктами.
  • Продолжительная работа – один баллон дает расход газа в два раза дольше, чем одна заправка бензиновых моделей.
  • Автоматизация и полная автономия в работе при наличии источника магистрального природного газа и системы автозапуска. При этом выработка электроэнергии не ограничивается по времени за исключением перерывов на техническое обслуживание.
  • Высокая надежность, так как газ не теряет своих свойств. В сравнении с нефтепродуктами, которые могут разложиться уже за полгода, даже сжиженный газ длительно остается пригодным для использования.

К недостаткам газовых генераторов следует отнести:

  • Ограничения на ввод в работу – в связи с опасностью газовых смесей, для использования такой установки требуется получить соответствующие разрешения на подключение, эксплуатацию и ряд других документов.
  • Выдает сравнительно меньшую мощность, чем бензиновый агрегат.
  • Обладает относительно большими габаритами.
  • Дорогостоящий и трудоемкий ремонт.

Критерии выбора

При выборе конкретной модели следует руководствоваться вышеприведенными характеристиками устройств, а именно:

  • Какую мощность вам необходимо выдать в сеть?
  • Сколько фаз требуется для потребителя?
  • Будет использоваться в качестве резервного или основного источника?
  • Питается от магистрального газопровода или от баллона?
  • Где будет устанавливаться газген?
  • Какие габариты приемлемы для установки?

Остальные нюансы рассматриваются в соответствии с местными условиями, особенностями нагрузки и пожеланиями заказчика.

Что выбрать? Обзор лучших моделей газгенов

Из всего предложенного многообразия следует осторожно относиться к малоизвестным производителям. Так как они нередко грешат преувеличением параметров и замалчиванием недостатков. Поэтому чтобы лучше разобраться в том, какое устройство использовать в вашем случае, определитесь с  его назначением.

Для частного дома или дачи

Для снабжения электроэнергией небольшого дома или дачи подойдет однофазная модель от 5 до 25кВт. В редких случаях для потребителей с трехфазной нагрузкой (электрических машин, специального оборудования) необходимы трехфазные агрегаты. Среди наиболее простых однофазных можно выделить генераторы серии REG GG, Briggs & Stratton  или E3 POWER.

Для использования в качестве мобильной электростанции

Функции  мобильной электростанции для снабжения передвижной строительной площадки отлично подойдут трехфазные или однофазные модели мощностью от 25кВт и более. Однофазные источники бесперебойного питания подходят для тех ситуаций, когда нет необходимости запитывать трехфазную нагрузку. Одним из лучших примеров на отечественном рынке является газовый генератор SDMO. Который может вырабатывать электроэнергию в течении 8 суток без перерыва.

Для продолжительного электроснабжения

Для продолжительного бесперебойного питания электрической энергией применяются мощные агрегаты от 100 до 500кВт. В связи со стационарной установкой они могут иметь водяное охлаждение и применяться для отопления каких-либо объектов.

В качестве примера газового генератора для продолжительного электроснабжения на отечественном рынке широко используются генераторы Generac SG300  на 240 кВт. Такая электростанция имеет жидкостное охлаждение и выдает трехфазное питание. Одним из самых мощных является ТСС АГ-500С на 500кВт, который запросто запитает даже небольшой поселок или завод.

Рисунок 4: Газовый генератор ТСС АГ

Установка и подключение газового генератора

Процесс подключения может осуществляться либо к магистральной трубе или к баллону с газом. Первый вариант достаточно сложный, так как требует дополнительного согласования с газовой компанией, оформления соответствующих документов, составления техпроцесса и т.д. Запитать генератор от обычного баллона куда проще.

Помимо этого важно соблюдать следующие меры:

  • Достаточный уровень вентиляции – газовый генератор должен хорошо проветриваться, не зависимо от того, где его устанавливают (на улице или в помещении). При недостаточном движении воздуха КПД устройства может значительно пострадать, поэтому на практике устанавливается дополнительная система вентиляции.
  • Объем помещения – если газовый генератор располагается в помещении, то его объем должен быть не менее 15м3. При этом размещение в подвальных помещениях устройств, работающих на сжиженном газе, запрещено.
  • Необходимо обеспечить отвод выхлопных газов за счет удлинения соответствующей трубы. В помещениях ее выводят в отдельное отверстие, а на открытом пространстве способ определяется в зависимости от местных условий.
Рисунок 5: Подключение газового генератора

Посмотрите на рисунок, подключение производиться через газовый редуктор 1, к которому подводится запорный кран 2. От запорного крана к агрегату прокладывается гибкий шланг и подключается к соответствующему патрубку ДВС. Снабжение потребителя, при совместной работе генератора с внешним источником используется распределительный щиток 4. Для обеспечения безопасности в случае попадания электрического потенциала на корпус, газовый генератор соединяется с контуром заземления 3.

Как видите, принципиальная схема подключения имеет идентичный принцип, как для магистрального газоснабжения, так и для баллонного.

Список использованной литературы

  • Ольховский Г.Г., Казарян В.А., Столяревский А.Я «Воздушно-аккумулирующие газотурбинные электростанции» 2011
  • Базеев Е.Т. «Развитие теплоэнергетики и гидроэнергетики» 2012 – 2013
  • Кириллов И.И. «Газовые турбины и газотурбинные установки» 1956
  • Костюк А.Г., Фролов В.В. «Паровые и газовые турбины» 1985.

BE Энергетическое оборудование — Генераторы

Это относительно небольшие машины, которые могут сами вырабатывать электричество. Они имеют решающее значение для автономных работ, могут использоваться в аварийных ситуациях для электроснабжения и часто оказываются используется в развлекательных мероприятиях, таких как кемпинг и рыбалка.


КАК СОЗДАЕТСЯ ЭЛЕКТРИЧЕСТВО?

Переносные генераторы используют накопленную химическую энергию, которая содержится в используемом топливе, таком как бензин. запустить двигатель. Затем двигатель вырабатывает механическую энергию, вращая генератор переменного тока.Генератор переменного тока индуктор, такой как медь, находящийся внутри магнитного поля. Движение проводника в электрическом поле индуцирует поток электрических зарядов, который затем передается по проводам к выходным розеткам, которые будут использоваться управлять устройствами.


ХАРАКТЕРИСТИКИ ГЕНЕРАТОРОВ: НАПРЯЖЕНИЕ, АМПЕР И ВАТТ

При сравнении генераторов важно понимать значение и соотношение между вольтами, амперы и ватты.За этими терминами стоит глубокая и сложная наука, но ради обсуждения портативных генераторов лучше всего рассматривать в практических применениях.

  • Вольт: Можно считать силу или давление приложенного электричества. В Северной Америке это установлено на 120 В для большинства устройств и 240 В для устройств с повышенным энергопотреблением, таких как стиральные машины и сушилки. (Доступны более высокие напряжения, но они применимы к более тяжелым промышленным ситуациям и не относятся к портативным устройствам). генераторы).
  • Ампер: Если Вольт — это давление электричества, то Ампер будет потоком. Каждому электрическому устройству нужно определенное давление (вольт) и определенное количество ампер для работы. Вольт постоянные (120 В или 240 В), а амперы равны. переменная в зависимости от устройства. Например, компьютерный монитор обычно менее 1 ампер, а в качестве тостера нужно 9 ампер.
  • Вт: — базовая единица мощности. Для электричества это рассчитывается как амперы, умноженные на вольты.Все генераторы рассчитаны в ваттах, потому что, если вы знаете ватты, и поскольку напряжение составляет либо 120 В, либо 240 В. (четко обозначено на розетках), тогда амперы можно легко определить

Практически все генераторы рекламируются мощностью в ваттах. Это требует дальнейшего изучения, потому что — это максимальная / пиковая мощность и номинальная мощность в рабочем / непрерывном режиме. Макс. Ватт — это всегда более высокий рейтинг, который может достигается за несколько секунд и может справиться с потребностями в энергии запуска, которые есть у некоторых устройств.Беговые ватты это то, что машина может производить в стабильном темпе в течение всего дня.

Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь.Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле.Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка / рама
Описание основных компонентов генератора приведено ниже.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, а большие двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае малых блоков генератора, топливный бак является частью занос базы генератора или смонтирован на верхней части корпуса генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Трубопровод от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — теперь обмотки возбудителя работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
ST e art Функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основная сборка / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Генераторы и динамо


Развитие и история компонента, который первым сделал электричество коммерчески осуществимо

Динамо Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо — устройство, вырабатывающее постоянного тока электроэнергии с помощью электромагнетизма. Он также известен как генератор, однако термин «генератор» обычно относится к «генератору переменного тока», который вырабатывает мощность переменного тока.

Генератор — обычно этот термин используется для описания генератора , который создает мощность переменного тока, используя электромагнетизм.

Генераторы, Динамо и Батарейки — три инструмента, необходимые для создания / хранения значительное количество электроэнергии для использования людьми.Аккумуляторы возможно, был обнаружен еще в 248 году до нашей эры. Они просто используют химические реакция на производство и хранение электричества. Ученые экспериментировали с батарея, чтобы изобрести первые лампы накаливания, электродвигатели и поезда и научные испытания. Однако батареи не были надежными или рентабельно для любого обычного электрического использования, именно динамо-машина радикально изменил электричество из диковинного в выгодное, надежное технология.

1. Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как Это работает:

Базовый:

Сначала вам понадобится механический источник энергии, такой как турбина (приводимая в действие падающей водой), ветряная турбина, газовая турбина или паровая турбина. Вал от одного из этих устройств подключен к генератору для выработки энергии.

Динамо и генераторы работают используя дикие сложные явления электромагнетизма . Понимание поведение электромагнетизма, его полей и его эффектов очень велико. предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты первая батарея, чтобы заработала хорошая мощная динамо-машина. Мы будет проще, чтобы познакомить вас с интересным предметом выработки электроэнергии.

В самом общем смысле Генератор / динамо-машина — это один вращающийся магнит, находящийся внутри воздействия магнитного поля другого магнита. Вы не видите магнитное поле, но это часто иллюстрируется линиями потока. На иллюстрации над линиями магнитного потока будут следовать линии, созданные железом документы.

Генератор / динамо-машина произведена сборка неподвижных магнитов (статора), создающих мощное магнитное поле, и вращающийся магнит (ротор), который искажает и разрезает магнитный магнитные линии статора.Когда ротор прорезает линии магнитного поток делает электричество.

Но почему?

Согласно закону индукции Фарадея если вы возьмете провод и будете двигать его вперед и назад в магнитном поле, поле давит на электроны в металле. Медь имеет 27 электронов, последние два на орбите легко переносятся на следующий атом. Это движение электронов — это электрический поток.

Смотрите видео ниже показано, как ток индуцируется в проводе:

Если взять много провода например, в катушке и перемещая ее в поле, вы создаете более мощный «поток» электронов.Мощность вашего генератора зависит по телефону:

«л» — длина проводник в магнитном поле
«v» — скорость проводника (скорость ротора)
«B» — сила электромагнитного поля

Вы можете производить расчеты, используя эта формула: e = B x l x v

Смотрите видео для демонстрации всего этого:

О магнитах:

Вверху: простой электромагнит называется соленоидом.Термин «соленоид» на самом деле описывает трубчатая форма, созданная витой проволокой.

Магниты обычно не из природного магнетита или постоянного магнит (если это не маленький генератор), но они медные или алюминиевый провод, намотанный на железный сердечник. Каждая катушка должна быть под напряжением с некоторой силой, чтобы превратить его в магнит. Эта спираль вокруг железа называется соленоид. Соленоиды используются вместо природного магнетита, потому что соленоид НАМНОГО мощнее.Небольшой соленоид может создать очень сильное магнитное поле.

Выше: Катушки с проволокой в ​​генераторах должны быть изолированы. Отказ генератора вызвано слишком высоким повышением температуры, что приводит к поломке изоляции и короткое замыкание между параллельными проводами. Подробнее о проводах>

Термины :
Электромагнетизм — изучение сил, которые происходит между электрически заряженными частицами
Ротор — часть генератора динамо, которая вращается
Якорь — такой же, как ротор
Поток — силовые линии в магнитном поле, это измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе / динамо-машине, которые не двигаются, они устанавливают стационарное магнитное поле
Соленоид — магнит, созданный проволочной катушкой вокруг утюга / ферриса сердечник (соленоид технически означает форму этого магнита, но инженеры называют соленоид и электромагнит как синонимы.
Коммутатор — Узнайте больше о них здесь
Крутящий момент — сила во вращательном движении

Динамо

Динамо это старый термин, используемый для описания генератора, вырабатывающего постоянный ток мощность . Мощность постоянного тока отправляет электроны только в одном направлении. Проблема с простым генератором заключается в том, что когда ротор вращается, он в конечном итоге полностью поворачивается, меняя направление тока.Ранние изобретатели не знать, что делать с этим переменным током, переменный ток более сложные в управлении и проектировании двигателей и фонарей. Ранние изобретатели пришлось придумать способ улавливать только положительную энергию генератора, поэтому они изобрели коммутатор. Коммутатор — это переключатель, позволяющий ток течет только в одном направлении.

См. видео ниже, чтобы увидеть, как работает коммутатор:

Динамо состоит из 3 основных компонентов : статора, якоря и коммутатор.

Кисти входят в состав коммутатора, щетки должны проводить электричество, поскольку контакт с вращающимся якорем. Первые кисти были актуальны проволочные «щетки» из мелкой проволоки. Они легко изнашивались и они разработали графические блоки для выполнения той же работы.

статор представляет собой неподвижную конструкцию, которая делает магнитные поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита.Для больших динамо требуется электромагнит.

Якорь изготовлен из витых медных обмоток, которые вращаются внутри магнитного поля, создаваемого статором. Когда обмотки движутся, они прорезают силовые линии магнитного поля. Этот создает импульсы электроэнергии.

Коммутатор необходим для получения постоянного тока. В потоках мощности постоянного тока только в одном направлении через провод, проблема в том, что вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота, поэтому коммутатор — это поворотный переключатель, который отключает питание в течение обратной текущей части цикла.

Самовозбуждение:

Так как магниты в динамо-машине являются соленоидами, для работы они должны быть запитаны. Так что помимо кистей какая мощность крана выйти на главную цепь, есть другой набор щеток для получения энергии от якоря для питания статора магниты. Это нормально, если динамо-машина работает, но как начать динамо-машина, если у вас нет мощности для запуска?

Иногда арматура сохраняет некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает небольшая мощность, достаточная для возбуждения соленоидов статора.Затем напряжение начинает расти, пока динамо-машина не наберет полную мощность.

Если нет магнетизма оставлен в железе якоря, чем часто используется батарея для возбуждения соленоиды в динамо-машине, чтобы начать. Это называется «поле» мигает ».

Ниже в обсуждении проводя динамо, вы заметите, как мощность проходит через соленоиды по-другому.

Есть два способа проводка динамо: серия рана и шунт ранить.См. Диаграммы, чтобы узнать разницу.

Ниже видео небольшого простая динамо-машина, похожая на схемы выше (построена в 1890-х годах):

Генератор

Генератор отличается от динамо-машина в том смысле, что она производит переменного тока . Электроны входят в в обоих направлениях в сети переменного тока. Только в 1890-х годах инженеры придумали, как проектировать мощные двигатели, трансформаторы и другие устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током мощность.

Пока генератор использует коммутаторах, генератор использует контактное кольцо со щетками для постукивания по выключение ротора. К контактному кольцу прикреплены графит или углерод. «щетки», которые подпружинены, чтобы прижимать щетку звенеть. Это поддерживает постоянный поток энергии. Кисти изнашиваются время и нуждаются в замене.

Ниже, видео контактных колец и щеток, множество примеров от старого к новому:

Со времен Грамма в 1860-х годах было выяснено, что лучший способ построить динамо-генератор было расположить магнитные катушки по широкому кругу, с широким вращением арматура.Это выглядит иначе, чем простые маленькие примеры динамо-машин. вы видите, как они используются в обучении работе устройств.

На фото ниже вы будете хорошо видна одна катушка на якоре (остальные были сняты для обслуживания) и другие катушки, встроенные в статор.

С 1890-х до наших дней Трехфазное питание переменного тока было стандартной формой питания. Три фазы сделано за счет конструкции генератора.

Изготовить трехфазный генератор вы должны разместить определенное количество магнитов на статоре и якоре, все с правильным интервалом. Электромагнетизм так же сложен, как и волны и вода, поэтому вам нужно знать, как контролировать поле через ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита к железному сердечнику, неправильные расчеты искажения магнитного поле (чем быстрее вращается, тем сильнее искажается поле), ложный сопротивление в катушках якоря и множество других потенциальных проблем.

Почему 3 фазы? если ты хочешь Чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео с пионером трансмиссии Лайонелом Бартольдом.

2.) Краткая история динамо и генераторов:

Генератор возникла из работ Майкла Фарадея и Джозефа Генрих в 1820-х гг. Как только эти два изобретателя обнаружили и задокументировали явления электромагнитной индукции, это приводит к экспериментам другими как в Европе, так и в Северной Америке.

1832 — Ипполит Пикси (Франция) построил первую динамо-машину с помощью коммутатора, его модель создавала электрические импульсы, разделенные отсутствием тока. Он также случайно создали первый генератор переменного тока. Он не знал, что чтобы сделать с изменяющимся током, он сосредоточился на попытке устранить переменный ток для получения постоянного тока, это привело его к созданию коммутатор.

1830s-1860s — Аккумулятор по-прежнему остается самым мощным источником питания электричество для различных экспериментов, происходивших в этот период.Электричество по-прежнему было коммерчески невыгодным. Электрический аккумулятор с питанием от аккумулятора поезд из Вашингтона в Балтимор провалился, что привело к серьезному затруднению в новую область электричества. После миллионов долларов потраченного впустую пара по-прежнему оказался лучшим источником энергии. Электричество все еще необходимо для оказались надежными и коммерчески выгодными.

1860 — Антонио Пачинотти — Создал динамо-машину, Источник питания постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более мощная, более полезная динамо-машина, в которой использовался электромагнит с автономным питанием в статоре вместо слабого постоянного магнита.

1871 — Зеноб Грамм зажег коммерческая революция электроэнергии. Он заполнил магнитное поле железный сердечник, который лучше пропускал магнитный поток. Это увеличило мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих Приложения.

1870-е годы — Произошел взрыв новых конструкций динамо-машин, конструкций варьировал дикий ассортимент, лишь немногие выделялись как превосходящие эффективность.

1876 — Чарльз Ф. Браш (Огайо) разработала самую эффективную и надежную конструкцию динамо-машины из когда-либо существовавших. к этому моменту. Его изобретения продавались через Telegraph Supply. Компания.

1877 — Франклин Институт (Филадельфия) проводит испытания динамо-машин со всего мира. Публичность этого события стимулирует развитие других людей, таких как Элиху. Томсон, лорд Кельвин и Томас Эдисон.

Выше: Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для его системы постоянного тока 1884

1878 — The Компания Ganz начинает использовать генераторы переменного тока в небольших коммерческих инсталляции в Будапеште.

1880 — Чарльз F. Brush использовало более 5000 дуговых ламп , что составляет 80 процентов всех ламп в мире. Экономическая сила электрического возраст начался.

1880–1886 — Системы переменного тока разрабатываются в Европе совместно с Siemens, Сабастиан Ферранти, Люсьен Голар и другие. Царство динамо-машин постоянного тока на прибыльном американском рынке многие скептически относятся к инвестировать в AC.Генераторы переменного тока были мощными, однако генератор само по себе не было самой большой проблемой. Системы контроля и распределения мощности переменного тока необходимо было улучшить, прежде чем она сможет конкурировать с DC на рынке.

1886 — дюйм изобретатели Североамериканского рынка, такие как William Стэнли , Джордж Вестингауз, Никола Тесла и Элиху Thomson разрабатывает собственный кондиционер системы и конструкции генераторов.Большинство из них использовали Siemens и генераторы Ферранти в качестве основы для изучения. Уильям Стэнли быстро смог изобрести генератор получше, будучи неудовлетворенным с генератором Сименса, который он использовал в своем первом эксперимент.

Выше: Генераторы переменного тока Siemens, используемые в Лондоне в 1885 году, в США Эдисон не хотел перейти в область питания переменного тока, в то время как в Европе технология развивалась быстро.


1886-1891 — Полифазный Генераторы переменного тока разработаны К.С. Брэдли (США), Августом Хазелвандером. (Германия), Михаил Доливо-Добровский (Германия / Россия), Галилео Феррарис (Италия) и др. Системы переменного тока, которые включают улучшенный контроль и мощные электродвигатели позволяют AC конкурировать.


1891 — трехфазный Электроэнергия переменного тока оказалась лучшей системой для выработки электроэнергии и распространение на Международном Электротехническая выставка во Франкфурте.

Трехфазный генератор конструкции Михаила Доливо-Добровского, использованный на выставке видно слева.

1892 — Чарльз П. Стейнмец представляет свой доклад AIEE по гистерезису. Понимание Штейнмеца математики мощности переменного тока опубликована и помогает произвести революцию Проектирование систем питания переменного тока, включая большие генераторы переменного тока.

1890-е — Генератор дизайн быстро улучшается благодаря коммерческим продажам и имеющиеся деньги на исследования.Westinghouse, Siemens, Oerlikon, и General Electric разрабатывают самые мощные генераторы в мире. Некоторые генераторы все еще работают 115 лет спустя. (Механиквилл, Нью-Йорк)

Выше: 1894 Элиу Томсон разработал много Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse мощностью 2000 кВт на 270 В от после 1900

3.Видео

Mechanicville Генераторы с объяснением истории (1897), разработанные вдохновителем переменного тока Чарльз П. Стейнмец

Генератор Вестингауза сконструирован и испытан (1905 г.), спроектирован Оливером Шалленбергером, Tesla и другие в Westinghouse.

1895 Первые мощные генераторы используется в Фолсоме, Калифорния (разработан Элиу Томпсон, доктором.Луи Белл и другие в GE)

1891 Генератор производства Oerlikon для Международной электротехнической выставки (дизайн Добровольского в Германии)


Связанные темы:

Источники:
-The История General Electric — Зал истории , Скенектади, штат Нью-Йорк, 1989 г. Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — от General Electric
— История переменного тока — Технический центр Эдисона
— Руководство по электричеству Хокинса

Фото / Видео:
-Copyright 2011 Технический центр Эдисона.Снято в Немецком музее, Мюнхен,
— Некоторые генераторы сфотографированы в Техническом центре Эдисона, Скенектади, NY

Ручной переключатель резерва | Удлинитель

Оригинальный комплект блокировки: доступный, надежный, продано более 50 000 комплектов!

Без дорогостоящего безобрывного переключателя невозможно безопасно подключить генератор к электрической панели дома. Поэтому при отключении электроэнергии ваши домашние системы и устройства не будут получать энергию от генератора через электрическую систему вашего дома.Это почти сводит на нет цель иметь генератор.

Вместо этого вам понадобятся удлинители для подключения домашних устройств к генератору; Проведение этих шнуров по дому создает опасность споткнуться, упасть и даже вызвать пожар. Другие машины, такие как печь или водонагреватель, нельзя подключить шнуром; эти устройства просто не будут работать, пока не будет восстановлено питание.

К счастью, есть решение — способ подключить генератор к панели без переключателя: блокировочный комплект.Комплект блокировки — менее дорогая альтернатива автоматическим выключателям и субпанелям генератора. Электрик может легко установить комплект на имеющуюся электрическую панель. После установки комплекта вы сможете безопасно и удобно подавать питание на бытовые системы и устройства через свою электрическую систему.

Комплект блокировки прост и гениален; он обеспечивает механическую блокировку, которая действует как ручной переключатель, поэтому автоматические выключатели электросети и генератора не могут быть включены одновременно.Комплект изолирует две системы, так что мощность от генератора никогда не будет подаваться обратно в электрические сети, и наоборот. Это безопаснее для вашего генератора, вашей электросистемы и коммунальных служб, которые могут получить электрошок при ремонте соседней линии.

Мы предлагаем комплекты для замены ручных переключателей для большинства марок электрических панелей, включая:

  • Сименс
  • ITE
  • Мюррей
  • Вестингауз
  • Thomas & Betts
  • Режущий молоток
  • Челленджер
  • Квадрат D
  • Брайант
  • Крауз Хиндс
  • General Electric (GE)
  • Проходные панели

Вы можете доверять качеству, безопасности и эффективности наших комплектов блокировки.Наши комплекты соответствуют строгим требованиям Национального электротехнического кодекса (NEC) и Национального кодекса противопожарной защиты; они также прошли испытания и сертифицированы MET Laboratories — ведущей независимой лабораторией электрических испытаний и сертификации. Еще лучше: наши комплекты сделаны в США из высококачественной нержавеющей стали; они не ломаются и не сгибаются, и они прослужат долгие годы.

Если вы хотите более эффективно использовать свой генератор — за меньшую цену, чем покупка и установка безобрывного переключателя — свяжитесь с нами по поводу наших комплектов блокировки.Позвоните по телефону 804.726.2448, чтобы разместить заказ или узнать больше!

Определение: Электрический генератор | Информация об открытой энергии

Устройство для преобразования механической энергии в электрическую. Примечание: EIA определяет «электрический генератор» как объект, а не как устройство; согласно определению EIA, примеры включают электроэнергетические компании и независимых производителей энергии. [1] [2]

Определение Википедии

При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы.В производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего.Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы. Все, что я должен сказать, это скучно! Неудачники HAHA, если вы действительно находите эти интересные шутки на вас, (Эта статья о генерации электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Для устройств для преобразования фотонов в электричество см. Фотоэлектрическую панель.) В электричестве. Генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы., Прежде чем читать подробно, почему бы и нет; Посмотрите на пример хорошо зарекомендовавшей себя британской компании, предоставляющей дизельные генераторы или генераторы в аренду, продажу, запчасти и обслуживание. Ведущий пример поставщика и экспертной фирмы: (Эта статья посвящена производству электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Информацию об устройствах для преобразования фотонов в электричество см. В фотоэлектрической панели.)

В электричестве Генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы., https://en.m.wikipedia.org/wiki/Electric_generator# Отличный пример, приведенный выше, новых и старых генераторов. (Эта статья посвящена производству электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. устройства для преобразования фотонов в электричество, см. фотоэлектрическую панель.) В производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую энергию для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы.Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. являются примером гендерного поставщика услуг аренды и продаж, базирующегося в Великобритании, с подразделениями, обслуживающими многие секторы бизнеса по всей Великобритании. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего.Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. Идея, использованная в этом устройстве — теорема «левой руки Флеминга». При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую. мощность для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механическим способом для выработки электроэнергии, и чаще всего они представляют собой приемлемые ручные генераторы.В производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего.Многие двигатели могут приводиться в действие механическим способом для выработки электричества, часто они делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы., Краткое описание Устройство, которое преобразует другую энергию в электрическую энергию Электростатические генераторы, такие как машина Ван де Граафа, генерирующие электромагнитную энергию и электромагнитный генератор — устройство, которое преобразует движущую силу (механическую энергию) в электрическую энергию для использования во внешней электрической цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы (механизмы). Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы., Устройство, которое преобразует другую энергию в электрическую энергию. Об электростатических генераторах электромагнитной энергии, таких как машина Ван де Граафа, Устройства электростатического генератора для преобразования фотонов в электричество. Фотоэлектрическая панель. движущая сила (механическая энергия) в электрическую мощность для использования во внешней электрической цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы (механизмы).Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы.

Также известен как
Генератор
Связанные термины
Электроэнергия, Энергия
Ссылки
  1. ↑ http: // www1.eere.energy.gov/site_administration/glossary.html
  2. ↑ http://205.254.135.24/tools/glossary/index.cfm?id=E
Безопасность генератора

| Советы по безопасности генератора

Безопасность генератора | Советы по безопасности генератора | красный Крест